General Chemistry 202 CHM202 General Information. General Chemistry 202 CHM202 Policies. General Chemistry 202 CHM202 Laboratory Guidelines

Size: px
Start display at page:

Download "General Chemistry 202 CHM202 General Information. General Chemistry 202 CHM202 Policies. General Chemistry 202 CHM202 Laboratory Guidelines"

Transcription

1 General Chemistry 202 CHM202 General Information Instructor Meeting times and places Text and recommended materials Website Grading Schedule 1 General Chemistry 202 CHM202 Policies Equipment Instruction Method Study Procedures Evaluation Attendance Cheating Personal Technology 2 General Chemistry 202 CHM202 Laboratory Guidelines Attendance Safety Preparation General Procedures Data Recording Cleanup Reports 3 1

2 Frequently Asked Questions Q: Where does class meet on? A: It s in the syllabus. Q: May I leave class early tonight? A: I ll make a note of it. Q: I didn t do well on the test. When can I make it up? A: It s in the syllabus. 4 Frequently Asked Questions Q: I made a mistake on the test. May I have it back, please? A: No. Q: Is there a test on? A: It s in the syllabus. Q: What are your office hours? A: Posted on the class website. I will only be there by appointment. 5 Frequently Asked Questions Q: When can I make up the test I missed when I was absent? A: It s in the syllabus. Q: What if the absence wasn t excused? A: It s in the syllabus. Q: How do I get my absence excused? A: Offer me an excuse. (I may ask for documentation.) 6 2

3 Frequently Asked Questions Q: May I have extra time for my test? A: Please make arrangement through the proper channels. Such accomodations require documentation. Q: May I attend the earlier or later lab? A: No. Q: May I attend the earlier lecture? A: By request, but space is limited 7 Intermolecular Forces and Liquids and Solids Chapter 11 Copyright The McGraw-Hill Companies, Inc. Permission required for reproduction or display. 8 A phase is a homogeneous part of the system in contact with other parts of the system but separated from them by a welldefined boundary. 2 Phases Solid phase - ice Liquid phase - water 9 3

4 Intermolecular Forces Intermolecular forces are attractive forces between molecules. Intramolecular forces hold atoms together in a molecule. Intermolecular vs Intramolecular 41 kj to vaporize 1 mole of water (inter) 930 kj to break all O-H bonds in 1 mole of water (intra) Generally, intermolecular forces are much weaker than intramolecular forces. Measure of intermolecular force boiling point melting point DH vap DH fus DH sub 10 Intermolecular Forces Dipole-Dipole Forces Attractive forces between polar molecules Orientation of Polar Molecules in a Solid 11 Intermolecular Forces Ion-Dipole Forces Attractive forces between an ion and a polar molecule Ion-Dipole Interaction 12 4

5 Interaction Between Water and Cations in solution 13 Dispersion Forces Intermolecular Forces Attractive forces that arise as a result of temporary dipoles induced in atoms or molecules ion-induced dipole interaction dipole-induced dipole interaction 14 Induced Dipoles Interacting With Each Other 15 5

6 Dispersion Forces Continued Intermolecular Forces Polarizability is the ease with which the electron distribution in the atom or molecule can be distorted. Polarizability increases with: greater number of electrons more diffuse electron cloud Dispersion forces usually increase with molar mass. 16 Example 11.1 What type(s) of intermolecular forces exist between the following pairs? (a) HBr and H 2 S (b) Cl 2 and CBr 4 (c) I 2 and (d) NH 3 and C 6 H 6 Example 11.1 Strategy Classify the species into three categories: ionic, polar (possessing a dipole moment), and nonpolar. Keep in mind that dispersion forces exist between all species. Solutions (a) Both HBr and H 2 S are polar molecules. Therefore, the intermolecular forces present are dipole-dipole forces, as well as dispersion forces. (b) Both Cl 2 and CBr 4 are nonpolar, so there are only dispersion forces between these molecules. 6

7 Example 11.1 (c) I 2 is a homonuclear diatomic molecule and therefore nonpolar, so the forces between it and the ion,, are ion-induced dipole forces and dispersion forces. (d) NH 3 is polar, and C 6 H 6 is nonpolar. The forces are dipoleinduced dipole forces and dispersion forces. Hydrogen Bond Intermolecular Forces The hydrogen bond is a special dipole-dipole interaction between the hydrogen atom in a polar N-H, O-H, or F-H bond and an electronegative O, N, or F atom. A H B or A H A A & B are N, O, or F 20 Hydrogen Bond HCOOH and water 21 7

8 Why is the hydrogen bond considered a special dipole-dipole interaction? Decreasing molar mass Decreasing boiling point 22 Example 11.2 Which of the following can form hydrogen bonds with water? a) CH 3 OCH 3 b) CH 4 c) F 2 d) HCOOH e) Na + Example 11.2 Strategy A species can form hydrogen bonds with water if it contains one of the three electronegative elements (F, O, or N) or it has a H atom bonded to one of these three elements. Solution There are no electronegative elements (F, O, or N) in either CH 4 or Na +. Therefore, only CH 3 OCH 3, F 2, and HCOOH can form hydrogen bonds with water. 8

9 Example 11.2 Check Note that HCOOH (formic acid) can form hydrogen bonds with water in two different ways. HCOOH forms hydrogen bonds with two H 2 O molecules. Properties of Liquids Surface tension is the amount of energy required to stretch or increase the surface of a liquid by a unit area. Strong intermolecular forces High surface tension 26 Properties of Liquids Cohesion is the intermolecular attraction between like molecules Adhesion is an attraction between unlike molecules Adhesion Cohesion 27 9

10 Properties of Liquids Viscosity is a measure of a fluid s resistance to flow. Strong intermolecular forces High viscosity 28 3-D Structure of Water Water is a Unique Substance Maximum Density 4 0 C Density of Water Ice is less dense than water 29 A crystalline solid possesses rigid and long-range order. In a crystalline solid, atoms, molecules or ions occupy specific (predictable) positions. An amorphous solid does not possess a well-defined arrangement and long-range molecular order. A unit cell is the basic repeating structural unit of a crystalline solid. Unit Cell lattice point Unit cells in 3 dimensions At lattice points: Atoms Molecules Ions 30 10

11 Seven Basic Unit Cells 31 Three Types of Cubic Unit Cells 32 Arrangement of Identical Spheres in a Simple Cubic Cell 33 11

12 Arrangement of Identical Spheres in a Body-Centered Cubic Cell 34 A Corner Atom, an Edge-Centered Atom and a Face-Centered Atom Shared by 8 unit cells Shared by 4 unit cells Shared by 2 unit cells 35 Number of Atoms Per Unit Cell 1 atom/unit cell (8 x 1/8 = 1) 2 atoms/unit cell (8 x 1/8 + 1 = 2) 4 atoms/unit cell (8 x 1/8 + 6 x 1/2 = 4) 36 12

13 Relation Between Edge Length and Atomic Radius 37 Closest Packing: Hexagonal and Cubic hexagonal cubic 38 Exploded Views 39 13

14 Example 11.3 Gold (Au) crystallizes in a cubic close-packed structure (the face-centered cubic unit cell) and has a density of 19.3 g/cm 3. Calculate the atomic radius of gold in picometers. Example 11.3 Strategy We want to calculate the radius of a gold atom. For a face-centered cubic unit cell, the relationship between radius (r) and edge length (a), according to Figure 11.22, is. Therefore, to determine r of a Au atom, we need to find a. The volume of a cube is. Thus, if we can determine the volume of the unit cell, we can calculate a. We are given the density in the problem. Example 11.3 The sequence of steps is summarized as follows: Solution Step 1: We know the density, so in order to determine the volume, we find the mass of the unit cell. Each unit cell has eight corners and six faces. The total number of atoms within such a cell, according to Figure 11.19, is 14

15 Example 11.3 The mass of a unit cell in grams is From the definition of density (d = m/v), we calculate the volume of the unit cell as follows: Example 11.3 Step 2: Because volume is length cubed, we take the cubic root of the volume of the unit cell to obtain the edge length (a) of the cell Step 3: From Figure we see that the radius of an Au sphere (r) is related to the edge length by Example 11.3 Therefore, = 144 pm 15

16 An Arrangement for Obtaining the X-ray Diffraction Pattern of a Crystal. 46 Reflection of X-rays from Two Layers of Atoms Extra distance = BC + CD = 2d sinq = nl (Bragg Equation) 47 Example 11.4 X rays of wavelength nm strike an aluminum crystal; the rays are reflected at an angle of Assuming that n = 1, calculate the spacing between the planes of aluminum atoms (in pm) that is responsible for this angle of reflection. The conversion factor is obtained from 1 nm = 1000 pm. 16

17 Example 11.4 Strategy This is an application of Equation (11.1). Solution Converting the wavelength to picometers and using the angle of reflection (19.3 ), we write Types of Crystals Ionic Crystals Lattice points occupied by cations and anions Held together by electrostatic attraction Hard, brittle, high melting point Poor conductor of heat and electricity CsCl ZnS CaF 2 50 Example 11.5 How many Na + and Cl ions are in each NaCl unit cell? 17

18 Example 11.5 Solution NaCl has a structure based on a face-centered cubic lattice. One whole Na + ion is at the center of the unit cell, and there are twelve Na + ions at the edges. Because each edge Na + ion is shared by four unit cells, the total number of Na + ions is 1 + (12 ¼) = 4. Similarly, there are six Cl ions at the face centers and eight Cl ions at the corners. Each face-centered ion is shared by two unit cells, and each corner ion is shared by eight unit cells, so the total number of Cl ions is (6 ½) + (8 1/8) = 4. Thus, there are four Na + ions and four Cl ions in each NaCl unit cell. Check This result agrees with sodium chloride s empirical formula. Example 11.6 The edge length of the NaCl unit cell is 564 pm. What is the density of NaCl in g/cm 3? Example 11.6 Strategy To calculate the density, we need to know the mass of the unit cell. The volume can be calculated from the given edge length because V = a 3. How many Na + and Cl ions are in a unit cell? What is the total mass in amu? What are the conversion factors between amu and g and between pm and cm? Solution From Example 11.5 we see that there are four Na + ions and four Cl ions in each unit cell. So the total mass (in amu) of a unit cell is mass = 4(22.99 amu amu) = amu 18

19 Example 11.6 Converting amu to grams, we write The volume of the unit cell is V = a 3 = (564 pm) 3. Converting pm 3 to cm 3, the volume is given by Finally, from the definition of density = 2.16 g/cm 3 Types of Crystals Covalent Crystals Lattice points occupied by atoms Held together by covalent bonds Hard, high melting point Poor conductor of heat and electricity carbon atoms diamond graphite 56 Types of Crystals Molecular Crystals Lattice points occupied by molecules Held together by intermolecular forces Soft, low melting point Poor conductor of heat and electricity water benzene 57 19

20 Types of Crystals Metallic Crystals Lattice points occupied by metal atoms Held together by metallic bonds Soft to hard, low to high melting point Good conductors of heat and electricity nucleus & inner shell e - mobile sea of e - Cross Section of a Metallic Crystal 58 Crystal Structures of Metals 59 Types of Crystals 60 20

21 An amorphous solid does not possess a well-defined arrangement and long-range molecular order. A glass is an optically transparent fusion product of inorganic materials that has cooled to a rigid state without crystallizing Crystalline quartz (SiO 2 ) Non-crystalline quartz glass 61 Phase Changes Least Order Greatest Order 62 Effect of Temperature on Kinetic Energy T 2 > T

22 The equilibrium vapor pressure is the vapor pressure measured when a dynamic equilibrium exists between condensation and evaporation H 2 O (l) H 2 O (g) Dynamic Equilibrium Rate of condensation = Rate of evaporation 64 Measurement of Vapor Pressure Before Evaporation At Equilibrium 65 Molar heat of vaporization (DH vap ) is the energy required to vaporize 1 mole of a liquid at its boiling point. Clausius-Clapeyron Equation ln P = - DH vap RT + C P = (equilibrium) vapor pressure T = temperature (K) R = gas constant (8.314 J/K mol) Vapor Pressure Versus Temperature 66 22

23 Alternate Forms of the Clausius-Clapeyron Equation At two temperatures or 67 Example 11.7 Diethyl ether is a volatile, highly flammable organic liquid that is used mainly as a solvent. The vapor pressure of diethyl ether is 401 mmhg at 18 C. Calculate its vapor pressure at 32 C. Example 11.7 Strategy We are given the vapor pressure of diethyl ether at one temperature and asked to find the pressure at another temperature. Therefore, we need Equation (11.5). Solution Table 11.6 tells us that DH vap = 26.0 kj/mol. The data are From Equation (11.5) we have 23

24 Example 11.7 Taking the antilog of both sides (see Appendix 4), we obtain Hence P 2 = 656 mmhg Check We expect the vapor pressure to be greater at the higher temperature. Therefore, the answer is reasonable. The boiling point is the temperature at which the (equilibrium) vapor pressure of a liquid is equal to the external pressure. The normal boiling point is the temperature at which a liquid boils when the external pressure is 1 atm. 71 The critical temperature (T c ) is the temperature above which the gas cannot be made to liquefy, no matter how great the applied pressure. The critical pressure (P c ) is the minimum pressure that must be applied to bring about liquefaction at the critical temperature

25 The Critical Phenomenon of SF 6 T < T c T > T c T ~ T c T < T c 73 Solid-Liquid Equilibrium H 2 O (s) H 2 O (l) The melting point of a solid or the freezing point of a liquid is the temperature at which the solid and liquid phases coexist in equilibrium. 74 Molar heat of fusion (DH fus ) is the energy required to melt 1 mole of a solid substance at its freezing point

26 Heating Curve 76 Solid-Gas Equilibrium H 2 O (s) H 2 O (g) Molar heat of sublimation (DH sub ) is the energy required to sublime 1 mole of a solid. DH sub = DH fus + DH vap ( Hess s Law) 77 Example 11.8 Calculate the amount of energy (in kilojoules) needed to heat 346 g of liquid water from 0 C to 182 C. Assume that the specific heat of water is J/g C over the entire liquid range and that the specific heat of steam is 1.99 J/g C. 26

27 Example 11.8 Strategy The heat change (q) at each stage is given by q = msdt (see p. 247), where m is the mass of water, s is the specific heat, and Dt is the temperature change. If there is a phase change, such as vaporization, then q is given by ndh vap, where n is the number of moles of water. Solution The calculation can be broken down in three steps. Step 1: Heating water from 0 C to 100 C Using Equation (6.12) we write Example 11.8 Step 2: Evaporating 346 g of water at 100 C (a phase change) In Table 11.6 we see DH vap = kj/mol for water, so Step 3: Heating steam from 100 C to 182 C Example 11.8 The overall energy required is given by Check All the qs have a positive sign, which is consistent with the fact that heat is absorbed to raise the temperature from 0 C to 182 C. Also, as expected, much more heat is absorbed during the phase transition. 27

28 A phase diagram summarizes the conditions at which a substance exists as a solid, liquid, or gas. Phase Diagram of Water 82 Phase Diagram of Carbon Dioxide At 1 atm CO 2 (s) CO 2 (g) 83 Effect of Increase in Pressure on the Melting Point of Ice and the Boiling Point of Water 84 28

Intermolecular Forces and Liquids and Solids

Intermolecular Forces and Liquids and Solids Intermolecular Forces and Liquids and Solids Chapter 11 Copyright The McGraw-Hill Companies, Inc. Permission required for reproduction or display. 1 A phase is a homogeneous part of the system in contact

More information

Intermolecular Forces and Liquids and Solids

Intermolecular Forces and Liquids and Solids Intermolecular Forces and Liquids and Solids Chapter 11 Copyright The McGraw-Hill Companies, Inc. Permission required for reproduction or display. A phase is a homogeneous part of the system in contact

More information

Intermolecular Forces and Liquids and Solids. Chapter 11. Copyright The McGraw Hill Companies, Inc. Permission required for

Intermolecular Forces and Liquids and Solids. Chapter 11. Copyright The McGraw Hill Companies, Inc. Permission required for Intermolecular Forces and Liquids and Solids Chapter 11 Copyright The McGraw Hill Companies, Inc. Permission required for 1 A phase is a homogeneous part of the system in contact with other parts of the

More information

Intermolecular Forces and Liquids and Solids

Intermolecular Forces and Liquids and Solids PowerPoint Lecture Presentation by J. David Robertson University of Missouri Intermolecular Forces and Liquids and Solids Chapter 11 Copyright The McGraw-Hill Companies, Inc. Permission required for reproduction

More information

CHAPTER 11: INTERMOLECULAR FORCES AND LIQUIDS AND SOLIDS. Chemistry 1411 Joanna Sabey

CHAPTER 11: INTERMOLECULAR FORCES AND LIQUIDS AND SOLIDS. Chemistry 1411 Joanna Sabey CHAPTER 11: INTERMOLECULAR FORCES AND LIQUIDS AND SOLIDS Chemistry 1411 Joanna Sabey Forces Phase: homogeneous part of the system in contact with other parts of the system but separated from them by a

More information

Chapter 11. Intermolecular Forces and Liquids & Solids

Chapter 11. Intermolecular Forces and Liquids & Solids Chapter 11 Intermolecular Forces and Liquids & Solids The Kinetic Molecular Theory of Liquids & Solids Gases vs. Liquids & Solids difference is distance between molecules Liquids Molecules close together;

More information

Intermolecular Forces and Liquids and Solids Chapter 11

Intermolecular Forces and Liquids and Solids Chapter 11 Intermolecular Forces and Liquids and Solids Chapter 11 A phase is a homogeneous part of the system in contact with other parts of the system but separated from them by a well defined boundary. Phases

More information

Chapter 12. Insert picture from First page of chapter. Intermolecular Forces and the Physical Properties of Liquids and Solids

Chapter 12. Insert picture from First page of chapter. Intermolecular Forces and the Physical Properties of Liquids and Solids Chapter 12 Insert picture from First page of chapter Intermolecular Forces and the Physical Properties of Liquids and Solids Copyright McGraw-Hill 2009 1 12.1 Intermolecular Forces Intermolecular forces

More information

CHAPTER ELEVEN KINETIC MOLECULAR THEORY OF LIQUIDS AND SOLIDS KINETIC MOLECULAR THEORY OF LIQUIDS AND SOLIDS

CHAPTER ELEVEN KINETIC MOLECULAR THEORY OF LIQUIDS AND SOLIDS KINETIC MOLECULAR THEORY OF LIQUIDS AND SOLIDS CHAPTER ELEVEN AND LIQUIDS AND SOLIDS KINETIC MOLECULAR THEORY OF LIQUIDS AND SOLIDS Differences between condensed states and gases? KINETIC MOLECULAR THEORY OF LIQUIDS AND SOLIDS Phase Homogeneous part

More information

Liquids and Solids. Copyright The McGraw-Hill Companies, Inc. Permission required for reproduction or display.

Liquids and Solids. Copyright The McGraw-Hill Companies, Inc. Permission required for reproduction or display. Liquids and Solids Copyright The McGraw-Hill Companies, Inc. Permission required for reproduction or display. 1 Gases, Liquids and Solids Gases are compressible fluids. They have no proper volume and proper

More information

Liquids, Solids and Phase Changes

Liquids, Solids and Phase Changes Chapter 10 Liquids, Solids and Phase Changes Chapter 10 1 KMT of Liquids and Solids Gas molecules have little or no interactions. Molecules in the Liquid or solid state have significant interactions. Liquids

More information

- intermolecular forces forces that exist between molecules

- intermolecular forces forces that exist between molecules Chapter 11: Intermolecular Forces, Liquids, and Solids - intermolecular forces forces that exist between molecules 11.1 A Molecular Comparison of Liquids and Solids - gases - average kinetic energy of

More information

Liquids, Solids, and Phase Changes

Liquids, Solids, and Phase Changes C h a p t e r 10 Liquids, Solids, and Phase Changes KMT of Liquids and Solids 01 Gases have little or no interactions. Liquids and solids have significant interactions. Liquids and solids have well-defined

More information

States of matter. Chapter 11. Kinetic Molecular Theory of Liquids and Solids. Kinetic Molecular Theory of Solids Intermolecular Forces

States of matter. Chapter 11. Kinetic Molecular Theory of Liquids and Solids. Kinetic Molecular Theory of Solids Intermolecular Forces States of matter Chapter 11 Intermolecular Forces Liquids and Solids By changing the T and P, any matter can exist as solid, liquid or gas. Forces of attraction determine physical state Phase homogeneous

More information

2. As gas P increases and/or T is lowered, intermolecular forces become significant, and deviations from ideal gas laws occur (van der Waal equation).

2. As gas P increases and/or T is lowered, intermolecular forces become significant, and deviations from ideal gas laws occur (van der Waal equation). A. Introduction. (Section 11.1) CHAPTER 11: STATES OF MATTER, LIQUIDS AND SOLIDS 1. Gases are easily treated mathematically because molecules behave independently. 2. As gas P increases and/or T is lowered,

More information

ก ก ก Intermolecular Forces: Liquids, Solids, and Phase Changes

ก ก ก Intermolecular Forces: Liquids, Solids, and Phase Changes ก ก ก Intermolecular Forces: Liquids, Solids, and Phase Changes ก ก ก ก Mc-Graw Hill 1 Intermolecular Forces: Liquids, Solids, and Phase Changes 12.1 An Overview of Physical States and Phase Changes 12.2

More information

States of Matter; Liquids and Solids. Condensation - change of a gas to either the solid or liquid state

States of Matter; Liquids and Solids. Condensation - change of a gas to either the solid or liquid state States of Matter; Liquids and Solids Phase transitions - a change in substance from one state to another Melting - change from a solid to a liquid state Freezing - change of a liquid to the solid state

More information

What determines the phase of a substance? Temperature Pressure Interparticle Forces of Attraction

What determines the phase of a substance? Temperature Pressure Interparticle Forces of Attraction Liquids and Solids What determines the phase of a substance? Temperature Pressure Interparticle Forces of Attraction Types of Interparticle Forces Ionic Bonding Occurs between cations and anions Metallic

More information

2. As gas P increases and/or T is lowered, intermolecular forces become significant, and deviations from ideal gas laws occur (van der Waal equation).

2. As gas P increases and/or T is lowered, intermolecular forces become significant, and deviations from ideal gas laws occur (van der Waal equation). A. Introduction. (Section 11.1) CHAPTER 11: STATES OF MATTER, LIQUIDS AND SOLIDS 1. Gases are easily treated mathematically because molecules behave independently. 2. As gas P increases and/or T is lowered,

More information

Chapter 10. Liquids and Solids

Chapter 10. Liquids and Solids Chapter 10 Liquids and Solids Chapter 10 Table of Contents 10.1 Intermolecular Forces 10.2 The Liquid State 10.3 An Introduction to Structures and Types of Solids 10.4 Structure and Bonding in Metals 10.5

More information

Chapter 10. Liquids and Solids

Chapter 10. Liquids and Solids Chapter 10 Liquids and Solids Section 10.1 Intermolecular Forces Section 10.1 Intermolecular Forces Section 10.1 Intermolecular Forces Section 10.1 Intermolecular Forces Metallic bonds Covalent bonds Ionic

More information

Chapters 11 and 12: Intermolecular Forces of Liquids and Solids

Chapters 11 and 12: Intermolecular Forces of Liquids and Solids 1 Chapters 11 and 12: Intermolecular Forces of Liquids and Solids 11.1 A Molecular Comparison of Liquids and Solids The state of matter (Gas, liquid or solid) at a particular temperature and pressure depends

More information

Chapter 11. Liquids and Intermolecular Forces

Chapter 11. Liquids and Intermolecular Forces Chapter 11 Liquids and Intermolecular Forces States of Matter The three states of matter are 1) Solid Definite shape Definite volume 2) Liquid Indefinite shape Definite volume 3) Gas Indefinite shape Indefinite

More information

Chapter 10. The Liquid and Solid States. Introduction. Chapter 10 Topics. Liquid-Gas Phase Changes. Physical State of a Substance

Chapter 10. The Liquid and Solid States. Introduction. Chapter 10 Topics. Liquid-Gas Phase Changes. Physical State of a Substance Introduction Chapter 10 The Liquid and Solid States How do the properties of liquid and solid substances differ? How can we predict properties based on molecular- level structure? Glasses Wires Reshaping

More information

Chapter 10: Liquids, Solids, and Phase Changes

Chapter 10: Liquids, Solids, and Phase Changes Chapter 10: Liquids, Solids, and Phase Changes In-chapter exercises: 10.1 10.6, 10.11; End-of-chapter Problems: 10.26, 10.31, 10.32, 10.33, 10.34, 10.35, 10.36, 10.39, 10.40, 10.42, 10.44, 10.45, 10.66,

More information

Intermolecular Forces and States of Matter AP Chemistry Lecture Outline

Intermolecular Forces and States of Matter AP Chemistry Lecture Outline Intermolecular Forces and States of Matter AP Chemistry Lecture Outline Name: Chemical properties are related only to chemical composition; physical properties are related to chemical composition AND the

More information

CHEMISTRY The Molecular Nature of Matter and Change

CHEMISTRY The Molecular Nature of Matter and Change CHEMISTRY The Molecular Nature of Matter and Change Third Edition Chapter 12 Copyright The McGraw-Hill Companies, Inc. Permission required for reproduction or display. Chapter 11 INTERMOLECULAR FORCES

More information

Chapter 10 Liquids and Solids. Problems: 14, 15, 18, 21-23, 29, 31-35, 37, 39, 41, 43, 46, 81-83, 87, 88, 90-93, 99, , 113

Chapter 10 Liquids and Solids. Problems: 14, 15, 18, 21-23, 29, 31-35, 37, 39, 41, 43, 46, 81-83, 87, 88, 90-93, 99, , 113 Chapter 10 Liquids and Solids Problems: 14, 15, 18, 21-23, 29, 31-35, 37, 39, 41, 43, 46, 81-83, 87, 88, 90-93, 99, 104-106, 113 Recall: Intermolecular vs. Intramolecular Forces Intramolecular: bonds between

More information

Ch. 11: Liquids and Intermolecular Forces

Ch. 11: Liquids and Intermolecular Forces Ch. 11: Liquids and Intermolecular Forces Learning goals and key skills: Identify the intermolecular attractive interactions (dispersion, dipole-dipole, hydrogen bonding, ion-dipole) that exist between

More information

Liquids and Solids Chapter 10

Liquids and Solids Chapter 10 Liquids and Solids Chapter 10 Nov 15 9:56 AM Types of Solids Crystalline solids: Solids with highly regular arrangement of their components Amorphous solids: Solids with considerable disorder in their

More information

Nestor S. Valera Ateneo de Manila. Chapter 12 - Intermolecular Forces

Nestor S. Valera Ateneo de Manila. Chapter 12 - Intermolecular Forces Nestor S. Valera Ateneo de Manila Chapter 12 - Intermolecular Forces 1 A phase is a region that differs in structure and/or composition from another region. 2 Phases Solid phase - ice Liquid phase - water

More information

Chapter 10: Liquids and Solids

Chapter 10: Liquids and Solids Chapter 10: Liquids and Solids Chapter 10: Liquids and Solids *Liquids and solids show many similarities and are strikingly different from their gaseous state. 10.1 Intermolecular Forces Intermolecular

More information

CHAPTER 11 INTERMOLECULAR FORCES AND LIQUIDS AND SOLIDS

CHAPTER 11 INTERMOLECULAR FORCES AND LIQUIDS AND SOLIDS CAPTER 11 INTERMOLECULAR FORCES AND LIQUIDS AND SOLIDS 11.7 ICl has a dipole moment and Br 2 does not. The dipole moment increases the intermolecular attractions between ICl molecules and causes that substance

More information

Chapter 11: Intermolecular Forces. Lecture Outline

Chapter 11: Intermolecular Forces. Lecture Outline Intermolecular Forces, Liquids, and Solids 1 Chapter 11: Intermolecular Forces Lecture Outline 11.1 A Molecular Comparison of Gases, Liquids and Solids Physical properties of substances are understood

More information

2) Of the following substances, only has London dispersion forces as its only intermolecular force.

2) Of the following substances, only has London dispersion forces as its only intermolecular force. 11.1 Multiple Choice and Bimodal Questions 1) Based on molecular mass and dipole moment of the five compounds in the table below, which should have the highest boiling point? A) CH 3CH 2 CH3 B) CH 3OCH3

More information

Chapter 11. Intermolecular Forces, Liquids, and Solids

Chapter 11. Intermolecular Forces, Liquids, and Solids 11.2 Intermolecular Forces Intermolecular forces are much weaker than ionic or covalent bonds (e.g., 16 kj/mol versus 431 kj/mol for HCl). Melting or boiling = broken intermolecular forces Intermolecular

More information

Name: Class: Date: SHORT ANSWER Answer the following questions in the space provided.

Name: Class: Date: SHORT ANSWER Answer the following questions in the space provided. CHAPTER 10 REVIEW States of Matter SECTION 1 SHORT ANSWER Answer the following questions in the space provided. 1. Identify whether the descriptions below describe an ideal gas or a real gas. a. The gas

More information

London Dispersion Forces (LDFs) Intermolecular Forces Attractions BETWEEN molecules. London Dispersion Forces (LDFs) London Dispersion Forces (LDFs)

London Dispersion Forces (LDFs) Intermolecular Forces Attractions BETWEEN molecules. London Dispersion Forces (LDFs) London Dispersion Forces (LDFs) LIQUIDS / SOLIDS / IMFs Intermolecular Forces (IMFs) Attractions BETWEEN molecules NOT within molecules NOT true bonds weaker attractions Represented by dashed lines Physical properties (melting points,

More information

Chap. 12 INTERMOLECULAR FORCES

Chap. 12 INTERMOLECULAR FORCES Chap. 12 INTERMOLECULAR FORCES Know how energy determines physical properties and how phase changes occur as a result of heat flow. Distinguish between bonding (intermolecular) and nonbonding (intermolecular)

More information

Some Properties of Solids, Liquids, and Gases

Some Properties of Solids, Liquids, and Gases AP Chemistry: Intermolecular Forces, Liquids, and Solids Lecture Outline 11.1 A Molecular Comparison of Liquids and Solids Physical properties of liquids and solids are due to intermolecular forces. These

More information

Ch 10 -Ch 10 Notes Assign: -HW 1, HW 2, HW 3 Blk 1 Ch 10 Lab

Ch 10 -Ch 10 Notes Assign: -HW 1, HW 2, HW 3 Blk 1 Ch 10 Lab Advanced Placement Chemistry Chapters 10 11 Syllabus As you work through each chapter, you should be able to: Chapter 10 Solids and Liquids 1. Differentiate between the various types of intermolecular

More information

AP* Chapter 10. Liquids and Solids. Friday, November 22, 13

AP* Chapter 10. Liquids and Solids. Friday, November 22, 13 AP* Chapter 10 Liquids and Solids AP Learning Objectives LO 1.11 The student can analyze data, based on periodicity and the properties of binary compounds, to identify patterns and generate hypotheses

More information

Forces, Liquids, and Solids

Forces, Liquids, and Solids 11 Intermolecular Forces, Liquids, and Solids Visualizing Concepts 11.1 The diagram best describes a liquid. In the diagram, the particles are close together, mostly touching but there is no regular arrangement

More information

Unit Five: Intermolecular Forces MC Question Practice April 14, 2017

Unit Five: Intermolecular Forces MC Question Practice April 14, 2017 Unit Five: Intermolecular Forces Name MC Question Practice April 14, 2017 1. Which of the following should have the highest surface tension at a given temperature? 2. The triple point of compound X occurs

More information

Chapter 10. Dipole Moments. Intermolecular Forces (IMF) Polar Bonds and Polar Molecules. Polar or Nonpolar Molecules?

Chapter 10. Dipole Moments. Intermolecular Forces (IMF) Polar Bonds and Polar Molecules. Polar or Nonpolar Molecules? Polar Bonds and Polar Molecules Chapter 10 Liquids, Solids, and Phase Changes Draw Lewis Structures for CCl 4 and CH 3 Cl. What s the same? What s different? 1 Polar Covalent Bonds and Dipole Moments Bonds

More information

Ch 11: Intermolecular Forces, Liquids, and Solids

Ch 11: Intermolecular Forces, Liquids, and Solids AP Chemistry: Intermolecular Forces, Liquids, and Solids Lecture Outline 11.1 A Molecular Comparison of Liquids and Solids Physical properties of liquids and solids are due to intermolecular forces. These

More information

Chapter 11. Intermolecular Forces and Liquids and Solids. Chemistry, Raymond Chang 10th edition, 2010 McGraw-Hill

Chapter 11. Intermolecular Forces and Liquids and Solids. Chemistry, Raymond Chang 10th edition, 2010 McGraw-Hill Chemistry, Raymond Chang 10th edition, 2010 McGraw-Hill Chapter 11 Intermolecular Forces and Liquids and Solids Ahmad Aqel Ifseisi Assistant Professor of Analytical Chemistry College of Science, Department

More information

The Liquid and Solid States

The Liquid and Solid States : The Liquid and Solid States 10-1 10.1 Changes of State How do solids, liquids and gases differ? Figure 10.4 10-2 1 10.1 Changes of State : transitions between physical states Vaporization/Condensation

More information

Metallic & Ionic Solids. Crystal Lattices. Properties of Solids. Network Solids. Types of Solids. Chapter 13 Solids. Chapter 13

Metallic & Ionic Solids. Crystal Lattices. Properties of Solids. Network Solids. Types of Solids. Chapter 13 Solids. Chapter 13 1 Metallic & Ionic Solids Chapter 13 The Chemistry of Solids Jeffrey Mack California State University, Sacramento Crystal Lattices Properties of Solids Regular 3-D arrangements of equivalent LATTICE POINTS

More information

Chapter 11. Intermolecular Forces, Liquids, and Solids

Chapter 11. Intermolecular Forces, Liquids, and Solids Chapter 11. Intermolecular Forces, Liquids, and Solids A Molecular Comparison of Gases, Liquids, and Solids Physical properties of substances are understood in terms of kinetic-molecular theory: Gases

More information

The Liquid and Solid States

The Liquid and Solid States : The Liquid and Solid States 10-1 10.1 Changes of State How do solids, liquids and gases differ? Figure 10.4 10-2 10.1 Changes of State : transitions between physical states Vaporization/Condensation

More information

Chem 112 Dr. Kevin Moore

Chem 112 Dr. Kevin Moore Chem 112 Dr. Kevin Moore Gas Liquid Solid Polar Covalent Bond Partial Separation of Charge Electronegativity: H 2.1 Cl 3.0 H Cl δ + δ - Dipole Moment measure of the net polarity in a molecule Q Q magnitude

More information

CRYSTAL STRUCTURE, PHASE CHANGES, AND PHASE DIAGRAMS

CRYSTAL STRUCTURE, PHASE CHANGES, AND PHASE DIAGRAMS CRYSTAL STRUCTURE, PHASE CHANGES, AND PHASE DIAGRAMS CRYSTAL STRUCTURE CRYSTALLINE AND AMORPHOUS SOLIDS Crystalline solids have an ordered arrangement. The long range order comes about from an underlying

More information

compared to gases. They are incompressible. Their density doesn t change with temperature. These similarities are due

compared to gases. They are incompressible. Their density doesn t change with temperature. These similarities are due Liquids and solids They are similar compared to gases. They are incompressible. Their density doesn t change with temperature. These similarities are due to the molecules being close together in solids

More information

Chemistry: The Central Science

Chemistry: The Central Science Chemistry: The Central Science Fourteenth Edition Chapter 11 Liquids and Intermolecular Forces Intermolecular Forces The attractions between molecules are not nearly as strong as the intramolecular attractions

More information

Chapter 11. Intermolecular Forces, Liquids, and Solids

Chapter 11. Intermolecular Forces, Liquids, and Solids 11.2 Intermolecular Forces Intermolecular forces are much weaker than ionic or covalent bonds (e.g., 16 kj/mol versus 431 kj/mol for HCl). Melting or boiling = broken intermolecular forces Intermolecular

More information

Some Properties of Solids, Liquids, and Gases

Some Properties of Solids, Liquids, and Gases AP Chemistry: Intermolecular Forces, Liquids, and Solids Sec 1. A Molecular Comparison of Liquids and Solids Physical properties of liquids and solids are due to intermolecular forces. These are forces

More information

INTERMOLECULAR FORCES: LIQUIDS, SOLIDS & PHASE CHANGES (Silberberg, Chapter 12)

INTERMOLECULAR FORCES: LIQUIDS, SOLIDS & PHASE CHANGES (Silberberg, Chapter 12) INTERMOLECULAR FORCES: LIQUIDS, SOLIDS & PASE CANGES (Silberberg, Chapter 12) Intermolecular interactions Ideal gas molecules act independently PV=nRT Real gas molecules attract/repulse one another 2 n

More information

Liquids & Solids: Section 12.3

Liquids & Solids: Section 12.3 Liquids & Solids: Section 12.3 MAIN IDEA: The particles in and have a range of motion and are not easily. Why is it more difficult to pour syrup that is stored in the refrigerator than in the cabinet?

More information

Chapter 11 Intermolecular Forces, Liquids, and Solids. Intermolecular Forces

Chapter 11 Intermolecular Forces, Liquids, and Solids. Intermolecular Forces Chapter 11, Liquids, and Solids States of Matter The fundamental difference between states of matter is the distance between particles. States of Matter Because in the solid and liquid states particles

More information

Chapter 11. Kinetic Molecular Theory. Attractive Forces

Chapter 11. Kinetic Molecular Theory. Attractive Forces Chapter 11 KMT for Solids and Liquids Intermolecular Forces Viscosity & Surface Tension Phase Changes Vapor Pressure Phase Diagrams Solid Structure Kinetic Molecular Theory Liquids and solids will experience

More information

Liquids and Solids. H fus (Heat of fusion) H vap (Heat of vaporization) H sub (Heat of sublimation)

Liquids and Solids. H fus (Heat of fusion) H vap (Heat of vaporization) H sub (Heat of sublimation) Liquids and Solids Phase Transitions All elements and compounds undergo some sort of phase transition as their temperature is increase from 0 K. The points at which these phase transitions occur depend

More information

They are similar to each other

They are similar to each other They are similar to each other Different than gases. They are incompressible. Their density doesn t change much with temperature. These similarities are due to the molecules staying close together in solids

More information

CHAPTER 9: LIQUIDS AND SOLIDS

CHAPTER 9: LIQUIDS AND SOLIDS CHAPTER 9: LIQUIDS AND SOLIDS Section 9.1 Liquid/Vapor Equilibrium Vaporization process in which a liquid vapor open container - evaporation continues until all liquid evaporates closed container 1) Liquid

More information

Chapter 12 INTERMOLECULAR FORCES. Covalent Radius and van der Waals Radius. Intraand. Intermolecular Forces. ½ the distance of non-bonded

Chapter 12 INTERMOLECULAR FORCES. Covalent Radius and van der Waals Radius. Intraand. Intermolecular Forces. ½ the distance of non-bonded Chapter 2 INTERMOLECULAR FORCES Intraand Intermolecular Forces Covalent Radius and van der Waals Radius ½ the distance of bonded ½ the distance of non-bonded Dipole Dipole Interactions Covalent and van

More information

Sample Exercise 11.1 Identifying Substances That Can Form Hydrogen Bonds

Sample Exercise 11.1 Identifying Substances That Can Form Hydrogen Bonds Sample Exercise 11.1 Identifying Substances That Can Form Hydrogen Bonds In which of these substances is hydrogen bonding likely to play an important role in determining physical properties: methane (CH

More information

Intermolecular forces (IMFs) CONDENSED STATES OF MATTER

Intermolecular forces (IMFs) CONDENSED STATES OF MATTER Intermolecular forces (IMFs) CONDENSED STATES OF MATTER States of Matter: - composed of particles packed closely together with little space between them. Solids maintain a. - any substance that flows.

More information

Name: Class: Date: ID: A

Name: Class: Date: ID: A Name: Class: _ Date: _ CH11 1. Order the intermolecular forces (dipole-dipole, London dispersion, ionic, and hydrogen-bonding) from weakest to strongest. A) dipole-dipole, London dispersion, ionic, and

More information

Properties of Liquids and Solids. Vaporization of Liquids. Vaporization of Liquids. Aims:

Properties of Liquids and Solids. Vaporization of Liquids. Vaporization of Liquids. Aims: Properties of Liquids and Solids Petrucci, Harwood and Herring: Chapter 13 Aims: To use the ideas of intermolecular forces to: Explain the properties of liquids using intermolecular forces Understand the

More information

Properties of Liquids and Solids. Vaporization of Liquids

Properties of Liquids and Solids. Vaporization of Liquids Properties of Liquids and Solids Petrucci, Harwood and Herring: Chapter 13 Aims: To use the ideas of intermolecular forces to: Explain the properties of liquids using intermolecular forces Understand the

More information

Intermolecular Forces, Liquids and Solids Chap. 10

Intermolecular Forces, Liquids and Solids Chap. 10 Page III-10-1 / Chapter Ten Lecture Notes Intermolecular Forces, and Solids Chap. 10 States of Matter The fundamental difference between states of matter is the distance between particles. Chemistry 222

More information

9/2/10 TYPES OF INTERMOLECULAR INTERACTIONS

9/2/10 TYPES OF INTERMOLECULAR INTERACTIONS Tro Chpt. 11 Liquids, solids and intermolecular forces Solids, liquids and gases - A Molecular Comparison Intermolecular forces Intermolecular forces in action: surface tension, viscosity and capillary

More information

Chapter 11 Intermolecular Forces, Liquids, and Solids

Chapter 11 Intermolecular Forces, Liquids, and Solids Chapter 11 Intermolecular Forces, Liquids, and Solids Dissolution of an ionic compound States of Matter The fundamental difference between states of matter is the distance between particles. States of

More information

Ch. 9 Liquids and Solids

Ch. 9 Liquids and Solids Intermolecular Forces I. A note about gases, liquids and gases. A. Gases: very disordered, particles move fast and are far apart. B. Liquid: disordered, particles are close together but can still move.

More information

Chapter 13 States of Matter Forces of Attraction 13.3 Liquids and Solids 13.4 Phase Changes

Chapter 13 States of Matter Forces of Attraction 13.3 Liquids and Solids 13.4 Phase Changes Chapter 13 States of Matter 13.2 Forces of Attraction 13.3 Liquids and Solids 13.4 Phase Changes I. Forces of Attraction (13.2) Intramolecular forces? (forces within) Covalent Bonds, Ionic Bonds, and metallic

More information

They are similar to each other. Intermolecular forces

They are similar to each other. Intermolecular forces s and solids They are similar to each other Different than gases. They are incompressible. Their density doesn t change much with temperature. These similarities are due to the molecules staying close

More information

Chapter 10 Review Packet

Chapter 10 Review Packet Chapter 10 Review Packet Name 1. If water and carbon dioxide molecules did interact, what major intermolecular force will exist between these molecules? a) Hydrogen bonding b) London dispersion c) Dipole-dipole

More information

Chapter 10. Lesson Starter. Why did you not smell the odor of the vapor immediately? Explain this event in terms of the motion of molecules.

Chapter 10. Lesson Starter. Why did you not smell the odor of the vapor immediately? Explain this event in terms of the motion of molecules. Preview Lesson Starter Objectives The Kinetic-Molecular Theory of Gases The Kinetic-Molecular Theory and the Nature of Gases Deviations of Real Gases from Ideal Behavior Section 1 The Kinetic-Molecular

More information

Chapter 11/12: Liquids, Solids and Phase Changes Homework: Read Chapter 11 and 12 Keep up with assignments

Chapter 11/12: Liquids, Solids and Phase Changes Homework: Read Chapter 11 and 12 Keep up with assignments P a g e 1 Unit 3: Chapter 11/12: Liquids, Solids and Phase Changes Homework: Read Chapter 11 and 12 Keep up with assignments Liquids and solids are quite different from gases due to their attractive forces

More information

Chapter 12 Intermolecular Forces and Liquids

Chapter 12 Intermolecular Forces and Liquids Chapter 12 Intermolecular Forces and Liquids Jeffrey Mack California State University, Sacramento Why? Why is water usually a liquid and not a gas? Why does liquid water boil at such a high temperature

More information

Chemistry 101 Chapter 14 Liquids & Solids

Chemistry 101 Chapter 14 Liquids & Solids Chemistry 101 Chapter 14 Liquids & Solids States of matter: the physical state of matter depends on a balance between the kinetic energy of particles, which tends to keep them apart, and the attractive

More information

Intermolecular forces Liquids and Solids

Intermolecular forces Liquids and Solids Intermolecular forces Liquids and Solids Chapter objectives Understand the three intermolecular forces in pure liquid in relation to molecular structure/polarity Understand the physical properties of liquids

More information

Chapter 11. Liquids and Intermolecular Forces

Chapter 11. Liquids and Intermolecular Forces Chapter 11. Liquids and Intermolecular Forces 11.1 A Molecular Comparison of Gases, Liquids, and Solids Gases are highly compressible and assume the shape and volume of their container. Gas molecules are

More information

Multiple Choice. Multiple Choice

Multiple Choice. Multiple Choice 1. At what temperature in degree Celcius is the value in degree Fahrenheit twice of that in degree Celcius? A) 160 o C B) -24.6 o C C) 6.4 o C D) 22.2 o C E) 32 o C 2. The correct name for NaOCl is, A)

More information

Phase Chemistry. Phase Diagrams and IMF s. Copyright John Sayles 1

Phase Chemistry. Phase Diagrams and IMF s. Copyright John Sayles 1 Phase Chemistry Phase Diagrams and IMF s Copyright 2003 - John Sayles 1 C-C Eq n and Phase Diagrams Graph the T and P points that solve the C-C eq n A curve Each point represents a BP The curve is the

More information

Chapter 14. Liquids and Solids

Chapter 14. Liquids and Solids Chapter 14 Liquids and Solids Section 14.1 Water and Its Phase Changes Reviewing What We Know Gases Low density Highly compressible Fill container Solids High density Slightly compressible Rigid (keeps

More information

Intermolecular Forces

Intermolecular Forces Intermolecular Forces Molecular Compounds The simplest molecule is H 2 : Increased electron density draws nuclei together The pair of shared electrons constitutes a covalent bond. Intermolecular Forces

More information

Chapter 11 SOLIDS, LIQUIDS AND GASES Pearson Education, Inc.

Chapter 11 SOLIDS, LIQUIDS AND GASES Pearson Education, Inc. Chapter 11 SOLIDS, LIQUIDS AND GASES States of Matter Because in the solid and liquid states particles are closer together, we refer to them as. The States of Matter The state of matter a substance is

More information

Chapter 11. Freedom of Motion. Comparisons of the States of Matter. Liquids, Solids, and Intermolecular Forces

Chapter 11. Freedom of Motion. Comparisons of the States of Matter. Liquids, Solids, and Intermolecular Forces Liquids, Solids, and Intermolecular Forces Chapter 11 Comparisons of the States of Matter The solid and liquid states have a much higher density than the gas state The solid and liquid states have similar

More information

Intermolecular Forces, Liquids, Solids. IM Forces and Physical Properties

Intermolecular Forces, Liquids, Solids. IM Forces and Physical Properties Intermolecular Forces, Liquids, Solids Interactions Between Molecules: What does it take to separate two (or more) molecules from one another? or What holds molecules close to one another? Structure/Property

More information

Chapter #16 Liquids and Solids

Chapter #16 Liquids and Solids Chapter #16 Liquids and Solids 16.1 Intermolecular Forces 16.2 The Liquid State 16.3 An Introduction to Structures and Types of Solids 16.4 Structure and Bonding of Metals 16.5 Carbon and Silicon: Network

More information

Lecture Presentation. Chapter 11. Liquids and Intermolecular Forces. John D. Bookstaver St. Charles Community College Cottleville, MO

Lecture Presentation. Chapter 11. Liquids and Intermolecular Forces. John D. Bookstaver St. Charles Community College Cottleville, MO Lecture Presentation Chapter 11 Liquids and Intermolecular Forces John D. Bookstaver St. Charles Community College Cottleville, MO Properties of Gases, Liquids, and Solids State Volume Shape of State Density

More information

Intermolecular Forces, Liquids, & Solids

Intermolecular Forces, Liquids, & Solids , Liquids, & Solids Mr. Matthew Totaro Legacy High School AP Chemistry States of Matter The fundamental difference between states of matter is the distance between particles. States of Matter Because in

More information

CHAPTER 11: Intermolecular Forces, Liquids, and Solids. Are there any IDEAL GASES? The van der Waals equation corrects for deviations from ideality

CHAPTER 11: Intermolecular Forces, Liquids, and Solids. Are there any IDEAL GASES? The van der Waals equation corrects for deviations from ideality CHAPTER 11: Intermolecular Forces, Liquids, and Solids Are there any IDEAL GASES? The van der Waals equation corrects for deviations from ideality Does the KMT break down? Kinetic Molecular Theory 1. Gas

More information

Chapter 9. Liquids and Solids

Chapter 9. Liquids and Solids Chapter 9 Liquids and Solids Chapter 9 Table of Contents (9.1) (9.2) (9.3) (9.4) (9.5) (9.6) (9.7) (9.8) (9.9) (9.10) Intermolecular forces The liquid state An introduction to structures and types of solids

More information

AP Chemistry: Liquids and Solids Practice Problems

AP Chemistry: Liquids and Solids Practice Problems AP Chemistry: Liquids and Solids Practice Problems Directions: Write your answers to the following questions in the space provided. or problem solving, show all of your work. Make sure that your answers

More information

Question 2 Identify the phase transition that occurs when CO 2 solid turns to CO 2 gas as it is heated.

Question 2 Identify the phase transition that occurs when CO 2 solid turns to CO 2 gas as it is heated. For answers, send email to: admin@tutor-homework.com. Include file name: Chemistry_Worksheet_0039 Price: $4 (c) 2012 www.tutor-homework.com: Tutoring, homework help, help with online classes. Chapter 11

More information

General Chemistry I. Dr. PHAN TẠI HUÂN Faculty of Food Science and Technology Nong Lam University. Module 3: The Three States of Matter

General Chemistry I. Dr. PHAN TẠI HUÂN Faculty of Food Science and Technology Nong Lam University. Module 3: The Three States of Matter General Chemistry I Dr. PHAN TẠI HUÂN Faculty of Food Science and Technology Nong Lam University Module 3: The Three States of Matter Gas state (Equation of state: ideal gas and real gas). Liquid state

More information

States of matter Part 2

States of matter Part 2 Physical Pharmacy Lecture 2 States of matter Part 2 Assistant Lecturer in Pharmaceutics Overview The Liquid State General properties Liquefaction of gases Vapor pressure of liquids Boiling point The Solid

More information

Chem 1075 Chapter 13 Liquids and Solids Lecture Outline

Chem 1075 Chapter 13 Liquids and Solids Lecture Outline Chem 1075 Chapter 13 Liquids and Solids Lecture Outline Slide 2-3 Properties of Liquids Unlike gases, liquids respond dramatically to temperature and pressure changes. We can study the liquid state and

More information