Graphene oxide mode-locked femtosecond erbium-doped fiber lasers

Size: px
Start display at page:

Download "Graphene oxide mode-locked femtosecond erbium-doped fiber lasers"

Transcription

1 Graphene oxide mode-locked femtosecond erbium-doped fiber lasers Jia Xu, 1 Jiang Liu, 1 Sida Wu, 2 Quan-Hong Yang, 2 and Pu Wang 1,* 1 Institute of Laser Engineering, Beijing University of Technology, Beijing , China 2 School of Chemical Engineering and Technology, Tianjin University, qhyangcn@tju.edu.cn, Tianjin , China * wangpu @bjut.edu.cn Abstract: We demonstrated the femtosecond erbium-doped all-fiber lasers mode-locked with graphene oxide, which can be conveniently obtained from natural graphite by simple oxidation and ultra-sonication process. With proper dispersion management in an all-fiber ring cavity, the laser directly generated 200 fs pulses at a repetition rate of 22.9 MHz and the average output power was 5.8 mw. With the variation of net cavity dispersion, output pulses with pulse width of 0.2~3 ps were obtained at a repetition rate of 22.9~0.93 MHz. These results are comparable with those of graphene saturable absorbers and the superiority of easy fabrication and hydrophilic property of graphene oxide will facilitate its potential applications for ultrafast photonics Optical Society of America OCIS codes: ( ) Lasers, erbium; ( ) Mode-locked lasers; ( ) Ultrafast lasers; ( ) Nonlinear optical materials. References and links 1. H. P. Sardesai, C. C. Chang, and A. M. Weiner, A femtosecond code-division multiple-access communication system test bed, J. Lightwave Technol. 16(11), (1998). 2. N. Nishizawa, Y. Chen, P. Hsiung, E. P. Ippen, and J. G. Fujimoto, Real-time, ultrahigh-resolution, optical coherence tomography with an all-fiber, femtosecond fiber laser continuum at 1.5 microm, Opt. Lett. 29(24), (2004). 3. T. Udem, R. Holzwarth, and T. W. Hänsch, Optical frequency metrology, Nature 416(6877), (2002). 4. J. W. Nicholson, A. D. Yablon, P. S. Westbrook, K. S. Feder, and M. F. Yan, High power, single mode, allfiber source of femtosecond pulses at 1550 nm and its use in supercontinuum generation, Opt. Express 12(13), (2004). 5. T. Hasan, Z. P. Sun, F. Wang, F. Bonaccorso, P. H. Tan, A. G. Rozhin, and A. C. Ferrari, Nanotube-polymer composites for ultrafast photonics, Adv. Mater. (Deerfield Beach Fla.) 21(38 39), (2009). 6. Q. L. Bao, H. Zhang, Y. Wang, Z. Ni, Y. Yan, Z. X. Shen, K. P. Loh, and D. Y. Tang, Atomic layer graphene as saturable absorber for ultrafast pulsed laser, Adv. Funct. Mater. 19(19), (2009). 7. Y. Song, S. Jang, W. Han, and M. Bae, Graphene mode-lockers for fiber lasers functioned with evanescent field interaction, Appl. Phys. Lett. 96(5), (2010). 8. A. Martinez, K. Fuse, and S. Yamashita, Mechinecal exfoliation of graphene for the passive mode-locking of fiber lasers, Appl. Phys. Lett. 99(12), (2011). 9. Q. Bao, H. Zhang, Z. Ni, Y. Wang, L. Polavarapu, Z. Shen, Q. H. Xu, D. Tang, and K. P. Loh, Monolayer graphene as a saturable absorber in a mode-locked laser, Nano Res. 4(3), (2011). 10. Z. Sun, T. Hasan, F. Torrisi, D. Popa, G. Privitera, F. Wang, F. Bonaccorso, D. M. Basko, and A. C. Ferrari, Graphene mode-locked ultrafast laser, ACS Nano 4(2), (2010). 11. H. Zhang, D. Y. Tang, L. M. Zhao, Q. L. Bao, K. P. Loh, B. Lin, and S. C. Tjin, Compact grapheme modelocked wavelength-tunable erbium-doped fiber lasers: from all anomalous dispersion to all normal dispersion, Laser Phys. Lett. 7(8), (2010). 12. D. Popa, Z. Sun, F. Torrisi, T. Hasan, F. Wang, and A. C. Ferrari, Sub 200 fs pulse generation from a graphene mode-locked fiber laser, Appl. Phys. Lett. 97(20), (2010). 13. Q. L. Bao, H. Zhang, J. Yang, S. Wang, D. Y. Tang, R. Jose, S. Ramakrishna, C. T. Lim, and K. P. Loh, Graphene-polymer nanofiber membrane for ultrafast photonics, Adv. Funct. Mater. 20, 1 10 (2010). 14. F. Bonaccorso, Z. Sun, T. Hasan, and A. C. Ferrari, Graphene photonics and optoelectronics, Nat. Photonics 4(9), (2010). 15. A. Martinez, K. Fuse, B. Xu, and S. Yamashita, Optical deposition of graphene and carbon nanotubes in a fiber ferrule for passive mode-locked lasing, Opt. Express 18(22), (2010). 16. Y. M. Chang, H. Kim, J. H. Lee, and Y. W. Song, Multilayered graphene efficiently formed by mechanical exfoliation for nonlinear saturable absorbers in fiber mode-locked lasers, Appl. Phys. Lett. 97(21), (2010). (C) 2012 OSA 2 July 2012 / Vol. 20, No. 14 / OPTICS EXPRESS 15474

2 17. H. Kim, J. Cho, S. Y. Jang, and Y. W. Song, Deformation-immunized optical deposition of graphene for ultrafast pulsed lasers, Appl. Phys. Lett. 98(2), (2011). 18. P. L. Huang, S. C. Lin, C. Y. Yeh, H. H. Kuo, S. H. Huang, G. R. Lin, L. J. Li, C. Y. Su, and W. H. Cheng, Stable mode-locked fiber laser based on CVD fabricated graphene saturable absorber, Opt. Express 20(3), (2012). 19. B. V. Cunning, C. L. Brown, and D. Kielpinski, Low-loss flake-graphene saturable absorber mirror for laser mode-locking at sub-200-fs pulse duration, Appl. Phys. Lett. 99(26), (2011). 20. L. Gui, W. Zhang, X. Li, X. Xiao, H. Zhu, K. Wang, D. Wu, and C. Yang, Self-assembled graphene membrane as an ultrafast mode-locker in an erbium fiber laser, IEEE Photon. Technol. Lett. 23(23), (2011). 21. K. S. Novoselov, A. K. Geim, S. V. Morozov, D. Jiang, Y. Zhang, S. V. Dubonos, I. V. Grigorieva, and A. A. Firsov, Electric field effect in atomically thin carbon films, Science 306(5696), (2004). 22. A. Reina, X. Jia, J. Ho, D. Nezich, H. Son, V. Bulovic, M. S. Dresselhaus, and J. Kong, Large area, few-layer graphene films on arbitrary substrates by chemical vapor deposition, Nano Lett. 9(1), (2009). 23. C. Berger, Z. Song, T. Li, A. Y. Ogbazghi, R. Feng, Z. Dai, A. N. Marchenkov, E. H. Conrad, P. N. First, and W. A. de Heer, Ultrathin epitaxial graphite: 2D electron gas properties and a route toward graphene-based nanoelectronics, J. Phys. Chem. B 108(52), (2004). 24. S. Stankovich, D. Dikin, R. Piner, K. Kohlhaas, A. Kleinhammes, Y. Jia, Y. Wu, S. Nguyen, and R. Ruoff, Synthesis of graphene-based nanosheets via chemical reduction of exfoliated graphite oxide, Carbon 45(7), (2007). 25. Z. B. Liu, X. Y. He, and D. N. Wang, Passively mode-locked fiber laser based on a hollow-core photonic crystal fiber filled with few-layered graphene oxide solution, Opt. Lett. 36(16), (2011). 26. X. Zhao, Z. B. Liu, W. B. Yan, Y. Wu, X. L. Zhang, Y. Chen, and J. G. Tian, Ultrafast carrier dynamics and saturable absorption of solution-processable few-layered graphene oxide, Appl. Phys. Lett. 98(12), (2011). 27. K. P. Loh, Q. L. Bao, G. Eda, and M. Chhowalla, Graphene oxide as a chemically tunable platform for optical applications, Nat. Chem. 2(12), (2010). 28. W. S. Hummers and R. E. Offeman, Preparation of graphite oxide, J. Am. Chem. Soc. 80(6), (1958). 29. J. Liu, Y. G. Wang, Z. S. Qu, L. H. Zheng, L. B. Su, and J. Xu, Graphene oxide absorber for 2 µm passive mode-locking Tm: YAlO 3 laser, Laser Phys. Lett. 9(1), (2012). 30. M. L. Dennis and I. N. Duling, Experimental study of sideband generation in femtosecond fiber lasers, Quantum Electron. 30(6), (1994). 31. L. Gui, X. Yang, G. Zhao, X. Yang, X. Xiao, J. Zhu, and C. Yang, Suppression of continuous lasing in a carbon nanotube polyimide film mode-locked erbium-doped fiber laser, Appl. Opt. 50(1), (2011). 1. Introduction Femtosecond erbium-doped fiber lasers have many applications in various industrial and scientific research areas, such as optical communications [1], optical coherent tomography [2], optical atomic clock [3] and supercontinuum generation [4]. Passive mode-locking is a practical technique to generate ultrafast femtosecond pulses in highly compact fiber lasers. Recently, nano-material graphene-based saturable absorber has attracted considerable interest as an excellent wideband mode-locker due to its unique linear and nonlinear optical properties, such as saturable absorption characteristics for a broad wavelength range, ultrafast recover time, low saturable intensity, and pulses from sub 200 fs to a few picoseconds in the graphene mode-locked erbium-doped fiber lasers have been reported [5 20]. In 2004, Novoselov et al. first produced graphene by mechanical exfoliation [21], although this method suffers from the ultra-low success ratio. And then various methods for high quality, large scale fabrication of graphene are actively explored, such as chemical vapor deposition (CVD) [22], thermal decomposition from SiC [23], and chemical reduction method [24]. The chemical reduction method involves complex chemical processes and generates graphene with heavily functionalized organic groups. The first step of chemical reduction method is to synthesize graphene oxide from natural graphite powder. Then graphene-based nanosheet can be obtained from graphene oxide by chemical methods using reductants such as hydrazine, dimethylhydrazine. Graphene oxide, served as the precursor for graphene, has also been widely investigated for its own physical and chemical characteristics. On one hand, the presence of oxygen-containing functional groups makes graphene oxide strongly hydrophilic and water soluble, which is different with graphene. The solubility offers superior flexibility and processibility for large-scale production of graphene oxide based optoelectronics. For example, we can fabricate grapheneoxide membrane on different kinds of substrates by a spin-coater, or inject graphene oxide solution into a hollow-core photonic crystal fiber [25]. On the other hand, although the (C) 2012 OSA 2 July 2012 / Vol. 20, No. 14 / OPTICS EXPRESS 15475

3 oxygen functional groups destroy the gapless linear dispersion of Dirac electrons in graphene and make graphene oxide insulating, it has been demonstrated that graphene oxide also has a fast energy relaxation of hot carriers and strong saturable absorption, which is comparable with that of graphene [26,27]. These properties make graphene oxide as potential saturable absorber material in pulsed fiber lasers. Up to now, there are two reports of graphene oxide mode-locked fiber lasers. In 2010, F. Bonaccorso et al. reported the graphene oxide modelocked fiber laser for the first time [14]. However, in this paper they only provided the autocorrelation trace and optical spectrum of ~743 fs pulses, and other important information were not given, such as the cavity configuration, pulse trains and nonlinear optical parameter of graphene oxide. In 2011, Liu et al. generated pulsed erbium-doped fiber laser based on a hollow-core photonic crystal fiber filled with graphene oxide solution [25], but the pulse width was 4.85 ns. Here, we report femtosecond mode-locked erbium-doped fiber lasers, which adopted ring cavity configuration and self-assembled graphene oxide saturable absorber mirror. With dispersion management, the laser directly generated 200 fs pulses at a repetition rate of 22.9 MHz and the average output power was 5.8 mw. To the best of our knowledge, 200 fs is the shortest pulses obtained from graphene-oxide-based fiber laser. With the variation of net cavity dispersion, output pulses with pulse width of 0.2~3 ps were obtained at a repetition rate of 22.9~0.93 MHz. Considering the outstanding advantages of low price, easy fabrication and amphipathic properties, the graphene oxide is promising candidate as saturable absorber and can be used as practical and efficient photonic material for generation of ultrafast fiber lasers. 2. Preparation of the graphene oxide saturable absorber mirror (GOSAM) The graphite oxide was synthesized from natural graphite powder by a modified Hummers method [28]. The graphene oxide hydrosol with concentration of 2 mg/ml was prepared by ultrasonic peeling of graphite oxide in aqueous suspension. Then a broadband reflective mirror was immersed into the graphene oxide hydrosol for 48 hr. Finally, a thin graphene oxide membrane was formed on the broadband reflective mirror. Figure 1(a) shows the Raman spectrum of the graphene oxide membrane, which was excited by a 514 nm Ar ion laser. The Raman spectrum reveals two prominent features of graphene oxide at 1347 cm 1 and 1593 cm 1, which are assigned to D and G bands, respectively. The D band is from the structural imperfections created by the attachment of hydroxyl and epoxide groups on the carbon basal plane. The G band corresponds to ordered sp 2 bonded carbon [29]. According to the reports in [6] and [10], there was an obvious band around 2700 cm 1 named 2D band in the Raman spectrum of graphene, which is considered as an evident feature of graphene material. In Fig. 1(a), the 2D band was hardly observed, which indicates there was no graphene on GOSAM. Figure 1(b) shows the measured reflection of GOSAM at different incident power using a probe laser with ~600 fs pulse width at 38 MHz repetition rate. This source was achieved by a SESAM mode-locked erbium-doped fiber laser and 10% of the output beam was used to monitor the input power, while the 90% was used to pump the GOSAM. The modulation depth of GOSAM was ~2.6% at 1558 nm. The insert loss of GOSAM and three-port circulator was ~60.5% in total, shown in Fig. 1(b). The loss of the three-port circulator measured to be ~30%, so the non-saturable loss of the GOSAM was ~30.5%. The saturable incident power was ~0.7 mw, corresponding to saturation intensity of ~60 MW/cm 2. In [10], Sun et al. inserted graphene membrane between two FC/APC fiber connectors to generate mode-locked pulses. In this way, the modulation depth was measured to be 1.3%, the nonsaturable loss was 34.3% and the saturation intensity was 266 MW/cm 2. (C) 2012 OSA 2 July 2012 / Vol. 20, No. 14 / OPTICS EXPRESS 15476

4 Fig. 1. (a) Raman spectrum of graphene oxide. (b) Saturable absorption of graphene oxide. 3. Experimental results and discussions 3.1 Graphene oxide mode-locked fiber laser in anomalous dispersion cavity The experimental configuration of femtosecond graphene oxide mode-locked erbium-doped fiber laser is shown schematically in Fig. 2. The ring cavity included a piece of 1 m erbiumdoped fiber and ~6.8 m single mode fiber. The cavity length was around 7.8 m, and the net dispersion was estimated to be 0.14 ps 2. The erbium-doped fiber with ~7 db/m absorption was core pumped by a diode laser with a center wavelength of 974 nm and a maximum output power of 600 mw. An optical circulator was used to incorporate the graphene oxide saturable absorber mirror (GOSAM) into the cavity. The fiber of circulator 2nd-port was perpendicularly cleaved and butted to the GOSAM. A 30% fiber coupler was used to output the signal. An optical spectrum analyzer (Yokogawa, AQ6370), a 7.5GHz radio-frequency analyzer (Agilent N900A-507), and a 25 GHz real-time oscilloscope (Agilent DSO- X92504A) with a 25 GHz photo-detector were employed to monitor the laser output simultaneously. Fig. 2. Schematic setup of the graphene oxide mode-locked erbium-doped fiber laser. WDM: wavelength division multiplexer; SMF: single mode fiber; GOSAM: graphene oxide saturable absorber mirror. When the diode pump power increased to 33 mw, the self-started mode-locking occurred. Figure 3(a) shows a typical pulse train at repetition rate of 25.6 MHz, which corresponds to the total cavity length of ~7.8 m. The spectral FWHM of 5.4 nm was centered at nm, measured by an optical spectral analyzer with resolution of 0.02 nm (Fig. 3(b)). Figure 3(c) shows a typical autocorrelation trace, which is well fitted by a sech 2 temporal profile, resulting in pulse duration of ~600 fs. The time-bandwidth product (TBP) was at fundamental soliton-like operation, conformed by the clearly visible Kelly sidebands of optical spectrum [30]. The maximum output power was 3.3 mw at 98 mw pump power, corresponding to single pulse energy of 0.13 nj and peak power of 220 W. Further increase of the pump power, the wave breaking occurred. Eventually, harmonic mode-locking with two times of the fundamental frequency was also observed. The radio-frequency spectrum (Fig. 3(d)) shows its fundamental peak located at the cavity repetition rate of 25.6 MHz, with a signal-to-noise ratio of 50 db, indicating good mode-locking stability. To verify that the mode locking resulted from the graphene oxide, we purposely used a broadband mirror to replace the GOSAM from the cavity and then no mode locking was observed. In this work, the stability performance of the fiber laser was monitored for 8 hours. (C) 2012 OSA 2 July 2012 / Vol. 20, No. 14 / OPTICS EXPRESS 15477

5 Fig. 3. Characterization of graphene oxide mode-locked fiber laser in anomalous dispersion cavity: (a) Stable pulse train at 25.6 MHz repetition rate. (b) Optical spectrum. (c). 600 fs pulse width. (d) Frequency spectrum. 3.2 Graphene oxide mode-locked fiber laser in near zero dispersion cavity According to the dispersion management theory, shorter pulses can be achieved by adjusting the lengths of erbium-doped fiber and single mode fiber to give near zero round trip group velocity dispersion. In this experiment, we increased the length of erbium-doped fiber with GVD parameter of 11.7 (ps/nm/km) from 1 m to 3 m, in order to compensate the negative dispersion of single mode fiber. The single mode fiber length was optimized to be 5.7 m to get stable pulse trains, and the total dispersion was calculated to be ps 2, which was closer to zero than 0.14 ps 2 in last work. Meanwhile, a 70% fiber coupler was used to increase the output power. The stable mode-locking occurred at 27 mw pump power. Figure 4(a) shows a typical pulse train at repetition rate of 22.9 MHz, Fig. 4(c) shows the 200 fs pulse width under sech 2 assumption, and Fig. 4(b) shows the optical spectrum centered at 1560 nm. The central wavelength had a slightly red shift, which means the gain of the whole cavity was increased. The gain caused by longer erbium-doped fiber overweighed the loss of a coupler with higher output radio. There was an obvious continuous wave component (the narrow peak at the center of the spectrum) existing, which was caused by an insufficient modulation depth of GOSAM [31]. In [31], Gui et al. demonstrated the saturable absorber with larger modulation depth can suppress the continuous wave of mode-locked pulses. So we used a SESAM with 34% modulation depth in this cavity configuration and obtained ~200 fs pulse train without continuous wave component. That means if we can fabricate a larger modulation depth GOSAM, we can suppress the continuous wave component and the mode-locking stability will also greatly increased. Figure 4(d) shows the radio-frequency spectrum measured at a span of 4 khz and a resolution bandwidth of 10 Hz. The fundamental peak located at the cavity repetition rate of 22.9 MHz has a signal-to-noise ratio of 60 db. The maximum output power was 5.8 mw at 69 mw pump power. Further increase of the pump power, the pulse breaking occurred. (C) 2012 OSA 2 July 2012 / Vol. 20, No. 14 / OPTICS EXPRESS 15478

6 Fig. 4. Characterization of graphene oxide mode-locked fiber laser in near zero dispersion cavity: (a) Stable pulse train at 22.9 MHz repetition rate. (b) Optical spectrum. (c) 200 fs pulse width. (d) Frequency spectrum. In order to investigate the dependence of pulse width and net cavity dispersion, the length of single mode fiber was varied while the 3 m erbium-doped fiber maintained. Table 1 included six groups of data shows the relationship between cavity design and laser performance. When the net dispersion varied from ps 2 to 4.9 ps 2, we generated pulses with pulse width of 200 fs ~3 ps at repetition rate of 23 MHz ~930 khz. Table 1. Optical Parameter of Graphene Oxide Mode-locked Fiber Laser Cavity length (m) Total dispersion (ps 2 ) Frequency (MHz) Pulse width (ps) Compared with the reports [6,9], the mode-locking performance (such as stability, pulse width, spectrum shape) of the fiber lasers based on graphene oxide was as good as that of atomic-layer graphene. As we known, atomic-layer graphene has much better performance in mode-locking than multi-layer graphene because of larger modulation depth, but the current approaches cannot satisfy the large yields, layer controlled production of graphene. Monolayer graphene oxide can be easily peeled from graphite oxide by a simple ultrasonication process, and the oxygen groups attached on the graphene oxide nanosheet provide good hydrophilic properties, making it easy for large-scale production. By further optimization of the cavity design and improvement on the GOSAM, we could generate modelocked pulses with narrower pulse width and larger pulse energy. 4. Conclusion In summary, we have demonstrated femtosecond graphene oxide mode-locked erbium-doped fiber laser. With dispersion management, the total dispersion can be decreased to ps 2, where the pulse width was 200 fs at 22.9 MHz repetition rate and the average output power was 5.8 mw. With the variation of net cavity dispersion, output pulses with pulse width of 0.2~3 ps were obtained at a repetition rate of 22.9~0.93 MHz. The superiority of easy fabrication and strong solubility will facilitate potential applications of graphene oxide for ultrafast photonics. (C) 2012 OSA 2 July 2012 / Vol. 20, No. 14 / OPTICS EXPRESS 15479

7 Acknowledgment The authors acknowledge the financial support from the National Nature Science Foundation of China (NSFC, Nos ), the Beijing Municipal Education Commission (No. KZ ) and Beijing University of Technology, China. (C) 2012 OSA 2 July 2012 / Vol. 20, No. 14 / OPTICS EXPRESS 15480

Large energy mode locking of an erbium-doped fiber. laser with atomic layer graphene

Large energy mode locking of an erbium-doped fiber. laser with atomic layer graphene Large energy mode locking of an erbium-doped fiber laser with atomic layer graphene H. Zhang 1, D. Y. Tang 1 *, L. M. Zhao 1, Q. L. Bao 2, K. P. Loh 2 1 School of Electrical and Electronic Engineering,

More information

Femtosecond pulse generation from a Topological Insulator. mode-locked fiber laser

Femtosecond pulse generation from a Topological Insulator. mode-locked fiber laser Femtosecond pulse generation from a Topological Insulator mode-locked fiber laser Hao Liu, 1 Xu-Wu Zheng, 1 Meng Liu, 1 Nian Zhao, 1 Ai-Ping Luo, 1 Zhi-Chao Luo, 1,* Wen-Cheng Xu, 1,* Han Zhang, 2 Chu-Jun

More information

arxiv: v1 [physics.optics] 26 Mar 2010

arxiv: v1 [physics.optics] 26 Mar 2010 Laser Phys. Lett., No., () / DOI 10.1002/lapl. Letters 1 Abstract: Soliton operation and soliton wavelength tuning of erbium-doped fiber lasers mode locked with atomic layer graphene was experimentally

More information

Observation of spectral enhancement in a soliton fiber laser with fiber Bragg grating

Observation of spectral enhancement in a soliton fiber laser with fiber Bragg grating Observation of spectral enhancement in a soliton fiber laser with fiber Bragg grating L. M. Zhao 1*, C. Lu 1, H. Y. Tam 2, D. Y. Tang 3, L. Xia 3, and P. Shum 3 1 Department of Electronic and Information

More information

ULTRA-SHORT OPTICAL PULSE GENERATION WITH SINGLE-LAYER GRAPHENE

ULTRA-SHORT OPTICAL PULSE GENERATION WITH SINGLE-LAYER GRAPHENE Journal of Nonlinear Optical Physics & Materials Vol. 19, No. 4 (2010) 767 771 c World Scientific Publishing Company DOI: 10.1142/S021886351000573X ULTRA-SHORT OPTICAL PULSE GENERATION WITH SINGLE-LAYER

More information

Dark Soliton Fiber Laser

Dark Soliton Fiber Laser Dark Soliton Fiber Laser H. Zhang, D. Y. Tang*, L. M. Zhao, and X. Wu School of Electrical and Electronic Engineering, Nanyang Technological University, Singapore 639798 *: edytang@ntu.edu.sg, corresponding

More information

Compact graphene mode-locked wavelength-tunable erbium-doped fiber lasers: from all anomalous dispersion to all normal dispersion

Compact graphene mode-locked wavelength-tunable erbium-doped fiber lasers: from all anomalous dispersion to all normal dispersion Early View publication on www.interscience.wiley.com (issue and page numbers not yet assigned; citable using Digital Object Identifier DOI) Laser Phys. Lett., 1 6 (21) / DOI 1.12/lapl.21125 1 Abstract:

More information

Efficient Preparation of Large-Area Graphene Oxide Sheets for Transparent Conductive Films

Efficient Preparation of Large-Area Graphene Oxide Sheets for Transparent Conductive Films Supporting Information Efficient Preparation of Large-Area Graphene Oxide Sheets for Transparent Conductive Films Jinping Zhao, Songfeng Pei, Wencai Ren*, Libo Gao and Hui-Ming Cheng* Shenyang National

More information

Dissipative soliton resonance in an all-normaldispersion erbium-doped fiber laser

Dissipative soliton resonance in an all-normaldispersion erbium-doped fiber laser Dissipative soliton resonance in an all-normaldispersion erbium-doped fiber laser X. Wu, D. Y. Tang*, H. Zhang and L. M. Zhao School of Electrical and Electronic Engineering, Nanyang Technological University,

More information

GRAPHENE BASED SOLITON MODE-LOCKED ERBIUM DOPED FIBER LASER FOR SUPERCONTINUUM GENERATION

GRAPHENE BASED SOLITON MODE-LOCKED ERBIUM DOPED FIBER LASER FOR SUPERCONTINUUM GENERATION Digest Journal of Nanomaterials and Biostructures Vol. 13, No. 3, July - September 2018, p. 777-784 GRAPHENE BASED SOLITON MODE-LOCKED ERBIUM DOPED FIBER LASER FOR SUPERCONTINUUM GENERATION Y. I. HAMMADI

More information

Induced solitons formed by cross polarization coupling. in a birefringent cavity fiber laser

Induced solitons formed by cross polarization coupling. in a birefringent cavity fiber laser Induced solitons formed by cross polarization coupling in a birefringent cavity fiber laser H. Zhang, D. Y. Tang*, and L. M. Zhao School of Electrical and Electronic Engineering, Nanyang Technological

More information

*Corresponding author:

*Corresponding author: Large-energy, narrow-bandwidth laser pulse at 1645 nm in a diode-pumped Er:YAG solid-state laser passively Q-switched by a monolayer graphene saturable absorber Rong Zhou, 1 Pinghua Tang, 1 Yu Chen, 1

More information

Solvothermal Reduction of Chemically Exfoliated Graphene Sheets

Solvothermal Reduction of Chemically Exfoliated Graphene Sheets Solvothermal Reduction of Chemically Exfoliated Graphene Sheets Hailiang Wang, Joshua Tucker Robinson, Xiaolin Li, and Hongjie Dai* Department of Chemistry and Laboratory for Advanced Materials, Stanford

More information

Self-started unidirectional operation of a fiber ring soliton. laser without an isolator

Self-started unidirectional operation of a fiber ring soliton. laser without an isolator Self-started unidirectional operation of a fiber ring soliton laser without an isolator L. M. Zhao, D. Y. Tang, and T. H. Cheng School of Electrical and Electronic Engineering, Nanyang Technological University,

More information

Bound-soliton fiber laser

Bound-soliton fiber laser PHYSICAL REVIEW A, 66, 033806 2002 Bound-soliton fiber laser D. Y. Tang, B. Zhao, D. Y. Shen, and C. Lu School of Electrical and Electronic Engineering, Nanyang Technological University, Singapore W. S.

More information

High energy passively Q-switched Er-doped fiber laser based on Mo 0.5W 0.5S 2 saturable absorber

High energy passively Q-switched Er-doped fiber laser based on Mo 0.5W 0.5S 2 saturable absorber Vol. 8, No. 2 1 Feb 8 OPTICAL MATERIALS EXPRESS 324 High energy passively Q-switched Er-doped fiber laser based on Mo 0.W 0.S 2 saturable absorber JUNLI WANG,1,* CHENXI DOU,1 LEI CHEN,1 HAITING YAN,2 LINGJIE

More information

Graphene-based passively mode-locked bidirectional fiber ring laser

Graphene-based passively mode-locked bidirectional fiber ring laser Graphene-based passively mode-locked bidirectional fiber ring laser Venkatesh Mamidala, 1 R. I. Woodward, 2 Y. Yang, 1 H. H. Liu, 1 and K. K. Chow 1,* 1 School of Electrical and Electronic Engineering,

More information

Vector dark domain wall solitons in a fiber ring laser

Vector dark domain wall solitons in a fiber ring laser Vector dark domain wall solitons in a fiber ring laser H. Zhang, D. Y. Tang*, L. M. Zhao and R. J. Knize 1 School of Electrical and Electronic Engineering, Nanyang Technological University, Singapore 639798

More information

T wo-dimensional layered materials are considered as promising building blocks for the next-generation

T wo-dimensional layered materials are considered as promising building blocks for the next-generation OPEN SUBJECT AREAS: FIBRE LASERS MODE-LOCKED LASERS Received 12 May 2014 Accepted 15 August 2014 Published 12 September 2014 Ytterbium-doped fiber laser passively mode locked by few-layer Molybdenum Disulfide

More information

Bound states of gain-guided solitons in a passively modelocked

Bound states of gain-guided solitons in a passively modelocked Bound states of gain-guided solitons in a passively modelocked fiber laser L. M. Zhao, D. Y. Tang, and X. Wu School of Electrical and Electronic Engineering, Nanyang Technological University, Singapore

More information

Saturable absorbers incorporating carbon nanotubes directly synthesized onto substrates/fibers and their application to mode-locked fiber lasers

Saturable absorbers incorporating carbon nanotubes directly synthesized onto substrates/fibers and their application to mode-locked fiber lasers Saturable absorbers incorporating carbon nanotubes directly synthesized onto substrates/fibers and their application to mode-locked fiber lasers S. Yamashita (1), S. Maruyama (2), Y. Murakami (2), Y. Inoue

More information

Graphene Chemical Vapor Deposition (CVD) Growth

Graphene Chemical Vapor Deposition (CVD) Growth ECE440 Nanoelectronics Graphene Chemical Vapor Deposition (CVD) Growth Zheng Yang Timeline of graphene CVD growth Exfoliation

More information

Generation of dark solitons in erbium-doped fiber lasers based Sb 2 Te 3 saturable absorbers

Generation of dark solitons in erbium-doped fiber lasers based Sb 2 Te 3 saturable absorbers Generation of dark solitons in erbium-doped fiber lasers based Sb Te 3 saturable absorbers Wenjun Liu,, Lihui Pang, Hainian Han, Wenlong Tian, Hao Chen, 3 Ming Lei, Peiguang Yan, 3 and Zhiyi Wei,* State

More information

Graphene decorated microfiber for ultrafast optical modulation

Graphene decorated microfiber for ultrafast optical modulation Graphene decorated microfiber for ultrafast optical modulation Shaoliang Yu, 1 Chao Meng, 1 Bigeng Chen, 1 Hongqing Wang, 2 Xiaoqin Wu, 1 Weitao Liu, 2 Shangjian Zhang, 3 Yong Liu, 3 Yikai Su, 4 and Limin

More information

Nanocomposite photonic crystal devices

Nanocomposite photonic crystal devices Nanocomposite photonic crystal devices Xiaoyong Hu, Cuicui Lu, Yulan Fu, Yu Zhu, Yingbo Zhang, Hong Yang, Qihuang Gong Department of Physics, Peking University, Beijing, P. R. China Contents Motivation

More information

Graphene Based Saturable Absorber Modelockers at 2µm

Graphene Based Saturable Absorber Modelockers at 2µm ISLA Workshop Munich Integrated disruptive components for 2µm fibre Lasers ISLA Graphene Based Saturable Absorber Modelockers at 2µm Prof. Werner Blau - Trinity College Dublin Friday, 26th of June 2015

More information

Graphene Oxide vs. Reduced Graphene Oxide as saturable absorbers for Er-doped passively mode-locked fiber laser

Graphene Oxide vs. Reduced Graphene Oxide as saturable absorbers for Er-doped passively mode-locked fiber laser Graphene Oxide vs. Reduced Graphene Oxide as saturable absorbers for Er-doped passively mode-locked fiber laser Grzegorz Sobon, 1,* Jaroslaw Sotor, 1 Joanna Jagiello, 2 Rafal Kozinski, 2 Mariusz Zdrojek,

More information

Supplementary information

Supplementary information Supplementary information Preparation of Few-Layer Bismuth Selenide by Liquid-Phase-Exfoliation and Its Optical Absorption Properties Liping Sun 1, Zhiqin Lin 1, Jian Peng 1, Jian Weng 1,3 *, Yizhong Huang

More information

Graphene-Bi 2 Te 3 Heterostructure as Saturable Absorber for Short Pulse Generation

Graphene-Bi 2 Te 3 Heterostructure as Saturable Absorber for Short Pulse Generation Supporting Information Graphene-Bi 2 Te 3 Heterostructure as Saturable Absorber for Short Pulse Generation Haoran Mu,, Zhiteng Wang,, Jian Yuan,, Si Xiao, Caiyun Chen, Yu Chen, Yao Chen, Jingchao Song,Yusheng

More information

Controlling Graphene Ultrafast Hot Carrier Response from Metal-like. to Semiconductor-like by Electrostatic Gating

Controlling Graphene Ultrafast Hot Carrier Response from Metal-like. to Semiconductor-like by Electrostatic Gating Controlling Graphene Ultrafast Hot Carrier Response from Metal-like to Semiconductor-like by Electrostatic Gating S.-F. Shi, 1,2* T.-T. Tang, 1 B. Zeng, 1 L. Ju, 1 Q. Zhou, 1 A. Zettl, 1,2,3 F. Wang 1,2,3

More information

Alexander Gaeta Department of Applied Physics and Applied Mathematics Michal Lipson Department of Electrical Engineering

Alexander Gaeta Department of Applied Physics and Applied Mathematics Michal Lipson Department of Electrical Engineering Chip-Based Optical Frequency Combs Alexander Gaeta Department of Applied Physics and Applied Mathematics Michal Lipson Department of Electrical Engineering KISS Frequency Comb Workshop Cal Tech, Nov. 2-5,

More information

Group interactions of dissipative solitons in a laser cavity: the case of 2+1

Group interactions of dissipative solitons in a laser cavity: the case of 2+1 Group interactions of dissipative solitons in a laser cavity: the case of +1 Philippe Grelu and Nail Akhmediev * Laboratoire de Physique de l Université de Bourgogne, Unité Mixte de Recherche 507 du Centre

More information

Highly Efficient and Anomalous Charge Transfer in van der Waals Trilayer Semiconductors

Highly Efficient and Anomalous Charge Transfer in van der Waals Trilayer Semiconductors Highly Efficient and Anomalous Charge Transfer in van der Waals Trilayer Semiconductors Frank Ceballos 1, Ming-Gang Ju 2 Samuel D. Lane 1, Xiao Cheng Zeng 2 & Hui Zhao 1 1 Department of Physics and Astronomy,

More information

Wavelength Spacing Tunable, Multiwavelength Q-Switched Mode-Locked Laser Based on Graphene-Oxide-Deposited Tapered Fiber

Wavelength Spacing Tunable, Multiwavelength Q-Switched Mode-Locked Laser Based on Graphene-Oxide-Deposited Tapered Fiber > REPLACE THIS LINE WITH YOUR PAPER IDENTIFICATION NUMBER (DOUBLE-CLICK HERE TO EDIT) < 1 Wavelength Spacing Tunable, Multiwavelength Q-Switched Mode-Locked Laser Based on Graphene-Oxide-Deposited Tapered

More information

IN RECENT YEARS, Cr -doped crystals have attracted a

IN RECENT YEARS, Cr -doped crystals have attracted a 2286 IEEE JOURNAL OF QUANTUM ELECTRONICS, VOL. 33, NO. 12, DECEMBER 1997 Optimization of Cr -Doped Saturable-Absorber -Switched Lasers Xingyu Zhang, Shengzhi Zhao, Qingpu Wang, Qidi Zhang, Lianke Sun,

More information

Vector dark domain wall solitons in a fiber ring laser

Vector dark domain wall solitons in a fiber ring laser Vector dark domain wall solitons in a fiber ring laser H. Zhang, D. Y. Tang*, L. M. Zhao and R. J. Knize School of Electrical and Electronic Engineering, Nanyang Technological University, 639798 Singapore

More information

Group velocity locked vector dissipative solitons in a high repetition rate fiber laser

Group velocity locked vector dissipative solitons in a high repetition rate fiber laser Group velocity locked vector dissipative solitons in a high repetition rate fiber laser Yiyang Luo 1, Deming Liu 1, *, Lei Li 2, Qizhen Sun 1, *, Zhichao Wu 1, Zhilin Xu 1, Songnian Fu 1, and Luming Zhao

More information

Graphene mode-locked Cr:ZnS chirped-pulse oscillator

Graphene mode-locked Cr:ZnS chirped-pulse oscillator Graphene mode-locked Cr:ZnS chirped-pulse oscillator Nikolai Tolstik, 1,* Andreas Pospischil, 2 Evgeni Sorokin, 2 and Irina T. Sorokina 1 1 Department of Physics, Norwegian University of Science and Technology,

More information

This is an electronic reprint of the original article. This reprint may differ from the original in pagination and typographic detail.

This is an electronic reprint of the original article. This reprint may differ from the original in pagination and typographic detail. Powered by TCPDF (www.tcpdf.org) This is an electronic reprint of the original article. This reprint may differ from the original in pagination and typographic detail. Liu, Xueming; Han, Dongdong; Sun,

More information

Wavelength switchable flat-top all-fiber comb filter based on a double-loop Mach-Zehnder interferometer

Wavelength switchable flat-top all-fiber comb filter based on a double-loop Mach-Zehnder interferometer Wavelength switchable flat-top all-fiber comb filter based on a double-loop Mach-Zehnder interferometer Ai-Ping Luo, Zhi-Chao Luo,, Wen-Cheng Xu,, * and Hu Cui Laboratory of Photonic Information Technology,

More information

Towards low timing phase noise operation in fiber lasers mode locked by graphene oxide and carbon nanotubes at 1.5 µm

Towards low timing phase noise operation in fiber lasers mode locked by graphene oxide and carbon nanotubes at 1.5 µm Towards low timing phase noise operation in fiber lasers mode locked by graphene oxide and carbon nanotubes at 1.5 µm Kan Wu, 1,* Xiaohui Li, 2 Yonggang Wang, 3 Qi Jie Wang 2, Perry Ping Shum 2, and Jianping

More information

We are IntechOpen, the world s leading publisher of Open Access books Built by scientists, for scientists. International authors and editors

We are IntechOpen, the world s leading publisher of Open Access books Built by scientists, for scientists. International authors and editors We are IntechOpen, the world s leading publisher of Open Access books Built by scientists, for scientists 4,100 116,000 120M Open access books available International authors and editors Downloads Our

More information

A tunable corner-pumped Nd:YAG/YAG composite slab CW laser

A tunable corner-pumped Nd:YAG/YAG composite slab CW laser Chin. Phys. B Vol. 21, No. 1 (212) 1428 A tunable corner-pumped Nd:YAG/YAG composite slab CW laser Liu Huan( 刘欢 ) and Gong Ma-Li( 巩马理 ) State Key Laboratory of Tribology, Center for Photonics and Electronics,

More information

Application of high-precision temperature-controlled FBG f ilter and light source self-calibration technique in the BOTDR sensor system

Application of high-precision temperature-controlled FBG f ilter and light source self-calibration technique in the BOTDR sensor system Application of high-precision temperature-controlled FBG f ilter and light source self-calibration technique in the BOTDR sensor system Jiacheng Hu ( ) 1,2, Fuchang Chen ( ) 1,2, Chengtao Zhang ( ) 1,2,

More information

Graphene is known to exhibit a variety of exceptional

Graphene is known to exhibit a variety of exceptional pubs.acs.org/nanolett Terms of Use Ultrafast All-Optical Graphene Modulator Wei Li,, Bigeng Chen,, Chao Meng, Wei Fang, Yao Xiao, Xiyuan Li, Zhifang Hu, Yingxin Xu, Limin Tong,*, Hongqing Wang, Weitao

More information

Ultrafast Lateral Photo-Dember Effect in Graphene. Induced by Nonequilibrium Hot Carrier Dynamics

Ultrafast Lateral Photo-Dember Effect in Graphene. Induced by Nonequilibrium Hot Carrier Dynamics 1 Ultrafast Lateral Photo-Dember Effect in Graphene Induced by Nonequilibrium Hot Carrier Dynamics Chang-Hua Liu, You-Chia Chang, Seunghyun Lee, Yaozhong Zhang, Yafei Zhang, Theodore B. Norris,*,, and

More information

Supporting Information. 1T-Phase MoS 2 Nanosheets on TiO 2 Nanorod Arrays: 3D Photoanode with Extraordinary Catalytic Performance

Supporting Information. 1T-Phase MoS 2 Nanosheets on TiO 2 Nanorod Arrays: 3D Photoanode with Extraordinary Catalytic Performance Supporting Information 1T-Phase MoS 2 Nanosheets on Nanorod Arrays: 3D Photoanode with Extraordinary Catalytic Performance Yuxi Pi, Zhen Li, Danyun Xu, Jiapeng Liu, Yang Li, Fengbao Zhang, Guoliang Zhang,

More information

Fiber Gratings p. 1 Basic Concepts p. 1 Bragg Diffraction p. 2 Photosensitivity p. 3 Fabrication Techniques p. 4 Single-Beam Internal Technique p.

Fiber Gratings p. 1 Basic Concepts p. 1 Bragg Diffraction p. 2 Photosensitivity p. 3 Fabrication Techniques p. 4 Single-Beam Internal Technique p. Preface p. xiii Fiber Gratings p. 1 Basic Concepts p. 1 Bragg Diffraction p. 2 Photosensitivity p. 3 Fabrication Techniques p. 4 Single-Beam Internal Technique p. 4 Dual-Beam Holographic Technique p. 5

More information

Final Report for AOARD grant FA Measurement of the third-order nonlinear susceptibility of graphene and its derivatives

Final Report for AOARD grant FA Measurement of the third-order nonlinear susceptibility of graphene and its derivatives Final Report for AOARD grant FA2386-12-1-4095 Measurement of the third-order nonlinear susceptibility of graphene and its derivatives Principal investigator: A/Prof. Tang Dingyuan Division of Microelectronics

More information

Self-Phase Modulation in Optical Fiber Communications: Good or Bad?

Self-Phase Modulation in Optical Fiber Communications: Good or Bad? 1/100 Self-Phase Modulation in Optical Fiber Communications: Good or Bad? Govind P. Agrawal Institute of Optics University of Rochester Rochester, NY 14627 c 2007 G. P. Agrawal Outline Historical Introduction

More information

Supporting Information Available:

Supporting Information Available: Supporting Information Available: Photoresponsive and Gas Sensing Field-Effect Transistors based on Multilayer WS 2 Nanoflakes Nengjie Huo 1, Shengxue Yang 1, Zhongming Wei 2, Shu-Shen Li 1, Jian-Bai Xia

More information

No. 9 Experimental study on the chirped structure of the construct the early time spectra. [14;15] The prevailing account of the chirped struct

No. 9 Experimental study on the chirped structure of the construct the early time spectra. [14;15] The prevailing account of the chirped struct Vol 12 No 9, September 2003 cfl 2003 Chin. Phys. Soc. 1009-1963/2003/12(09)/0986-06 Chinese Physics and IOP Publishing Ltd Experimental study on the chirped structure of the white-light continuum generation

More information

Supporting Information. High-Performance Strain Sensors with Fish Scale-Like Graphene. Sensing Layers for Full-Range Detection of Human Motions

Supporting Information. High-Performance Strain Sensors with Fish Scale-Like Graphene. Sensing Layers for Full-Range Detection of Human Motions Supporting Information High-Performance Strain Sensors with Fish Scale-Like Graphene Sensing Layers for Full-Range Detection of Human Motions Qiang Liu, Ji Chen, Yingru Li, and Gaoquan Shi* Department

More information

Highly Nonlinear Fibers and Their Applications

Highly Nonlinear Fibers and Their Applications 1/32 Highly Nonlinear Fibers and Their Applications Govind P. Agrawal Institute of Optics University of Rochester Rochester, NY 14627 c 2007 G. P. Agrawal Introduction Many nonlinear effects inside optical

More information

Performance Limits of Delay Lines Based on "Slow" Light. Robert W. Boyd

Performance Limits of Delay Lines Based on Slow Light. Robert W. Boyd Performance Limits of Delay Lines Based on "Slow" Light Robert W. Boyd Institute of Optics and Department of Physics and Astronomy University of Rochester Representing the DARPA Slow-Light-in-Fibers Team:

More information

Supporting Information

Supporting Information Supporting Information Fe 3 O 4 @Carbon Nanosheets for All-Solid-State Supercapacitor Electrodes Huailin Fan, Ruiting Niu, & Jiaqi Duan, Wei Liu and Wenzhong Shen * State Key Laboratory of Coal Conversion,

More information

Strongly enhanced negative dispersion from thermal lensing or other focusing effects in femtosecond laser cavities

Strongly enhanced negative dispersion from thermal lensing or other focusing effects in femtosecond laser cavities 646 J. Opt. Soc. Am. B/ Vol. 17, No. 4/ April 2000 Paschotta et al. Strongly enhanced negative dispersion from thermal lensing or other focusing effects in femtosecond laser cavities R. Paschotta, J. Aus

More information

TRANSVERSE SPIN TRANSPORT IN GRAPHENE

TRANSVERSE SPIN TRANSPORT IN GRAPHENE International Journal of Modern Physics B Vol. 23, Nos. 12 & 13 (2009) 2641 2646 World Scientific Publishing Company TRANSVERSE SPIN TRANSPORT IN GRAPHENE TARIQ M. G. MOHIUDDIN, A. A. ZHUKOV, D. C. ELIAS,

More information

Supplementary Information. Experimental Evidence of Exciton Capture by Mid-Gap Defects in CVD. Grown Monolayer MoSe2

Supplementary Information. Experimental Evidence of Exciton Capture by Mid-Gap Defects in CVD. Grown Monolayer MoSe2 Supplementary Information Experimental Evidence of Exciton Capture by Mid-Gap Defects in CVD Grown Monolayer MoSe2 Ke Chen 1, Rudresh Ghosh 2,3, Xianghai Meng 1, Anupam Roy 2,3, Joon-Seok Kim 2,3, Feng

More information

International Conference on Information Sciences, Machinery, Materials and Energy (ICISMME 2015)

International Conference on Information Sciences, Machinery, Materials and Energy (ICISMME 2015) International Conference on Information Sciences, Machinery, Materials and Energy (ICISMME 2015) Numerical modelling the ultra-broadband mid-infrared supercontinuum generation in the As2Se3 photonic crystal

More information

Dark Pulse Emission of a Fiber Laser

Dark Pulse Emission of a Fiber Laser Dark Pulse Emission of a Fiber Laser H. Zhang, D. Y. Tang*, L. M. Zhao, and X. Wu School of Electrical and Electronic Engineering, Nanyang Technological University, Singapore 639798 *: edytang@ntu.edu.sg,

More information

Optical solitons and its applications

Optical solitons and its applications Physics 568 (Nonlinear optics) 04/30/007 Final report Optical solitons and its applications 04/30/007 1 1 Introduction to optical soliton. (temporal soliton) The optical pulses which propagate in the lossless

More information

Time resolved optical spectroscopy methods for organic photovoltaics. Enrico Da Como. Department of Physics, University of Bath

Time resolved optical spectroscopy methods for organic photovoltaics. Enrico Da Como. Department of Physics, University of Bath Time resolved optical spectroscopy methods for organic photovoltaics Enrico Da Como Department of Physics, University of Bath Outline Introduction Why do we need time resolved spectroscopy in OPV? Short

More information

photonic crystals School of Space Science and Physics, Shandong University at Weihai, Weihai , China

photonic crystals School of Space Science and Physics, Shandong University at Weihai, Weihai , China Enhanced absorption in heterostructures with graphene and truncated photonic crystals Yiping Liu 1, Lei Du 1, Yunyun Dai 2, Yuyu Xia 2, Guiqiang Du 1,* Guang Lu 1, Fen Liu 1, Lei Shi 2, Jian Zi 2 1 School

More information

Hydrothermally Activated Graphene Fiber Fabrics for Textile. Electrodes of Supercapacitors

Hydrothermally Activated Graphene Fiber Fabrics for Textile. Electrodes of Supercapacitors Supporting Information for Hydrothermally Activated Graphene Fiber Fabrics for Textile Electrodes of Supercapacitors Zheng Li, Tieqi Huang, Weiwei Gao*, Zhen Xu, Dan Chang, Chunxiao Zhang, and Chao Gao*

More information

Linearly Polarized 1180-nm Raman Fiber Laser Mode Locked by Graphene

Linearly Polarized 1180-nm Raman Fiber Laser Mode Locked by Graphene Mode Locked by Graphene Volume 4, Number 5, October 2012 Lei Zhang Gaozhong Wang Jinmeng Hu Jianhua Wang Jintai Fan Jun Wang Yan Feng DOI: 10.1109/JPHOT.2012.2218231 1943-0655/$31.00 2012 IEEE Linearly

More information

Final report for AOARD grant FA Mode locking of lasers with atomic layer graphene. July 2012

Final report for AOARD grant FA Mode locking of lasers with atomic layer graphene. July 2012 Final report for AOARD grant FA2386-11-1-4010 Mode locking of lasers with atomic layer graphene July 2012 Principal investigator: A/Prof. Tang Dingyuan Division of Microelectronics School of Electrical

More information

Raman spectroscopy at the edges of multilayer graphene

Raman spectroscopy at the edges of multilayer graphene Raman spectroscopy at the edges of multilayer graphene Q. -Q. Li, X. Zhang, W. -P. Han, Y. Lu, W. Shi, J. -B. Wu, P. -H. Tan* State Key Laboratory of Superlattices and Microstructures, Institute of Semiconductors,

More information

Design of Seven-core Photonic Crystal Fiber with Flat In-phase Mode for Yb: Fiber Laser Pumping

Design of Seven-core Photonic Crystal Fiber with Flat In-phase Mode for Yb: Fiber Laser Pumping Optics and Photonics Journal, 2013, 3, 197-201 doi:10.4236/opj.2013.32b047 Published Online June 2013 (http://www.scirp.org/journal/opj) Design of Seven-core Photonic Crystal Fiber with Flat In-phase Mode

More information

THEORETICAL INVESTIGATION OF SATURABLE ABSORPTION IN GRAPHENE

THEORETICAL INVESTIGATION OF SATURABLE ABSORPTION IN GRAPHENE THEORETICAL INVESTIGATION OF SATURABLE ABSORPTION IN GRAPHENE WANG QIAN NATIONAL UNIVERSITY OF SINGAPORE 2012 THEORETICAL INVESTIGATION OF SATURABLE ABSORPTION IN GRAPHENE WANG QIAN (B.Sc, SHANDONG UNIV)

More information

Supplementary Information

Supplementary Information Supplementary Information Plasma-assisted reduction of graphene oxide at low temperature and atmospheric pressure for flexible conductor applications Seung Whan Lee 1, Cecilia Mattevi 2, Manish Chhowalla

More information

Tuning the nonlinear optical absorption of reduced graphene oxide by chemical reduction

Tuning the nonlinear optical absorption of reduced graphene oxide by chemical reduction Tuning the nonlinear optical absorption of reduced graphene oxide by chemical reduction Hongfei Shi, 1 Can Wang, 1,* Zhipei Sun, 2 Yueliang Zhou, 1 Kuijuan Jin, 1,3,5 Simon A. T. Redfern, 4 and Guozhen

More information

Dmitriy Churin. Designing high power single frequency fiber lasers

Dmitriy Churin. Designing high power single frequency fiber lasers Dmitriy Churin Tutorial for: Designing high power single frequency fiber lasers Single frequency lasers with narrow linewidth have long coherence length and this is an essential property for many applications

More information

1 Mathematical description of ultrashort laser pulses

1 Mathematical description of ultrashort laser pulses 1 Mathematical description of ultrashort laser pulses 1.1 We first perform the Fourier transform directly on the Gaussian electric field: E(ω) = F[E(t)] = A 0 e 4 ln ( t T FWHM ) e i(ω 0t+ϕ CE ) e iωt

More information

by applying two pairs of confocal cylindrical lenses

by applying two pairs of confocal cylindrical lenses Title:Design of optical circulators with a small-aperture Faraday rotator by applying two pairs of confocal Author(s): Yung Hsu Class: 2nd year of Department of Photonics Student ID: M0100579 Course: Master

More information

Synthesis and Characterization of Graphene by Raman Spectroscopy

Synthesis and Characterization of Graphene by Raman Spectroscopy Journal of Materials Sciences and Applications 2015; 1(3): 130-135 Published online June 20, 2015 (http://www.aascit.org/journal/jmsa) Synthesis and Characterization of Graphene by Raman Spectroscopy Hilal

More information

Supporting Information for

Supporting Information for Supporting Information for Multilayer CuO@NiO Hollow Spheres: Microwave-Assisted Metal-Organic-Framework Derivation and Highly Reversible Structure-Matched Stepwise Lithium Storage Wenxiang Guo, Weiwei

More information

Nonlinear transmission of CO 2 laser radiation by graphene

Nonlinear transmission of CO 2 laser radiation by graphene Quantum Electronics 42 (10) 907 912 (2012) 2012 Kvantovaya Elektronika and Turpion Ltd PACS numbers: 81.05.ue; 78.67.Wj; 42.55.Lt; 42.65. k DOI: 10.1070/QE2012v042n10ABEH014924 Nonlinear transmission of

More information

Nanotube and graphene saturable absorbers for fibre lasers

Nanotube and graphene saturable absorbers for fibre lasers COMMENTARY FOCUS Nanotube and graphene saturable absorbers for fibre lasers Amos Martinez and Zhipei Sun Nanotubes and graphene have emerged as promising materials for use in ultrafast fibre lasers. Their

More information

Ho:YLF pumped HBr laser

Ho:YLF pumped HBr laser Ho:YLF pumped HBr laser L R Botha, 1,2,* C Bollig, 1 M J D Esser, 1 R N Campbell 4, C Jacobs 1,3 and D R Preussler 1 1 National Laser Centre, CSIR, Pretoria, South Africa 2 Laser Research Institute, Department

More information

The near-infrared spectra and distribution of excited states of electrodeless discharge rubidium vapour lamps

The near-infrared spectra and distribution of excited states of electrodeless discharge rubidium vapour lamps The near-infrared spectra and distribution of excited states of electrodeless discharge rubidium vapour lamps Sun Qin-Qing( ) a)b), Miao Xin-Yu( ) a), Sheng Rong-Wu( ) c), and Chen Jing-Biao( ) a)b) a)

More information

Molecular Dynamics Study of the Effect of Chemical Functionalization on the Elastic Properties of Graphene Sheets

Molecular Dynamics Study of the Effect of Chemical Functionalization on the Elastic Properties of Graphene Sheets Copyright 21 American Scientific Publishers All rights reserved Printed in the United States of America Journal of Nanoscience and Nanotechnology Vol. 1, 1 5, 21 Molecular Dynamics Study of the Effect

More information

Atomic filter based on stimulated Raman transition at the rubidium D1 line

Atomic filter based on stimulated Raman transition at the rubidium D1 line Atomic filter based on stimulated Raman transition at the rubidium D1 line Xiuchao Zhao, 1, Xianping Sun, 1,3 Maohua Zhu, 1 Xiaofei Wang, 1, Chaohui Ye, 1 and Xin Zhou 1,* 1 State Key Laboratory of Magnetic

More information

Computational Study of Amplitude-to-Phase Conversion in a Modified Unitraveling Carrier Photodetector

Computational Study of Amplitude-to-Phase Conversion in a Modified Unitraveling Carrier Photodetector Computational Study of Amplitude-to-Phase Conversion in a Modified Unitraveling Carrier Photodetector Volume 9, Number 2, April 2017 Open Access Yue Hu, Student Member, IEEE Curtis R. Menyuk, Fellow, IEEE

More information

Theoretical Study on Graphene Silicon Heterojunction Solar Cell

Theoretical Study on Graphene Silicon Heterojunction Solar Cell Copyright 2015 American Scientific Publishers All rights reserved Printed in the United States of America Journal of Nanoelectronics and Optoelectronics Vol. 10, 1 5, 2015 Theoretical Study on Graphene

More information

Graphene oxide hydrogel at solid/liquid interface

Graphene oxide hydrogel at solid/liquid interface Electronic Supplementary Information Graphene oxide hydrogel at solid/liquid interface Jiao-Jing Shao, Si-Da Wu, Shao-Bo Zhang, Wei Lv, Fang-Yuan Su and Quan-Hong Yang * Key Laboratory for Green Chemical

More information

SUPPLEMENTARY INFORMATION. Observation of tunable electrical bandgap in large-area twisted bilayer graphene synthesized by chemical vapor deposition

SUPPLEMENTARY INFORMATION. Observation of tunable electrical bandgap in large-area twisted bilayer graphene synthesized by chemical vapor deposition SUPPLEMENTARY INFORMATION Observation of tunable electrical bandgap in large-area twisted bilayer graphene synthesized by chemical vapor deposition Jing-Bo Liu 1 *, Ping-Jian Li 1 *, Yuan-Fu Chen 1, Ze-Gao

More information

Nonlinear Optics (WiSe 2016/17) Lecture 9: December 16, 2016 Continue 9 Optical Parametric Amplifiers and Oscillators

Nonlinear Optics (WiSe 2016/17) Lecture 9: December 16, 2016 Continue 9 Optical Parametric Amplifiers and Oscillators Nonlinear Optics (WiSe 2016/17) Lecture 9: December 16, 2016 Continue 9 Optical Parametric Amplifiers and Oscillators 9.10 Passive CEP-stabilization in parametric amplifiers 9.10.1 Active versus passive

More information

A new method of growing graphene on Cu by hydrogen etching

A new method of growing graphene on Cu by hydrogen etching A new method of growing graphene on Cu by hydrogen etching Linjie zhan version 6, 2015.05.12--2015.05.24 CVD graphene Hydrogen etching Anisotropic Copper-catalyzed Highly anisotropic hydrogen etching method

More information

Tunneling characteristics of graphene

Tunneling characteristics of graphene Tunneling characteristics of graphene Young Jun Shin, 1,2 Gopinadhan Kalon, 1,2 Jaesung Son, 1 Jae Hyun Kwon, 1,2 Jing Niu, 1 Charanjit S. Bhatia, 1 Gengchiau Liang, 1 and Hyunsoo Yang 1,2,a) 1 Department

More information

Enhanced photocurrent of ZnO nanorods array sensitized with graphene. quantum dots

Enhanced photocurrent of ZnO nanorods array sensitized with graphene. quantum dots Electronic Supplementary Material (ESI) for RSC Advances. This journal is The Royal Society of Chemistry 2015 Enhanced photocurrent of ZnO nanorods array sensitized with graphene quantum dots Bingjun Yang,

More information

Efficient Inorganic Perovskite Light-Emitting Diodes with Polyethylene Glycol Passivated Ultrathin CsPbBr 3 Films

Efficient Inorganic Perovskite Light-Emitting Diodes with Polyethylene Glycol Passivated Ultrathin CsPbBr 3 Films Supporting information Efficient Inorganic Perovskite Light-Emitting Diodes with Polyethylene Glycol Passivated Ultrathin CsPbBr 3 Films Li Song,, Xiaoyang Guo, *, Yongsheng Hu, Ying Lv, Jie Lin, Zheqin

More information

Graphene Size-dependent Modulation of Graphene Framework Contributing to Superior. Thermal Conductivity of Epoxy Composite

Graphene Size-dependent Modulation of Graphene Framework Contributing to Superior. Thermal Conductivity of Epoxy Composite Electronic Supplementary Material (ESI) for Journal of Materials Chemistry A. This journal is The Royal Society of Chemistry 2018 Graphene Size-dependent Modulation of Graphene Framework Contributing to

More information

Fiber-Optics Group Highlights of Micronova Department of Electrical and Communications Engineering Helsinki University of Technology

Fiber-Optics Group Highlights of Micronova Department of Electrical and Communications Engineering Helsinki University of Technology Highlights of 2004 Micronova Department of Electrical and Communications Engineering Micronova Seminar 3 December 2004 Group Leader: Hanne Ludvigsen Postdoctoral researcher: Goëry Genty Postgraduate students:

More information

Group-velocity-locked vector soliton molecules in a birefringence-enhanced fiber laser

Group-velocity-locked vector soliton molecules in a birefringence-enhanced fiber laser Group-velocity-locked vector soliton molecules in a birefringence-enhanced fiber laser Yiyang Luo 1, 2, Jianwei Cheng 2, Bowen Liu 2, Qizhen Sun 2, Lei Li 1, Songnian Fu 2, Dingyuan Tang 1, Luming Zhao

More information

Raman Imaging and Electronic Properties of Graphene

Raman Imaging and Electronic Properties of Graphene Raman Imaging and Electronic Properties of Graphene F. Molitor, D. Graf, C. Stampfer, T. Ihn, and K. Ensslin Laboratory for Solid State Physics, ETH Zurich, 8093 Zurich, Switzerland ensslin@phys.ethz.ch

More information

Observation of white-light amplified spontaneous emission from carbon nanodots under laser excitation

Observation of white-light amplified spontaneous emission from carbon nanodots under laser excitation Observation of white-light amplified spontaneous emission from carbon nanodots under laser excitation Wen Fei Zhang, Li Bin Tang, Siu Fung Yu,* and Shu Ping Lau Department of Applied Physics, The Hong

More information

Effect of cross-phase modulation on supercontinuum generated in microstructured fibers with sub-30 fs pulses

Effect of cross-phase modulation on supercontinuum generated in microstructured fibers with sub-30 fs pulses Effect of cross-phase modulation on supercontinuum generated in microstructured fibers with sub-30 fs pulses G. Genty, M. Lehtonen, and H. Ludvigsen Fiber-Optics Group, Department of Electrical and Communications

More information

Initial Hydrogen-Bonding Dynamics of. Photoexcited Coumarin in Solution with. Femtosecond Stimulated Raman Spectroscopy

Initial Hydrogen-Bonding Dynamics of. Photoexcited Coumarin in Solution with. Femtosecond Stimulated Raman Spectroscopy Electronic Supplementary Material (ESI) for Journal of Materials Chemistry C. This journal is The Royal Society of Chemistry 2015 Electronic Supplementary Information (ESI) for: Initial Hydrogen-Bonding

More information

Multi-cycle THz pulse generation in poled lithium niobate crystals

Multi-cycle THz pulse generation in poled lithium niobate crystals Laser Focus World April 2005 issue (pp. 67-72). Multi-cycle THz pulse generation in poled lithium niobate crystals Yun-Shik Lee and Theodore B. Norris Yun-Shik Lee is an assistant professor of physics

More information