E17: Chemical Equilibrium

Save this PDF as:
 WORD  PNG  TXT  JPG

Size: px
Start display at page:

Download "E17: Chemical Equilibrium"

Transcription

1 E17: Chemical Equilibrium 77 SCN" is converted to FeSCN++. Under these conditions, you can assume that the final concentration of FeSCN++ is equal to the initial concentration of SCN-. Chemical Equilibrium CHEMICAL REACTIONS occuf SO as to approach a state of chemical equilibrium. The equilibrium state can be characterized by specifying its equimbrium constant, i.e., by indicating the numerical value of the mass-action expression (text, Sec. 13.2). In this experiment you will determine the value of the equilibrium constant for the reaction Fe+3 + SCN-" ^ FeSCN+ + PROCEDURE Thoroughly clean your six small test tubes, rinse with distilled water, and let drain. To each of these test tubes add 5 ml. of M NaSCN. To the first test tube add 5 ml. of 0.20 M Fe(N08)3. This tube will serve as standard. For the other test tubes proceed as follows: Add 10 ml. of 0.20 M Fe(N03)8 to your graduated cylinder, fill to 25 ml. with distilled water, and stir thoroughly to mix. Pour 5 ml. of the resulting diluted solution for which the equilibrium condition is [FeSCN++] [Fe«][SCN- K In order to find the value of K, it is necessary to determine the concentration of each of the species Fe+^ SCN^, and FeSCN++ in the system at equihbrium. This will be done colorimetrically, taking advantage of the fact that FeSCN++ is the only highly colored species in the solution. The color intensity of a solution depends on the concentration of the colored species and on the depth of solution viewed. Thus, e.g., 2 cm. of a 0.1 M solution of a colored species appears to have the same color intensity as 1 cm. of a 0.2 M solution of a colored species. Consequently, if the depths of two solutions of unequal concentrations are chosen so that the solutions appear equally colored, then the ratio of concentrations is simply the inverse of the ratio of the two depths. It should be noted that this procedure permits only a comparison between concentrations. It does not give an absolute value of either one of the concentrations. To know absolute values, it is necessary to compare with a standard of known concentration. For color determination of FeSCN + + concentration, you need to have a standard solution in which the concentration of FeSCN++ is known. Such a solution can be prepared by starting with a small known concentration of SCN-^ and adding such a large excess of Fe+s that essentially all the 76 Fig. E20.1 (0.080 M Fe+^) into test tube 2. Discard all but 10 ml. of the diluted solution that is in the graduated cylinder, refill with distilled water to 25 ml, and stir thoroughly. Add 5 ml. of the resulting solution (0.032 M Fe+^) to test tube 3. Discard all but 10 ml. of the solution in the cyhnder, and agam dilute to 25 ml. Continue this procedure until you have added to each successive test tube 5 ml. of progressively more dilute Fe+^ solution. Now the problem is to determine the concentration of FeSCN++ m each test tube relative to the standard in test tube 1. Compare the color intensity in test tube 1 with that in each of the other test tubes. Take the two tubes to be compared, hold them side by side, and wrap a strip of paper around both. Look down through the solutions towards a white paper on your desk, as shown in Fig. E20.L If color intensities app<«ar identical, record this fact. If not, take test lube I and pour out, some of the standard

2 Experim^ents into a clean, dry beaker (you may need to pour some back!) until the color intensities appear identical. Measure the heights of solutions in the two tubes being compared. Do this comparison for all five tubes. DATA Test tube 2 Test tube 3 Test tube 4 Test tube 5 Test tube 6 Height of liquid Comparison height of liquid standard E17: Chemical Equilibrium QUESTIONS 20.1 Using the best value of K, calculate the concentration of SCN m test tube 1 at equilibrium Why are the values of K determined by test tubes 2 and 6 not so reuable as the others? 20.3 As you have noticed, a small change in height does not appreciably affect the color intensity. Assume that, in test tube 4, your height measured for the standard was 5% too great. How far off would this make K? 79 RESULTS Test tube 1 Init. cones. IFe+3] [SCN-] Equilib. cones. [FeSCN++l [Fe+«] [SCNi K Test tube 2 Test tube 3 Test tube 4 Test tube 5 Test tube 6 In calculating initial concentrations, assume that Fe(N03)3 and NaSCN are each completely dissociated. Remember also that mixing two solutions dilutes both of them. In calculating equifibrium concentrations, assume in test tube 1 that all the initial SCN" has been converted to FeSCN++. For the other test tubes, calculate FeSCN++ from the ratio of heights in the color comparison. Equilibrium concentrations of Fe+» and SCN" are obtained by subtracting FeSCN++ formed from initial Fe+8 and SCN". For each of test tubes 2 to 6 calculate the value of K. these values is most reliable. Decide which of

3 Chemistrv 40 PGL FeSCN^^ Equilibrium Lab Prelab Calculations Record your answers to all questions in the table below. Test Tube Initial Concentrations [Fen [SCN"] (mol/l) (mol/l) Equilibrium Concentrations [FeSCN^ (mol/l) [Fe^ (mol/l) [SCN"] (mol/l) Kc Write the balanced dissolving ionic equations (DIEs) for both reactants as well as the balanced overall ionic (OIE) and net ionic equations (HIE). 2. Calculate all appropriate initial and equilibrium concentrations for the reactants and products of the standard solution in test tube 1. Use an ICE table to calculate the concentration of FeSCN^^. 3. Calculate the concentration of iron (III) ions in test tube 2 after the first dilution. 4. Calculate the equilibrium concentrations of all chemicals in test tube 2 and the value of the equilibriimi constant given the following data: Test Tube 2 Height of Liquid (cm) 6.25 Comparison Height of Liquid Standard (cm) 5.94 /lo

4

5 KP & Kc November 26, 2007 that each gas molecule exerts on the walls of its An equilibrium constant inwolwing the^partlai ' p i c S d P i S ^ Of y3s S', C3II Q "-pj is OfteH ijsso In The same rylas for solwing aqyiiibriuin problems with concentrations apply for gases when pressures are Kp

6 Kp & Kc November 26, 2007 Write the equilibriym constant empression'using nitrosyl chloride giwen the following equiiibrlum reaction. ' ' 2 NO(g)-f Cl2(g) 2N0CI (g) ^^^ ^^m Kp Expression

7 Kp & Kc November 26, 2007 R all th3t w%c r pres nts th quilibriuin constant when molar eoncentrations are inwoiwed. Als0 recall the ideal gas sqyatfon PV = nrt A usefyl equation can be deweloped between Kp andke Rearrange the ideal gas law equation to solve for molar concentration. This equation, can be further deweloped ysing a concrete example. ': Kp&Kc

8 Kp & Kc November 26, 2007 Conwert Kp to Kc for the synthesis reaction of gaseous nitrosyl chloride from nitrogen monoxide and chlorine gases.. 2NO(g) + Cl2(g) 2NOCy Nov 25-10:31 PM

9 Kp & Kc November 26, 2007 Ill ^^il^^'ioij An Kp Kc (RT) where An is the difference between the sum, of the rnoies of product and the sum of the moles of Answer(L. /^,Z7, f^.zf, t^.^f j>.liftinzu Nov 25-10:39 PM

DETERMINATION OF K c FOR AN EQUILIBRIUM SYSTEM

DETERMINATION OF K c FOR AN EQUILIBRIUM SYSTEM DETERMINATION OF K c FOR AN EQUILIBRIUM SYSTEM 1 Purpose: To determine the equilibrium constant K c for an equilibrium system using spectrophotometry to measure the concentration of a colored complex ion.

More information

Chemical Equilibrium. Chapter

Chemical Equilibrium. Chapter Chemical Equilibrium Chapter 14 14.1-14.5 Equilibrium Equilibrium is a state in which there are no observable changes as time goes by. Chemical equilibrium is achieved when: 1.) the rates of the forward

More information

THE IRON(III) THIOCYANATE REACTION SYSTEM

THE IRON(III) THIOCYANATE REACTION SYSTEM Experiment 7 THE IRON(III) THIOCYANATE REACTION SYSTEM Prepared by Ross S. Nord, Chemistry Department, Eastern Michigan University PURPOSE To investigate a novel reaction system by utilizing a spectrophotometer.

More information

Chemical Equilibrium: Finding a Constant, Kc

Chemical Equilibrium: Finding a Constant, Kc Chemical Equilibrium: Finding a Constant, Kc Experiment 20 The purpose of this lab is to experimentally determine the equilibrium constant, K c, for the following chemical reaction: Fe 3+ (aq) + SCN (aq)

More information

Redox Lab. By Maya Parks. Partner: Allison Schaffer 5/21/15. Abstract:

Redox Lab. By Maya Parks. Partner: Allison Schaffer 5/21/15. Abstract: Redox Lab By Maya Parks Partner: Allison Schaffer 5/21/15 Abstract: This lab was performed to determine the molarity of a solution of iron (II) sulfate by titrating it with a.0200m solution of potassium

More information

Aqueous Balance: Equilibrium

Aqueous Balance: Equilibrium Activity 4 Aqueous Balance: Equilibrium GOALS In this activity you will: Determine ph and understand its meaning. Learn the basic principles behind equilibrium and the law of mass action. Calculate a solubility

More information

2 (aq) [FeSCN [Fe 3JSCN] Figure 1

2 (aq) [FeSCN [Fe 3JSCN] Figure 1 The Determination of an Equilibrium Constant Computer Chemical reactions occur to reach a state of equilibrium. The equilibrium state can be characterized by quantitatively defining its equilibrium constant,

More information

CHM 152 updated May 2011 Lab 6: Experimentally Determining an Equilibrium Constant using Spectrophotometry

CHM 152 updated May 2011 Lab 6: Experimentally Determining an Equilibrium Constant using Spectrophotometry CHM 152 updated May 2011 Lab 6: Experimentally Determining an Equilibrium Constant using Spectrophotometry Introduction In this lab you will experimentally determine the equilibrium constant with respect

More information

Chemical Equilibrium: Finding a Constant, Kc

Chemical Equilibrium: Finding a Constant, Kc Chemical Equilibrium: Finding a Constant, Kc Experiment 20 The purpose of this lab is to experimentally determine the equilibrium constant, K c, for the following chemical reaction: Fe 3+ (aq) + SCN -

More information

The Determination of an Equilibrium Constant

The Determination of an Equilibrium Constant The Determination of an Equilibrium Constant Calculator 10 Chemical reactions occur to reach a state of equilibrium. The equilibrium state can be characterized by quantitatively defining its equilibrium

More information

1iI1E. The Determination of 0 an Equilibrium Constant [LU. Computer

1iI1E. The Determination of 0 an Equilibrium Constant [LU. Computer Computer The Determination of 0 an Equilibrium Constant Chemical reactions occur to reach a state of equilibrium. The equilibrium state can be characterized by quantitatively defining its equilibrium constant,

More information

Chapter 11. Molecular Composition of Gases

Chapter 11. Molecular Composition of Gases Chapter 11 Molecular Composition of Gases PART 1 Volume-Mass Relationships of Gases Avogadro s Law Equal volumes of gases at the same temperature and pressure contain equal numbers of molecules. Recall

More information

Edexcel Chemistry A-level

Edexcel Chemistry A-level Edexcel Chemistry A-level Topic 5 - Formulae, Equations and Amounts of Substance Flashcards What is the symbol for amount of substance? What is the symbol for amount of substance? n What is the unit used

More information

UNIT 3: CHEMICAL EQUILIBRIUM (TEXT: Chap 14-pg 627 & Chap 18 pg )

UNIT 3: CHEMICAL EQUILIBRIUM (TEXT: Chap 14-pg 627 & Chap 18 pg ) UNIT 3: CHEMICAL EQUILIBRIUM (TEXT: Chap 14-pg 627 & Chap 18 pg 818-829) *Remedial questions on Concentration of Solutions (3.10 pg 130-135) 3:1. ATTEMPT QUESTIONS a) 3.109 b) 3.113 c) 3.115 d) 3.118 on

More information

Spectrophotometric Determination of an Equilibrium Constant

Spectrophotometric Determination of an Equilibrium Constant Spectrophotometric Determination of an Equilibrium Constant v021214 Objective To determine the equilibrium constant (K c ) for the reaction of iron (III) ion with thiocyanate (SCN - ) to form the thiocyanatoiron(iii)

More information

AP Chemistry Laboratory #16: Determination of the Equilibrium Constant of FeSCN 2+

AP Chemistry Laboratory #16: Determination of the Equilibrium Constant of FeSCN 2+ AP Chemistry Laboratory #16: Determination of the Equilibrium Constant of FeSCN 2 Lab days: Thursday and Friday, February 22-23, 2018 Lab due: Tuesday, February 27, 2018 Goal (list in your lab book): The

More information

Solubility of KHT and Common ion Effect

Solubility of KHT and Common ion Effect Solubility of KHT and Common ion Effect v010516 You are encouraged to carefully read the following sections in Tro (3 rd ed.) to prepare for this experiment: Sec 16.5, pp 783-788 (Solubility Equilibria

More information

The Determination of an Equilibrium Constant

The Determination of an Equilibrium Constant LabQuest 10 The equilibrium state of a chemical reaction can be characterized by quantitatively defining its equilibrium constant, Keq. In this experiment, you will determine the value of Keq for the reaction

More information

Determination of the Equilibrium Constant for the Iron (III) thiocynate Reaction

Determination of the Equilibrium Constant for the Iron (III) thiocynate Reaction Lab 4. Determination of the Equilibrium Constant for the Iron (III) thiocynate Reaction Prelab Assignment Before coming to lab: After reading "Lab Notebook Policy and Format for Lab Reports" handout, complete

More information

CHEMISTRY 135 General Chemistry II. Determination of an Equilibrium Constant

CHEMISTRY 135 General Chemistry II. Determination of an Equilibrium Constant CHEMISTRY 135 General Chemistry II Determination of an Equilibrium Constant Show above is a laboratory sample from chemistry, not phlebotomy. [1] Is the bloody-looking product the main component of this

More information

The Determination of an Equilibrium Constant

The Determination of an Equilibrium Constant The Determination of an Equilibrium Constant Computer 10 Chemical reactions occur to reach a state of equilibrium. The equilibrium state can be characterized by quantitatively defining its equilibrium

More information

Chemical Equilibrium: Finding a Constant, Kc

Chemical Equilibrium: Finding a Constant, Kc Chemical Equilibrium: Finding a Constant, Kc Computer 20 The purpose of this lab is to experimentally determine the equilibrium constant, K c, for the following chemical reaction: Fe 3+ (aq) + SCN (aq)

More information

Experiment 7A ANALYSIS OF BRASS

Experiment 7A ANALYSIS OF BRASS Experiment 7A ANALYSIS OF BRASS FV 10/21/10 MATERIALS: Spectronic 20 spectrophotometers, 2 cuvettes, brass sample, 7 M HNO 3, 0.100 M CuSO 4, 2 M NH 3, two 50 ml beakers, 100 ml beaker, two 25 ml volumetric

More information

THE TEMPERATURE DEPENDENCE OF THE EQUILIBRIUM CONSTANT

THE TEMPERATURE DEPENDENCE OF THE EQUILIBRIUM CONSTANT Experiment 7B THE TEMPERATURE DEPENDENCE OF THE EQUILIBRIUM CONSTANT Prepared by Ross S. Nord, Chemistry Department, Eastern Michigan University PURPOSE To investigate the relationship between the equilibrium

More information

Finding the Constant K c 4/21/15 Maya Parks Partners: Ben Seufert, Caleb Shumpert. Abstract:

Finding the Constant K c 4/21/15 Maya Parks Partners: Ben Seufert, Caleb Shumpert. Abstract: Finding the Constant K c 4/21/15 Maya Parks Partners: Ben Seufert, Caleb Shumpert Abstract: This lab was performed to find the chemical equilibrium constant K c for the reaction Fe 3+ + SCN FeSCN 2+ using

More information

Experiment 7 Buffer Capacity & Buffer Preparation

Experiment 7 Buffer Capacity & Buffer Preparation Chem 1B Dr. White 57 Experiment 7 Buffer Capacity & Buffer Preparation Objectives To learn how to choose a suitable conjugate acid- base pair for making a buffer of a given ph To gain experience in using

More information

Experiment 8: DETERMINATION OF AN EQUILIBRIUM CONSTANT

Experiment 8: DETERMINATION OF AN EQUILIBRIUM CONSTANT Experiment 8: DETERMINATION OF AN EQUILIBRIUM CONSTANT Purpose: The equilibrium constant for the formation of iron(iii) thiocyanate complex ion is to be determined. Introduction: In the previous week,

More information

Amend Lab 15 Observing Equilibrium

Amend Lab 15 Observing Equilibrium Amend Lab 15 Observing Equilibrium Page 57 Add 50 ml graduated cylinder Page 58 In Procedure: steps 1 & 2 change 4 ml to 2 ml step 4 change 60 ml dilution to 30 ml steps 6, 7, 8 change 0.5 g to ½ scoop

More information

Chemical Equilibrium: Finding a Constant, Kc

Chemical Equilibrium: Finding a Constant, Kc Lab12 Chemical Equilibrium: Finding a Constant, Kc The purpose of this lab is to experimentally determine the equilibrium constant, K c, for the following chemical reaction: Fe 3+ (aq) + SCN (aq) FeSCN

More information

Experimental Procedure Overview

Experimental Procedure Overview Lab 4: Determination of an Equilibrium Constant using Spectroscopy Determination of the equilibrium constant of the following equilibrium system at room temperature. Fe 3+ (aq) + SCN (aq) Fe(SCN) 2+ (aq)

More information

AP LAB 13a: Le Chatelier's Principle ADAPTED FROM VONDERBRINK: Lab Experiments for AP Chemistry

AP LAB 13a: Le Chatelier's Principle ADAPTED FROM VONDERBRINK: Lab Experiments for AP Chemistry AP LAB 13a: Le Chatelier's Principle ADAPTED FROM VONDERBRINK: Lab Experiments for AP Chemistry Aim To investigate Le Chatelier's Principle Apparatus Test tubes, 100. ml beaker, stirring rod, test tube

More information

Experiment #7. Determination of an Equilibrium Constant

Experiment #7. Determination of an Equilibrium Constant Experiment #7. Determination of an Equilibrium Constant Introduction It is frequently assumed that reactions go to completion, that all of the reactants are converted into products. Most chemical reactions

More information

Lab #16: Determination of the Equilibrium Name: Constant of FeSCN 2+ Lab Exercise. 10 points USE BLUE/BLACK INK!!!! Date: Hour:

Lab #16: Determination of the Equilibrium Name: Constant of FeSCN 2+ Lab Exercise. 10 points USE BLUE/BLACK INK!!!! Date: Hour: Lab #16: Determination of the Equilibrium Name: Constant of FeSCN 2+ Lab Exercise Chemistry II Partner: 10 points USE BLUE/BLACK INK!!!! Date: Hour: Goal: The goal of this lab is to determine the equilibrium

More information

Unit A: Equilibrium General Outcomes:

Unit A: Equilibrium General Outcomes: Unit A: Equilibrium General Outcomes: Explain that there is a balance of opposing reactions in chemical equilibrium systems. Determine quantitative relationships in simple equilibrium systems. 2 Read p.

More information

D E T E R M I N A T I O N O F K e q L A B

D E T E R M I N A T I O N O F K e q L A B South Pasadena Honors Chemistry Name 8 Equilibrium Period Date D E T E R M I N A T I O N O F K e q L A B Lab Overview In a reversible reaction, equilibrium is the state at which the rates of forward and

More information

Chemistry 1B Experiment 17 89

Chemistry 1B Experiment 17 89 Chemistry 1B Experiment 17 89 17 Thermodynamics of Borax Solubility Introduction In this experiment, you will determine the values of H and S for the reaction which occurs when borax (sodium tetraborate

More information

Experiment 7: SIMULTANEOUS EQUILIBRIA

Experiment 7: SIMULTANEOUS EQUILIBRIA Experiment 7: SIMULTANEOUS EQUILIBRIA Purpose: A qualitative view of chemical equilibrium is explored based on the reaction of iron(iii) ion and thiocyanate ion to form the iron(iii) thiocyanate complex

More information

Lab 04 Equilibrium Constant of Ferric Thiocyanate

Lab 04 Equilibrium Constant of Ferric Thiocyanate Lab 04 Equilibrium Constant of Ferric Thiocyanate Introduction This experiment will give you an opportunity to determine the equilibrium constant for the formation of Fe(SCN) 2+. The experiment will require

More information

Studies of a Precipitation Reaction

Studies of a Precipitation Reaction Studies of a Precipitation Reaction Prelab Assignment Read the entire lab. Write an objective and any hazards associated with this lab in your laboratory notebook. Answer the following 6 questions in your

More information

Chemistry 11 Unit 1:Stoichiometry 10/30/2016 /20

Chemistry 11 Unit 1:Stoichiometry 10/30/2016 /20 Lab #6 Reaction of a Metal with Hydrochloric Acid THE AIM OF THIS EXPERIMENT: Name: Partners: In this experiment, you will react hydrochloric acid with magnesium to produce H 2 gas, and to determine the

More information

HONORS LAB 11a: Le Chatelier's Principle ADAPTED FROM VONDERBRINK: Lab Experiments for AP Chemistry

HONORS LAB 11a: Le Chatelier's Principle ADAPTED FROM VONDERBRINK: Lab Experiments for AP Chemistry HONORS LAB 11a: Le Chatelier's Principle ADAPTED FROM VONDERBRINK: Lab Experiments for AP Chemistry Aim To investigate Le Chatelier's Principle Apparatus Test tubes, 100. ml beaker, stirring rod, test

More information

Chemistry 1B Experiment 11 49

Chemistry 1B Experiment 11 49 Chemistry 1B Experiment 11 49 11 Buffer Solutions Introduction Any solution that contains both a weak acid HA and its conjugate base A in significant amounts is a buffer solution. A buffer is a solution

More information

Aspirin Lab By Maya Parks Partner: Ben Seufert 6/5/15, 6/8/15

Aspirin Lab By Maya Parks Partner: Ben Seufert 6/5/15, 6/8/15 Aspirin Lab By Maya Parks Partner: Ben Seufert 6/5/15, 6/8/15 Abstract: This lab was performed to synthesize acetyl salicylic acid or aspirin from a carboxylic acid and an alcohol. We had learned in class

More information

In this laboratory exercise we will determine the percentage Acetic Acid (CH 3 CO 2 H) in Vinegar.

In this laboratory exercise we will determine the percentage Acetic Acid (CH 3 CO 2 H) in Vinegar. The titration of Acetic Acid in Vinegar In this laboratory exercise we will determine the percentage Acetic Acid (CH CO H) in Vinegar. We will do this by Titrating the Acetic Acid present with a Strong

More information

Chemistry CP Lab: Additivity of Heats of Reaction (Hess Law)

Chemistry CP Lab: Additivity of Heats of Reaction (Hess Law) Chemistry CP Lab: Additivity of Heats of Reaction (Hess Law) Name: Date: The formation or destruction of chemical bonds is always accompanied by an energy exchange between the reactant molecules and the

More information

Le Chatelier s Principle

Le Chatelier s Principle Le Chatelier s Principle Introduction: In this experiment you will observe shifts in equilibrium systems when conditions such as concentration and temperature are changed. You will explain the observed

More information

aa + bb cc + dd Equation 1

aa + bb cc + dd Equation 1 Experiment: The Determination of K eq for FeSCN 2+ Introduction For any reversible chemical reaction at equilibrium, the concentrations of all reactants and products are constant or stable. There is no

More information

Experiment 12H, Parts A and B

Experiment 12H, Parts A and B Experiment 12H, Parts A and B AHRM 8/17 PRINCIPLES OF EQUILIBRIUM AND THERMODYNAMICS MATERIALS: PURPOSE: 0.0200 M Fe(NO 3 ) 3 in 1 M HNO 3, 0.000200 M KSCN, 2.0 M HNO 3, solid Fe(NO 3 ) 3. 9H 2 O with

More information

CHEM Lab 7: Determination of an Equilibrium Constant using Spectroscopy

CHEM Lab 7: Determination of an Equilibrium Constant using Spectroscopy CHEM 0012 Lab 7: Determination of an Equilibrium Constant using Spectroscopy 1 Determination of the equilibrium constant of the following equilibrium system at room temperature. Fe 3+ (aq) + SCN- (aq)

More information

Le Chatelier s Principle

Le Chatelier s Principle Le Chatelier s Principle Introduction: In this experiment you will observe shifts in equilibrium systems when conditions such as concentration and temperature are changed. You will explain the observed

More information

Gas Volumes and the Ideal Gas Law

Gas Volumes and the Ideal Gas Law SECTION 11.3 Gas Volumes and the Ideal Gas Law Section 2 presented laws that describe the relationship between the pressure, temperature, and volume of a gas. The volume of a gas is also related to the

More information

Lab #12: Determination of a Chemical Equilibrium Constant

Lab #12: Determination of a Chemical Equilibrium Constant Lab #12: Determination of a Chemical Equilibrium Constant Objectives: 1. Determine the equilibrium constant of the formation of the thiocyanatoiron (III) ions. 2. Understand the application of using a

More information

Exploring Equilibrium

Exploring Equilibrium Page 7 - It Works Both Ways Introduction The word equilibrium has two roots: mqui, meaning equal, and libra, meaning weight or balance. Our physical sense of equilibrium-in the motion of a seesaw or the

More information

The Determination of an Equilibrium Constant

The Determination of an Equilibrium Constant The Determination of an Equilibrium Constant Chemistry 102 10 Chemical reactions occur to reach a state of equilibrium. The equilibrium state can be characterized by quantitatively defining its equilibrium

More information

CHEMICAL EQUILIBRIUM. Chapter 16. Pb 2+ (aq) + 2 Cl (aq) e PbCl 2 (s) PLAY MOVIE Brooks/Cole - Cengage

CHEMICAL EQUILIBRIUM. Chapter 16. Pb 2+ (aq) + 2 Cl (aq) e PbCl 2 (s) PLAY MOVIE Brooks/Cole - Cengage 1 CHEMICAL EQUILIBRIUM Chapter 16 PLAY MOVIE Pb 2+ (aq) + 2 Cl (aq) e PbCl 2 (s) Properties of an Equilibrium Equilibrium systems are DYNAMIC (in constant motion) REVERSIBLE can be approached from either

More information

Chapter 6: Chemical Equilibrium

Chapter 6: Chemical Equilibrium Chapter 6: Chemical Equilibrium 6.1 The Equilibrium Condition 6. The Equilibrium Constant 6.3 Equilibrium Expressions Involving Pressures 6.4 The Concept of Activity 6.5 Heterogeneous Equilibria 6.6 Applications

More information

Le Châtelier s Principle ANSWERS

Le Châtelier s Principle ANSWERS Le Châtelier s Principle ANSWERS 1. When extra NH 3 is added to the following system at equilibrium: 2. When N 2 is removed from the following system at equilibrium: A. In order to restore equilibrium,

More information

Chapter 15. Chemical Equilibrium

Chapter 15. Chemical Equilibrium Chapter 15. Chemical Equilibrium 15.1 The Concept of Equilibrium Consider colorless frozen N 2 O 4. At room temperature, it decomposes to brown NO 2. N 2 O 4 (g) 2NO 2 (g) At some time, the color stops

More information

Le Chatelier s Principle

Le Chatelier s Principle Le Chatelier s Principle Introduction: In this experiment you will observe shifts in equilibrium systems when conditions such as concentration and temperature are changed. You will explain the observed

More information

Experimental Procedure Lab 402

Experimental Procedure Lab 402 Experimental Procedure Lab 402 Overview One set of solutions having known molar concentrations of FeNCS 2+ is prepared for a calibration curve, a plot of absorbance versus concentration. A second set of

More information

Chapter 15 Equilibrium

Chapter 15 Equilibrium Chapter 15. Chemical Equilibrium Common Student Misconceptions Many students need to see how the numerical problems in this chapter are solved. Students confuse the arrows used for resonance ( )and equilibrium

More information

9 Equilibrium. Aubrey High School PreAP -Chemistry. Name Period Date / /

9 Equilibrium. Aubrey High School PreAP -Chemistry. Name Period Date / / Aubrey High School PreAP -Chemistry 9 Equilibrium Name Period Date / / 9.2 Determination of Keq Lab - Equilibrium Problems Lab Overview In a reversible reaction, equilibrium is the state at which the rates

More information

Experiment 6 Shifts in Equilibrium: Le Châtelier s Principle

Experiment 6 Shifts in Equilibrium: Le Châtelier s Principle Experiment 6 Shifts in Equilibrium: Le Châtelier s Principle Introduction Whenever a chemical reaction occurs, the reverse reaction can also occur. As the original reactants, on the left side of the equation,

More information

Equilibrium and LeChatelier s Principle

Equilibrium and LeChatelier s Principle 1 Equilibrium and LeChatelier s Principle Purpose: To examine LeChatelier s Principle by studying disturbances applied to several equilibrium systems. Introduction Many chemical reactions reach a state

More information

EXPERIMENT 4. Le Chatelier s Principle INTRODUCTION

EXPERIMENT 4. Le Chatelier s Principle INTRODUCTION EXPERIMENT 4 Le Chatelier s Principle INTRODUCTION Le Chatelier s Principle states: When a stress is applied to a chemical system at equilibrium, the equilibrium concentrations will shift in a direction

More information

EXPERIMENT 23 Lab Report Guidelines

EXPERIMENT 23 Lab Report Guidelines EXPERIMENT 23 Listed below are some guidelines for completing the lab report for Experiment 23: For each part, follow the procedure outlined in the lab manual. Observe all safety rules, including wearing

More information

Equilibrium and Ionic Strength Effects

Equilibrium and Ionic Strength Effects Equilibrium and Ionic Strength Effects Objectives You will determine the thermodynamic equilibrium constant for the reaction between iron(iii) ion and thiocyanate ion to form iron(iii)-thiocyanate. Fe

More information

K = [C]c [D] d [A] a [B] b (5)

K = [C]c [D] d [A] a [B] b (5) Chem 1B Dr. White 19 Experiment 3: Determination of an Equilibrium Constant Objectives To determine the equilibrium constant for a reaction. Introduction Equilibrium is a dynamic state in which, at a given

More information

Name: Regents Review Quiz #1 2016

Name: Regents Review Quiz #1 2016 Name: Regents Review Quiz #1 2016 1. Which two particle diagrams represent mixtures of diatomic elements? A) A and B B) A and C C) B and C D) B and D 2. At STP, which physical property of aluminum always

More information

EXPERIMENT 7 Reaction Stoichiometry and Percent Yield

EXPERIMENT 7 Reaction Stoichiometry and Percent Yield EXPERIMENT 7 Reaction Stoichiometry and Percent Yield INTRODUCTION Stoichiometry calculations are about calculating the amounts of substances that react and form in a chemical reaction. The word stoichiometry

More information

H 3 O + (aq) + P 2- (aq)

H 3 O + (aq) + P 2- (aq) PURPOSE: To standardize a solution of sodium hydroxide by titration with a primary standard, (KHC 8 H 4 O 4 ), potassium hydrogen phthalate (KHC 8 H 4 O 4 ) PRINCIPLES: Most shelf reagents, such as 0.10

More information

Lab #5 - Limiting Reagent

Lab #5 - Limiting Reagent Objective Chesapeake Campus Chemistry 111 Laboratory Lab #5 - Limiting Reagent Use stoichiometry to determine the limiting reactant. Calculate the theoretical yield. Calculate the percent yield of a reaction.

More information

PURPOSE: 1. To illustrate an oxidation-reduction titration with potassium permanganate 2. To determine the percent mass of iron in an unknown.

PURPOSE: 1. To illustrate an oxidation-reduction titration with potassium permanganate 2. To determine the percent mass of iron in an unknown. PURPOSE: 1. To illustrate an oxidation-reduction titration with potassium permanganate 2. To determine the percent mass of iron in an unknown. PRINCIPLES: Oxidation and reduction reactions, commonly called

More information

A = km (6) A = k [FeSCN 2+ ] KNOWN [FeSCN 2+ ] MEASURED A (Spec 20) CALCULATED k 3.0 x x x x 10-5 AVERAGE k =

A = km (6) A = k [FeSCN 2+ ] KNOWN [FeSCN 2+ ] MEASURED A (Spec 20) CALCULATED k 3.0 x x x x 10-5 AVERAGE k = Method I. Analysis by Spectrophotometric Measurement We ll be using the spectrophotometer ( Spec 20 ) to compare absorbances (A) indicated by the equipment and known concentrations of iron(iii) thiocyanate

More information

EXPERIMENT 5 ACID-BASE TITRATION

EXPERIMENT 5 ACID-BASE TITRATION EXPERIMENT 5 ACID-BASE TITRATION INTRODUCTION Much of chemistry and biology is concerned with the behavior of acids and bases. Acids and bases are participants in many reactions in nature, and many reactions

More information

C h a p t e r 13. Chemical Equilibrium

C h a p t e r 13. Chemical Equilibrium C h a p t e r 13 Chemical Equilibrium Chemical equilibrium is achieved when: the rates of the forward and reverse reactions are equal and the concentrations of the reactants and products remain constant

More information

EXPERIMENT 4 THE EFFECT OF CONCENTRATION CHANGES ON EQUILIBRIUM SYSTEMS

EXPERIMENT 4 THE EFFECT OF CONCENTRATION CHANGES ON EQUILIBRIUM SYSTEMS PURPOSE In this experiment, you will look at different equilibria, observe how addition or removal of components affects those equilibria and see if the results are consistent with Le Chatelier's principle.

More information

Homework #5 Chapter 6 Chemical Equilibrium

Homework #5 Chapter 6 Chemical Equilibrium Homework #5 Chapter 6 Chemical Equilibrium 2. Assume the reaction is A + B C + D. It is given that K9 and K [C][D]. At the start of [A][B] the reaction, before equilibrium is reached, there are 8 A molecules,

More information

Chemical Background Information: Magnesium reacts with oxygen in air to for magnesium oxide, according to equation 1.

Chemical Background Information: Magnesium reacts with oxygen in air to for magnesium oxide, according to equation 1. HESS S LAW LAB Pre lab assignment: You will need to complete the following parts prior to doing the lab: Title, Purpose, and Storyboard of the procedures for each part, Blank Data tables, and the Prelab

More information

Stoichiometry ( ) ( )

Stoichiometry ( ) ( ) Stoichiometry Outline 1. Molar Calculations 2. Limiting Reactants 3. Empirical and Molecular Formula Calculations Review 1. Molar Calculations ( ) ( ) ( ) 6.02 x 10 23 particles (atoms or molecules) /

More information

Classifying Chemical Reactions

Classifying Chemical Reactions Classifying Chemical Reactions Prepared by M.L. Holland and A.L. Norick, Foothill College Purpose of the Experiment To make observations when reactants are combined and become familiar with indications

More information

1. What is the mass percent of sulfur in Al 2 (SO 4 ) 3? A % C % B % D %

1. What is the mass percent of sulfur in Al 2 (SO 4 ) 3? A % C % B % D % 1. What is the mass percent of sulfur in Al 2 (SO 4 ) 3? A. 9.372 % C. 28.12 % B. 21.38 % D. 42.73 % 2. How many grams of phosphorus are in 35.70 g of P 2 O 5? A. 6.359 g C. 15.58 g B. 23.37 g D. 31.16

More information

Chemical Kinetics Prelab. 4. Why do the solutions have to be mixed quickly before measuring the absorbance data?

Chemical Kinetics Prelab. 4. Why do the solutions have to be mixed quickly before measuring the absorbance data? 1. What is the purpose of this experiment? Chemical Kinetics Prelab 2. What is the function of SCN in the experiment? 3. Why do you discard the last data points of the kinetic runs? 4. Why do the solutions

More information

EXPERIMENT 6 Empirical Formula of a Compound

EXPERIMENT 6 Empirical Formula of a Compound EXPERIMENT 6 Empirical Formula of a Compound INTRODUCTION Chemical formulas indicate the composition of compounds. A formula that gives only the simplest ratio of the relative number of atoms in a compound

More information

To see how this data can be used, follow the titration of hydrofluoric acid against sodium hydroxide:

To see how this data can be used, follow the titration of hydrofluoric acid against sodium hydroxide: Weak Acid Titration v010516 You are encouraged to carefully read the following sections in Tro (3 rd ed.) to prepare for this experiment: Sec 4.8, pp 168-174 (Acid/Base Titrations), Sec 16.4, pp 769-783

More information

CHEM 101A EXAM 1 SOLUTIONS TO VERSION 1

CHEM 101A EXAM 1 SOLUTIONS TO VERSION 1 CHEM 101A EXAM 1 SOLUTIONS TO VERSION 1 Multiple-choice questions (3 points each): Write the letter of the best answer on the line beside the question. Give only one answer for each question. B 1) If 0.1

More information

Chemistry 1A, Spring 2007 Midterm Exam 3 April 9, 2007 (90 min, closed book)

Chemistry 1A, Spring 2007 Midterm Exam 3 April 9, 2007 (90 min, closed book) Chemistry 1A, Spring 2007 Midterm Exam 3 April 9, 2007 (90 min, closed book) Name: KEY SID: TA Name: 1.) Write your name on every page of this exam. 2.) This exam has 34 multiple choice questions. Fill

More information

C H E M I S T R Y DETERMINATION OF AN EQUILIBRIUM CONSTANT

C H E M I S T R Y DETERMINATION OF AN EQUILIBRIUM CONSTANT C H E M I S T R Y 1 5 0 Chemistry for Engineers DETERMINATION OF AN EQUILIBRIUM CONSTANT DEPARTMENT OF CHEMISTRY UNIVERSITY OF KANSAS Determination of an Equilibrium Constant Introduction A system is at

More information

Chapter 15: Chemical Equilibrium: How Much Product Does a Reaction Really Make?

Chapter 15: Chemical Equilibrium: How Much Product Does a Reaction Really Make? Chapter 15: Chemical Equilibrium: How Much Product Does a Reaction Really Make? End-of-Chapter Problems: 15.1-15.10, 15.13-15.14, 15.17-15.91, 15.94-99, 15.10-15.103 Example: Ice melting is a dynamic process:

More information

Experiment 5 Equilibrium Systems

Experiment 5 Equilibrium Systems PURPOSE In this experiment, you will look at different equilibria, observe how addition or removal of components affects those equilibria and see if the results are consistent with Le Chatelier's principle.

More information

CHEMICAL EQUILIBRIA. Dynamic Equilibrium Equilibrium involves reversible reactions which do not go to completion.

CHEMICAL EQUILIBRIA. Dynamic Equilibrium Equilibrium involves reversible reactions which do not go to completion. CHEMICAL EQUILIBRIA Dynamic Equilibrium Equilibrium involves reversible reactions which do not go to completion. If we consider a reaction between A and B to form C and D which is reversible. When A and

More information

CST Review Part 2. Liquid. Gas. 2. How many protons and electrons do the following atoms have?

CST Review Part 2. Liquid. Gas. 2. How many protons and electrons do the following atoms have? CST Review Part 2 1. In the phase diagram, correctly label the x-axis and the triple point write the names of all six phases transitions in the arrows provided. Liquid Pressure (ATM) Solid Gas 2. How many

More information

AP Chemistry Unit 2 Test (Chapters 3 and 4)

AP Chemistry Unit 2 Test (Chapters 3 and 4) AP Chemistry Unit 2 Test (Chapters 3 and 4) NAME: 1. A student is assigned the task of determining the mass percent of silver in an alloy of copper and silver by dissolving a sample of the alloy in excess

More information

Use the simulation at the following URL to answer the questions that follow;

Use the simulation at the following URL to answer the questions that follow; HONORS LAB 11c: Le Chatelier's Principle Simulation II Use the simulation at the following URL to answer the questions that follow; http://bit.ly/4bxfos Listen to the audio that plays once the page has

More information

Experiment 7 Can You Slow It Down?

Experiment 7 Can You Slow It Down? Experiment 7 Can You Slow It Down? OUTCOMES After completing this experiment, the student should be able to: tell which factors influence the reaction rate and how they influence the rate. change the temperature

More information

Experiment 2: The Beer-Lambert Law for Thiocyanatoiron (III)

Experiment 2: The Beer-Lambert Law for Thiocyanatoiron (III) Chem 1B Dr. White 11 Experiment 2: The Beer-Lambert Law for Thiocyanatoiron (III) Objectives To use spectroscopy to relate the absorbance of a colored solution to its concentration. To prepare a Beer s

More information

Shifts in Equilibrium: Le Châtelier s Principle

Shifts in Equilibrium: Le Châtelier s Principle 6 Shifts in Equilibrium: Le Châtelier s Principle Introduction Whenever a chemical reaction occurs, the reverse reaction can also occur. As the original reactants, on the left side of the equation, react

More information

DETERMINING AND USING H

DETERMINING AND USING H DETERMINING AND USING H INTRODUCTION CHANGES IN CHEMISTRY Chemistry is the science that studies matter and the changes it undergoes. Changes are divided into two categories: physical and chemical. During

More information

EXPERIMENT 7 Precipitation and Complex Formation

EXPERIMENT 7 Precipitation and Complex Formation EXPERIMENT 7 Precipitation and Complex Formation Introduction Precipitation is the formation of a solid in a solution as the result of either a chemical reaction, or supersaturating a solution with a salt

More information

Equilibrium Simulation

Equilibrium Simulation Equilibrium Simulation Imagine the two large beakers (2000 ml) are actually the same space...we have just separated them to help us keep track of reactants and products. Imagine the size of the transfer

More information