Lecture Presentation. Chapter 16. Acid Base Equilibria. John D. Bookstaver St. Charles Community College Cottleville, MO Pearson Education, Inc.

Save this PDF as:
 WORD  PNG  TXT  JPG

Size: px
Start display at page:

Download "Lecture Presentation. Chapter 16. Acid Base Equilibria. John D. Bookstaver St. Charles Community College Cottleville, MO Pearson Education, Inc."

Transcription

1 Lecture Presentation Chapter 16 Acid Base Equilibria John D. Bookstaver St. Charles Community College Cottleville, MO

2 Some Definitions Arrhenius An acid is a substance that, when dissolved in water, increases the concentration of hydrogen ions. A base is a substance that, when dissolved in water, increases the concentration of hydroxide ions.

3 Some Definitions Brønsted Lowry An acid is a proton donor. A base is a proton acceptor.

4 A Brønsted Lowry acid must have a removable (acidic) proton. A Brønsted Lowry base must have a pair of nonbonding electrons.

5 If it can be either it is amphiprotic. HCO 3 HSO 4 H 2 O

6 What Happens When an Acid Dissolves in Water? Water acts as a Brønsted Lowry base abstracts a proton (H + ) from the acid. As a result, the conjugate base of the acid a hydronium ion are formed.

7 Conjugate The term conjugate comes from the Latin word conjugare, meaning to join together. Reactions between acids bases always yield their conjugate bases acids.

8 Acid Base Strength Strong acids are completely dissociated in water. Their conjugate bases are quite weak. Weak acids only dissociate partially in water. Their conjugate bases are weak bases.

9 Acid Base Strength Substances with negligible acidity do not dissociate in water. Their conjugate bases are exceedingly strong.

10 Acid Base Strength In any acid base reaction, the equilibrium will favor the reaction that moves the proton to the stronger base. HCl(aq) + H 2 O(l) H 3 O + (aq) + Cl (aq) H 2 O is a much stronger base than Cl, so the equilibrium lies so far to the right that K is not measured (K >> 1).

11 Acid Base Strength In any acid base reaction, the equilibrium will favor the reaction that moves the proton to the stronger base: CH 3 CO 2 H(aq) + H 2 O(l) H 3 O + (aq) + CH 3 CO 2 (aq) Acetate is a stronger base than H 2 O, so the equilibrium favors the left side (K < 1).

12 Autoionization of Water As we have seen, water is amphoteric. In pure water, a few molecules act as bases a few act as acids. This is referred to as autoionization.

13 Ion Product Constant The equilibrium expression for this process is K c = [H 3 O + ] [OH ] This special equilibrium constant is referred to as the ion product constant for water, K w. At 25 C, K w =

14 ph ph is defined as the negative base-10 logarithm of the concentration of hydronium ion: ph = log [H 3 O + ]

15 ph In pure water, K w = [H 3 O + ] [OH ] = Since in pure water, [H 3 O + ] = [OH ], [H 3 O + ] = =

16 ph Therefore, in pure water, ph = log ( ) = 7.00 An acid has a higher [H 3 O + ] than pure water, so its ph is <7. A base has a lower [H 3 O + ] than pure water, so its ph is >7.

17 ph These are the ph values for several common substances Fig

18 Other p Scales The p in ph tells us to take the negative base-10 logarithm of the quantity (in this case, hydronium ions). Some similar examples are poh: log [OH ] pk w : log K w

19 Watch This! Because [H 3 O + ] [OH ] = K w = we know that log [H 3 O + ] + log [OH ] = log K w = or, in other words, ph + poh = pk w = 14.00

20 How Do We Measure ph? For less accurate measurements, one can use Litmus paper Red paper turns blue above ~ph = 8 Blue paper turns red below ~ph = 5 Or an indicator.

21 How Do We Measure ph? For more accurate measurements, one uses a ph meter, which measures the voltage in the solution.

22 Strong You will recall that the seven strong acids are HCl, HBr, HI, HNO 3, H 2 SO 4, HClO 3, HClO 4. These are, by definition, strong electrolytes exist totally as ions in aqueous solution. For the monoprotic strong acids, [H 3 O + ] = [acid].

23 Strong Strong bases are the soluble hydroxides, which are the alkali metal heavier alkaline earth metal hydroxides (Ca 2+, Sr 2+, Ba 2+ ). Again, these substances dissociate completely in aqueous solution.

24 Dissociation Constants For a generalized acid dissociation, HA(aq) + H 2 O(l) A (aq) + H 3 O + (aq) the equilibrium expression would be K c = [H 3 O + ] [A ] [HA] This equilibrium constant is called the acid-dissociation constant, K a.

25 Dissociation Constants The greater the value of K a, the stronger is the acid.

26 Calculating K a from the ph The ph of a 0.10 M solution of formic acid, HCOOH, at 25 C is Calculate K a for formic acid at this temperature. We know that K a = [H 3 O + ] [HCOO ] [HCOOH]

27 Calculating K a from the ph The ph of a 0.10 M solution of formic acid, HCOOH, at 25 C is Calculate K a for formic acid at this temperature. To calculate K a, we need the equilibrium concentrations of all three things. We can find [H 3 O + ], which is the same as [HCOO ], from the ph.

28 Calculating K a from the ph ph = log [H 3 O + ] 2.38 = log [H 3 O + ] 2.38 = log [H 3 O + ] = 10 log [H 3O+] = [H 3 O + ] = [H 3 O + ] = [HCOO ]

29 Calculating K a from ph Now we can set up a table [HCOOH], M [H 3 O + ], M [HCOO ], M Initially Change At equilibrium

30 Calculating K a from ph Now we can set up a table [HCOOH], M [H 3 O + ], M [HCOO ], M Initially Change At equilibrium

31 Calculating K a from ph Now we can set up a table [HCOOH], M [H 3 O + ], M [HCOO ], M Initially Change At equilibrium = =

32 Calculating K a from ph K a = [ ] [ ] [0.10] =

33 Calculating Percent Ionization [H 3 O + ] eq Percent ionization = 100 In this example, [HA] initial [H 3 O + ] eq = M [HCOOH] initial = 0.10 M Percent ionization = = 4.2%

34 Calculating ph from K a Calculate the ph of a 0.30 M solution of acetic acid, HC 2 H 3 O 2, at 25 C. HC 2 H 3 O 2 (aq) + H 2 O(l) H 3 O + (aq) + C 2 H 3 O 2 (aq) K a for acetic acid at 25 C is

35 Calculating ph from K a The equilibrium constant expression is K a = [H 3 O + ] [C 2 H 3 O 2 ] [HC 2 H 3 O 2 ]

36 Calculating ph from K a We next set up a table [C 2 H 3 O 2 ], M [H 3 O + ], M [C 2 H 3 O 2 ], M Initially Change At equilibrium We are assuming that x will be very small compared to 0.30 can, therefore, be ignored.

37 Calculating ph from K a We next set up a table [C 2 H 3 O 2 ], M [H 3 O + ], M [C 2 H 3 O 2 ], M Initially Change x +x +x At equilibrium We are assuming that x will be very small compared to 0.30 can, therefore, be ignored.

38 Calculating ph from K a We next set up a table [C 2 H 3 O 2 ], M [H 3 O + ], M [C 2 H 3 O 2 ], M Initially Change x +x +x At equilibrium 0.30 x 0.30 x x We are assuming that x will be very small compared to 0.30 can, therefore, be ignored.

39 Calculating ph from K a Now, = (x) 2 (0.30) ( ) (0.30) = x = x = x

40 Calculating ph from K a ph = log [H 3 O + ] ph = log ( ) ph = 2.64

41 Polyprotic Polyprotic acids have more than one acidic proton. If the difference between the K a for the first dissociation subsequent K a values is 10 3 or more, the ph generally depends only on the first dissociation.

42 Weak react with water to produce hydroxide ion.

43 Weak The equilibrium constant expression for this reaction is K b = [HB] [OH ] [B ] where K b is the base-dissociation constant.

44 Weak K b can be used to find [OH ], through it, ph.

45 ph of Basic Solutions What is the ph of a 0.15 M solution of NH 3? NH 3 (aq) + H 2 O(l) NH 4 + (aq) + OH (aq) K b = [NH 4+ ] [OH ] [NH 3 ] =

46 ph of Basic Solutions Tabulate the data. [NH 3 ], M [NH 4+ ], M [OH ], M Initially At equilibrium

47 ph of Basic Solutions Tabulate the data. [NH 3 ], M [NH 4+ ], M [OH ], M Initially At equilibrium 0.15 x 0.15 x x

48 ph of Basic Solutions = (x) 2 (0.15) ( ) (0.15) = x = x = x 2

49 ph of Basic Solutions Therefore, [OH ] = M poh = log ( ) poh = 2.80 ph = ph = 11.20

50 K a K b K a K b are related in this way: K a K b = K w Therefore, if you know one of them, you can calculate the other.

51 Reactions of Anions with Water Anions are bases. As such, they can react with water in a hydrolysis reaction to form OH the conjugate acid: X (aq) + H 2 O(l) HX(aq) + OH (aq)

52 Reactions of Cations with Water Cations with acidic protons (like NH 4+ ) will lower the ph of a solution. Most metal cations that are hydrated in solution also lower the ph of the solution.

53 Reactions of Cations with Water Attraction between nonbonding electrons on oxygen the metal causes a shift of the electron density in water. This makes the O H bond more polar the water more acidic.

54 Reactions of Cations with Water Greater charge smaller size make a cation more acidic.

55 Effect of Cations Anions 1. An anion that is the conjugate base of a strong acid will not affect the ph. 2. An anion that is the conjugate base of a weak acid will increase the ph. 3. A cation that is the conjugate acid of a weak base will decrease the ph.

56 Effect of Cations Anions 4. Cations of the strong Arrhenius bases will not affect the ph. 5. Other metal ions will cause a decrease in ph. 6. When a solution contains both a weak acid a weak base, the affect on ph depends on the K a K b values.

57 Factors Affecting Acid Strength The more polar the H X bond /or the weaker the H X bond, the more acidic the compound. So acidity increases from left to right across a row from top to bottom down a group.

58 Factors Affecting Acid Strength In oxyacids, in which an OH is bonded to another atom, Y, the more electronegative Y is, the more acidic the acid.

59 Factors Affecting Acid Strength For a series of oxyacids, acidity increases with the number of oxygens.

60 Factors Affecting Acid Strength Resonance in the conjugate bases of carboxylic acids stabilizes the base makes the conjugate acid more acidic.

61 Lewis Lewis acids are defined as electron-pair acceptors. Atoms with an empty valence orbital can be Lewis acids.

62 Lewis Lewis bases are defined as electron-pair donors. Anything that could be a Brønsted Lowry base is a Lewis base. Lewis bases can interact with things other than protons, however.

Chapter 16. Chemistry, The Central Science, 11th edition Theodore L. Brown, H. Eugene LeMay, Jr., and Bruce E. Bursten

Chapter 16. Chemistry, The Central Science, 11th edition Theodore L. Brown, H. Eugene LeMay, Jr., and Bruce E. Bursten Chemistry, The Central Science, 11th edition Theodore L. Brown, H. Eugene LeMay, Jr., Bruce E. Bursten Chapter 16 John D. Bookstaver St. Charles Community College Cottleville, MO Some Definitions Arrhenius

More information

Chapter 16. Dr Ayman Nafady

Chapter 16. Dr Ayman Nafady Chemistry, The Central Science, 11th edition Theodore L. Brown, H. Eugene LeMay, Jr., Bruce E. Bursten Chapter 16 Dr Ayman Nafady John D. Bookstaver St. Charles Community College Cottleville, MO Some Definitions

More information

Chapter 16 Acid-Base Equilibria

Chapter 16 Acid-Base Equilibria Chapter 16 Acid-Base Equilibria Learning goals and key skills: Understand the nature of the hydrated proton, represented as either H + (aq) or H 3 O + (aq) Define and identify Arrhenuis acids and bases.

More information

ACIDS AND BASES CONTINUED

ACIDS AND BASES CONTINUED ACIDS AND BASES CONTINUED WHAT HAPPENS WHEN AN ACID DISSOLVED IN WATER? Water acts as a Brønsted Lowry base and abstracts a proton (H+) from the acid. As a result, the conjugate base of the acid and a

More information

Chap 16 Chemical Equilibrium HSU FUYIN

Chap 16 Chemical Equilibrium HSU FUYIN Chap 16 Chemical Equilibrium HSU FUYIN 1 Definitions: Arrhenius & Brønsted Lowry acid and base Arrhenius theory: An acid is a substance that, when dissolved in water, increases the concentration of hydrogen

More information

Chapter 16. Acid-Base Equilibria

Chapter 16. Acid-Base Equilibria Chapter 16. Acid-Base Equilibria 16.1 Acids and Bases: A Brief Review Acids taste sour and cause certain dyes to change color. Bases taste bitter and feel soapy. Arrhenius concept of acids and bases: An

More information

Chemistry: The Central Science. Chapter 16: Acid-Base Equilibria. 16.1: Acids and Bases: A Brief Review

Chemistry: The Central Science. Chapter 16: Acid-Base Equilibria. 16.1: Acids and Bases: A Brief Review Chemistry: The Central Science Chapter 16: Acid-Base Equilibria 16.1: Acids and Bases: A Brief Review Acids have a sour taste and cause certain dyes to change color Base have a bitter taste and feel slippery

More information

CHEMISTRY. Chapter 16 Acid-Base Equilibria

CHEMISTRY. Chapter 16 Acid-Base Equilibria CHEMISTRY The Central Science 8 th Edition Chapter 16 Acid-Base Equilibria Kozet YAPSAKLI Why study acids bases? bases are common in the everyday world as well as in the lab. Some common acidic products

More information

Chapter 16 Acids and Bases. Chapter 16 Acids and Bases

Chapter 16 Acids and Bases. Chapter 16 Acids and Bases . Chapter 16 Acids and Bases 1 Some Definitions Arrhenius Acid: Substance that, when dissolved in water, increases the concentration of hydrogen ions. Base: Substance that, when dissolved in water, increases

More information

Chapter 14 Acids and Bases

Chapter 14 Acids and Bases Properties of Acids and Bases Chapter 14 Acids and Bases Svante Arrhenius (1859-1927) First to develop a theory for acids and bases in aqueous solution Arrhenius Acids Compounds which dissolve (dissociate)

More information

Chapter 16 Acid Base Equilibria

Chapter 16 Acid Base Equilibria Chapter 16 Acid Base Equilibria 2015 Pearson Education, Inc. Acid Base Equilibria 16.1 : A Brief Review 16.2 Brønsted Lowry 16.3 The Autoionization of Water 16.4 The ph Scale 16.5 Strong Balsamic Vinegar

More information

Acid-Base Chemistry & Organic Compounds. Chapter 2

Acid-Base Chemistry & Organic Compounds. Chapter 2 Acid-Base Chemistry & Organic Compounds Chapter 2 Brønsted Lowry Acids & Bases! Brønsted-Lowry Acid: Proton (H + ) Donor! Brønsted-Lowry Base: Proton (H + ) Acceptor! General reaction: HA + B: A - + BH

More information

Chemistry I Notes Unit 10: Acids and Bases

Chemistry I Notes Unit 10: Acids and Bases Chemistry I Notes Unit 10: Acids and Bases Acids 1. Sour taste. 2. Acids change the color of acid- base indicators (turn blue litmus red). 3. Some acids react with active metals and release hydrogen gas,

More information

CHAPTER 13: ACIDS & BASES. Section Arrhenius Acid & Bases Svante Arrhenius, Swedish chemist ( ).

CHAPTER 13: ACIDS & BASES. Section Arrhenius Acid & Bases Svante Arrhenius, Swedish chemist ( ). CHAPTER 13: ACIDS & BASES Section 13.1 Arrhenius Acid & Bases Svante Arrhenius, Swedish chemist (1839-1927). He understood that aqueous solutions of acids and bases conduct electricity (they are electrolytes).

More information

Talk n Acids & Bases... Lady Dog! Definitions

Talk n Acids & Bases... Lady Dog! Definitions Talk n Acids & Bases... Lady Dog! Definitions So far in this course, we have looked at processes in chemistry that deal with, or are best explained by, ionic salts or molecules. Now we will turn our attention

More information

Aqueous Equilibria: Acids and Bases

Aqueous Equilibria: Acids and Bases Slide 1 Chapter 14 Aqueous Equilibria: Acids and Bases Slide 2 Acid Base Concepts 01 Arrhenius Acid: A substance which dissociates to form hydrogen ions (H + ) in solution. HA(aq) H + (aq) + A (aq) Arrhenius

More information

Aqueous Equilibria, Part 1 AP Chemistry Lecture Outline

Aqueous Equilibria, Part 1 AP Chemistry Lecture Outline Aqueous Equilibria, Part 1 AP Chemistry Lecture Outline Name: Acids and Bases Arrhenius...acids increase the when dissolved in H 2 O....bases increase the when dissolved in H 2 O. e.g., HCl and NaOH Bronsted-Lowry

More information

Chapter 16 Acid-Base Equilibria

Chapter 16 Acid-Base Equilibria Page 1 of 20 Chapter 16 Acid-Base Equilibria 16.1 Acids and Bases: A Brief Review Acids: taste sour and cause certain dyes to change color. Bases: taste bitter and feel soapy. Arrhenius concept o acids

More information

Chapter 14. Objectives

Chapter 14. Objectives Section 1 Properties of Acids and Bases Objectives List five general properties of aqueous acids and bases. Name common binary acids and oxyacids, given their chemical formulas. List five acids commonly

More information

Chapter 16: Acid Base Equilibria Chapter 16 Acid-Base Equilibria Learning Standards & Objectives;

Chapter 16: Acid Base Equilibria Chapter 16 Acid-Base Equilibria Learning Standards & Objectives; Chapter 16: Acid Base Equilibria Chapter 16 Acid-Base Equilibria Learning Standards & Objectives; Chapter 16 AP16-1,2-01 AP16-1,2-02 AP16-1,2-03 AP16-3,4-01 AP16-3,4-02 AP16-5-01 AP16-6,7-01 AP16-6,7-02

More information

Weak acids are only partially ionized in aqueous solution: mixture of ions and un-ionized acid in solution.

Weak acids are only partially ionized in aqueous solution: mixture of ions and un-ionized acid in solution. 16.6 Weak Acids Weak acids are only partially ionized in aqueous solution: mixture of ions and un-ionized acid in solution. Therefore, weak acids are in equilibrium: HA(aq) + H 2 O(l) H 3 O + (aq) + A

More information

Acids & Bases. Strong Acids. Weak Acids. Strong Bases. Acetic Acid. Arrhenius Definition: Classic Definition of Acids and Bases.

Acids & Bases. Strong Acids. Weak Acids. Strong Bases. Acetic Acid. Arrhenius Definition: Classic Definition of Acids and Bases. Arrhenius Definition: Classic Definition of Acids and Bases Acid: A substance that increases the hydrogen ion concetration, [H ], (also thought of as hydronium ion, H O ) when dissolved in water. Acids

More information

Chapter 16. Acid-Base Equilibria

Chapter 16. Acid-Base Equilibria Chapter 16 Acid-Base Equilibria Arrhenius Definition Acids produce hydrogen ions in aqueous solution. Bases produce hydroxide ions when dissolved in water. Limits to aqueous solutions. Only one kind of

More information

HA(aq) H + (aq) + A (aq) We can write an equilibrium constant expression for this dissociation: [ ][ ]

HA(aq) H + (aq) + A (aq) We can write an equilibrium constant expression for this dissociation: [ ][ ] 16.6 Weak Acids Weak acids are only partially ionized in aqueous solution. There is a mixture of ions and un-ionized acid in solution. Therefore, weak acids are in equilibrium: Or: HA(aq) + H 2 O(l) H

More information

Acids and Bases. A strong base is a substance that completely ionizes in aqueous solutions to give a cation and a hydroxide ion.

Acids and Bases. A strong base is a substance that completely ionizes in aqueous solutions to give a cation and a hydroxide ion. Acid-Base Theories Arrhenius Acids and Bases (1884) Acids and Bases An acid is a substance that, when dissolved in water, increases the concentration of hydrogen ions. A base is a substance that, when

More information

(Label the Conjugate Pairs) Water in the last example acted as a Bronsted-Lowry base, and here it is acting as an acid. or

(Label the Conjugate Pairs) Water in the last example acted as a Bronsted-Lowry base, and here it is acting as an acid. or Chapter 16 - Acid-Base Equilibria Arrhenius Definition produce hydrogen ions in aqueous solution. produce hydroxide ions when dissolved in water. Limits to aqueous solutions. Only one kind of base. NH

More information

AP Chemistry CHAPTER 16 STUDY GUIDE Acid-Base Equilibrium

AP Chemistry CHAPTER 16 STUDY GUIDE Acid-Base Equilibrium AP Chemistry CHAPTER 16 STUDY GUIDE AcidBase Equilibrium 16.1 Acids and Bases: A Brief Review Acids taste sour and cause certain dyes to change color. Bases taste bitter and feel soapy. Arrhenius concept

More information

Chapter 14: Acids and Bases

Chapter 14: Acids and Bases Chapter 14: Acids and Bases 14.1 The Nature of Acids and Bases Bronsted-Lowry Acid-Base Systems Bronsted acid: proton donor Bronsted base: proton acceptor Bronsted acid base reaction: proton transfer from

More information

Properties of Acids and Bases

Properties of Acids and Bases Chapter 15 Aqueous Equilibria: Acids and Bases Properties of Acids and Bases Generally, an acid is a compound that releases hydrogen ions, H +, into water. Blue litmus is used to test for acids. Blue litmus

More information

11/14/10. Properties of Acids! CHAPTER 15 Acids and Bases. Table 18.1

11/14/10. Properties of Acids! CHAPTER 15 Acids and Bases. Table 18.1 11/14/10 CHAPTER 15 Acids and Bases 15-1 Properties of Acids! Sour taste React with active metals i.e., Al, Zn, Fe, but not Cu, Ag, or Au 2 Al + 6 HCl 2 AlCl3 + 3 H2 corrosive React with carbonates, producing

More information

Chpt 16: Acids and Bases

Chpt 16: Acids and Bases Chpt 16 Acids and Bases Defining Acids Arrhenius: Acid: Substances when dissolved in water increase the concentration of H+. Base: Substances when dissolved in water increase the concentration of OH- Brønsted-Lowry:

More information

Chapter Menu Chapter Menu

Chapter Menu Chapter Menu Chapter Menu Chapter Menu Section 18.1 Section 18.3 Section 18.4 Introduction to Acids and Bases Hydrogen Ions and ph Neutralization Section 18.1 Intro to Acids and Bases Objectives: Compare the Arrhenius,

More information

Chem 1046 Lecture Notes Chapter 17

Chem 1046 Lecture Notes Chapter 17 Chem 1046 Lecture Notes Chapter 17 Updated 01-Oct-2012 The Chemistry of Acids and Bases These Notes are to SUPPLIMENT the Text, They do NOT Replace reading the Text Book Material. Additional material that

More information

Cu 2+ (aq) + 4NH 3(aq) = Cu(NH 3) 4 2+ (aq) I (aq) + I 2(aq) = I 3 (aq) Fe 3+ (aq) + 6H 2O(l) = Fe(H 2O) 6 3+ (aq) Strong acids

Cu 2+ (aq) + 4NH 3(aq) = Cu(NH 3) 4 2+ (aq) I (aq) + I 2(aq) = I 3 (aq) Fe 3+ (aq) + 6H 2O(l) = Fe(H 2O) 6 3+ (aq) Strong acids There are three definitions for acids and bases we will need to understand. Arrhenius Concept: an acid supplies H + to an aqueous solution. A base supplies OH to an aqueous solution. This is the oldest

More information

Acid and Base Equilibria Chapter 16

Acid and Base Equilibria Chapter 16 Acid and Base Equilibria Chapter 16! Review Chapter 4.1 (Electrolytes)! Review Chapter 4.3 (Acid- Base ReacBons)! Memorize 7 Strong Acids (Table 4.2)! Memorize the Strong Bases (Also Table 4.2)! Review

More information

ACID BASE EQUILIBRIUM

ACID BASE EQUILIBRIUM ACID BASE EQUILIBRIUM Part one: Acid/Base Theories Learning Goals: to identify acids and bases and their conjugates according to Arrhenius and Bronstead Lowry Theories. to be able to identify amphoteric

More information

CHAPTER 14 ACIDS AND BASES

CHAPTER 14 ACIDS AND BASES CHAPTER 14 ACIDS AND BASES Topics Definition of acids and bases Bronsted-Lowry Concept Dissociation constant of weak acids Acid strength Calculating ph for strong and weak acids and bases Polyprotic acids

More information

Chapter 16. Acids and Bases. Copyright Cengage Learning. All rights reserved 1

Chapter 16. Acids and Bases. Copyright Cengage Learning. All rights reserved 1 Chapter 16 Acids and Bases Copyright Cengage Learning. All rights reserved 1 Section 16.1 Acids and Bases Models of Acids and Bases Arrhenius: Acids produce H + ions in solution, bases produce OH ions.

More information

Contents and Concepts

Contents and Concepts Chapter 16 1 Learning Objectives Acid Base Concepts Arrhenius Concept of Acids and Base a. Define acid and base according to the Arrhenius concept. Brønsted Lowry Concept of Acids and Bases a. Define acid

More information

11/15/11. Chapter 16. HA(aq) + H 2 O(l) H 3 O + (aq) + A (aq) acid base conjugate conjugate

11/15/11. Chapter 16. HA(aq) + H 2 O(l) H 3 O + (aq) + A (aq) acid base conjugate conjugate Chapter 16 Table of Contents Chapter 16 16.1 16.2 16.3 16.4 16.5 16.6 Buffered Solutions Copyright Cengage Learning. All rights reserved 2 Models of Arrhenius: Acids produce H + ions in solution, bases

More information

Acids and Bases. Chapter 15. Copyright The McGraw-Hill Companies, Inc. Permission required for reproduction or display.

Acids and Bases. Chapter 15. Copyright The McGraw-Hill Companies, Inc. Permission required for reproduction or display. Acids and Bases Chapter 15 Copyright The McGraw-Hill Companies, Inc. Permission required for reproduction or display. Acids Have a sour taste. Vinegar owes its taste to acetic acid. Citrus fruits contain

More information

Principles of Reactivity: The Chemistry of Acids and Bases. Acids, Bases and Arrhenius

Principles of Reactivity: The Chemistry of Acids and Bases. Acids, Bases and Arrhenius Principles of Reactivity: The Chemistry of Acids and Bases **a lot of calculations in this chapter will be done on the chalkboard Do not rely on these notes for all the material** Acids, Bases and Arrhenius

More information

Chapter 14. Acids and Bases

Chapter 14. Acids and Bases Chapter 14 Acids and Bases Section 14.1 The Nature of Acids and Bases Models of Acids and Bases Arrhenius: Acids produce H + ions in solution, bases produce OH - ions. Brønsted Lowry: Acids are proton

More information

Acids and Bases. Aqueous Equilibria

Acids and Bases. Aqueous Equilibria Acids and Bases and Aqueous Equilibria David A Katz Department of Chemistry Pima Community College, Tucson, AZ, USA Properties of Acids 1. Sour taste (examples: vinegar, citric acid, lemon juice) 2. Turns

More information

Acids and Bases. Chapter 15. Copyright The McGraw-Hill Companies, Inc. Permission required for reproduction or display.

Acids and Bases. Chapter 15. Copyright The McGraw-Hill Companies, Inc. Permission required for reproduction or display. Acids and Bases Chapter 15 Copyright The McGraw-Hill Companies, Inc. Permission required for reproduction or display. 1 Acids Have a sour taste. Vinegar owes its taste to acetic acid. Citrus fruits contain

More information

In the Brønsted-Lowry system, a Brønsted-Lowry acid is a species that donates H + and a Brønsted-Lowry base is a species that accepts H +.

In the Brønsted-Lowry system, a Brønsted-Lowry acid is a species that donates H + and a Brønsted-Lowry base is a species that accepts H +. 16.1 Acids and Bases: A Brief Review Arrhenius concept of acids and bases: an acid increases [H + ] and a base increases [OH ]. 16.2 BrønstedLowry Acids and Bases In the BrønstedLowry system, a BrønstedLowry

More information

Chapter 15. Properties of Acids. Structure of Acids 7/3/08. Acid and Bases

Chapter 15. Properties of Acids. Structure of Acids 7/3/08. Acid and Bases Chapter 15 Acid and Bases Properties of Acids! Sour taste! React with active metals! React with carbonates, producing CO 2! Change color of vegetable dyes!blue litmus turns red! React with bases to form

More information

ACID-BASE EQUILIBRIA (Part One) A Competition for Protons ADEng. PROGRAMME Chemistry for Engineers Prepared by M. J. McNeil, MPhil.

ACID-BASE EQUILIBRIA (Part One) A Competition for Protons ADEng. PROGRAMME Chemistry for Engineers Prepared by M. J. McNeil, MPhil. ACID-BASE EQUILIBRIA (Part One) A Competition for Protons ADEng. PROGRAMME Chemistry for Engineers Prepared by M. J. McNeil, MPhil. Department of Pure and Applied Sciences Portmore Community College Main

More information

1. Strengths of Acids and Bases 2. K a, K b 3. Ionization of Water 4. Relative Strengths of Brønsted-Lowry Acids and Bases

1. Strengths of Acids and Bases 2. K a, K b 3. Ionization of Water 4. Relative Strengths of Brønsted-Lowry Acids and Bases Chemistry 12 Acid-Base Equilibrium II Name: Date: Block: 1. Strengths of Acids and Bases 2. K a, K b 3. Ionization of Water 4. Relative Strengths of Brønsted-Lowry Acids and Bases Strengths of Acids and

More information

CHEMISTRY Matter and Change

CHEMISTRY Matter and Change CHEMISTRY Matter and Change UNIT 18 Table Of Contents Section 18.1 Introduction to Acids and Bases Unit 18: Acids and Bases Section 18.2 Section 18.3 Section 18.4 Strengths of Acids and Bases Hydrogen

More information

Acids and bases, as we use them in the lab, are usually aqueous solutions. Ex: when we talk about hydrochloric acid, it is actually hydrogen chloride

Acids and bases, as we use them in the lab, are usually aqueous solutions. Ex: when we talk about hydrochloric acid, it is actually hydrogen chloride Acids and Bases Acids and bases, as we use them in the lab, are usually aqueous solutions. Ex: when we talk about hydrochloric acid, it is actually hydrogen chloride gas dissolved in water HCl (aq) Concentrated

More information

ADVANCED PLACEMENT CHEMISTRY ACIDS, BASES, AND AQUEOUS EQUILIBRIA

ADVANCED PLACEMENT CHEMISTRY ACIDS, BASES, AND AQUEOUS EQUILIBRIA ADVANCED PLACEMENT CHEMISTRY ACIDS, BASES, AND AQUEOUS EQUILIBRIA Acids- taste sour Bases(alkali)- taste bitter and feel slippery Arrhenius concept- acids produce hydrogen ions in aqueous solution while

More information

Acids and bases. for it cannot be But I am pigeon-liver d and lack gall To make oppression bitter Hamlet. Different concepts Calculations and scales

Acids and bases. for it cannot be But I am pigeon-liver d and lack gall To make oppression bitter Hamlet. Different concepts Calculations and scales Acids and bases for it cannot be But I am pigeon-liver d and lack gall To make oppression bitter Hamlet Different concepts Calculations and scales Learning objectives You will be able to: Identify acids

More information

Chapter 13 Acids and Bases

Chapter 13 Acids and Bases William L Masterton Cecile N. Hurley http://academic.cengage.com/chemistry/masterton Chapter 13 Acids and Bases Edward J. Neth University of Connecticut Outline 1. Brønsted-Lowry acid-base model 2. The

More information

CH 15 Summary. Equilibrium is a balance between products and reactants

CH 15 Summary. Equilibrium is a balance between products and reactants CH 15 Summary Equilibrium is a balance between products and reactants Use stoichiometry to determine reactant or product ratios, but NOT reactant to product ratios. Capital K is used to represent the equilibrium

More information

Brønsted-Lowry Acid-Base Model. Chapter 13 Acids and Bases. The Nature of H + Outline. Review from Chapter 4. Conjugate Pairs

Brønsted-Lowry Acid-Base Model. Chapter 13 Acids and Bases. The Nature of H + Outline. Review from Chapter 4. Conjugate Pairs Brønsted-Lowry Acid-Base Model William L Masterton Cecile N. Hurley Edward J. Neth cengage.com/chemistry/masterton Chapter 13 Acids and Bases Brønsted-Lowry Johannes Brønsted (1879-1947) Thomas Lowry (1874-1936)

More information

Chapter 14 Acid- Base Equilibria Study Guide

Chapter 14 Acid- Base Equilibria Study Guide Chapter 14 Acid- Base Equilibria Study Guide This chapter will illustrate the chemistry of acid- base reactions and equilibria, and provide you with tools for quantifying the concentrations of acids and

More information

The Arrhenius Definition of Acids & Bases

The Arrhenius Definition of Acids & Bases ACIDS & BASES The Arrhenius Definition of Acids & Bases An acid produces the hydrogen ion in water. A base produces the hydroxide ion in water. Brønsted Lowry Acids & Bases Brønsted acids are proton donors.

More information

Solutions are aqueous and the temperature is 25 C unless stated otherwise.

Solutions are aqueous and the temperature is 25 C unless stated otherwise. Solutions are aqueous and the temperature is 25 C unless stated otherwise. 1. According to the Arrhenius definition, an acid is a substance that produces ions in aqueous solution. A. H C. OH B. H + D.

More information

Acids & Bases. Chapter 17

Acids & Bases. Chapter 17 Acids & Bases Chapter 17 Arrhenius Definition: Classic Definition of Acids and Bases Acid: A substance that increases the hydrogen ion concetration, [H + ], (also thought of as hydronium ion, H 3 O + )

More information

NATURE OF ACIDS & BASES

NATURE OF ACIDS & BASES General Properties: NATURE OF ACIDS & BASES ACIDS BASES Taste sour Bitter Change color of indicators Blue Litmus turns red no change Red Litmus no change turns blue Phenolphtalein Colorless turns pink

More information

Acid / Base Properties of Salts

Acid / Base Properties of Salts Acid / Base Properties of Salts n Soluble ionic salts produce may produce neutral, acidic, or basic solutions depending on the acidbase properties of the individual ions. n Consider the salt sodium nitrate,

More information

CHAPTER 8: ACID/BASE EQUILIBRIUM

CHAPTER 8: ACID/BASE EQUILIBRIUM CHAPTER 8: ACID/BASE EQUILIBRIUM Already mentioned acid-base reactions in Chapter 6 when discussing reaction types. One way to define acids and bases is using the Brønsted-Lowry definitions. A Brønsted-Lowry

More information

Chapter 6. Acids, Bases, and Acid-Base Reactions

Chapter 6. Acids, Bases, and Acid-Base Reactions Chapter 6 Acids, Bases, and Acid-Base Reactions Chapter Map Arrhenius Acid Definition Anacid is a substance that generates hydronium ions, H 3 O + (often described as H + ), when added to water. An acidic

More information

Chemistry 400 Homework #3, Chapter 16: Acid-Base Equilibria

Chemistry 400 Homework #3, Chapter 16: Acid-Base Equilibria Chemistry 400 Homework #3, Chapter 16: Acid-Base Equilibria I. Multiple Choice (for those with an asterisk, you must show work) These multiple choice (MC) are not "Google-proof", but they were so good

More information

CHEM Dr. Babb s Sections Exam #3 Review Sheet

CHEM Dr. Babb s Sections Exam #3 Review Sheet CHEM 116 Dr. Babb s Sections Exam #3 Review Sheet Acid/Base Theories and Conjugate AcidBase Pairs 111. Define the following terms: Arrhenius acid, Arrhenius base, Lewis acid, Lewis base, BronstedLowry

More information

Acid/Base Theories The common characteristics of acids

Acid/Base Theories The common characteristics of acids Acid/Base Theories The common characteristics of acids describe them as: Acids aving a sour taste Being electrolytes (some weak) Reacting with metals to produce gas (usually 2 ) Reacting with bases to

More information

ACID-BASE EQUILIBRIA. Chapter 16

ACID-BASE EQUILIBRIA. Chapter 16 P a g e 1 Chapter 16 ACID-BASE EQUILIBRIA Nature of Acids and Bases Before we formally define acids and bases, let s examine their properties. Properties of Acids Sour taste Ability to dissolve many metals

More information

Acid/Base Definitions

Acid/Base Definitions Acids and Bases Acid/Base Definitions Arrhenius Model Acids produce hydrogen ions in aqueous solutions Bases produce hydroxide ions in aqueous solutions Bronsted-Lowry Model Acids are proton donors Bases

More information

CHAPTER 14 THE CHEMISTRY OF ACIDS AND BASES

CHAPTER 14 THE CHEMISTRY OF ACIDS AND BASES CHAPTER 14 THE CHEMISTRY OF ACIDS AND BASES "ACID"--Latin word acidus, meaning sour. (lemon) "ALKALI"--Arabic word for the ashes that come from burning certain plants; water solutions feel slippery and

More information

What is an acid? What is a base?

What is an acid? What is a base? What is an acid? What is a base? Properties of an acid Sour taste Turns litmus paper red Conducts electric current Some acids are strong and some are weak Properties of a base Bitter taste Slippery to

More information

Assignment 16 A incorrect

Assignment 16 A incorrect Assignment 16 A 1- What is the concentration of hydronium ions in a solution with a hydroxide-ion concentration of 2.31 10 4 M at 25 C? a) 4.33 10 11 M b) 2.31 10 4 M c) 2.31 10 18 M d) 2.31 10 10 M (The

More information

ACIDS AND BASES. Note: For most of the acid-base reactions, we will be using the Bronsted-Lowry definitions.

ACIDS AND BASES. Note: For most of the acid-base reactions, we will be using the Bronsted-Lowry definitions. DEFINITIONS: ACIDS AND BASES Arrhenius Definition An acid in aqueous solution produces H + ions. A base in aqueous solution produces OH - ions. Bronsted Lowry Theory An acid is a proton donor A base is

More information

Chapter 16 ACIDS AND BASES. (Part I) Dr. Al Saadi. Brønsted Acids and Bases

Chapter 16 ACIDS AND BASES. (Part I) Dr. Al Saadi. Brønsted Acids and Bases Chapter 16 ACIDS AND BASES (Part I) Dr. Al Saadi 1 Brønsted Acids and Bases A Brønsted acid is a species that donates a proton. (a proton donor). HCl(aq) + H 2 O(l) H 3 O + (aq) + Cl (aq) acid hydronium

More information

The Chemistry of Acids and Bases

The Chemistry of Acids and Bases The Chemistry of 1 Acids and Bases 2 Acid and Bases 3 Acid and Bases 4 Acid and Bases 5 Strong and Weak Acids/Bases Generally divide acids and bases into STRONG or WEAK ones. STRONG ACID: HNO 3 (aq) +

More information

*In every acid-base reaction, equilibrium favors transfer of a proton from the stronger acid to the stronger base.

*In every acid-base reaction, equilibrium favors transfer of a proton from the stronger acid to the stronger base. 16.2 Bronsted-Lowry Acids and Bases An acid is a substance that can transfer a proton to another substance. A base is a substance that can accept a proton. A proton is a hydrogen ion, H +. Proton transfer

More information

Chemistry 201: General Chemistry II - Lecture

Chemistry 201: General Chemistry II - Lecture Chemistry 201: General Chemistry II - Lecture Dr. Namphol Sinkaset Chapter 17 Study Guide Concepts 1. There are multiple definitions for acids and bases. 2. An Arrhenius acid is a substance that produces

More information

SCH4U Chapter 8 review

SCH4U Chapter 8 review Name: Class: Date: SCH4U Chapter 8 review Multiple Choice Identify the choice that best completes the statement or answers the question. 1. Which statement does not describe a characteristic of acidic

More information

THE BIG IDEA: REACTIONS. 1. Review nomenclature rules for acids and bases and the formation of acids and bases from anhydrides. (19.

THE BIG IDEA: REACTIONS. 1. Review nomenclature rules for acids and bases and the formation of acids and bases from anhydrides. (19. HONORS CHEMISTRY - CHAPTER 19 ACIDS, BASES, AND SALTS OBJECTIVES AND NOTES - V14 NAME: DATE: PAGE: THE BIG IDEA: REACTIONS Essential Questions 1. What are the different ways chemists define acids and bases?

More information

Acid and Base Strength. Weak Acid-Base Equilibrium. Acid and Base Strength 1. Acid and Base Strength. Dissociation Constants

Acid and Base Strength. Weak Acid-Base Equilibrium. Acid and Base Strength 1. Acid and Base Strength. Dissociation Constants Weak AcidBase Equilibrium A molecule with negligible acidity contains hydrogen but does not demonstrate any acidic behavior in water. Its conjugate base is extremely strong. Possibly explained by Lewis

More information

Chapter 8 Acid-Base Equilibria

Chapter 8 Acid-Base Equilibria Chapter 8 Acid-Base Equilibria 8-1 Brønsted-Lowry Acids and Bases 8-2 Water and the ph Scale 8-3 The Strengths of Acids and Bases 8-4 Equilibria Involving Weak Acids and Bases 8-5 Buffer Solutions 8-6

More information

Section 32 Acids and Bases. Copyright (c) 2011 by Michael A. Janusa, PhD. All rights reserved.

Section 32 Acids and Bases. Copyright (c) 2011 by Michael A. Janusa, PhD. All rights reserved. Section 32 Acids and Bases 1 Copyright (c) 2011 by Michael A. Janusa, PhD. All rights reserved. Acid-Base Concepts Acids and bases are among the most familiar and important of all chemical compounds. You

More information

Chapter 16: Acids and Bases I. Chem 102 Dr. Eloranta

Chapter 16: Acids and Bases I. Chem 102 Dr. Eloranta Chapter 16: Acids and Bases I Chem 102 Dr. Eloranta Acids and Bases Acids Sour taste (vinegar) Dissolve many metals Ability to neutralize bases Strong or Weak Bases Bitter taste (caffeine, poisons from

More information

Chapter 10 - Acids & Bases

Chapter 10 - Acids & Bases Chapter 10 - Acids & Bases 10.1-Acids & Bases: Definitions Arrhenius Definitions Acids: substances that produce hydrogen ions when dissolved in H 2 O Common Strong Acids: Common Weak acids: Organic carboxylic

More information

Unit 2 Acids and Bases

Unit 2 Acids and Bases Unit 2 Acids and Bases 1 Topics Properties / Operational Definitions Acid-Base Theories ph & poh calculations Equilibria (Kw, K a, K b ) Indicators Titrations STSE: Acids Around Us 2 Operational Definitions

More information

1.10 Structural formulas

1.10 Structural formulas 1.10 Structural formulas It shows which atoms are bonded to which. There are two types of structural formulas, complete Lewis structures and condensed structural formulas. In addition, there are several

More information

Chapter 7 Acids and Bases

Chapter 7 Acids and Bases Chapter 7 Acids and Bases 7.1 The Nature of Acids and Bases 7.2 Acid Strength 7.3 The ph Scale 7.4 Calculating the ph of Strong Acid Solutions 7.5 Calculating the ph of Weak Acid Solutions 7.6 Bases 7.7

More information

Honors Chemistry Study Guide for Acids and Bases. NH4 + (aq) + H2O(l) H3O + (aq) + NH3(aq) water. a)hno3. b) NH3

Honors Chemistry Study Guide for Acids and Bases. NH4 + (aq) + H2O(l) H3O + (aq) + NH3(aq) water. a)hno3. b) NH3 Honors Chemistry Study Guide for Acids and Bases 1. Calculate the ph, poh, and [H3O + ] for a solution that has a [OH - ] = 4.5 x 10-5? 2. An aqueous solution has a ph of 8.85. What are the [H + ], [OH

More information

g. Looking at the equation, one can conclude that H 2 O has accepted a proton from HONH 3 HONH 3

g. Looking at the equation, one can conclude that H 2 O has accepted a proton from HONH 3 HONH 3 Chapter 14 Acids and Bases I. Bronsted Lowry Acids and Bases a. According to Brønsted- Lowry, an acid is a proton donor and a base is a proton acceptor. Therefore, in an acid- base reaction, a proton (H

More information

Acids and Bases. Properties of Acids. Properties of Bases. Slide 1 / 174. Slide 2 / 174. Slide 3 / 174

Acids and Bases. Properties of Acids. Properties of Bases. Slide 1 / 174. Slide 2 / 174. Slide 3 / 174 Slide 1 / 174 Acids and Bases PSI Chemistry covers the material approximately up to slide 75. Properties of Acids Slide 2 / 174 Acids release hydrogen ion(s) into (aqueous) solution Acids neutralize bases

More information

Unit 9. Acids, Bases, & Salts Acid/Base Equilibrium

Unit 9. Acids, Bases, & Salts Acid/Base Equilibrium Unit 9 Acids, Bases, & Salts Acid/Base Equilibrium Properties of Acids sour or tart taste strong acids burn; weak acids feel similar to H 2 O acid solutions are electrolytes acids react with most metals

More information

Acid-Base Chemistry. There are a couple of ways to define acids and bases Brønsted-Lowry acids and bases. Lewis acids and bases

Acid-Base Chemistry. There are a couple of ways to define acids and bases Brønsted-Lowry acids and bases. Lewis acids and bases Acid-Base Chemistry There are a couple of ways to define acids and bases Brønsted-Lowry acids and bases Acid: H + ion donor Base: H + ion acceptor Lewis acids and bases Acid: electron pair acceptor Base:

More information

Name Date Class ACID-BASE THEORIES

Name Date Class ACID-BASE THEORIES 19.1 ACID-BASE THEORIES Section Review Objectives Define the properties of acids and bases Compare and contrast acids and bases as defined by the theories of Arrhenius, Brønsted-Lowry, and Lewis Vocabulary

More information

Unit 6: ACIDS AND BASES

Unit 6: ACIDS AND BASES Unit 6: Acids and Bases Honour Chemistry Unit 6: ACIDS AND BASES Chapter 16: Acids and Bases 16.1: Brønsted Acids and Bases Physical and Chemical Properties of Acid and Base Acids Bases Taste Sour (Citric

More information

Advanced Placement Chemistry Chapters Syllabus

Advanced Placement Chemistry Chapters Syllabus As you work through the chapter, you should be able to: Advanced Placement Chemistry Chapters 14 16 Syllabus Chapter 14 Acids and Bases 1. Describe acid and bases using the Bronsted-Lowry, Arrhenius, and

More information

Acids and Bases. Slide 1 / 208. Slide 2 / 208. Slide 3 / 208. Table of Contents: Acids and Bases

Acids and Bases. Slide 1 / 208. Slide 2 / 208. Slide 3 / 208. Table of Contents: Acids and Bases Slide 1 / 208 Slide 2 / 208 Acids and Bases Table of Contents: Acids and Bases Click on the topic to go to that section Slide 3 / 208 Properties of Acids and Bases Conjugate Acid and Base Pairs Amphoteric

More information

The Chemistry of Acids and Bases Separately Chapter 14 Part I

The Chemistry of Acids and Bases Separately Chapter 14 Part I Page III-14a-1 / Chapter Fourteen Part I Lecture Notes The Chemistry of Acids and Bases Separately Chapter 14 Part I Strong and Weak Acids/Bases Generally divide acids and bases into STRONG or WEAK categories.

More information

Chemistry 102 Chapter 15 ACID-BASE CONCEPTS

Chemistry 102 Chapter 15 ACID-BASE CONCEPTS General Properties: ACID-BASE CONCEPTS ACIDS BASES Taste sour Bitter Change color of indicators Blue Litmus turns red no change Red Litmus no change turns blue Phenolphtalein Colorless turns pink Neutralization

More information

What is an acid? What is a base?

What is an acid? What is a base? What is an acid? What is a base? Properties of an acid Sour taste Turns litmus paper red Conducts electric current Some acids are strong and some are weak Properties of a base Bitter taste Slippery to

More information

A) Arrhenius Acids produce H+ and bases produce OH not always used because it only IDs X OH as basic species

A) Arrhenius Acids produce H+ and bases produce OH not always used because it only IDs X OH as basic species 3 ACID AND BASE THEORIES: A) Arrhenius Acids produce H+ and bases produce OH not always used because it only IDs X OH as basic species B) Bronsted and Lowry Acid = H + donor > CB = formed after H + dissociates

More information