On the Chemical Free Energy of the Electrical Double Layer

Size: px
Start display at page:

Download "On the Chemical Free Energy of the Electrical Double Layer"

Transcription

1 1114 Langmuir 23, 19, On the Chemical Free Energy of the Electrical Double Layer Marian Manciu and Eli Ruckenstein* Department of Chemical Engineering, State University of New York at Buffalo, Buffalo, New York 1426 Received September 26, 22. In Final Form: December 16, 22 The free energy of interaction between colloidal particles due to the overlap of their double layers was traditionally calculated either for systems of arbitrary geometry interacting at constant surface potential or at constant surface charge or for parallel plates interacting under arbitrary surface conditions. An expression is obtained for the change in the chemical contribution to the free energy of the double layers during a general interaction, which allows the calculation (within the Poisson-Boltzmann formalism of the interaction free energy for systems of arbitrary geometry and surface conditions. The change in chemical free energy depends not only on the values of the surface charge and potential at the final state but also on their values at each distance between infinity and the final state. A simple approximate expression for the change in the chemical free energy contribution is also proposed, which involves only the states at infinite and final distances. Its accuracy is tested for planar and parallel surfaces, with charges generated via the dissociation of surface groups. I. Introduction Gouy 1 and Chapman 2 were the first to predict the distributions of electrolyte ions in the vicinity of a charged surface, by assuming that the ions obey Boltzmann distributions and interact with a mean potential, which satisfies the Poisson equation. The distribution of ions between two planar charged surfaces (the difference in ions concentrations between middle distance and infinity was later related to the interaction force between the two surfaces by Langmuir. 3 The interaction free energy between parallel planar plates, separated by a distance l, could then be obtained by integrating the force from infinity to the distance l. The Langmuir procedure cannot be applied directly to nonplanar surfaces. However, an approximate method, the Derjaguin approximation, 4 in which the interaction between curved surfaces is calculated in terms of the interactions between planar surfaces, could be employed. The method is accurate only when the radii of curvature of the surfaces are sufficiently large compared to the Debye-Hückel length and to the distance of closest approach. Major progress was achieved by Verwey and Overbeek, 5 who proposed a direct method to calculate the interaction free energy between particles of arbitrary shapes, when either the surface potentials or the surface charges remain constant during the interaction. Their approach involved an imaginary charging process, in which the relation between the surface potential and the surface charge density was obtained by integrating the Poisson-Boltzmann equation for one of the above constraints. Another approach consisted of writing the free energy as the sum between the energy of the electrostatic field, an entropic term due the free ions and a chemical term due to the charge transfer to the surface. 6 However, expressions for the chemical free energy contribution have been derived only for interactions that occur either at constant surface charge density or at constant surface potential. For these cases, the latter method was shown to be equivalent to the imaginary charging approach. 6 Whereas the charging approach could be applied to any geometry but only at constant surface charge or potential, the Langmuir expression could be employed for any surface conditions but only for parallel planar plates. The addition of electrostatic, entropic, and chemical contributions would allow the calculation of the free energy of interaction for systems of any shape and any surface conditions, if one could derive a general expression for the chemical free energy contribution. There are colloidal systems for which the interactions can be well described by either constant surface charge density or potential. For example, when the surface charge is generated by the dissociation of surface groupsssuch as those of surfactantssand the dissociation constant is sufficiently large, the constraint of constant charge is a suitable one. In addition, in many cases the radii of curvature of the surfaces are large enough for the interactions to be accurately calculated by combining the Langmuir equation with the Derjaguin approximation. There are, however, colloidal systems, for which the above requirements are not fulfilled. For example, the surfaces of the proteins can have small radii, and their acidic and basic groups are not completely dissociated. In this case, the Verwey-Overbeek approach cannot be employed and the Langmuir-Derjaguin approximation is not accurate. The purpose of this article is to obtain a general expression for the chemical free energy contribution, when neither the surface potential nor the surface charge density are constant on the surfaces during the interaction. It will be shown that the change in the chemical free energy contribution depends on the trajectory ψ S ψ S (σ, where ψ S is the surface potential and σ the surface charge density, during the interactions from an infinite to the final separation distance. Using this expression for the change * To whom correspondence may be addressed: address, feaeliru@acsu.buffalo.edu; phone, ( ext 2214; fax, ( (1 Gouy, G. J. Phys. Radium 191, 9, 457. (2 Chapman, D. L. Philos. Mag. 1913, 25, 475. (3 Langmuir, I. J. Chem. Phys. 1938, 6, 893. (4 Derjaguin, B. V. Kolloid-Z. 1934, 69, 155. (5 Verwey, E. J.; Overbeek, J. T. G. Theory of the stability of lyophobic colloids; Elsevier: Amsterdam, (6 Overbeek, J. T. G. Colloids Surf. 199, 51, /la CCC: $ American Chemical Society Published on Web 1/28/23

2 Chemical Free Energy of the Electrical Double Layer Langmuir, Vol. 19, No. 4, in the chemical free energy, one can recover the results obtained via the imaginary charging process, for constant surface charge or potential conditions, or via the Langmuir procedure for parallel plates and arbitrary surface conditions. However, it also can be used without any of the restrictions involved in the traditional theories. Furthermore, a simple approximate expression for the chemical free energy will be suggested, which is more efficient computationally. In that approximation, the free energy of the system does not depend on the trajectory ψ S ψ S (σ, but only on the values of σ and ψ S at infinite and at the final separation distance. The approximate expression is exact in the two limiting cases, namely, interactions at constant surface potential and at constant surface charge density. Finally, the approximate free energy is compared with the exact one (obtained both from the present theory and the Langmuir procedure for two planar surfaces, when the charge is generated via the dissociation of surface groups. II. The Double Layer Free Energy The total free energy of a double layer is the sum of an electrostatic free energy F el, an entropic term due to the mobile ions F ent and a chemical free energy. 6 The first one is given by F el 1 2 V ɛɛ ( ψ2 dv (1 the integral being carried out over the entire volume V of the system. In the above expression, ψ is the electric potential, ɛ the vacuum permittivity, and ɛ the relative dielectric constant. Note that in eq 1 the charges are assumed fixed (hence their entropy is not included, but the entropy of the dipoles of the medium is accounted for through ɛ. The entropic term due to the mobile ions of the electrolyte takes into account the differences between the ions distributions in the double layer and their distribution in the bulk 6 F ent -T S V ( c i ( c ln i i c i - c i i + c dv (2 where k is the Boltzmann constant, T the absolute temperature, c i the concentration of ions of species i in the double layer, and c i its concentration in the bulk and the subscript i runs over all ionic species. For an 1-1 electrolyte of concentration c E, whose ions obey Boltzmann distributions, the above expression becomes -T S 2c E V [( sinh ( cosh ( ] dv (3 where e is the protonic charge. The above two contributions to the free energy of the double layer are both positive. The third term, the chemical free energy contribution, which is responsible for the spontaneous formation of the double layer, should be negative and larger than the sum of the previous two terms. During interactions at constant surface potential ψ S, the surface charge decreases when two surfaces approach each other and ion adsorption or molecular group dissociation is involved in the surface charging. The system (liquid and surfaces is in thermodynamic equilibrium, and a transfer of charges from the liquid to the surfaces occurs to ensure the equality of the electrochemical potentials of the ions in the bulk and near the surface. Denoting by µ the change in the chemical part of the electrochemical potential of an ion of charge q brought from the bulk to the surface and by n the number of ions adsorbed per unit surface area, the chemical free energy (due to the adsorption of charges per unit area, is given by 5 F ch ψs const n µ (4 The thermodynamic equilibrium implies that µ bulk µ surface + qψ S (5 Since µ µ surface - µ bulk -qψ S, eq 4 becomes F ch ψs const n µ -nqψ S -σψ S where σ is the surface charge density and ψ S is the surface potential. For an interaction at constant surface charge, the charge is fixed on the surface and it is not at thermodynamic equilibrium, and the change in the chemical free energy during the interaction is zero. Hence, the chemical free energy is a constant which was taken as zero 5 F ch σconst (6a (6b As a result of this choice, the double layer free energy is in this case always positive. Actually this constant is negative, equal to the free energy required to charge the surfaces at infinite separation distance, and the double layer free energy is negative. Let us now derive an expression for the chemical free energy for a general interaction (when both the surface charge density and surface potential are changing during the interaction. When two particles (of arbitrary geometry approach each other from an infinite separation, the surface charge density and the surface potential, for an infinitesimal area δa on the surface of a particle, depend on the distance and follow a trajectory ψ S ψ S (σ (see Figure 1. This trajectory can be thought of as composed of successive infinitesimal transformations at constant surface potential (σ i, ψ S,i f σ i+1, ψ S,i and constant surface charge density (σ i+1, ψ S,i f σ i+1, ψ S,i+1. The change of the chemical free energy during the transformations at constant surface potential is given by -ψ S,i (σ i+1 - σ i δa, and it is zero for the transformations at constant surface charge. Adding all the changes when two particles approach from infinity to a final separation distance l, one obtains for the change F ch (l of the chemical contribution to the free energy F ch (lδa (- σ( ψs (σ dσδa (7 In the above integral, the Poisson-Boltzmann equation should be solved for each separation distance l and the appropriate surface boundary conditions (constant surface charge density, constant surface potential, dissociation of surface groups, or adsorption of ions. Consequently, ψ S and σ are functions of l; eliminating l one obtains ψ S ψ S (σ. The function ψ S (σ describes the unique trajectory of the system during the interaction, and the integral is performed along this trajectory (the path 1 f 2 in Figure 1. The total free energy of the double layer is obtained by adding eqs 1, 3, and 7

3 1116 Langmuir, Vol. 19, No. 4, 23 Manciu and Ruckenstein Figure 1. The surface potential ψ S as a function of the surface charge density σ when two interacting particles approach from infinite separation to the final separation distance l. F DL (l 1 2 V ɛɛ ( ψ2 dv + 2c E V [( sinh ( cosh ( ] dv + (C - ψs σ( (σ dσ da (8 the last integral being taken over the entire surface of the system, and the constant C (independent of l representing the chemical free energy at infinite separation. As shown by Overbeek, the first two terms of eq 8 can be transformed into surface integrals using Green s theorem V ɛɛ ( ψ2 dv + 2c E V [( sinh ( 1 - cosh ( + ] dv ( φs (ξ,l dξ da (9 To perform the integral in the right-hand side of the above expression, the Poisson-Boltzmann equation should be solved for a fixed value of l and all the imaginary surface charges ξ between and to obtain the imaginary surface potentials φ S. The surface potential φ S depends in this case on the values of ξ and l. From eqs 8 and 9 one obtains F DL (l ( φs (ξ,l dξ da + (C - ψs σ( (σ dσ da (1 Expression 1 is valid for a system of arbitrary shape and arbitrary surface conditions. It will be shown in what follows that one can recover the results obtained via the traditional procedures, within their domains of validity. For interactions at constant surface charge, the integral over σ in the second term vanishes and the well-known expression due to Verwey and Overbeek, which assumed C, is recovered 5 F DL (l σconst ( σ φs (ξ,l dξ da (11a For interactions at constant surface potential, ψ S (l ψ S ( ψ S and using the corresponding Verwey-Overbeek choice C -σ( ψ S (, one obtains, integrating by parts the first right-hand side term of eq 1, the expression F DL (l ψconst ( φs (ξ,l dξ da + (-σ( ψ S ( - ψ S ( σ( dσ da ξ,φ (φ S ξ S ψ S (l ψ ξ,φs - S (l ξ(φs,l dφ S da - (ψ S ( da - ( ψ S ξ(φs,l dφ S da (11b which is the Verwey-Overbeek expression for the free energy for interactions at constant surface potential. The free energy of the system is always defined up to an arbitrary constant; the choice C in the Verwey- Overbeek approach leads to positive values for the free energy of the system at constant surface charge and negative at constant surface potential. However, the interaction free energy (the difference between the free energy of the system at the final separation distance and the free energy of the system at infinite separation is not affected by the choice of the constant C. Let us now show that eq 1 leads to the same result as the Langmuir equation for the force between two identical planar surfaces and arbitrary surface conditions. Using eq 1, one obtains the following expression for the force per unit area, between two identical planar surfaces Π DL (l - 1 df DL (l - d A dl dl 2 φs (ξ,l dξ + d dl 2( ψs σ( (σ dσ (12 where the factor 2 accounts for the two identical surfaces.

4 Chemical Free Energy of the Electrical Double Layer Langmuir, Vol. 19, No. 4, The first term is the Verwey-Overbeek expression for the interactions at constant surface charge density and the second accounts for the variation of the surface charge with the separation distance. The derivative of the first term of eq 12 is given by d dl ( φ φs (ξ,l dξ S (ξ,l dξ + ψ S (σ d dl and the derivative of the second term by Consequently, from eqs 12-14, one obtains It remains only to prove that eq 15 is equivalent to the Langmuir equation where ψ m (l is the potential at the middle distance between plates. This task was performed earlier. 7 For the completeness of the presentation, the details of the proof that eqs 15 and 16 are equivalent are reproduced in the Appendix. Therefore, the present treatment of the double layer interaction leads to the same results for the interaction free energy as the imaginary charging approach for systems of arbitrary shapes and constant surface potential or constant charge density and to the same results as the Langmuir equation for parallel plates and arbitrary surface conditions. It can be, however, used for systems of any shape and any surface conditions, since it does not imply any of the above restrictions. III. Approximate Expressions for the Change in Chemical Free Energy A notable consequence of eq 7 is that the values of surface charge density and surface potential at a given separation distance l are not sufficient to calculate the free energy of interaction between surfaces. To calculate that free energy, one has to solve the Poisson-Boltzmann equation at each separation distance along a trajectory from infinity to the separation distance l. Here we will propose a simple approximation for the change of the chemical free energy, which simplifies significantly the problem. As shown in Figure 1, the transformation from 1( f 2(l is bounded by two extremal processes, 1 f 3 f 2 and 1 f 4 f 2. For the first, the change in the chemical free energy, per unit area, calculated using eqs 6a and 6b, is while for the second d dl ( ψs σ( (σ dσ ψ S (σ d dl Π DL (l -2 φ S (ξ,l (13 (14 dξ (15 Π DL,Langmuir (l 2c E (cosh( m (l - 1 (16 F 132 F 13 + F 32 -ψ S ( ( - σ( + F 142 F 14 + F 42 - ψ S (l( - σ( (17a (17b Therefore, the change in the chemical free energy is bounded by F 132 and F 142. A simple approximation for the change in the chemical free energy, per unit area, is the arithmetic average of those two bounds This expression is exact for both constant surface charge and constant surface potential interactions. One can also construct approximate expressions for the change in the chemical free energy by extending those at constant surface charge (6b or at constant surface potential (6a to general processes. In the first case which will be named in what follows constant surface charge approximation. In the second case, since the chemical free energy is defined in terms of σ and ψ S at each distance l, a natural approximation is which, as our calculations have shown, is a very poor approximation when the surface potential is not constant. Since eq 6a implies that ψ S (l ψ S (, other two legitimate choices for the approximate change in the chemical free energy would be or F ch (l (19 F ch (l -(ψ S (l - σ( ψ S ( F ch (l -(ψ S ( - σ( ψ S ( F ch (l -(ψ S (l - σ( ψ S (l (2a (2b (2c where the constant surface potential is assumed to be either at infinite separation distance or at the distance l. Expressions 2b and 2c are the two bounds proposed earlier (eqs 17a and 17b, respectively. A simple modality to improve the approximation is to use as constant surface potential in eq 6a an intermediate value between ψ S ( and ψ S (l. By employing their average, one obtains F ch (l -( - σ( (ψ S (l + ψ S ( 2 (2d which coincides with eq 18. This expression will be named in what follows the constant surface potential approximation, although it is exact when either the surface charge or the surface potential is constant. The accuracy of these approximations, when neither the surface potential nor the surface charge density are constants, will be investigated below, for two identical, parallel planar surfaces. It will be assumed that the surface charge is due to the dissociation of surface groups (for instance dissociation of surfactant molecules. 8,9 In general, the electrolyte counterions are the most abundant ions in the vicinity of the surface and therefore they can control the surface charge via reassociation. Denoting by c E the concentration (in the reservoir of an 1:1 electrolyte, by N the number of sites per unit area, and by x the fraction of dissociated sites, the dissociation equilibrium provides the expression K D (xnc + E (1 - xn xc + E (1 - x x 1 - x c E exp (- S (21 where K D is the dissociation constant, c E+ denotes the cation concentration in the liquid in the vicinity of the surface, e is the protonic charge, and the Boltzmann distribution was assumed for the counterions (note that ψ S is negative. The surface charge density is therefore given by F ch (l - (ψ S (l + ψ S ( ( - σ( 2 (18 (7 Ruckenstein, E. J. Colloid Interface Sci. 1981, 82, 49. (8 Ninham, B. W.; Parsegian, V. A. J. Theor. Biol. 1971, 31, 45. (9 Prieve, D. C.; Ruckenstein, E. J. Theor. Biol. 1976, 56, 25.

5 1118 Langmuir, Vol. 19, No. 4, 23 Manciu and Ruckenstein Figure 2. The interaction free energy (per unit area as a function of the separation distance l for two identical plates, planar and parallel, at T 3 K, ɛ 8, c E.1 M and: (a K D 1. M, N sites/m 2 ; (b K D 1. M, N sites/m 2 ; (c K D.1 M, N sites/m 2 ; (d K D.1 M, N sites/m 2. The continuous thick line represents the exact result; the up triangles represent the upper bound, the down triangles represent the lower bound, the circles represent the constant surface charge approximation, and the crosses represent the constant surface potential approximation. σ -exn - en 1 + c E exp(- S K D (22 When the dissociation constant K D is large, (c E /K D exp- (- S /, 1 and σ =-en. Then the interaction can be well approximated by that at constant surface charge density. However, for low values of K D, the interaction can no longer be approximated by assuming constant surface charge or constant surface potential. Another relation between the surface charge and surface potential is provided by the equation σ -ɛɛ ( dψ(z dz S (23 where the z direction is normal to the surface. Equation 23, combined with eq 22 provides one of the boundary conditions. The other boundary condition is provided by the symmetry of the system, which implies that the derivative of the potential at the middle distance vanishes dψ(z dz z1/2 (24 Consequently, one has to solve the Poisson-Boltzmann equation, which for a uni-univalent electrolyte has the form d 2 ψ dz 2ec E sinh 2 ɛɛ ( (25 for the above boundary conditions. The free energy of interaction between two identical plates with charges generated through dissociation will be calculated both exactly and approximately, and the results will be compared for various values of the dissociation constant. For a given separation distance l, the solution of the Poisson-Boltzmann equation was obtained via numerical integration. From the value of the potential at the middle distance between the plates ψ m (l ψ(l/2, the disjoining pressure was calculated using the Langmuir equation. The interaction free energy was subsequently obtained by integrating the disjoining pressure from infinite to the final separation distance l. In a second method, the free energy was calculated by adding the electric (eq 1, entropic (eq 3, and chemical contributions, and the interaction free energy was obtained by subtracting the free energy for infinite separation. The integrals were calculated using the numerical solution of the Poisson-Boltzmann equation for ψ(z,l and. The change in the chemical free energy was calculated using several expressions, namely, eq 7 (the exact expression, eq 19 (the constant surface charge approximation, eq 2b (the lower bound, eq 2c (the upper bound, and eq 2d (the constant surface potential approximation.

6 Chemical Free Energy of the Electrical Double Layer Langmuir, Vol. 19, No. 4, Figure 3. The ratio between the approximate interaction free energy, based on the change in chemical free energy contribution provided by eq 18 and the rigorous interaction free energy. The values of the parameters are the same as those given in Figure 2. When the exact expression was employed, the results obtained always coincided (within numerical errors, as expected, with those provided by the Langmuir procedure. For large dissociation constants (implying small c E /K D ratio, the interaction is well described, at low surface potentials, by the constant surface charge density approximation. In Figure 2a, the free energy is calculated using c E.1 M, T 3 K, ɛ 8, K D 1. M, and N sites/m 2. In this case, the calculations based on the expressions for the change in the chemical free energy (eq 19 and eqs 2b-d are all good approximations to the rigorous result obtained either using eq 7 for the change in the chemical energy or via the Langmuir procedure. The increase of N to sites/m 2 (Figure 2b displaces the σ-ψ S equilibrium toward larger surface potentials. The constant surface potential approximation (based on eq 2d provides in this case a much better agreement with the exact result than the constant surface charge approximation (based on eq 19. For the low dissociation constant K D.1 M (c E.1 M, T 3 K, ɛ 8, N sites/m 2, Figure 2c, the constant surface charge approximation is inaccurate even at low potentials (ψ S <.1 V. When the site density was increased to N sites/ m 2 (c E.1 M, T 3 K, ɛ 8, K D.1 M, Figure 2d, the constant surface charge approximation predicted attraction between the plates. In Figure 3 the ratio between the interaction free energy calculated on the basis of the approximate (eq 2d and the rigorous (eq 7 expressions for the change in the chemical free energy is plotted against the distance. In all the cases investigated, the approximate expression for the chemical free energy was accurate. In summary, when the surface charge was generated by the dissociation equilibrium of surface groups, the surface charge density was almost constant for large dissociation constants and low surface potentials. In this case, the neglecting of the change in the chemical free energy (eq 19 was a good approximation. However, in the other cases (small dissociation constants or large surface potentials it was, in general, inaccurate and sometimes even predicted double layer attraction. In all the cases investigated, the surface potential has changed, sometimes drastically, during interactions. However, a suitable choice of the surface potential (the arithmetic average of the surface potentials at infinity and at distance l in the constant surface potential approximation for the change in the chemical free energy provided always a good approximation. This approximation is exact when either the surface potential or the surface charge are constant. IV. Conclusions One can calculate the free energy of a double layer by adding to the free energy of the electric field, an entropic contribution due to mobile ions and a chemical free energy contribution due to the charge transfer between bulk and interface. However, expressions for the latter contribution are provided in the literature only for interactions at constant surface charge density or constant surface potential. In this paper, an expression for the change in the chemical free energy which is valid for interactions at any surface conditions was derived; it depends not only on the values of the surface charge and potential at the final separation distance but also on their values at all distances between infinite and the final one. The present approach reduces to the traditional ones within their range of application (imaginary charging processes for double layer interactions between systems of arbitrary shape and interactions either at constant surface potential or at constant surface charge density, and the procedure based on Langmuir equation for interactions between planar, parallel plates and arbitrary surface conditions. It can be, however, employed to calculate the interaction free energy between systems of arbitrary shape and any surface conditions, for which the traditional approaches cannot be used.

7 112 Langmuir, Vol. 19, No. 4, 23 Manciu and Ruckenstein ψ(z,l z -( 2c E ɛɛ 1/2( ( 2 cosh (z,l - 2 cosh( m (l 1/2 (A.4 Since the change in the chemical energy depends on all the values of the surface potential and surface charge density, when the particles approach from infinity to the final separation distance, the calculation of the interaction free energy involves the solution of the Poisson-Boltzmann equation at all the points along this trajectory. For systems with complicated shapes, this procedure is inconvenient. For this reason, an approximate expression for the change in the chemical free energy was also proposed, which depends only on the values of the surface potential and charge density at the infinite and final separation distances. It was shown that this approximation is accurate. which leads to the relation ψ(z,l -ɛɛ z z (2c E ɛɛ 1/2 (2 cosh( S (l - 2 cosh( m (l 1/2 (A.5 Appendix Integrating eq 15 by parts, one obtains for the disjoining pressure between two identical, parallel and planar surfaces separated by the distance l φ Π DL (l -2 S (ξ,l dξ -2 ( φs (ξ,l dξ + 2ψ S (σ -2 (φ S ξ ξ,φ S ψ S (l ψ ξ,φ S - S (l ξ(φs,l dφ S + 2ψ S (σ 2 ( ψ S (l ξ(φs,l dφ S - 2σ(ψ S ψ S (l (A.1 For the integral in the last right-hand side of the equality, one can use an expression derived by Verwey and Overbeek (eq 37b in ref 5 5 ψ - S ξ(φs,l dφ S -c E l( ( cosh m (l ( 2ɛɛ c E (3 m (l/ 1/2 e 2 S (l/ ( 2 cosh(y - 2 cosh( m (l the derivative of which with respect to the distance is given by - ( ψ S ξ(φs,l dφ S -c E ( cosh ( m (l c E l sinh( m ψ m + ( 2ɛɛ c E (3 ( 2 cosh(y - 2 cosh( m (l y 1/2 ( 2ɛɛ c E (3 1/2 sinh( m e 2 ψ m 1 Integrating once the Poisson-Boltzmann equation, one obtains 1/2 1/2 e 2 ( m (l/ ( S (l/ + m (l/ S (l/ (2 cosh(y - 2 cosh( m (l 1/2 dy (A.2 dy (A.3 and by direct integration, from the surface to the middle distance to the expression 5 m (l/ S (l/ By employing eq A.6, the last right-hand-side term in expression A.3 becomes ( 2ɛɛ c E (3 1/2 e 2 and cancels the second term of the right-hand side of eq A.3. Using expression A.5, eq A.3 becomes Finally, from eqs A.1 and A.8, one obtains which is the Langmuir equation, eq 16. LA dy (2 cosh(y - 2 cosh( m (l 1/2 sinh( m ψ m m (l/ S (l/ 1 (2 cosh(y - 2 cosh( m (l 1/2 ( 2ɛɛ c E 1/2( ( (3 e 2 cosh S (l 2 e ψ S (l - 2( l 2c E e2 1/2 ɛɛ dy c E l sinh( m ψ m - ( ψ S ξ(φs,l dφ S -c E ( cosh ( m (l -c E ( cosh ( m (l (A.6 (A.7-2 cosh( m (l σ(ψ S ψ S (l Π DL (l 2 ( ψ S (l σ(φs,l dφ S - 2σ(ψ S ψ S (l 2c E (cosh( m (l (A.8-1 (A.9

The effect of surface dipoles and of the field generated by a polarization gradient on the repulsive force

The effect of surface dipoles and of the field generated by a polarization gradient on the repulsive force Journal of Colloid and Interface Science 263 (2003) 156 161 www.elsevier.com/locate/jcis The effect of surface dipoles and of the field generated by a polarization gradient on the repulsive force Haohao

More information

Lecture 3 Charged interfaces

Lecture 3 Charged interfaces Lecture 3 Charged interfaces rigin of Surface Charge Immersion of some materials in an electrolyte solution. Two mechanisms can operate. (1) Dissociation of surface sites. H H H H H M M M +H () Adsorption

More information

V. Electrostatics. MIT Student

V. Electrostatics. MIT Student V. Electrostatics Lecture 26: Compact Part of the Double Layer MIT Student 1 Double-layer Capacitance 1.1 Stern Layer As was discussed in the previous lecture, the Gouy-Chapman model predicts unphysically

More information

*blood and bones contain colloids. *milk is a good example of a colloidal dispersion.

*blood and bones contain colloids. *milk is a good example of a colloidal dispersion. Chap. 3. Colloids 3.1. Introduction - Simple definition of a colloid: a macroscopically heterogeneous system where one component has dimensions in between molecules and macroscopic particles like sand

More information

Polarization of Water near Dipolar Surfaces: A Simple Model for Anomalous Dielectric Behavior

Polarization of Water near Dipolar Surfaces: A Simple Model for Anomalous Dielectric Behavior Langmuir 2005, 2, 749-756 749 Polarization of Water near Dipolar Surfaces: A Simple Model for Anomalous Dielectric Behavior Marian Manciu* Department of Physics, University of Texas at El Paso, El Paso,

More information

Electrostatic Double Layer Force: Part III

Electrostatic Double Layer Force: Part III NPTEL Chemical Engineering Interfacial Engineering Module 3: Lecture 4 Electrostatic Double Layer Force: Part III Dr. Pallab Ghosh Associate Professor Department of Chemical Engineering IIT Guwahati, Guwahati

More information

Module 8: "Stability of Colloids" Lecture 38: "" The Lecture Contains: Calculation for CCC (n c )

Module 8: Stability of Colloids Lecture 38:  The Lecture Contains: Calculation for CCC (n c ) The Lecture Contains: Calculation for CCC (n c ) Relation between surface charge and electrostatic potential Extensions to DLVO theory file:///e /courses/colloid_interface_science/lecture38/38_1.htm[6/16/2012

More information

Interfacial forces and friction on the nanometer scale: A tutorial

Interfacial forces and friction on the nanometer scale: A tutorial Interfacial forces and friction on the nanometer scale: A tutorial M. Ruths Department of Chemistry University of Massachusetts Lowell Presented at the Nanotribology Tutorial/Panel Session, STLE/ASME International

More information

Colloid Chemistry. La chimica moderna e la sua comunicazione Silvia Gross.

Colloid Chemistry. La chimica moderna e la sua comunicazione Silvia Gross. Colloid Chemistry La chimica moderna e la sua comunicazione Silvia Gross Istituto Dipartimento di Scienze di e Scienze Tecnologie Chimiche Molecolari ISTM-CNR, Università Università degli Studi degli Studi

More information

Multimedia : Boundary Lubrication Podcast, Briscoe, et al. Nature , ( )

Multimedia : Boundary Lubrication Podcast, Briscoe, et al. Nature , ( ) 3.05 Nanomechanics of Materials and Biomaterials Thursday 04/05/07 Prof. C. Ortiz, MITDMSE I LECTURE 14: TE ELECTRICAL DOUBLE LAYER (EDL) Outline : REVIEW LECTURE #11 : INTRODUCTION TO TE ELECTRICAL DOUBLE

More information

2 Structure. 2.1 Coulomb interactions

2 Structure. 2.1 Coulomb interactions 2 Structure 2.1 Coulomb interactions While the information needed for reproduction of living systems is chiefly maintained in the sequence of macromolecules, any practical use of this information must

More information

Colloids and Surfaces A: Physicochemical and Engineering Aspects

Colloids and Surfaces A: Physicochemical and Engineering Aspects Colloids and Surfaces A: Physicochem. Eng. Aspects 4 (212) 27 35 Contents lists available at SciVerse ScienceDirect Colloids and Surfaces A: Physicochemical and Engineering Aspects jo ur nal homep a ge:

More information

Electrical double layer

Electrical double layer Electrical double layer Márta Berka és István Bányai, University of Debrecen Dept of Colloid and Environmental Chemistry http://dragon.unideb.hu/~kolloid/ 7. lecture Adsorption of strong electrolytes from

More information

A Simple Statistical Mechanical Approach to the Free Energy of the Electric Double Layer Including the Excluded Volume Effect

A Simple Statistical Mechanical Approach to the Free Energy of the Electric Double Layer Including the Excluded Volume Effect J. Phys. II France 6 (1996) 477 491 APRIL 1996, PAGE 477 A Simple Statistical Mechanical Approach to the Free Energy of the Electric Double Layer Including the Excluded Volume Effect Veronika Kralj-Iglič

More information

Classical Models of the Interface between an Electrode and Electrolyte. M.Sc. Ekaterina Gongadze

Classical Models of the Interface between an Electrode and Electrolyte. M.Sc. Ekaterina Gongadze Presented at the COMSOL Conference 009 Milan Classical Models of the Interface between an Electrode and Electrolyte M.Sc. Ekaterina Gongadze Faculty of Informatics and Electrical Engineering Comsol Conference

More information

The Free Energy of an Electrical Double Layer

The Free Energy of an Electrical Double Layer The Free Energy of an Electrical Double Layer DEREK Y. C. CHAN AND D. JOHN MITCHELL Department of Applied Mathematics, Research School of Physical Sciences, Australian National University, Canberra ACT

More information

Effect of Polyelectrolyte Adsorption on Intercolloidal Forces

Effect of Polyelectrolyte Adsorption on Intercolloidal Forces 5042 J. Phys. Chem. B 1999, 103, 5042-5057 Effect of Polyelectrolyte Adsorption on Intercolloidal Forces Itamar Borukhov, David Andelman,*, and Henri Orland School of Physics and Astronomy, Raymond and

More information

Kinetics of surfactant adsorption: the free energy approach

Kinetics of surfactant adsorption: the free energy approach Colloids and Surfaces A: Physicochemical and Engineering Aspects 183 185 (2001) 259 276 www.elsevier.nl/locate/colsurfa Kinetics of surfactant adsorption: the free energy approach Haim Diamant 1, Gil Ariel,

More information

Ben-Gurion University of the Negev The Jacob Blaustein Institutes for Desert Research The Albert Katz International School for Desert Studies

Ben-Gurion University of the Negev The Jacob Blaustein Institutes for Desert Research The Albert Katz International School for Desert Studies Ben-Gurion University of the Negev The Jacob Blaustein Institutes for Desert Research The Albert Katz International School for Desert Studies Analysis of the Electrical Double Layer With and Without Added

More information

Specific ion effects via ion hydration: II. Double layer interaction

Specific ion effects via ion hydration: II. Double layer interaction Advances in Colloid and Interface Science 105 (003) 177 00 Specific ion effects via ion hydration: II. Double layer interaction Eli Ruckenstein*, Marian Manciu Department of Chemical Engineering, State

More information

Kinetics of Surfactant Adsorption at Fluid-Fluid Interfaces

Kinetics of Surfactant Adsorption at Fluid-Fluid Interfaces 13732 J. Phys. Chem. 1996, 1, 13732-13742 Kinetics of Surfactant Adsorption at Fluid-Fluid Interfaces Haim Diamant and David Andelman* School of Physics and Astronomy, Raymond and BeVerly Sackler Faculty

More information

The Critical Coagulation Concentration of Counterions: Spherical Particles in Asymmetric Electrolyte Solutions

The Critical Coagulation Concentration of Counterions: Spherical Particles in Asymmetric Electrolyte Solutions JOURNAL OF COLLOID AND INTERFACE SCIENCE 185, 53 537 (1997) ARTICLE NO. CS96591 The Critical Coagulation Concentration of Counterions: Spherical Particles in Asymmetric Electrolyte Solutions JYH-PING HSU

More information

Electrical double layer interactions between dissimilar oxide surfaces with charge regulation and Stern Grahame layers

Electrical double layer interactions between dissimilar oxide surfaces with charge regulation and Stern Grahame layers Journal of Colloid and Interface Science 296 (2006) 150 158 www.elsevier.com/locate/jcis Electrical double layer interactions between dissimilar oxide surfaces with charge regulation and Stern Grahame

More information

V. Electrostatics Lecture 24: Diffuse Charge in Electrolytes

V. Electrostatics Lecture 24: Diffuse Charge in Electrolytes V. Electrostatics Lecture 24: Diffuse Charge in Electrolytes MIT Student 1. Poisson-Nernst-Planck Equations The Nernst-Planck Equation is a conservation of mass equation that describes the influence of

More information

Electrochemical Properties of Materials for Electrical Energy Storage Applications

Electrochemical Properties of Materials for Electrical Energy Storage Applications Electrochemical Properties of Materials for Electrical Energy Storage Applications Lecture Note 3 October 11, 2013 Kwang Kim Yonsei Univ., KOREA kbkim@yonsei.ac.kr 39 Y 88.91 8 O 16.00 7 N 14.01 34 Se

More information

Module 8: "Stability of Colloids" Lecture 37: "" The Lecture Contains: DLVO Theory. Effect of Concentration. Objectives_template

Module 8: Stability of Colloids Lecture 37:  The Lecture Contains: DLVO Theory. Effect of Concentration. Objectives_template The Lecture Contains: DLVO Theory Effect of Concentration file:///e /courses/colloid_interface_science/lecture37/37_1.htm[6/16/2012 1:02:12 PM] Studying the stability of colloids is an important topic

More information

Chapter 7. Pickering Stabilisation ABSTRACT

Chapter 7. Pickering Stabilisation ABSTRACT Chapter 7 Pickering Stabilisation ABSTRACT In this chapter we investigate the interfacial properties of Pickering emulsions. Based upon findings that indicate these emulsions to be thermodynamically stable,

More information

Chapter 6 Stability of Colloidal Suspensions

Chapter 6 Stability of Colloidal Suspensions Chapter 6 Stability of Colloidal Suspensions 6.1 Kinetic Stability of Colloidal Suspensions o G = A f sl sl interfacial surface tension (sol/liq) [J/m 2 ] sol/liq surface change [m 2 ] γ sl > 0 colloid

More information

Chapter 6 Stability of Colloidal Suspensions

Chapter 6 Stability of Colloidal Suspensions Chapter 6 Stability of Colloidal Suspensions 6.1 Kinetic Stability of Colloidal Suspensions o G = A f sl sl interfacial surface tension (sol/liq) [J/m 2 ] sol/liq surface change [m 2 ] γ sl > 0 colloid

More information

Short communication On Asymmetric Shape of Electric Double Layer Capacitance Curve

Short communication On Asymmetric Shape of Electric Double Layer Capacitance Curve Int. J. Electrochem. Sci., 10 (015) 1-7 International Journal of ELECTROCHEMICAL SCIENCE www.electrochemsci.org Short communication On Asymmetric Shape of Electric Double Layer Capacitance Curve Aljaž

More information

Electrolytes. Chapter Basics = = 131 2[ ]. (c) From both of the above = = 120 8[

Electrolytes. Chapter Basics = = 131 2[ ]. (c) From both of the above = = 120 8[ Chapter 1 Electrolytes 1.1 Basics Here we consider species that dissociate into positively and negatively charged species in solution. 1. Consider: 1 H (g) + 1 Cl (g) + ()+ () = { } = (+ )+ ( ) = 167[

More information

Introduction. Statistical physics: microscopic foundation of thermodynamics degrees of freedom 2 3 state variables!

Introduction. Statistical physics: microscopic foundation of thermodynamics degrees of freedom 2 3 state variables! Introduction Thermodynamics: phenomenological description of equilibrium bulk properties of matter in terms of only a few state variables and thermodynamical laws. Statistical physics: microscopic foundation

More information

Electrostatics of membrane adhesion

Electrostatics of membrane adhesion Electrostatics of membrane adhesion S. Marcelja Department of Applied Mathematics, Research School of Physical Sciences and Engineering, The Australian National University, Canberra ACT 6, Australia ABSTRACT

More information

Line adsorption in a mean-field density functional model

Line adsorption in a mean-field density functional model Chemistry Physical & Theoretical Chemistry fields Okayama University Year 2006 Line adsorption in a mean-field density functional model Kenichiro Koga Benjamin Widom Okayama University, koga@cc.okayama-u.ac.jp

More information

The Coupling between the Hydration and Double Layer Interactions

The Coupling between the Hydration and Double Layer Interactions 7584 Langmuir 00, 18, 7584-7593 The Coupling between the Hyration an ouble Layer Interactions Eli Ruckenstein* an Marian Manciu epartment of Chemical Engineering, State University of New York at Buffalo,

More information

DLVO Theory and Non-DLVO Forces

DLVO Theory and Non-DLVO Forces NPTEL Chemical Engineering Interfacial Engineering Module 3: Lecture 5 DLVO Theory and Non-DLVO Forces Dr. Pallab Ghosh Associate Professor Department of Chemical Engineering IIT Guwahati, Guwahati 781039

More information

The electroviscous force between charged particles: beyond the thin-double-layer approximation

The electroviscous force between charged particles: beyond the thin-double-layer approximation Journal of Colloid and Interface Science 274 (24) 687 694 www.elsevier.com/locate/jcis The electroviscous force between charged particles: beyond the thin-double-layer approximation B. Chun and A.J.C.

More information

Overview of DLVO Theory

Overview of DLVO Theory Overview of DLVO Theory Gregor Trefalt and Michal Borkovec Email. gregor.trefalt@unige.ch, michal.borkovec@unige.ch September 29, 214 Direct link www.colloid.ch/dlvo Derjaguin, Landau, Vervey, and Overbeek

More information

Soft Matter - Theoretical and Industrial Challenges Celebrating the Pioneering Work of Sir Sam Edwards

Soft Matter - Theoretical and Industrial Challenges Celebrating the Pioneering Work of Sir Sam Edwards Soft Matter - Theoretical and Industrial Challenges Celebrating the Pioneering Work of Sir Sam Edwards One Hundred Years of Electrified Interfaces: The Poisson-Boltzmann theory and some recent developments

More information

1044 Lecture #14 of 18

1044 Lecture #14 of 18 Lecture #14 of 18 1044 1045 Q: What s in this set of lectures? A: B&F Chapter 13 main concepts: Section 1.2.3: Diffuse double layer structure Sections 13.1 & 13.2: Gibbs adsorption isotherm; Electrocapillary

More information

Tutorial on rate constants and reorganization energies

Tutorial on rate constants and reorganization energies www.elsevier.nl/locate/jelechem Journal of Electroanalytical Chemistry 483 (2000) 2 6 Tutorial on rate constants reorganization energies R.A. Marcus * Noyes Laboratory of Chemical Physics, MC 127-72, California

More information

Effective charge saturation in colloidal suspensions

Effective charge saturation in colloidal suspensions JOURNAL OF CHEMICAL PHYSICS VOLUME 117, NUMBER 17 1 NOVEMBER 2002 Effective charge saturation in colloidal suspensions Lydéric Bocquet Laboratoire de Physique de l E.N.S. de Lyon, UMR CNRS 5672, 46 Allée

More information

Kinetics of Surfactant Adsorption at Fluid-Fluid Interfaces

Kinetics of Surfactant Adsorption at Fluid-Fluid Interfaces Kinetics of Surfactant Adsorption at Fluid-Fluid Interfaces arxiv:cond-mat/9608140v1 28 Aug 1996 Haim Diamant and David Andelman School of Physics and Astronomy Raymond and Beverly Sackler Faculty of Exact

More information

Electrolyte Solutions

Electrolyte Solutions Chapter 8 Electrolyte Solutions In the last few chapters of this book, we will deal with several specific types of chemical systems. The first one is solutions and equilibria involving electrolytes, which

More information

II. Equilibrium Thermodynamics Lecture 7: Statistical Thermodynamics

II. Equilibrium Thermodynamics Lecture 7: Statistical Thermodynamics II. Equilibrium Thermodynamics Lecture 7: Statistical Thermodynamics Notes by ChangHoon Lim (and MZB) Open circuit voltage of galvanic cell is To understand compositional effects on, we need to consider

More information

Solving the Poisson Boltzmann equation to obtain interaction energies between confined, like-charged cylinders

Solving the Poisson Boltzmann equation to obtain interaction energies between confined, like-charged cylinders JOURNAL OF CHEMICAL PHYSICS VOLUME 109, NUMBER 20 22 NOVEMBER 1998 Solving the Poisson Boltzmann equation to obtain interaction energies between confined, like-charged cylinders Mark Ospeck a) and Seth

More information

Observable Electric Potential and Electrostatic Potential in Electrochemical Systems

Observable Electric Potential and Electrostatic Potential in Electrochemical Systems 658 J. Phys. Chem. B 2000, 104, 658-662 Observable Electric Potential and Electrostatic Potential in Electrochemical Systems Javier Garrido* and José A. Manzanares Departamento de Termodinámica, UniVersitat

More information

Theoretische Physik 2: Elektrodynamik (Prof. A-S. Smith) Home assignment 11

Theoretische Physik 2: Elektrodynamik (Prof. A-S. Smith) Home assignment 11 WiSe 22..23 Prof. Dr. A-S. Smith Dipl.-Phys. Matthias Saba am Lehrstuhl für Theoretische Physik I Department für Physik Friedrich-Alexander-Universität Erlangen-Nürnberg Problem. Theoretische Physik 2:

More information

On the Stability of Lyotropic Lamellar Liquid Crystals and the Thicknesses of Their Lamellae

On the Stability of Lyotropic Lamellar Liquid Crystals and the Thicknesses of Their Lamellae 5464 Langmuir 00, 7, 5464-5475 n the Stability of Lyotropic Lamellar Liquid Crystals and the Thicknesses of Their Lamellae Eli Ruckenstein* and Marian Manciu Department of Chemical Engineering, State University

More information

THE MODIFIED YOUNG S EQUATION FOR THE CONTACT ANGLE OF A SMALL SESSILE DROP FROM AN INTERFACE DISPLACEMENT MODEL

THE MODIFIED YOUNG S EQUATION FOR THE CONTACT ANGLE OF A SMALL SESSILE DROP FROM AN INTERFACE DISPLACEMENT MODEL International Journal of Modern Physics B, Vol. 13, No. 7 (1999) 355 359 c World Scientific Publishing Company THE MODIFIED YOUNG S EQUATION FOR THE CONTACT ANGLE OF A SMALL SESSILE DROP FROM AN INTERFACE

More information

Module17: Intermolecular Force between Surfaces and Particles. Lecture 23: Intermolecular Force between Surfaces and Particles

Module17: Intermolecular Force between Surfaces and Particles. Lecture 23: Intermolecular Force between Surfaces and Particles Module17: Intermolecular Force between Surfaces and Particles Lecture 23: Intermolecular Force between Surfaces and Particles 1 We now try to understand the nature of spontaneous instability in a confined

More information

arxiv:cond-mat/ v3 [cond-mat.soft] 12 Sep 2001

arxiv:cond-mat/ v3 [cond-mat.soft] 12 Sep 2001 EUROPHYSICS LETTERS 15 August 2000 Europhys. Lett., 51 (4), pp. 461 468 (2000) arxiv:cond-mat/0006501v3 [cond-mat.soft] 12 Sep 2001 Ground state of two unlike charged colloids: An analogy with ionic bonding

More information

Surface Charge of Silver Iodide and Several Metal Oxides. Are All Surfaces Nernstian?

Surface Charge of Silver Iodide and Several Metal Oxides. Are All Surfaces Nernstian? Journal of Colloid and Interface Science 227, 152 163 (2000) doi:10.1006/jcis.2000.6847, available online at http://www.idealibrary.com on Surface Charge of Silver Iodide and Several Metal Oxides. Are

More information

INTERMOLECULAR AND SURFACE FORCES

INTERMOLECULAR AND SURFACE FORCES INTERMOLECULAR AND SURFACE FORCES SECOND EDITION JACOB N. ISRAELACHVILI Department of Chemical & Nuclear Engineering and Materials Department University of California, Santa Barbara California, USA ACADEMIC

More information

Supporting Information for Lysozyme Adsorption in ph-responsive Hydrogel Thin-Films: The non-trivial Role of Acid-Base Equilibrium

Supporting Information for Lysozyme Adsorption in ph-responsive Hydrogel Thin-Films: The non-trivial Role of Acid-Base Equilibrium Electronic Supplementary Material (ESI) for Soft Matter. This journal is The Royal Society of Chemistry 215 Supporting Information for Lysozyme Adsorption in ph-responsive Hydrogel Thin-Films: The non-trivial

More information

Diffuse charge effects in fuel cell membranes

Diffuse charge effects in fuel cell membranes Diffuse charge effects in fuel cell membranes The MIT Faculty has made this article openly available. Please share how this access benefits you. Your story matters. Citation Biesheuvel, P. Maarten, Alejandro

More information

Sedimentation velocity and potential in a concentrated colloidal suspension Effect of a dynamic Stern layer

Sedimentation velocity and potential in a concentrated colloidal suspension Effect of a dynamic Stern layer Colloids and Surfaces A: Physicochemical and Engineering Aspects 195 (2001) 157 169 www.elsevier.com/locate/colsurfa Sedimentation velocity and potential in a concentrated colloidal suspension Effect of

More information

Cavity QED induced colloidal attraction?

Cavity QED induced colloidal attraction? Cavity QED induced colloidal attraction? T. V. Prevenslik 14B, Brilliance Court, Discovery Bay, Hong Kong Abstract - The paradox of why like-charge macroions having weak van der Waals attraction condense

More information

6 Adsorption on metal electrodes: principles

6 Adsorption on metal electrodes: principles 6 Adsorption on metal electrodes: principles 6.1 Adsorption phenomena Whenever the concentration of a species at the interface is greater than can be accounted for by electrostatic interactions, we speak

More information

Poisson-Boltzmann theory with Duality

Poisson-Boltzmann theory with Duality Poisson-Boltzmann theory with Duality A.C. Maggs CNRS+ESPCI, Paris June 016 Introduction to Poisson-Boltzmann theory introduction and historic formulation in terms of densities transformation to potential

More information

Research Article A Modified Method to Calculate Critical Coagulation Concentration Based on DLVO Theory

Research Article A Modified Method to Calculate Critical Coagulation Concentration Based on DLVO Theory Mathematical Problems in Engineering Volume 215, rticle ID 317483, 5 pages http://dx.doi.org/1.1155/215/317483 Research rticle Modified Method to Calculate Critical Coagulation Concentration Based on DLVO

More information

Quiz 4 (Discussion Session) Phys 1302W.400 Spring 2018

Quiz 4 (Discussion Session) Phys 1302W.400 Spring 2018 Quiz 4 (Discussion ession) Phys 1302W.400 pring 2018 This group quiz consists of one problem that, together with the individual problems on Friday, will determine your grade for quiz 4. For the group problem,

More information

Chapter 21. Electric Charge and Electric Field

Chapter 21. Electric Charge and Electric Field 1.1 Electric Charge Chapter 1 Electric Charge and Electric Field Only varieties of electric charges exist in nature; positive and negative charges. Like charges repel each other, while opposite charges

More information

Effect of electrostatic interaction on deposition of colloid on partially covered surfaces Part I. Model formulation

Effect of electrostatic interaction on deposition of colloid on partially covered surfaces Part I. Model formulation Colloids and Surfaces A: Physicochem. Eng. Aspects 294 (2007) 254 266 Effect of electrostatic interaction on deposition of colloid on partially covered surfaces Part I. Model formulation Paweł Weroński

More information

THEORY OF THE ELECTRIC DOUBLE LAYER OF STABILIZED EMULSIONS

THEORY OF THE ELECTRIC DOUBLE LAYER OF STABILIZED EMULSIONS CHEMISTRY THEORY OF THE ELECTRIC DOUBLE LAYER OF STABILIZED EMULSIONS BY E. J. W. VERWEY (Communicated at the meeting of February 25, 1950) I ntrod uction. The electrical double layer at the interface

More information

Stability of colloidal systems

Stability of colloidal systems Stability of colloidal systems Colloidal stability DLVO theory Electric double layer in colloidal systems Processes to induce charges at surfaces Key parameters for electric forces (ζ-potential, Debye

More information

Electrostatic Forces & The Electrical Double Layer

Electrostatic Forces & The Electrical Double Layer Electrostatic Forces & The Electrical Double Layer Dry Clay Swollen Clay Repulsive electrostatics control swelling of clays in water LiquidSolid Interface; Colloids Separation techniques such as : column

More information

Theory of Charge Transport in Mixed Conductors: Description of Interfacial Contributions Compatible with the Gibbs Thermodynamics

Theory of Charge Transport in Mixed Conductors: Description of Interfacial Contributions Compatible with the Gibbs Thermodynamics Theory of Charge Transport in Mixed Conductors: Description of Interfacial Contributions Compatible with the Gibbs Thermodynamics Mikhail A. Vorotyntsev LSEO-UMR 5188 CNRS, Université de Bourgogne, Dijon,

More information

Diffuse-charge effects on the transient response of electrochemical cells

Diffuse-charge effects on the transient response of electrochemical cells Diffuse-charge effects on the transient response of electrochemical cells M. van Soestbergen,,2 P. M. Biesheuvel, 3 and M. Z. Bazant 4 Materials Innovation Institute, Mekelweg 2, 2628 CD Delft, The Netherlands

More information

Charged Membranes: Poisson-Boltzmann theory, DLVO paradigm and beyond

Charged Membranes: Poisson-Boltzmann theory, DLVO paradigm and beyond Chapter 1 arxiv:1603.09451v2 [cond-mat.soft] 4 Apr 2016 Charged Membranes: Poisson-Boltzmann theory, DLVO paradigm and beyond Tomer Markovich, David Andelman and Rudi Podgornik School of Physics and Astronomy,

More information

Surface Charge Regulation Effects on Fluidic Nanoscale Systems

Surface Charge Regulation Effects on Fluidic Nanoscale Systems University of New Mexico UNM Digital Repository Nanoscience and Microsystems ETDs School of Engineering ETDs 6-23-2015 Surface Charge Regulation Effects on Fluidic Nanoscale Systems Mark Fleharty Follow

More information

Simple Model for Grafted Polymer Brushes

Simple Model for Grafted Polymer Brushes 6490 Langmuir 2004, 20, 6490-6500 Simple Model for Grafted Polymer Brushes Marian Manciu and Eli Ruckenstein* Department of Chemical Engineering, State University of New York at Buffalo, Buffalo, New York

More information

1. (3) Write Gauss Law in differential form. Explain the physical meaning.

1. (3) Write Gauss Law in differential form. Explain the physical meaning. Electrodynamics I Midterm Exam - Part A - Closed Book KSU 204/0/23 Name Electro Dynamic Instructions: Use SI units. Where appropriate, define all variables or symbols you use, in words. Try to tell about

More information

The change in free energy on transferring an ion from a medium of low dielectric constantε1 to one of high dielectric constant ε2:

The change in free energy on transferring an ion from a medium of low dielectric constantε1 to one of high dielectric constant ε2: The Born Energy of an Ion The free energy density of an electric field E arising from a charge is ½(ε 0 ε E 2 ) per unit volume Integrating the energy density of an ion over all of space = Born energy:

More information

Thermodynamically Stable Emulsions Using Janus Dumbbells as Colloid Surfactants

Thermodynamically Stable Emulsions Using Janus Dumbbells as Colloid Surfactants Thermodynamically Stable Emulsions Using Janus Dumbbells as Colloid Surfactants Fuquan Tu, Bum Jun Park and Daeyeon Lee*. Description of the term notionally swollen droplets When particles are adsorbed

More information

Measurements Of Electrostatic Double Layer Potentials With Atomic Force Microscopy

Measurements Of Electrostatic Double Layer Potentials With Atomic Force Microscopy University of South Carolina Scholar Commons Theses and Dissertations 2016 Measurements Of Electrostatic Double Layer Potentials With Atomic Force Microscopy Jason Giamberardino University of South Carolina

More information

Symmetry breaking and electrostatic attraction between two identical surfaces

Symmetry breaking and electrostatic attraction between two identical surfaces PHYSICAL REVIEW E 79, 041404 009 Symmetry breaking and electrostatic attraction between two identical surfaces F. Plouraboué Université de Toulouse, INPT, UPS, IMFT (Institut de Mécanique des Fluides de

More information

Oxidation & Reduction II. Suggested reading: Chapter 5

Oxidation & Reduction II. Suggested reading: Chapter 5 Lecture 1 Oxidation & Reduction II Suggested reading: Chapter 5 Recall from Last time: Redox Potentials The Nernst equation: E cell E 0 RT F ln Q Cell Potential and ph For the H + /H couple at 1 bar and

More information

2.6 The Membrane Potential

2.6 The Membrane Potential 2.6: The Membrane Potential 51 tracellular potassium, so that the energy stored in the electrochemical gradients can be extracted. Indeed, when this is the case experimentally, ATP is synthesized from

More information

PHYS 352 Homework 2 Solutions

PHYS 352 Homework 2 Solutions PHYS 352 Homework 2 Solutions Aaron Mowitz (, 2, and 3) and Nachi Stern (4 and 5) Problem The purpose of doing a Legendre transform is to change a function of one or more variables into a function of variables

More information

of Nebraska - Lincoln

of Nebraska - Lincoln University of Nebraska - Lincoln DigitalCommons@University of Nebraska - Lincoln Xiao Cheng Zeng Publications Published Research - Department of Chemistry 10-1-2006 Homogeneous nucleation at high supersaturation

More information

The interaction of two charged spheres in the Poisson-Boltzmann equation

The interaction of two charged spheres in the Poisson-Boltzmann equation The interaction of two charged spheres in the Poisson-Boltzmann equation JOSEPH E. LEDBETTER, THOMAS L. CROXTON, AND DONALD A. MCQUARRE' Department of Chemistry, Unioersiry of California, Davis, CA 95616,

More information

Free Energy and Thermal Fluctuations of Neutral Lipid Bilayers

Free Energy and Thermal Fluctuations of Neutral Lipid Bilayers Langmuir 001, 17, 455-463 455 Free Energy and Thermal Fluctuations of Neutral Lipid Bilayers Marian Manciu and Eli Ruckenstein* Department of Chemical Engineering, State University of New York at Buffalo,

More information

EMPIRICAL ESTIMATION OF DOUBLE-LAYER REPULSIVE FORCE BETWEEN TWO INCLINED CLAY PARTICLES OF FINITE LENGTH

EMPIRICAL ESTIMATION OF DOUBLE-LAYER REPULSIVE FORCE BETWEEN TWO INCLINED CLAY PARTICLES OF FINITE LENGTH EMPIRICAL ESTIMATION OF DOUBLE-LAYER REPULSIVE FORCE BETWEEN TWO INCLINED CLAY PARTICLES OF FINITE LENGTH INTRODUCTION By Ning Lu 1 and A. Anandarajah 2 The electrical double layer surrounding particles

More information

Non-Faradaic Impedance Characterization of an

Non-Faradaic Impedance Characterization of an Electronic Supplementary Material (ESI) for Lab on a Chip. This journal is The Royal Society of Chemistry 2014 Supplementary Information Non-Faradaic Impedance Characterization of an Evaporating Droplet

More information

Attraction or repulsion between charged colloids? A connection with Debye Hückel theory

Attraction or repulsion between charged colloids? A connection with Debye Hückel theory J. Phys.: Condens. Matter 12 (2000) A263 A267. Printed in the UK PII: S0953-8984(00)07724-9 Attraction or repulsion between charged colloids? A connection with Debye Hückel theory René van Roij H H Wills

More information

Investigation of stabilization mechanisms for colloidal suspension using nanoparticles.

Investigation of stabilization mechanisms for colloidal suspension using nanoparticles. University of Louisville ThinkIR: The University of Louisville's Institutional Repository Electronic Theses and Dissertations 8-2014 Investigation of stabilization mechanisms for colloidal suspension using

More information

INTRODUCTION TO FINITE ELEMENT METHODS ON ELLIPTIC EQUATIONS LONG CHEN

INTRODUCTION TO FINITE ELEMENT METHODS ON ELLIPTIC EQUATIONS LONG CHEN INTROUCTION TO FINITE ELEMENT METHOS ON ELLIPTIC EQUATIONS LONG CHEN CONTENTS 1. Poisson Equation 1 2. Outline of Topics 3 2.1. Finite ifference Method 3 2.2. Finite Element Method 3 2.3. Finite Volume

More information

Peter Debye and Electrochemistry

Peter Debye and Electrochemistry Peter Debye and Electrochemistry A K Shukla and T Prem Kumar A K Shukla is Professor and Chairman, Solid State and Structural Chemistry Unit, Indian Institute of Science, Bangalore. His research interests

More information

Electronic Supplementary Information Structure of Clean and Hydrated α-al 2 O 3 (11 02) Surfaces: Implication on Surface Charge.

Electronic Supplementary Information Structure of Clean and Hydrated α-al 2 O 3 (11 02) Surfaces: Implication on Surface Charge. Electronic Supplementary Information Structure of Clean and Hydrated α-al 2 O 3 (11 02) Surfaces: Implication on Surface Charge. Asma ougerti, 1,2 Christophe Méthivier, 1,2 Sylvain Cristol, 3 Frederik

More information

Hydrophobic Forces in the Foam Films Stabilized by Sodium Dodecyl Sulfate: Effect of Electrolyte

Hydrophobic Forces in the Foam Films Stabilized by Sodium Dodecyl Sulfate: Effect of Electrolyte Langmuir 2004, 20, 11457-11464 11457 Hydrophobic Forces in the Foam Films Stabilized by Sodium Dodecyl Sulfate: Effect of Electrolyte Liguang Wang and Roe-Hoan Yoon* Center for Advanced Separation Technologies,

More information

y=1 1 J (a x ) dy dz dx dz 10 4 sin(2)e 2y dy dz sin(2)e 2y

y=1 1 J (a x ) dy dz dx dz 10 4 sin(2)e 2y dy dz sin(2)e 2y Chapter 5 Odd-Numbered 5.. Given the current density J = 4 [sin(x)e y a x + cos(x)e y a y ]ka/m : a) Find the total current crossing the plane y = in the a y direction in the region

More information

Attraction between two similar particles in an electrolyte: effects of Stern layer absorption

Attraction between two similar particles in an electrolyte: effects of Stern layer absorption Attraction between two similar particles in an electrolyte: effects of Stern layer absorption F.Plouraboué, H-C. Chang, June 7, 28 Abstract When Debye length is comparable or larger than the distance between

More information

Semiconductor Junctions

Semiconductor Junctions 8 Semiconductor Junctions Almost all solar cells contain junctions between different materials of different doping. Since these junctions are crucial to the operation of the solar cell, we will discuss

More information

Electrostatic correlations and fluctuations for ion binding to a finite length polyelectrolyte

Electrostatic correlations and fluctuations for ion binding to a finite length polyelectrolyte THE JOURNAL OF CHEMICAL PHYSICS 122, 044903 2005 Electrostatic correlations and fluctuations for ion binding to a finite length polyelectrolyte Zhi-Jie Tan and Shi-Jie Chen a) Department of Physics and

More information

Chapter 5. Chemical potential and Gibbs distribution

Chapter 5. Chemical potential and Gibbs distribution Chapter 5 Chemical potential and Gibbs distribution 1 Chemical potential So far we have only considered systems in contact that are allowed to exchange heat, ie systems in thermal contact with one another

More information

(b) For the system in question, the electric field E, the displacement D, and the polarization P = D ɛ 0 E are as follows. r2 0 inside the sphere,

(b) For the system in question, the electric field E, the displacement D, and the polarization P = D ɛ 0 E are as follows. r2 0 inside the sphere, PHY 35 K. Solutions for the second midterm exam. Problem 1: a The boundary conditions at the oil-air interface are air side E oil side = E and D air side oil side = D = E air side oil side = ɛ = 1+χ E.

More information

Lecture contents Review: Few concepts from physics Electric field

Lecture contents Review: Few concepts from physics Electric field 1 Lecture contents Review: Few concepts from physics Electric field Coulomb law, Gauss law, Poisson equation, dipole, capacitor Conductors and isolators 1 Electric current Dielectric constant Overview

More information

Electric fields in matter

Electric fields in matter Electric fields in matter November 2, 25 Suppose we apply a constant electric field to a block of material. Then the charges that make up the matter are no longer in equilibrium: the electrons tend to

More information

Estimation of the available surface and the jamming coverage in the Random Sequential Adsorption of a binary mixture of disks

Estimation of the available surface and the jamming coverage in the Random Sequential Adsorption of a binary mixture of disks Colloids and Surfaces A: Physicochem. Eng. Aspects 232 2004) 1 10 Estimation of the available surface and the jamming coverage in the Random Sequential Adsorption of a binary mixture of disks Marian Manciu,

More information