Modeling and Simulation of Fluidized Bed Catalytic Reactor Regenerator

Size: px
Start display at page:

Download "Modeling and Simulation of Fluidized Bed Catalytic Reactor Regenerator"

Transcription

1 September 215 Modeling and Simulation of Fluidized Bed Catalytic Reactor Regenerator S. N. Saha, Professor, Chemical Engg.Dept., Guru GhasidasVishwavidyalaya, Bilaspur (C.G.), India. G. P. Dewangan*, Assistant Professor, Chemical Engg. Dept., Guru GhasidasVishwavidyalaya, Bilaspur (C.G.), India. ABSTRACT Fluidized bed catalytic reactor regenerator has got its various advantages and owing to that, it is gaining more and more prominence in various chemical process industries in particular petrochemical industry. The present paper deals with effect of pressure and temperature on final conversion in Fluidized Bed Reactor Regenerator. The relevant working equations have been simulated using MATLAB software. The results have been listed. The parameters like reactor regenerator temperature, pressure, feed flow rate, gas flow rate and gas hold up, catalyst hold up have been taken up in this mathematical modeling and simulation. Keywords:Fluidized catalytic cracking; Fluidized bed; Modeling; Simulation; Reactor; Regenerator; MATLAB INTRODUCTION There is lot of research work being done for recommendation of application of fluidized bed techniques in various industries (1-17). A prominent application area of FB technique is fluidized catalytic cracking (FCC) process that converts heavy distillates like gas oils or residues to lighter petroleum fractions like gasoline s or LPG using a catalyst. Different types of FCC units are used in industry. The following schematic figure 1 shows a typical unit of FCC consisting of the reactor, regenerator, catalyst transport lines, and several auxiliary units like pre-heater, catalyst cooler, and blowers as used in the relevant industry. The process includes the feedstock to beinjected through the nozzles resulting production of instant vaporization at high temperature. Catalytic cracking reactions take place in the riser with a very short contact time because of high catalyst activity. In the cracking process coke is generated and deposited on the surface of catalyst. Reaction products are separated from catalyst in a cyclone system and the catalyst is sent through a vapor stripper through which the adsorbed products adhered over the catalyst used in the system are removed.the coke is burnt with air in the regenerator for catalyst activation resulting the rising of the temperature. Since a typical FCC unit can convert a large amount of feedstock into more valuable products, the overall economic benefits of a refinery could be considerably increased if proper control and optimization strategies are implemented. But, analysis and control of FCC processes have been known as challenging problems due to the process characteristics inter alia (i) complicated and unknown hydrodynamics, (ii) complex kinetics of both cracking and coke burning reactions, (iii) intense interactions between the reactor and the regenerator, (iv) operating constraints. Because of various advantages the fluidized bed reactorregenerator is gaining more and more prominence particularly in petrochemical industry with the industrial applications like fluid catalytic cracking of petroleum, fluid coking, hydrocracking, besides hydrogenation of ethylene, oxidation of ammonia. Out of the various elements configured in the above fig. 1 like riser, stripper, cyclone, feed injection, reactor and regenerator have been emphasized in this paper. The part of bubbling bed height, distributor, and heat exchange coefficients between bubble-cloud and between cloud-emulsion have been reported in detail elsewhere (1). * Corresponding author who may be contacted 46 S. N. Saha, G. P. Dewangan

2 September 215 Reactor FCC products Riser Stripper Cyclones Flue gas Vaporization Regenerator Feed Injection Air Figure 1.Typical fluid catalytic cracking unit The present paper deals with modeling andsimulation of fluidized bed catalytic reactorregenerator model which can be used for matching with the real life industrial data of various industries including production of acrylonitrile by ammonoxidation of propylene with air as the oxidizing agent. The present paper dealing with the modeling and simulation of FB reactor- Regenerator would be useful for the applicable process industries. The reactor-regenerator design problem involving the gas solid contact results the bubbling bed model which would aptly describe the flow characteristics of gas in the fluidized bed catalytic reactor. Bubbling bed is viewed to consist of two regions namely bubble phase and emulsion phase with gas interchange between phases. MODELLING Equations describing the dynamic behavior of a two vessel fluidized catalytic reactor regenerator system are derived, and a simple model is proposed applicable for the relevant process industry. There are two vessels, as shown in the following figure 2. Component A is fed to the reactor, where it reacts to form product B while depositing component C on the fluidized catalyst. A k1 B +.1C Spent catalyst is circulated to the regenerator, where air is added to burn off C. C + O k2 P Combustion products are vented overhead, and regenerated catalyst is returned to the reactor. Heat is added to or extracted from the regenerator at the rate Q. Plant inputs and outputs are shown in the flow diagram (figure 2). Mathematical description of the dynamic behavior of the process is based on the following Mathematical description of the dynamic behavior of the process is based on the following assumptions 1. The perfect gas law is obeyed in both the vessels. 2. Constant pressure is maintained in both the vessels. 3. Catalyst holdups in the reactor and the regenerator are constant. 47 S. N. Saha, G. P. Dewangan

3 September Heat capacity of the reactants and the products are equal and constant in each vessel. Catalyst heat capacity is also constant. 5. Complete mixing occurs in each vessel. The dynamic behavior of the reactor and regenerator is described by material balances. Product (V 1, T 1, y 1 ) Stack gas (V 2, T 2, y 2 ) Spent Catalyst (w,x) Reactor (M1,X1) Regenerator (M2,X2) Air (V a, T a, y a ) Reactor : Total continuity equation Blower Figure 2. : F.C.C. Reactor Regenerator dn 1 Component B continuity equation d(n 1 y 1 ) Component C continuity equation Equation of state dx M S. N. Saha, G. P. Dewangan = V V 1. (1) = V y V 1 y 1 + N 1 r 1. (2) = Wx 2 Wx 1 +.1N 1 r 1. (3) N 1 = P 1H 1. (4) RT 1 Regenerator : Total continuity equation dn 2 = V a V 2. (5) Component O continuity equation d(n 2 y 2 ) = V a y a V 2 y 2 N 2 r 2. (6) Component C continuity equation dx M 2 2 = Wx 1 Wx 2 N 2 r 2. (7) Equation of state N 2 = P 2H 2 RT 2. (8) Equations 2 to 4 are combined to eliminate N 1 and V 1, giving the following :Equation for the reactor: P 1 H 1. dy 1 RT 1 = V y V y 1 + P 1H 1 RT 1 r 1. (9) M 1 dx 1 = Wx 2 Wx P 1H 1 RT 1. r 1. (1) Feed (V, T, y )

4 Mole frcation of B in gas phase September 215 Likewise N 2 and V 2 are eliminated by combining equation 6 to 8 to give the following equation to regenerator: M 2 d x 2 P 2 H 2. dy 2 RT 2 = V a y a V a y 2 P 2H 2 RT 2 r 2. (11) = Wx 1 Wx 2 P 2H 2 RT 2 r 2. (12) Notation: A, B, C = Reaction components. H = Gas holdup, m 3 M = Catalyst holdup, kg N = Gas holdup, mole P1 = Pressure in reactor, pa P2 = Pressure in regenerator, pa R = Gas constant in eqn. of state (pa.m 3 /mole k) r = Reaction rate (mole reacted/total mole sec) T = Temperature (k) V = Gas flow rate (mole/sec) W = Catalyst circulation rate (kg/sec) x = Content of C on catalyst (kg mole/kg catalyst) y,y 1 = Mole fraction of B in gas phase y a,y 2 = Mole fraction of O in gas phase Subscripts: = Feed stream; 1=Reactor; 2 =Regenerator; a =Air SIMULATION The simulation has been done by using MATLAB simulator. TheRunge-Kutta method has been used to solve the equation 9,1,11 and 12. The user-friendly graphic interface provides the user with graphical representation of simulation results and is prepared by using MATLAB graphic tools. The results have been generated via changing the parameters like temperature and pressure which are shown as in the following 11 cases. Case 1: The operated temperature and pressure are 5 O C and 1 bar using equation Time s Figure 3:Mole fraction of component B in reactor vs time Case 2: The operated temperature and pressure are 5OC and 2 bar using equation S. N. Saha, G. P. Dewangan

5 Mole fraction of O in gas phase Mole fraction of O in gas phase Mole fraction of B in gas phase September Figure 4: Mole fraction of component B in reactor vs time Case 3: The operated temperature and pressure are 1OC and 1 bar using equation Figure 5: Mole fraction of component O in regenerator vs time Case 4: The operated temperature and pressure are 1 O C and 2 bar using equation Figure 6: Mole fraction of component O in regenerator vs time Case 5: The operated temperature and pressure are 4 O C and 1 bar and m 2 =1,w=1,x 2 =.3using equation 1. 5 S. N. Saha, G. P. Dewangan Time, s

6 Mole fraction of C in reactor Mole fraction of C in rector Mole fraction of C in rector September Figure 7: Mole fraction of component C in rector vs time Case 6: The operated temperature and pressure are 1 O C and 1 bar and m 2 =1, w=1, using equation Figure 8: Mole fraction of component C in rector vs time Case 7: The operated temperature and pressure are 1 O C and 2 bar and m 2 =1, w=1, x 2 =.3using equation Figure 9: Mole fraction of component C in rector vs time 51 S. N. Saha, G. P. Dewangan

7 Mole fraction of C in regenerator Mole fraction of C in regenerator Mole fraction of C in regenerator September 215 Case 8: The operated temperature and pressure are 8 O C and 1 bar and m2=1, w=1, x2=.6using equation Figure 1: Mole fraction of component C in regenerator vs time Case 9: The operated temperature and pressure are 1 O C and 1 bar and m2=1, w=1, x2=.6using equation Figure 11: Mole fraction of component C in regenerator vs time Case 1: The operated temperature and pressure are 8 O C and 2 bar and m2=1, w=1, x2=.6using equation Figure 12: Mole fraction of component C in regenerator vs time 52 S. N. Saha, G. P. Dewangan

8 Mole fraction of C in regenerator 53 S. N. Saha, G. P. Dewangan September 215 Case 11: The operated temperature and pressure are 1 O C and 2 bar and m2=1, w=1, x2=.6using equation Figure 13: Mole fraction of component C in regenerator vs time CONCLUSION A computer simulation was done to calculate the best possible dimensions for the fluidized bed catalytic reactor making use of the bubbling bed model. Developing a mathematical model describing the catalytic reactor regenerator system MATLAB was used for establishing the simulated data. Pressure and temperature affect economy of reactor regenerator. The simulated data reveals that in case of Reactor, as the pressure increases, the mole fraction of reaction component B in gas phase decreases. As temperature increases, the mole fraction of B also decreases. In case of Regenerator, as the temperature increases, the mole fraction of component C on catalyst increases. As the gas hold up in Regenerator increases, the carbon deposition on catalyst surface decreases. Also the simulated results reveal and match with the fact that the mole fraction of oxygen decreases with time as the pressure decreases. The present modeling and simulation developed in this study validating by comparing the overall behavior of the system with those in the literature is expected to serve as a valuable tool for various process system studies on FCC processes. REFERENCES 1. Rose, L. M Chemical Reactor Design and Practice Elsevier Science Ltd. 2. Schindler,H.,de Lasa, H.I Regeneration of coked cracking catalyst in a pulse microcatalytic reactor, Proc. Can SocChemEng Quebec, pp Morley, K. de Lasa, H.I On the determination of kinetic parameters for the regeneration of cracking catalyst Can J ChemEng, 65, pp WangYusan, Adams, Ronald L Two-Dimensional Modeling of the Hydrodynamics of Gas-Fluidized Beds, I & EC, vol-28, p Kunii,D. and Levenspiel, O Fluidized Reactor Models for Lean Phase, I & EC Res., 29(7), pp Shnaider, G. S A Two-Phase Model of a Fluidized Bed With Catalyst in Bubbles, I & E C Res., vol-29, p Kunii, D.,Levenspiel, O. and Brenner, H Fluidization Engineering, Elsevier Inc. 8. Elnashaie,S. S. E. H. and Elshishini,S. S Digital simulation of industrial fluid catalytic cracking units -IV. Dynamic behavior, Chemical Engineering Science, 48, pp Theologos, K.N. and Markatos, N.C Advanced modeling of fluid catalytic cracking riser-type reactors AIChE J, 39, pp Saha, S.N Modelling of Fluidized Bed Catalytic Reactor For Petrochemical Complex, Proc. Ind. Chem. Engg. Cong., Bharuch, Dec Saha, S.N.,ChowdhuryA. andrao, B.K.B Study of Yield of Isobutyl Benzene Using Multifunctional Catalyst, Proc., Ind. Chem. Engg. Cong., Bharuch, Dec ,

9 September Ali,H. androhani, S Dynamic modeling and simulation of a riser-type fluid catalytic cracking unit, Chemical Engineering Technology, 2, pp DEllis, R. C.,Li, X. andriggs, J. B Modeling and optimization of a model IV fluidized catalytic cracking unit, American Institute of Chemical Engineering Journal, 44,pp Saha, S.N Nitrogen Pollution Control by Using Fluidized Bed Bio Reactor, Proc., 49 th Canadian Chem. Engg. Conf., Saskatoon. Canada, Oct Han, In -Su,Chung, C. B. and Riggs,J. B. 2. Modeling of a fluidized catalytic cracking process, Comp. & Chem. Engg., vol. 24, issues 2-7, pp Corella,J. 24. On the modeling of the kinetics of the selective deactivation of catalyst. Application to the fluidized catalytic cracking process,indengchem Res, 43, 24, pp Saha, S.N Numerical Analysis of 3D Fluidized Bed Coal Combustion, Int. Jl. of Comp. & Math. Sc., vol. 4, no. 7, pp S. N. Saha, G. P. Dewangan

International Journal of ChemTech Research CODEN (USA): IJCRGG ISSN: Vol.8, No.6, pp , 2015

International Journal of ChemTech Research CODEN (USA): IJCRGG ISSN: Vol.8, No.6, pp , 2015 International Journal of ChemTech Research CODEN (USA): IJCRGG ISSN: 0974-490 Vol.8, No.6, pp 750-758, 015 Simulation of Fcc Riser Reactor using Five Lump Model Debashri Paul 1, Raghavendra Singh Thakur,

More information

Temperature Control of Catalytic Cracking Process Using SCADA and PLC

Temperature Control of Catalytic Cracking Process Using SCADA and PLC International Journal of Advanced Research in Education & Technology (IJARET Vol. 4, Issue 2 (April - June 2017 ISSN : 2394-2975 (Online ISSN : 2394-6814 (Print Temperature Control of Catalytic Cracking

More information

Riser Reactor Simulation in a Fluid Catalytic Cracking Unit

Riser Reactor Simulation in a Fluid Catalytic Cracking Unit Riser Reactor Simulation in a Fluid Catalytic Cracking Unit Babatope Olufemi 1*, Kayode Latinwo 2, Ayokunle Olukayode 1 1. Chemical Engineering Department, University of Lagos, Lagos, Nigeria 2. Chemical

More information

Modeling of a Fluid Catalytic Cracking (FCC) Riser Reactor

Modeling of a Fluid Catalytic Cracking (FCC) Riser Reactor Modeling of a Fluid Catalytic Cracking (FCC) Riser Reactor Dr. Riyad Ageli Mahfud Department of Chemical Engineering- Sabrattah Zawia University Abstract: Fluid catalytic cracking (FCC) is used in petroleum

More information

Strategic Estimation of Kinetic Parameters in VGO Cracking

Strategic Estimation of Kinetic Parameters in VGO Cracking Copyright 2009 Tech Science Press CMC, vol.9, no.1, pp.41-50, 2009 Strategic Estimation of Kinetic Parameters in VGO Cracking Praveen Ch. 1 and Shishir Sinha 1,2 Abstract: Fluid catalytic cracking (FCC)

More information

Computational Fluid Dynamic Study On The Decomposition Of Methane Gas Into Hydrogen And Solid Carbon In A Packed Bed Fluid Catalytic Cracking Reactor

Computational Fluid Dynamic Study On The Decomposition Of Methane Gas Into Hydrogen And Solid Carbon In A Packed Bed Fluid Catalytic Cracking Reactor IOSR Journal of Applied Chemistry (IOSR-JAC) e-issn: 2278-5736. Volume 4, Issue 2 (Mar. Apr. 2013), PP 32-41 Computational Fluid Dynamic Study On The Decomposition Of Methane Gas Into Hydrogen And Solid

More information

Equation oriented modelling of UOP FCC units with high-efficiency regenerators

Equation oriented modelling of UOP FCC units with high-efficiency regenerators Equation oriented modelling of UOP FCC units with high-efficiency regenerators Alexandre J.S. Chambel a,b, Jorge F.P. Rocha a, Carla I.C. Pinheiro b and Nuno M.C. Oliveira a a CIEPQPF - Centre for Chemical

More information

Fuzzy Logic Modeling of the Fluidized Catalytic Cracking Unit of a Petrochemical Refinery

Fuzzy Logic Modeling of the Fluidized Catalytic Cracking Unit of a Petrochemical Refinery Fuzzy Logic Modeling of the Fluidized Catalytic Cracking Unit of a Petrochemical Refinery P.B. Osofisan, Ph.D.* and O.J. Obafaiye, M.Sc. Department of Electrical and Electronics Engineering University

More information

Studies on the Kinetics of Heavy Oil Catalytic Pyrolysis

Studies on the Kinetics of Heavy Oil Catalytic Pyrolysis 60 Ind. Eng. Chem. Res. 00, 4, 60-609 Studies on the Kinetics of Heavy Oil Catalytic Pyrolysis Meng Xiang-hai,* Xu Chun-ming, Li Li, and Gao Jin-sen State Key Laboratory of Heavy Oil Processing, University

More information

Translation of MAT Kinetic Data to Model Industrial Catalytic Cracking Units

Translation of MAT Kinetic Data to Model Industrial Catalytic Cracking Units Michoacan University of St Nicholas of Hidalgo From the SelectedWorks of Rafael Maya-Yescas May, 2004 Translation of MAT Kinetic Data to Model Industrial Catalytic Cracking Units Rafael Maya-Yescas Elizabeth

More information

Radiotracer Investigations in an Industrial-scale Fluid Catalytic Cracking Unit (FCCU)

Radiotracer Investigations in an Industrial-scale Fluid Catalytic Cracking Unit (FCCU) ID: B9-4 Radiotracer Investigations in an Industrial-scale Fluid Catalytic Cracking Unit (FCCU) H.J.Pant 1, P.Brisset 2, Ph.Berne 3, G.Gousseau 3, A.Fromentin 3 1: Isotope and Radiation Application Division,

More information

SINOPEC MTP and MTX technologies

SINOPEC MTP and MTX technologies COPYRIGHT@SUNJUNNAN COPYRIGHT@SUNJUNNAN 18-19 th, July, 2016, Parsian Azadi Hotel, Tehran, Iran Methanol+Toluene to Xylenes SINOPEC MTP and MTX technologies July 18 th, 2016 CONTENT MTP Introduction S-MTP

More information

Fluidized Catalytic Cracking Riser Reactor Operating Process Variables Study and Performance Analysis

Fluidized Catalytic Cracking Riser Reactor Operating Process Variables Study and Performance Analysis International Journal of Chemical Engineering Research. ISSN 0975-6442 Volume 9, Number 2 (2017), pp. 143-152 Research India Publications http://www.ripublication.com Fluidized Catalytic Cracking Riser

More information

Experimental Investigation and Mathematical Modeling of An Air-Lift Reactor for Select... Page 1 of 13 S Removal From Acid Gas Streams

Experimental Investigation and Mathematical Modeling of An Air-Lift Reactor for Select... Page 1 of 13 S Removal From Acid Gas Streams Experimental Investigation and Mathematical Modeling of An Air-Lift Reactor for Select... Page 1 of 13 Experimental Investigation and Mathematical Modeling of An Air-Lift Reactor for Selective H 2 S Removal

More information

Integrated Knowledge Based System for Process Synthesis

Integrated Knowledge Based System for Process Synthesis 17 th European Symposium on Computer Aided Process Engineering ESCAPE17 V. Plesu and P.S. Agachi (Editors) 2007 Elsevier B.V. All rights reserved. 1 Integrated Knowledge Based System for Process Synthesis

More information

Chemical Reaction Engineering - Part 16 - more reactors Richard K. Herz,

Chemical Reaction Engineering - Part 16 - more reactors Richard K. Herz, Chemical Reaction Engineering - Part 16 - more reactors Richard K. Herz, rherz@ucsd.edu, www.reactorlab.net More reactors So far we have learned about the three basic types of reactors: Batch, PFR, CSTR.

More information

Alkylation process, Feedstocks, reactions, products, catalysts and effect of process variables.

Alkylation process, Feedstocks, reactions, products, catalysts and effect of process variables. Alkylation process, Feedstocks, reactions, products, catalysts and effect of process variables. Catalytic Alkylation [1 7] Catalytic alkylation process is used in refineries to upgrade light olefins (produced

More information

Module 1: Mole Balances, Conversion & Reactor Sizing (Chapters 1 and 2, Fogler)

Module 1: Mole Balances, Conversion & Reactor Sizing (Chapters 1 and 2, Fogler) CHE 309: Chemical Reaction Engineering Lecture-2 Module 1: Mole Balances, Conversion & Reactor Sizing (Chapters 1 and 2, Fogler) Module 1: Mole Balances, Conversion & Reactor Sizing Topics to be covered

More information

Catalytic cracking of kerosene on Z5 catalyst: Steady state modelling

Catalytic cracking of kerosene on Z5 catalyst: Steady state modelling American Journal of Science and Technology 2014; 1(4): 194-198 Published online September 20, 2014 (http://www.aascit.org/journal/ajst) Catalytic cracking of kerosene on Z5 catalyst: Steady state modelling

More information

Controllability of Lumped Parameter Chemical Reactors

Controllability of Lumped Parameter Chemical Reactors Michoacan University of St Nicholas of Hidalgo From the SelectedWorks of Rafael Maya-Yescas October, 25 Controllability of Lumped Parameter Chemical Reactors Rafael Maya-Yescas Available at: https://works.bepress.com/rafael_maya_yescas/2/

More information

Mesostructured Zeolite Y - High Hydrothermal Stability and Superior FCC Catalytic Performance

Mesostructured Zeolite Y - High Hydrothermal Stability and Superior FCC Catalytic Performance Supporting Information Mesostructured Zeolite Y - High Hydrothermal Stability and Superior FCC Catalytic Performance Javier García-Martínez,* Marvin Johnson, Julia Valla, Kunhao Li, and Jackie Y. Ying*

More information

Cyanide Analysis of Wastewater Samples from FCC and Hydrocracking Operations

Cyanide Analysis of Wastewater Samples from FCC and Hydrocracking Operations Cyanide Analysis of Wastewater Samples from FCC and Hydrocracking Operations Introduction Fluid catalytic cracking (FCC) is a major unit operation in refineries around the world. FCC is used to convert

More information

Lecture (9) Reactor Sizing. Figure (1). Information needed to predict what a reactor can do.

Lecture (9) Reactor Sizing. Figure (1). Information needed to predict what a reactor can do. Lecture (9) Reactor Sizing 1.Introduction Chemical kinetics is the study of chemical reaction rates and reaction mechanisms. The study of chemical reaction engineering (CRE) combines the study of chemical

More information

Liquid Feed Injection in a High Density Riser

Liquid Feed Injection in a High Density Riser Refereed Proceedings The 12th International Conference on Fluidization - New Horizons in Fluidization Engineering Engineering Conferences International Year 2007 Liquid Feed Injection in a High Density

More information

AE 205 Materials and Energy Balances Asst. Prof. Dr. Tippabust Eksangsri. Chapter 4 Stoichiometry and MB with Reactions

AE 205 Materials and Energy Balances Asst. Prof. Dr. Tippabust Eksangsri. Chapter 4 Stoichiometry and MB with Reactions AE 205 Materials and Energy Balances Asst. Prof. Dr. Tippabust Eksangsri Chapter 4 Stoichiometry and MB with Reactions Stoichiometry Stoichiometry provides a quantitative means of relating the amount of

More information

FDE 211-MATERIAL AND ENERGY BALANCES: MATERIAL BALANCES ON REACTIVE SYSTEMS. Dr. Ilgın PakerYıkıcı Fall 2015

FDE 211-MATERIAL AND ENERGY BALANCES: MATERIAL BALANCES ON REACTIVE SYSTEMS. Dr. Ilgın PakerYıkıcı Fall 2015 FDE 211-MATERIAL AND ENERGY BALANCES: MATERIAL BALANCES ON REACTIVE SYSTEMS 1 Dr. Ilgın PakerYıkıcı Fall 2015 Learning Objectives Write a balanced chemical reaction and use stoichiometry to determine the

More information

Process Design Decisions and Project Economics Prof. Dr. V. S. Moholkar Department of Chemical Engineering Indian Institute of Technology, Guwahati

Process Design Decisions and Project Economics Prof. Dr. V. S. Moholkar Department of Chemical Engineering Indian Institute of Technology, Guwahati Process Design Decisions and Project Economics Prof. Dr. V. S. Moholkar Department of Chemical Engineering Indian Institute of Technology, Guwahati Module - 2 Flowsheet Synthesis (Conceptual Design of

More information

Computational Fluid Dynamics Modeling of High Density Poly Ethylene Catalytic Cracking Reactor

Computational Fluid Dynamics Modeling of High Density Poly Ethylene Catalytic Cracking Reactor American Journal of Oil and Chemical Technologies Computational Fluid Dynamics Modeling of High Density Poly Ethylene Catalytic Cracking Reactor Bagher Anvaripour Mohammad Shah Bin Zahra Maghareh Chemical

More information

TABLE OF CONTENT. Chapter 4 Multiple Reaction Systems 61 Parallel Reactions 61 Quantitative Treatment of Product Distribution 63 Series Reactions 65

TABLE OF CONTENT. Chapter 4 Multiple Reaction Systems 61 Parallel Reactions 61 Quantitative Treatment of Product Distribution 63 Series Reactions 65 TABLE OF CONTENT Chapter 1 Introduction 1 Chemical Reaction 2 Classification of Chemical Reaction 2 Chemical Equation 4 Rate of Chemical Reaction 5 Kinetic Models For Non Elementary Reaction 6 Molecularity

More information

Hydrogenation of Hydrocarbons through Partial Oxidation in Supercritical Water

Hydrogenation of Hydrocarbons through Partial Oxidation in Supercritical Water Ind. Eng. Chem. Res. 2000, 39, 4697-4701 4697 Hydrogenation of Hydrocarbons through Partial Oxidation in Supercritical Water Kunio Arai,* Tadafumi Adschiri, and Masaru Watanabe Department of Chemical Engineering,

More information

Motiva Unlocks Value in the FCCU through an Innovative Catalyst Solution from Rive and Grace

Motiva Unlocks Value in the FCCU through an Innovative Catalyst Solution from Rive and Grace Motiva Unlocks Value in the FCCU through an Innovative Catalyst Solution from Rive and Grace Karthik Rajasekaran, Project Engineer, Motiva Raul Adarme, Energy, Catalysts, and Chemicals Manager, Motiva

More information

Design of A chemical Absorption System for The Separation of Propane/Propylene Mixture

Design of A chemical Absorption System for The Separation of Propane/Propylene Mixture Design of A chemical Absorption System for The Separation of Propane/Propylene Mixture Reda Zein, Ahmed F. Nassar, Tarek M. Mostafa Chemical Engineering Department Cairo University Giza Egypt reda.zein@eng1.cu.edu.eg

More information

Process Design Decisions and Project Economics Prof. Dr. V. S. Moholkar Department of Chemical Engineering Indian Institute of Technology, Guwahati

Process Design Decisions and Project Economics Prof. Dr. V. S. Moholkar Department of Chemical Engineering Indian Institute of Technology, Guwahati Process Design Decisions and Project Economics Prof. Dr. V. S. Moholkar Department of Chemical Engineering Indian Institute of Technology, Guwahati Module - 2 Flowsheet Synthesis (Conceptual Design of

More information

Chemical Engineering

Chemical Engineering Chemical Engineering Basic Principles: Energy and material balances Transport Processes Momentum Transfer: Fluid Flow Energy Transfer: Heat Mass Transfer: mixing and separation processes Physical and Chemical

More information

Reactors. Reaction Classifications

Reactors. Reaction Classifications Reactors Reactions are usually the heart of the chemical processes in which relatively cheap raw materials are converted to more economically favorable products. In other cases, reactions play essential

More information

Steady-State Molecular Diffusion

Steady-State Molecular Diffusion Steady-State Molecular Diffusion This part is an application to the general differential equation of mass transfer. The objective is to solve the differential equation of mass transfer under steady state

More information

Modelling study of two chemical looping reforming reactor configurations: Looping vs. switching

Modelling study of two chemical looping reforming reactor configurations: Looping vs. switching Engineering Conferences International ECI Digital Archives Fluidization XV Proceedings 5-23-2016 Modelling study of two chemical looping reforming reactor configurations: Looping vs. switching Joana F.

More information

NGL EXTRACTION SPE - BACK TO BASICS. Ed Wichert Sogapro Engineering Ltd. September 27, 2011

NGL EXTRACTION SPE - BACK TO BASICS. Ed Wichert Sogapro Engineering Ltd. September 27, 2011 NGL EXTRACTION SPE - BACK TO BASICS Ed Wichert Sogapro Engineering Ltd. September 27, 2011 DEFINITIONS NGL - C 2+ LPG - C 3 and C 4 LNG - C 1 Condensate - plant inlet separator hydrocarbon liquid Pentanes-Plus

More information

In The Name Of God. Ali Hashempour. M.Sc. Student at School of Chemical Engineering, College of Engineering, University of Tehran, Tehran, Iran.

In The Name Of God. Ali Hashempour. M.Sc. Student at School of Chemical Engineering, College of Engineering, University of Tehran, Tehran, Iran. In The Name Of God Ali Hashempour M.Sc. Student at School of Chemical Engineering, College of Engineering,, Tehran, Iran. +98 910 876 3444 Ali.hashempour@ut.ac.ir Ali.hashempour71@gmail.com Research Interests

More information

CFD Simulation of Catalytic Combustion of Benzene

CFD Simulation of Catalytic Combustion of Benzene Iranian Journal of Chemical Engineering Vol. 6, No. 4 (Autumn), 9, IAChE CFD Simulation of Catalytic Combustion of Benzene A. Niaei 1, D. Salari, S. A. Hosseini 3 1- Associate Professor of Chemical Engineering,

More information

Available online at ScienceDirect. Procedia Chemistry 10 (2014 )

Available online at   ScienceDirect. Procedia Chemistry 10 (2014 ) Available online at www.sciencedirect.com ScienceDirect Procedia Chemistry 10 (2014 ) 192 196 XV International Scientific Conference Chemistry and Chemical Engineering in XXI century dedicated to Professor

More information

Molecular Highway TM Technology for FCC Catalysts in a Commercial Refinery

Molecular Highway TM Technology for FCC Catalysts in a Commercial Refinery Annual Meeting March 11-13, 2012 Manchester Grand Hyatt San Diego, CA Molecular Highway TM Technology for FCC Catalysts in a Commercial Refinery Presented By: Gautham Krishnaiah Rive Technology, Inc. Monmouth

More information

TRACERCO Diagnostics FCCU Study

TRACERCO Diagnostics FCCU Study TRACERCO Diagnostics FCCU Study 2 TRACERCO Diagnostics TRACERCO Diagnostics FCCU Study Introduction The Fluidized Catalytic Cracking Unit (FCCU) is the economic heart of a modern refinery. Even small increases

More information

Modelling of a chemical looping combustion system equipped with a two- stage fuel reactor

Modelling of a chemical looping combustion system equipped with a two- stage fuel reactor Engineering Conferences International ECI Digital Archives Fluidization XV Proceedings 5-25-2016 Modelling of a chemical looping combustion system equipped with a two- stage fuel reactor Roberto Solimene

More information

Multivariable Control Configurations for Fluid Catalytic Cracking Units

Multivariable Control Configurations for Fluid Catalytic Cracking Units Multivariale Control Configurations for Fluid Catalytic Cracking Units Hector Puela, Jesus Valencia, and Jose Alvarez-Ramirez Programa de Investigacion en Matematicas Aplicadas y Computacion Instituto

More information

TRACERCO Diagnostics FCCU Study

TRACERCO Diagnostics FCCU Study TRACERCO Diagnostics FCCU Study Contents TRACERCO Diagnostics FCCU Study General Overview 2 Reactor Riser Diagnostics Scanning Density Profile and Flow Distribution 4 Tracer Flow Rate of Catalyst and

More information

IDENTIFICATION OF DEFLUIDIZATION REGION IN A GAS-SOLID FLUIDIZED BED USING A METHOD BASED ON PRESSURE FLUCTUATION MEASUREMENTS

IDENTIFICATION OF DEFLUIDIZATION REGION IN A GAS-SOLID FLUIDIZED BED USING A METHOD BASED ON PRESSURE FLUCTUATION MEASUREMENTS Brazilian Journal of Chemical Engineering ISSN 14-663 Printed in Brazil www.abeq.org.br/bjche Vol. 6, No. 3, pp. 537-543, July - September, 9 IDENTIFICATION OF DEFLUIDIZATION REGION IN A GAS-SOLID FLUIDIZED

More information

CFD simulation of an industrial FCC regenerator

CFD simulation of an industrial FCC regenerator UNIVERSIDAD NACIONAL DE COLOMBIA-SEDE MEDELLIN MASTER S THESIS CFD simulation of an industrial FCC regenerator Author: Juan David ALZATE-HERNANDEZ Supervisor: Alejandro MOLINA A thesis submitted in fulfillment

More information

Combustion. Indian Institute of Science Bangalore

Combustion. Indian Institute of Science Bangalore Combustion Indian Institute of Science Bangalore Combustion Applies to a large variety of natural and artificial processes Source of energy for most of the applications today Involves exothermic chemical

More information

Types of Chemical Reactors. Nasir Hussain Production and Operations Engineer PARCO Oil Refinery

Types of Chemical Reactors. Nasir Hussain Production and Operations Engineer PARCO Oil Refinery Types of Chemical Reactors Nasir Hussain Production and Operations Engineer PARCO Oil Refinery Introduction Reactor is the heart of Chemical Process. A vessel designed to contain chemical reactions is

More information

Model-based approach to plant-wide economic control of fluid catalytic cracking unit

Model-based approach to plant-wide economic control of fluid catalytic cracking unit Loughborough University Institutional Repository Model-based approach to plant-wide economic control of fluid catalytic cracking unit This item was submitted to Loughborough University's Institutional

More information

The School For Excellence 2018 Unit 3 & 4 Chemistry Topic Notes Page 1

The School For Excellence 2018 Unit 3 & 4 Chemistry Topic Notes Page 1 The term fractional distillation refers to a physical method used to separate various components of crude oil. Fractional distillation uses the different boiling temperatures of each component, or fraction,

More information

HANDBOOK SECOND EDITION. Edited by

HANDBOOK SECOND EDITION. Edited by HANDBOOK SECOND EDITION Edited by Martyn V. Twigg BSc, PhD, CChem., FRSC Catalytic Systems Division Johnson Matthey Plc. Formerly at the Catalysis Centre ICI Chemicals & Polymers Ltd MANSON PUBLISHING

More information

Technical analysis Chemical sector (NACE C20)

Technical analysis Chemical sector (NACE C20) EU-MERCI EU coordinated MEthods and procedures based on Real Cases for the effective HORIZON 2020 Project Nr. 693845 Technical analysis Chemical sector (NACE C20) WP4: Picture of efficiency projects implemented

More information

Dynamic Simulation of Reactor to Produce 1- Butene by Dimerization of Ethylene

Dynamic Simulation of Reactor to Produce 1- Butene by Dimerization of Ethylene International Journal of Scientific & Engineering Research, Volume 3, Issue 6, June-2012 1 Dynamic Simulation of Reactor to Produce 1- Butene by Dimerization of Ethylene Anurag Choudhary, Avinash Shetty,

More information

CHE 611 Advanced Chemical Reaction Engineering

CHE 611 Advanced Chemical Reaction Engineering CHE 611 Advanced Chemical Reaction Engineering Dr. Muhammad Rashid Usman Institute of Chemical Engineering and Technology University of the Punjab, Lahore 54590 mrusman.icet@pu.edu.pk 1 Course contents

More information

A Computational Fluid Dynamics Study of Fluid Catalytic Cracking Cyclones

A Computational Fluid Dynamics Study of Fluid Catalytic Cracking Cyclones A Computational Fluid Dynamics Study of Fluid Catalytic Cracking Cyclones I. Abu-Mahfouz 1, J. W. McTernan 2 1 Pennsylvania State University - Harrisburg, Middletown, PA, USA 2 Buell Division of Fisher-Klosterman

More information

ADCHEM International Symposium on Advanced Control of Chemical Processes Gramado, Brazil April 2-5, 2006

ADCHEM International Symposium on Advanced Control of Chemical Processes Gramado, Brazil April 2-5, 2006 ADCHEM 26 International Symposium on Advanced Control of Chemical Processes Gramado, Brazil April 2-5, 26 DYNAMIC REAL-TIME OPTIMIZATION OF A FCC CONVERTER UNIT Euclides Almeida Neto 1, Argimiro R. Secchi

More information

Heterogeneous Catalysis

Heterogeneous Catalysis Heterogeneous Catalysis Main advantages: Convenient technology Easy catalyst separation Relatively easy catalyst regeneration Less expensive Reactor selection: Needs: safety, environmental issues, possibility

More information

Specific Problems of Using Unisim Design in the Dynamic Simulation of the Propylene-Propane Distillation Column

Specific Problems of Using Unisim Design in the Dynamic Simulation of the Propylene-Propane Distillation Column Specific Problems of Using Unisim Design in the Dynamic Simulation of the Propylene-Propane Distillation Column CRISTIAN PATRASCIOIU*, MARIAN POPESCU, NICOLAE PARASCHIV Petroleum - Gas University of Ploieºti,

More information

Modeling Conversion in a Fluid Catalytic Cracking Regenerator in Petroleum Refining

Modeling Conversion in a Fluid Catalytic Cracking Regenerator in Petroleum Refining Research Journal of pplied Sciences, Engineering and Technology 3(6): 533-539, 211 ISS: 24-7467 Maxwell Scientific Organization, 211 Received: pril 6, 211 ccepted: May 13, 211 Published: June 25, 211 Modeling

More information

A study on naphtha catalytic reforming reactor simulation and analysis

A study on naphtha catalytic reforming reactor simulation and analysis 590 Journal of Zhejiang University SCIENCE ISSN 1009-3095 http://www.zju.edu.cn/jzus E-mail: jzus@zju.edu.cn A study on naphtha catalytic reforming reactor simulation and analysis LIANG Ke-min ( 梁克民 )

More information

Numerical simulation of hydrogen production by chemical looping reforming in a dual interconnected fluidized bed reactor

Numerical simulation of hydrogen production by chemical looping reforming in a dual interconnected fluidized bed reactor Engineering Conferences International ECI Digital Archives Fluidization XV Proceedings 5-24-2016 Numerical simulation of hydrogen production by chemical looping reforming in a dual interconnected fluidized

More information

Effects of Different Processing Parameters on Divinylbenzene (DVB) Production Rate

Effects of Different Processing Parameters on Divinylbenzene (DVB) Production Rate 1 Effects of Different Processing Parameters on Divinylbenzene (DVB) Production Rate ME Zeynali Petrochemical Synthesis Group, Petrochemical Faculty, Iran Polymer and Petrochemical Institute (IPPI), P.O.

More information

PRESENTATION SLIDES: Hydrodynamic Scale-Up of Circulating Fluidized Beds

PRESENTATION SLIDES: Hydrodynamic Scale-Up of Circulating Fluidized Beds Refereed Proceedings The 12th International Conference on Fluidization - New Horizons in Fluidization Engineering Engineering Conferences International Year 2007 PRESENTATION SLIDES: Hydrodynamic Scale-Up

More information

Propylene: key building block for the production of important petrochemicals

Propylene: key building block for the production of important petrochemicals Propylene production from 11-butene and ethylene catalytic cracking: Study of the performance of HZSMHZSM-5 zeolites and silicoaluminophosphates SAPO--34 and SAPOSAPO SAPO-18 E. Epelde Epelde*, *, A.G.

More information

Heterogeneous Catalysis and Catalytic Processes Prof. K. K. Pant Department of Chemical Engineering Indian Institute of Technology, Delhi

Heterogeneous Catalysis and Catalytic Processes Prof. K. K. Pant Department of Chemical Engineering Indian Institute of Technology, Delhi Heterogeneous Catalysis and Catalytic Processes Prof. K. K. Pant Department of Chemical Engineering Indian Institute of Technology, Delhi Lecture - 34 Good afternoon, so in the last lecture I was talking

More information

Full Furnace Simulations and Optimization with COILSIM1D

Full Furnace Simulations and Optimization with COILSIM1D Full Furnace Simulations and Optimization with COILSIM1D Kevin M. Van Geem 1 Alexander J. Vervust 1 Ismaël Amghizar 1 Andrés E. Muñoz G. 2 Guy B. Marin 1 1 Laboratory for Chemical Technology, Ghent University

More information

Fundamentals of Combustion

Fundamentals of Combustion Fundamentals of Combustion Lec 3: Chemical Thermodynamics Dr. Zayed Al-Hamamre Content Process Heat Transfer 1-3 Process Heat Transfer 1-4 Process Heat Transfer 1-5 Theoretical and Excess Air Combustion

More information

Catalytic Vapor Phase Hydration Acetylene and Its Derivatives

Catalytic Vapor Phase Hydration Acetylene and Its Derivatives Catalytic Vapor Phase Hydration Acetylene and Its Derivatives N.I. Fayzullaev, Samarkand State University. Alisher Navoi Abstract The reactions of the synthesis of acetylene from direct hydration of acetone

More information

SCR Catalyst Layer Addition Specification and Management

SCR Catalyst Layer Addition Specification and Management SCR Catalyst Layer Addition Specification and Management The 13th Sulfur Dioxide, Nitrogen Oxide, Mercury and Fine Particle Pollution Control Technology & Management International Exchange Conference Wuhan,

More information

Ozone Decomposition in a Downer Reactor

Ozone Decomposition in a Downer Reactor Refereed Proceedings The 12th International Conference on Fluidization - New Horizons in Fluidization Engineering Engineering Conferences International Year 2 Ozone Decomposition in a Downer Reactor W.

More information

Study Of Molar Flow, Mole Fraction, Partial Pressure Variation In Process Of Pure Hydrogen Production In Multichannel Membrane Reactor

Study Of Molar Flow, Mole Fraction, Partial Pressure Variation In Process Of Pure Hydrogen Production In Multichannel Membrane Reactor Study Of Molar Flow, Mole Fraction, Partial Pressure Variation In Process Of Pure Hydrogen Production In Multichannel Membrane Reactor Narges Rahimi Department: Chemical Engineering South Tehran Branch,

More information

Catalytic cracking of hydrocarbons

Catalytic cracking of hydrocarbons Environmental management Fundamentals of Chemical Technology and Chemicals Management Laboratory Catalytic cracking of hydrocarbons Theory and manual for experiment dr Hanna Wilczura-Wachnik University

More information

Radial Non-uniformity Index Research on High-density, High-flux CFB Riser with Stratified Injection

Radial Non-uniformity Index Research on High-density, High-flux CFB Riser with Stratified Injection Simulation and Optimization China Petroleum Processing and Petrochemical Technology 2012,Vol. 14, No. 4, pp 64-72 December 30, 2012 Radial Non-uniformity Index Research on High-density, High-flux CFB Riser

More information

Simulation of a bubbling fluidized bed process for capturing CO 2 from flue gas

Simulation of a bubbling fluidized bed process for capturing CO 2 from flue gas Korean J. Chem. Eng., 31(2), 194-200 (2014) DOI: 10.1007/s11814-013-0212-7 INVITED REVIEW PAPER INVITED REVIEW PAPER pissn: 0256-1115 eissn: 1975-7220 Simulation of a bubbling fluidized bed process for

More information

3.2 Alkanes. Refining crude oil. N Goalby chemrevise.org 40 C 110 C 180 C. 250 C fuel oil 300 C 340 C. Fractional Distillation: Industrially

3.2 Alkanes. Refining crude oil. N Goalby chemrevise.org 40 C 110 C 180 C. 250 C fuel oil 300 C 340 C. Fractional Distillation: Industrially 3.2 Alkanes Refining crude oil Fractional Distillation: Industrially Petroleum is a mixture consisting mainly of alkane hydrocarbons Petroleum fraction: mixture of hydrocarbons with a similar chain length

More information

Chemical Technology Prof. Indra D. Mall Department of Chemical Engineering Indian Institute of Technology, Roorkee

Chemical Technology Prof. Indra D. Mall Department of Chemical Engineering Indian Institute of Technology, Roorkee Chemical Technology Prof. Indra D. Mall Department of Chemical Engineering Indian Institute of Technology, Roorkee Module - 7 Petrochemical Lecture - 7 Aromatic Production We are discussing the module

More information

Dave C. Swalm School of Chemical Engineering

Dave C. Swalm School of Chemical Engineering Mississippi State University 1 Dave C. Swalm School of Chemical Engineering Interim Director: Bill Elmore Office: 330 Swalm Chemical Engineering Building Chemical Engineering Chemical Engineering is a

More information

in engineering reactors for catalytic reactions

in engineering reactors for catalytic reactions J. Chem. Sci. Vol. 126, No. 2, March 2014, pp. 341 351. c Indian Academy of Sciences. Engineering reactors for catalytic reactions VIVEK V RANADE Chemical Engineering and Process Development Division,

More information

S reacts with the catalyst s metallic surface to substitute sulfur atoms for oxygen atoms.

S reacts with the catalyst s metallic surface to substitute sulfur atoms for oxygen atoms. Application Summary Analytes: S (hydrogen sulfide), sulfiding agent Detector: OMA-300 S Analyzer Process Stream: reactor effluent gas Introduction Catalyst presulfiding is a practice which reduces the

More information

C 6 H H 2 C 6 H 12. n C6H12 n hydrogen n benzene. n C6H6 n H2 100 C 6 H 6 n 2 n C6H H 2. n 1

C 6 H H 2 C 6 H 12. n C6H12 n hydrogen n benzene. n C6H6 n H2 100 C 6 H 6 n 2 n C6H H 2. n 1 1. Cyclohexane (C 6 H 12 ) can be made by the reaction of benzene (C 6 H 6 ) and hydrogen gas. The products from the reactor are sent to a separator where the cyclohexane and some of the unreacted hydrogen

More information

Chemical Reaction Engineering - Part 12 - multiple reactions Richard K. Herz,

Chemical Reaction Engineering - Part 12 - multiple reactions Richard K. Herz, Chemical Reaction Engineering - Part 12 - multiple reactions Richard K. Herz, rherz@ucsd.edu, www.reactorlab.net Multiple reactions are usually present So far we have considered reactors in which only

More information

Supporting Information. Mesostructured Y Zeolite as Superior FCC Catalyst -- From Lab to Refinery

Supporting Information. Mesostructured Y Zeolite as Superior FCC Catalyst -- From Lab to Refinery Supporting Information Mesostructured Y Zeolite as Superior FCC Catalyst -- From Lab to Refinery Javier Garcia-Martinez,* a,b Kunhao Li a and Gautham Krishnaiah a a Rive Technology, Inc., Monmouth Junction,

More information

Light olefins (such as propylene and ethylene) as petrochemical

Light olefins (such as propylene and ethylene) as petrochemical Numerical Evaluation and Improvement Efficiency of Radial Flow Moving-Bed Reactors for Catalytic Pyrolysis of Light Hydrocarbons to Low Carbon Olefins Fang-Zhi Xiao, 1 Houyang Chen 2 and Zheng-Hong Luo

More information

Real-Time Optimization (RTO)

Real-Time Optimization (RTO) Real-Time Optimization (RTO) In previous chapters we have emphasized control system performance for disturbance and set-point changes. Now we will be concerned with how the set points are specified. In

More information

Improved hydrogen yield in catalytic reforming

Improved hydrogen yield in catalytic reforming Improved hydrogen yield in catalytic reforming A process step that sends higher-boiling to light tops isomerisation delivers an increase in hydrogen from naphtha catalytic reforming ROBERTO AMADEI Chemical

More information

JOURNAL OF INTERNATIONAL ACADEMIC RESEARCH FOR MULTIDISCIPLINARY Impact Factor 1.393, ISSN: , Volume 2, Issue 4, May 2014

JOURNAL OF INTERNATIONAL ACADEMIC RESEARCH FOR MULTIDISCIPLINARY Impact Factor 1.393, ISSN: , Volume 2, Issue 4, May 2014 PREDICTION OF BED PRESSURE DROP AND TOP PACKED BED HEIGHT FORMATION IN THREE PHASE SEMI-FLUIDIZED BED WITH REGULAR HOMOGENOUS BINARY MIXTURES D.K. SAMAL* Y.K. MOHANTY** G.K. ROY*** *Dept. of Chemical Engineering,

More information

Study of Carbon Black Production with Optimized Feed to Predict Product Particle Size

Study of Carbon Black Production with Optimized Feed to Predict Product Particle Size Iranian Journal of Chemical Engineering Vol. 4, No. 1 (Winter), 2007, IAChE Research note Study of Carbon Black Production with Optimized Feed to Predict Product Particle Size H. Hashemipour Rafsanjani

More information

Differential equations of mass transfer

Differential equations of mass transfer Differential equations of mass transfer Definition: The differential equations of mass transfer are general equations describing mass transfer in all directions and at all conditions. How is the differential

More information

Monomer Analysis. Analysis by Gas Chromatography WASSON - ECE INSTRUMENTATION. Engineered Solutions, Guaranteed Results.

Monomer Analysis. Analysis by Gas Chromatography WASSON - ECE INSTRUMENTATION. Engineered Solutions, Guaranteed Results. Monomer Analysis Analysis by Gas Chromatography Engineered Solutions, Guaranteed Results. WASSON - ECE INSTRUMENTATION Polymer Grade Monomer Analysis Monomer Analysis Impurities in feedstocks can adversely

More information

THE IRANIAN JAM PETROCHEMICAL S H 2 -PSA ENHANCEMENT USING A NEW STEPS SEQUENCE TABLE

THE IRANIAN JAM PETROCHEMICAL S H 2 -PSA ENHANCEMENT USING A NEW STEPS SEQUENCE TABLE Petroleum & Coal ISSN 1337-707 Available online at www.vurup.sk/petroleum-coal Petroleum & Coal 56 (1) 13-18, 014 THE IRANIAN JAM PETROCHEMICAL S H -PSA ENHANCEMENT USING A NEW STEPS SEQUENCE TABLE Ehsan

More information

TRANSALKYLATION OF DIISOPROPYLBENZENE WITH BENZENE IN SUPERCRITICAL CARBON DIOXIDE

TRANSALKYLATION OF DIISOPROPYLBENZENE WITH BENZENE IN SUPERCRITICAL CARBON DIOXIDE TRANSALKYLATION OF DIISOPROPYLBENZENE WITH BENZENE IN SUPERCRITICAL CARBON DIOXIDE J.L. Sotelo, L. Calvo*, D. Capilla, and A. Pérez-Velázquez Departamento de Ingeniería Química, Facultad de Ciencias Químicas,

More information

SIMULATION OF FLOW IN A RADIAL FLOW FIXED BED REACTOR (RFBR)

SIMULATION OF FLOW IN A RADIAL FLOW FIXED BED REACTOR (RFBR) SIMULATION OF FLOW IN A RADIAL FLOW FIXED BED REACTOR (RFBR) Aqeel A. KAREERI, Habib H. ZUGHBI, *, and Habib H. AL-ALI * Ras Tanura Refinery, SAUDI ARAMCO, Saudi Arabia * Department of Chemical Engineering,

More information

The Slug Flow Behavior of Polyethylene Particles Polymerized by Ziegler-Natta and Metallocene Catalysts

The Slug Flow Behavior of Polyethylene Particles Polymerized by Ziegler-Natta and Metallocene Catalysts Korean J. Chem. Eng., 18(4), 561-566 (2001) The Slug Flow Behavior of Polyethylene Particles Polymerized by Ziegler-Natta and Metallocene Catalysts Hongil Cho, Guiyoung Han and Guiryong Ahn* Department

More information

Methodology for Analysis of Metallurgical Processes

Methodology for Analysis of Metallurgical Processes Methodology for Analysis of Metallurgical Processes Metallurgical and chemical processes are classified as batch, continuous and semibatch 1. Batch processes The feed is charged into a vessel at the beginning

More information

Simultaneous heat and mass transfer studies in drying ammonium chloride in a batch-fluidized bed dryer

Simultaneous heat and mass transfer studies in drying ammonium chloride in a batch-fluidized bed dryer Indian Journal of Chemical Technology Vol. 13, September 006, pp. 440-447 Simultaneous heat and mass transfer studies in drying ammonium chloride in a batch-fluidized bed dryer R Kumaresan a & T Viruthagiri

More information

Technologies and Approaches of CO 2 Capture

Technologies and Approaches of CO 2 Capture Southwest Regional Partnership Project Technologies and Approaches of CO 2 Capture Liangxiong Li, Brian McPherson, Robert Lee Petroleum Recovery Research Center New Mexico Institute of Mining and Technology,

More information

Cracking. 191 minutes. 186 marks. Page 1 of 27

Cracking. 191 minutes. 186 marks. Page 1 of 27 3.1.6.2 Cracking 191 minutes 186 marks Page 1 of 27 Q1. (a) Gas oil (diesel), kerosine (paraffin), mineral oil (lubricating oil) and petrol (gasoline) are four of the five fractions obtained by the fractional

More information

Implementation of Cleaner Production Principles in Formaldehyde Production

Implementation of Cleaner Production Principles in Formaldehyde Production Implementation of Cleaner Production Principles in Formaldehyde Production 1 Jilesh M. Pandya & Linesh Patel Chemical Engineering Department, V. V. P. Engineering college, Rajkot ABSTRACT Formaldehyde

More information