Improved Soil-Water Characteristic Curves and Permeability Functions for Unsaturated Soils

Save this PDF as:
 WORD  PNG  TXT  JPG

Size: px
Start display at page:

Download "Improved Soil-Water Characteristic Curves and Permeability Functions for Unsaturated Soils"

Transcription

1 Ipovd SoilWat haactitic uv ad Pailit Fuctio fo Uatuatd Soil Shada H. Kihapillai, Nadaajah Ravichada ivil Egiig Dpatt lo Uivit, lo, S, USA ABSTRAT Soilwat chaactitic cuv (SW) which pt th oituuctio latio of oil i o of th ipotat cotitutiv odl dd to iulat th havio of uatuatd oil. A ffctiv SW odl hould capal of calculatig th oituuctio vaiatio fo th ti ag of dg of atuatio. Applicailit of popula SW odl uch a Book ad o, va Gucht, ad Fdlud ad Xig i liitd, pciall i low (<2%) dg of atuatio ag. I thi tud, all th odl a odifid, o that th odl ca ffctivl ud i ti ag of dg of atuatio. Th Fdlud t al (994) pailit fuctio i alo odifid ad o th odifid Fdlud ad Xig SW odl. Th applicailit of th ipovd odl i ivtigatd caliatig th SW of vaiou tp of oil ad ptd i thi pap. Bad o thi tud it ca cocludd that th odifid odl a flxil ough to fit th xpital data fo th ti ag of dg of atuatio. RÉSUMÉ olau cou caactéitiqu d qui pét l d'huidité t d'apiatio latio d t l'u d odèl ipotat écai pou iul l copott d ol o atué. U odèl fficac dvait êt capal d calcul la vaiatio d l'huidité d'apiatio da tout l ga dgé d atuatio. L'applicailité d olau cou caactéitiqu odèl tl qu Book t o (B), va Gucht (vg), t Fdlud t Xig (FX) t liité, paticuli da la fouchtt d dgé d atuatio fail. Da ctt étud, tou c odèl ot odifié ou aélioé, d ot qu c odèl puvt êt utilié tout l ga dgé d atuatio. L Fdlud t al foctio d péailité t égalt odifié u l aélioé odèl. L'applicailité d odèl aélioé d'u quêt appofodi t caliat l cou caactéitiqu olau d div tp d ol t pété da l pét l papi. Baé u ctt étud, o put coclu qu l odèl odifié ot uffiat oupl pou 'adapt aux doé xpéital pou da tout l ga du dgé d atuatio. INTRODUTION Th Soil Wat haactitic uv (SW) i a latiohip tw th aout of wat pt i th oil (oitu) ad th uctio chaactitic of th oil atix. Th aout of wat pt i th oil ca xpd i t of dg of atuatio (S), volutic wat cott (ϴ), o gavitic wat cott (u). Ma ach hav idtifid th facto which ifluc th hap of th SW ad ad o that, a athatical SW odl w dvlopd. Gad (956), Book ad o (964), va Gucht (9), Kougi (994), ad Fdlud ad Xig (994) a o of th odl foud i th litatu. All th odl cofi a iv popotioal latiohip tw S ad uctio (ψ). Thi ca xplaid with th fudatal icu tho a follow. Wh th S ica, th adiu (R ) of th icu will ica. Wh R ica, th pu diffc tw th po ai pu ad th po wat pu (uctio) will dca ( Eq. ). g l 2T = p p [] R wh ψ i th uctio, p g i po ga pu, p l i po liquid pu, ad T i ufac tio. Th ait uctio that i alo kow a ulig pu ad po iz ditiutio a two aic paat icopoatd i ot of th SW odl. I odl uch a Book ad o (B), va Gucht (vg), ad Fdlud ad Xig (FX), th two paat a ptd a ad, pctivl. Th Book ad o odl (Eq. 2) i o of th aic SW odl dvlopd with two paat. Thi odl do ot povid a cotiuou athatical fuctio fo th ti ag of S. if ψ a / a if ψ a wh a ad a th fittig paat. Th paat a i latd to th ait uctio of th oil ad th i latd to th po iz ditiutio of th oil. ψ i uctio, θ i volutic wat cott, θ i idual wat cott, ad θ i atuatd wat cott. Th vg odl (Eq. 3) povid a igl quatio fo th ti ag of S. Thi odl ha a additioal fittig paat, th akig thi odl o flxil copad to th B odl. [3] ( a ) wh th fittig paat i latd to idual wat cott. All th oth paat a a a i th B odl. Th FX odl i ptd i Eq. 4. Th ailit of thi odl to pdict th SW fo ti ag of S i [2]

2 coidd a th ajo advatag of thi odl. Th F X odl au a axiu uctio of,, kpa at d coditio, whil th B ad th vg odl au ifiit valu of axiu uctio. Th FX odl i ath iila to th vg odl oth tha th coctio facto ( ) ad lt i th quatio. Th lt i v ffctiv i kpig th SW without achig zo oalizd wat cott i low uctio ag, pciall fo ad oil. Fdlud ad Xig (994) hav alo uggtd aoth fo of th odl (Eq. 5) which ca ud if a idual wat cott i kow. ( ) l ( ψ / a) = l ( ψ / a) ( ψ) l ( ψ ) 6 l ( ) wh i a paat latd to idual wat cott ad oth paat a a a i th vg odl. Th popti which affct th oil wat chaactitic cuv alo affct th pailit cofficit of po fluid i uatuatd oil. Thfo, SW ca ffctivl ud to calculat pailituctio latio, which i cool fd a pailit fuctio. Bad o FX SW odl, a pailit fuctio (Eq. 6) i popod Fdlud t al. (994). K l l av wh ψ i uctio, K (ψ) i th lativ pailit at uctio ψ, ψ av i th ait uctio, i a du vaial of itgatio, = l(l,,), θ i volutic wat cott giv i Eq. 4 ad θ i it divativ. a,, ad a fittig paat of th FX odl (Eq. 4). Th B, vg, ad FX odl a ig widl ud to calculat th oituuctio latio of uatuatd oil. Fo th B ad vg odl, a idual wat cott valu ha to pcifid. Howv th two odl calculat ualitic uctio wh th oalizd wat cott i zo o l, i.. wat cott of th oil i l tha o qual to th idual wat cott. I th FX odl, th axiu uctio i aud to,, kpa. Although th a thodaic cocpt to ack up thi axiu uctio, it i a coc to u a fixd valu fo all tp of oil. I additio, wh d d [4] [5] [6] th actual axiu uctio i low, uag of uch lag axiu uctio valu ight ov pdict ha tgth i uical iulatio. Siila to th B ad vg odl, th cod fo of th FX odl (Eq. 5) alo calculat a ualitic uctio wh th oalizd wat cott i zo o l. Thfo, to avoid a ualitic uctio valu at zo oalizd wat cott, th axiu uctio valu hould pcifid v with a idual wat cott pcifid. I additio, th fouth odl paat i th FX odl i cho fo a wid ag ( to,, kpa) ad it cat difficulti i achivig a uiqu t of caliatd odl paat. Alo, th affct th iitial potio of th cuv wh th valu of i lativl low ad it i coidd a aoth diadvatag (Log ad Rahadjo, 997). Th pia ojctiv of thi tud i to ica th flxiilit of th B ad vg odl o that th odl ca pdict alitic high uctio i low dg of atuatio without cauig uical itailiti i fiit lt iulatio. It i v challgig to odl th oil havio fo a full d coditio to a full atuatd coditio uig a igl full coupld fiit lt coput cod. Th cut tat of th at uggt that th a th ajo difficulti i dvlopig uicall tal iulatio capailit. Th a: difficulti i dalig with ultipl odal/lt vaial i fiit lt foulatio of poou dia at th xt coditio, difficulti i dvlopig ttai havio with appopiat t tat vaial at th xt coditio, ad difficulti i accuatl calculatig th uctio ov th ti ag of dg of atuatio. Th odifid odl ca icopoatd i fiit lt iulatio without itoducig uical itailiti ai fo SW. I thi tud, th B ad vg odl a odifid icopoatig coctio facto. Alo, th coctio facto i th FX odl i odifid to avoid th ffct of additioal fittig paat. Icopoatig th axiu uctio a pat of th odl icad it flxiilit i fittig aud data of vaiou oil ov th full ag of S. All th odl a ipovd with th fatu to pcif oth idual wat cott ad axiu uctio valu. Th capailit of th ipovd odl i vifid atchig with th xpital data ad pdictio of oigial odl. Bad o th ipovd FX odl, th pailit fuctio popod Fdlud t al. (994) i odifid ad ptd. 2 IMPROVED SW MODELS AND OMPARISONS Although th a uou SW odl availal i th litatu, thi tud i itdd to ipov th popula B, vg, ad FX odl. Th B ad vg odl a odifid piail to ak u that th odl o log calculat high uctio wh th oalizd wat cott i zo o l. Ad alo th odifid odl hav th fatu to pcif oth idual wat cott ad axiu uctio valu. 2. Th Ipovd Book ad o (IB) Modl

3 Dg of atuatio (%) Dg of atuatio (%) Dg of atuatio (%) Dg of atuatio (%) Th ipovd Book ad o (IB) odl i giv i Equatio 7. To pv th advatag of th B odl, o additioal fittig paat i itoducd. Ev though th axiu uctio ψ ax i icopoatd i th quatio, it caot coidd to a fittig paat, a th hap of th SW caot chagd adjutig th ψ ax. Th IB odl do ot povid a cotiuou athatical fuctio fo th ti ag of S. / a if if ψ ψ a ax wh ψ ax i axiu uctio ad oth paat a a a i th B odl. 2.. opaio of th B ad th IB Modl apailit of th ipovd B (IB) odl i pdictig th oituuctio latio i ivtigatd ad copad with th B odl fo fou difft oil. Th copaio of B ad IB Modl fo oluia ad loa (data Book & o 964) i how i Figu. Th Figu 2 ad 3 how th copaio fo Madid cla ad ad Aligto oil, pctivl. Th Figu 4 how th copaio fo Idia had till (data Vaapalli t al. 999). It hould otd that th xpital SW data a ot availal fo th full ag of S (%). Bad o th xpital data, th axiu uctio of,, kpa i cho fo all fou oil. Th idual wat cott i aud to zo fo all fou oil. A how i th figu, th IB odl i capal of calculatig th oituuctio latio fo full ag of S, wha th B odl i ot ffctiv. Th B, IB odl a ot ffctiv fo ad oil ad it i vidtl how i Figu a th odl faild to kp th SW without achig zo oalizd wat cott i low uctio ag a B IB oluia ad loa B (a = 5 kpa, =.8) IB (a = 5 kpa, =.8) [7] Figu. B ad IB SW fo oluia ad loa 4 2 B IB B (a = 32 kpa, =.3) IB (a = 32 kpa, =.3) Madid cla ad Figu 2. B ad IB SW fo Madid cla ad 4 2 B IB B (a = 68 kpa, =.5) IB (a = 68 kpa, =.45) Aligto oil Figu 3. B ad IB SW fo Aligto oil 4 2 B IB B (a = 23 kpa, =.23) IB (a = 22 kpa, =.25) Idia had till Figu 4. B ad IB SW fo Idia had till 2.2 Th Ipovd va Gucht (IvG) Modl Th ipovd va Gucht (IvG) odl i giv i Equatio 8. Sic th paat a i latd to th ait uctio, th odl i vid o that th paat a ha th uit of uctio. Th IvG odl i dvlopd with th fatu to pcif oth idual wat cott ad axiu uctio valu with o additioal fittig paat.

4 Dg of atuatio (%) Dg of atuatio (%) Dg of atuatio (%) Dg of atuatio (%) a [8] Aligto oil vg IvG ax wh ψ ax i axiu uctio ad oth paat a a a i th vg odl Pdictiv apailit of th IvG Modl apailit of th ipovd vg (I vg) odl i pdictig th oituuctio latio i ptd fo oluia ad loa, Madid cla ad, Aligto oil, ad Idia had till i figu 5 though 8, pctivl. Siila to th IB odl, axiu uctio of,, kpa ad idual wat cott of zo a ud fo all fou oil. A how i figu 5 though 8, th IvG odl i capal of calculatig th oituuctio latio fo full ag of S, wha th vg odl i ot ffctiv. A how i Figu 5, th vg, IvG odl a alo ot uital fo ad oil a th odl alo faild to kp th SW without achig zo oalizd wat cott i low uctio ag Figu 5. vg ad IvG SW fo oluia ad loa oluia ad loa vg IvG vg (a =.8 kpa, =, =.) vg IvG IvG (a = 6 kpa, =, =.) vg (a =.3 kpa, = 2.85, =.) IvG (a = 33 kpa, = 2.9, =.5) Madid cla ad Figu 6. vg ad IvG SW fo Madid cla ad 4 2 vg (a =.2 kpa, = 2., =.77) IvG (a = 85 kpa, = 2, =.77) Figu 7. vg ad IvG SW fo Aligto oil Idia had till vg IvG 4 vg (a =.3 kpa, =., =.23) 2 IvG (a = 37 kpa, =., =.2) Figu 8. vg ad IvG SW fo Idia had till 2.3 Th Ipovd Fdlud ad Xig (IFX) Modl Th ipovd Fdlud ad Xig (IFX) odl i giv i Equatio 9. Th IFX odl i dvlopd with th fatu to pcif oth idual wat cott ad axiu uctio valu without th paat, i.. with ol th fittig paat. Thfo, th ffct of i th iitial potio of th FX odl (Log ad Rahadjo, 997) i avoidd i th IFX odl. ( ) = l a ax wh all th paat a a a i th IvG odl Pdictiv apailit of th IFX Modl Th pdictiv capailit of th IFX odl i pdictig th oituuctio latio i ptd i figu 9 though 2. Siila to th IB, IvG odl,,, kpa axiu uctio ad zo idual wat cott.5 [9]

5 Dg of atuatio (%) Dg of atuatio (%) Dg of atuatio (%) Dg of atuatio (%) a ud. It ca otd that th IFX odl i alo ffctiv i full ag of S. Howv th IFX odl ca coidd tt a it ha ol th fittig paat, wha th FX odl ha fou. FX IFX FX (a = 6.2 kpa, = 8.5, 4 =.49, = 4 kpa) IFX (a = 6.2 kpa, = 8.5, 2 =.5) oluia ad loa Figu 9. FX ad IFX SW fo oluia ad loa 4 2 FX IFX Madid cla ad FX (a = kpa, =.8, =.64, = 4 kpa) IFX (a = 64 kpa, =.6, =.7) Figu. FX ad IFX SW fo Madid cla ad Aligto oil FX IFX 4 FX (a =.25 kpa, =.6, 2 =.3, = 4 kpa) IFX (a = kpa, =.3, =.43) Figu. FX ad IFX SW fo Aligto oil 4 Idia Had till FX (a = 3 kpa, =, =.46, = 3 kpa) FX IFX 2 IFX (a = 575 kpa, =.95, =.72) Figu 2. FX ad IFX SW fo Idia had till 3 MODIFIED PERMEABILITY FUNTION AND OMPARISONS Bad o FX SW odl, a pailit fuctio i popod Fdlud t al. (994) ad it i ig widl ud. Thfo, it i ipotat to odif th Fdlud t al pailit fuctio (FAll odl) ad o th IFX SW odl. Th FAll odl i odifid ad o th IFX SW odl, ad ptd a IFAll odl i Equatio. Th ol diffc tw th FAll ad I FAll odl, i th coctio facto ( ψ ). K l l av Th fuctio ad a giv ( ψ) l ( ψ / a) ax ad.5 d d [] wh ax i axiu uctio ad oth paat a a a i th FAll odl. 3. Pdictiv apailit of th IFAll Modl Th pailit cofficit of wat i fou difft oil a pdictd with FAll ad IFAll odl ad ptd i Figu 3 though 6. Figu 3 illutat th pdictio fo Suptitio ad ad th copaio with xpital data (fo Richad, 952). A how i Figu 3, th FAll ad IFAll odl how tt atch with th xpital data. Howv, cau of

6 Rlativ pailit Rlativ pailit Rlativ pailit Rlativ pailit th lack of xpital data, th accuac of th two odl i th high uctio ag could ot vifid. Th Figu 4 how th copaio of pdictd ult ad xpital data fo oluia ad loa (xpital data fo Book & o 964). Siila to th Suptitio ad, th pdictio of FAll ad IFAll odl atch wll with th xpital data i th low uctio ag. A how i Figu 5, iila pdictio a otaid fo th Toucht ilt loa (xpital data fo Book & o, 964). Figu 6 how th pdictio ad copaio fo Yolo light cla (data fo Moo 939). A how th, th diffc tw th xpital data ad th pdictio of FAll ad IFAll odl ica a th uctio ica. I additio, th pdictio of FAll odl lightl dviat fo th pdictio of IFAll odl at high uctio ag FAll IFAll FX (a = 2.6 kpa = 9 =.46 = 3 kpa) IFX (a = 2.6 kpa = 9 =.46) 2 3 Figu 3. FAll ad IFAll odl fo Suptitio ad FX (a = 6.2 kpa = 8.5 =.49 = 4 kpa) IFX (a = 6.2 kpa = 8.5 =.5) FAll IFAll 2 3 Figu 4. FAll ad IFAll odl fo oluia ad loa FX (a = 8.4 kpa = =.5 = 3 kpa) IFX (a = 8.4 kpa = =.5) FAll IFAll 2 3 Figu 5. FAll ad IFAll odl fo Toucht ilt loa FX (a = 2.9 kpa =.9 =.4 = kpa) IFX (a = 2.9 kpa =.9 =.4) FAll IFAll 2 3 Figu 6. FAll ad IFAll odl fo Yolo light cla 4 ONLUSION Th Book ad o, va Gucht, ad Fdlud & Xig odl a odifid to captu th high uctio at low dg of atuatio. Both axiu uctio ad idual wat cott ca ud a iput i th odifid odl. Sic th i o data availal to vif it capailit i high uctio ag, th flxiilit of th odifid odl ha vifid fittig xpital data fo fou difft oil i high uctio ag ad th pdictio fo oigial odl. REFERENES Book R.H., o A.T Hdaulic popti of poou dia. Hdolog Pap, oloado Stat Uivit. Fot olli, 27(3). Fdlud D.G., Xig A Equatio fo th oilwat chaactitic cuv. aadia Gotchical Joua, 3: Fdlud D.G., Xig A., Huag S Pdictig th pailit fuctio fo uatuatd oil uig th oilwat chaactitic cuv. aadia Gotchical Joual, 3: Kougi, K Th paat logoal ditiutio odl fo oil wat ttio. Wat Rouc Rach, 3: 899. Log, E.., ad Rahadjo, H Rviw of oilwat chaactitic cuv quatio. Joual of Gotchical ad Goviotal Egiig, 23:67. Moo R.E Wat coductio fo hallow wat tal. Hilgadia, 2: Richad L.A Wat coductig ad taiig popti of oil i latio to iigatio. Pocdig, Itatioal Spoiu o Dt Rach, Jual, va Gucht M.Th. 9. A clod fo quatio fo pdictig th hdaulic coductivit of uatuatd oil. Soil Scic Socit of Aica Joual, 44: Vaapalli, S. K., Pufahl, D. E., ad Fdlud, D. G Th ifluc of oil tuctu ad t hito o th oilwat chaactitic of a copactd till. Gotchiqu, 49(2): 4359.

Galaxy Photometry. Recalling the relationship between flux and luminosity, Flux = brightness becomes

Galaxy Photometry. Recalling the relationship between flux and luminosity, Flux = brightness becomes Galaxy Photomty Fo galaxis, w masu a sufac flux, that is, th couts i ach pixl. Though calibatio, this is covtd to flux dsity i Jaskys ( Jy -6 W/m/Hz). Fo a galaxy at som distac, d, a pixl of sid D subtds

More information

( ) L = D e. e e. Example:

( ) L = D e. e e. Example: xapl: A Si p juctio diod av acoss sctioal aa of, a accpto coctatio of 5 0 8 c -3 o t p-sid ad a doo coctatio of 0 6 c -3 o t -sid. T lif ti of ols i -gio is 47 s ad t lif ti of lctos i t p-gio is 5 s.

More information

Explicit scheme. Fully implicit scheme Notes. Fully implicit scheme Notes. Fully implicit scheme Notes. Notes

Explicit scheme. Fully implicit scheme Notes. Fully implicit scheme Notes. Fully implicit scheme Notes. Notes Explicit cheme So far coidered a fully explicit cheme to umerically olve the diffuio equatio: T + = ( )T + (T+ + T ) () with = κ ( x) Oly table for < / Thi cheme i ometime referred to a FTCS (forward time

More information

(( ) ( ) ( ) ( ) ( 1 2 ( ) ( ) ( ) ( ) Two Stage Cluster Sampling and Random Effects Ed Stanek

(( ) ( ) ( ) ( ) ( 1 2 ( ) ( ) ( ) ( ) Two Stage Cluster Sampling and Random Effects Ed Stanek Two ag ampling and andom ffct 8- Two Stag Clu Sampling and Random Effct Ed Stank FTE POPULATO Fam Labl Expctd Rpon Rpon otation and tminology Expctd Rpon: y = and fo ach ; t = Rpon: k = y + Wk k = indx

More information

Control Systems. Lecture 8 Root Locus. Root Locus. Plant. Controller. Sensor

Control Systems. Lecture 8 Root Locus. Root Locus. Plant. Controller. Sensor Cotol Syt ctu 8 Root ocu Clacal Cotol Pof. Eugo Schut hgh Uvty Root ocu Cotoll Plat R E C U Y - H C D So Y C C R C H Wtg th loo ga a w a ttd tackg th clod-loo ol a ga va Clacal Cotol Pof. Eugo Schut hgh

More information

STA 4032 Final Exam Formula Sheet

STA 4032 Final Exam Formula Sheet Chapter 2. Probability STA 4032 Fial Eam Formula Sheet Some Baic Probability Formula: (1) P (A B) = P (A) + P (B) P (A B). (2) P (A ) = 1 P (A) ( A i the complemet of A). (3) If S i a fiite ample pace

More information

u t u 0 ( 7) Intuitively, the maximum principles can be explained by the following observation. Recall

u t u 0 ( 7) Intuitively, the maximum principles can be explained by the following observation. Recall Oct. Heat Equatio M aximum priciple I thi lecture we will dicu the maximum priciple ad uiquee of olutio for the heat equatio.. Maximum priciple. The heat equatio alo ejoy maximum priciple a the Laplace

More information

A L A BA M A L A W R E V IE W

A L A BA M A L A W R E V IE W A L A BA M A L A W R E V IE W Volume 52 Fall 2000 Number 1 B E F O R E D I S A B I L I T Y C I V I L R I G HT S : C I V I L W A R P E N S I O N S A N D TH E P O L I T I C S O F D I S A B I L I T Y I N

More information

Digital Signal Processing, Fall 2006

Digital Signal Processing, Fall 2006 Digital Sigal Procssig, Fall 6 Lctur 9: Th Discrt Fourir Trasfor Zhg-Hua Ta Dpartt of Elctroic Systs Aalborg Uivrsity, Dar zt@o.aau.d Digital Sigal Procssig, I, Zhg-Hua Ta, 6 Cours at a glac MM Discrt-ti

More information

Lecture 7 Diffusion. Our fluid equations that we developed before are: v t v mn t

Lecture 7 Diffusion. Our fluid equations that we developed before are: v t v mn t Cla ot fo EE6318/Phy 6383 Spg 001 Th doumt fo tutoal u oly ad may ot b opd o dtbutd outd of EE6318/Phy 6383 tu 7 Dffuo Ou flud quato that w dvlopd bfo a: f ( )+ v v m + v v M m v f P+ q E+ v B 13 1 4 34

More information

Tidal forces. m r. m 1 m 2. x r 2. r 1

Tidal forces. m r. m 1 m 2. x r 2. r 1 Tidal foces Befoe we look at fee waves on the eath, let s fist exaine one class of otion that is diectly foced: astonoic tides. Hee we will biefly conside soe of the tidal geneating foces fo -body systes.

More information

The Performance of Feedback Control Systems

The Performance of Feedback Control Systems The Performace of Feedbac Cotrol Sytem Objective:. Secify the meaure of erformace time-domai the firt te i the deig roce Percet overhoot / Settlig time T / Time to rie / Steady-tate error e. ut igal uch

More information

International Symposium on Room Acoustics Satellite Symposium of the 19 th International Congress on Acoustics Seville, September 2007

International Symposium on Room Acoustics Satellite Symposium of the 19 th International Congress on Acoustics Seville, September 2007 Itatioal Sypoiu o Roo Acoutic Satllit Sypoiu of th 9 th Itatioal Cog o Acoutic Svill, - Sptb 7 A THEORETICA AAYSIS OF UTI-ODA BASS-TRAPPIG RESOATORS COUPED TO COTRO-ROO ACOUSTICS PACS: 43.55.C Atu, Joé

More information

Test 2 phy a) How is the velocity of a particle defined? b) What is an inertial reference frame? c) Describe friction.

Test 2 phy a) How is the velocity of a particle defined? b) What is an inertial reference frame? c) Describe friction. Tet phy 40 1. a) How i the velocity of a paticle defined? b) What i an inetial efeence fae? c) Decibe fiction. phyic dealt otly with falling bodie. d) Copae the acceleation of a paticle in efeence fae

More information

Two-Dimensional Modeling of Thermoelectric Cells

Two-Dimensional Modeling of Thermoelectric Cells udu Uivit udu -ub Itatioal Rfigatio ad i Coditioig Cofc School of Mchaical Egiig 2014 o-dimioal Modlig of hmolctic Cll Klaudio S. M. Olivia UFR, Bazil, klaudio@uol.com.b Rodigo. Cadoo UFR, Bazil, odigo.pito@ufp.b

More information

State space systems analysis

State space systems analysis State pace ytem aalyi Repreetatio of a ytem i tate-pace (tate-pace model of a ytem To itroduce the tate pace formalim let u tart with a eample i which the ytem i dicuio i a imple electrical circuit with

More information

Conditional Convergence of Infinite Products

Conditional Convergence of Infinite Products Coditioal Covegece of Ifiite Poducts William F. Tech Ameica Mathematical Mothly 106 1999), 646-651 I this aticle we evisit the classical subject of ifiite poducts. Fo stadad defiitios ad theoems o this

More information

ON THE RELIABILITY OF DATA OBTAINED BY KRIGING

ON THE RELIABILITY OF DATA OBTAINED BY KRIGING Buhad Schaffi ON HE RELIABILIY OF AA OBAINE BY RIGING Buhad SHAFFRIN patmt of ivil ad Eviomtal Egiig ad Godtic Scic h Ohio Stat Uivit olumbu OH 43 USA Schaffi@oudu Woig Goup I/4 EY WORS Outli ttig liabilit

More information

Previous knowlegde required. Spherical harmonics and some of their properties. Angular momentum. References. Angular momentum operators

Previous knowlegde required. Spherical harmonics and some of their properties. Angular momentum. References. Angular momentum operators // vious owg ui phica haoics a so o thi poptis Goup thoy Quatu chaics pctoscopy H. Haga 8 phica haoics Rcs Bia. iv «Iucib Tso thos A Itouctio o chists» Acaic ss D.A. c Quai.D. io «hii hysiu Appoch oécuai»

More information

Three Phase Asymmetrical Load Flow for Four-Wire Distribution Networks

Three Phase Asymmetrical Load Flow for Four-Wire Distribution Networks T Aytl Lo Flow o Fou-W Dtuto Ntwo M. Mo *, A. M. Dy. M. A Dtt o Eltl E, A Uvty o Toloy Hz Av., T 59, I * El: o8@yoo.o Att-- Mjoty o tuto two ul u to ul lo, yty to l two l ut. T tt o tuto yt ult y o ovt

More information

JANE PROFESSOR WW Prob Lib1 Summer 2000

JANE PROFESSOR WW Prob Lib1 Summer 2000 JANE PROFESSOR WW Prob Lib Summer 000 Sample WeBWorK problems. WeBWorK assigmet Series6CompTests due /6/06 at :00 AM..( pt) Test each of the followig series for covergece by either the Compariso Test or

More information

The Non-homogeneous Diffusion Equation

The Non-homogeneous Diffusion Equation The No-hoogeeous Diffusio Equatio The o-hoogeeous diffusio equatio, with sources, has the geeral for, 2 r,t a 2 r,t Fr,t t a 2 is real ad The hoogeeous diffusio equatio, 2 r,t a 2 t r,t ca be solved by

More information

GRAVITATION 4) R. max. 2 ..(1) ...(2)

GRAVITATION 4) R. max. 2 ..(1) ...(2) GAVITATION PVIOUS AMCT QUSTIONS NGINING. A body is pojctd vtically upwads fom th sufac of th ath with a vlocity qual to half th scap vlocity. If is th adius of th ath, maximum hight attaind by th body

More information

Stochastic Heating in RF capacitive discharges

Stochastic Heating in RF capacitive discharges Stochatic Hating in RF capacitiv dicharg PTSG Sminar Emi Kawamura Thr ar two main mchanim for hating lctron in RF capacitiv dicharg: ohmic and tochatic hating. Plama ritivity du to lctron-nutral colliion

More information

Lecture 6 Chi Square Distribution (χ 2 ) and Least Squares Fitting

Lecture 6 Chi Square Distribution (χ 2 ) and Least Squares Fitting Lecture 6 Chi Square Distributio (χ ) ad Least Squares Fittig Chi Square Distributio (χ ) Suppose: We have a set of measuremets {x 1, x, x }. We kow the true value of each x i (x t1, x t, x t ). We would

More information

Relation of Finite Mellin Integral Transform. with Laplace and Fourier Transforms

Relation of Finite Mellin Integral Transform. with Laplace and Fourier Transforms Cotmpo Egiig Si Vol. 4 o. 6 69-88 Rltio o Fiit Mlli Itgl Tom with Lpl d Foui Tom S. M. Khi R. M. Pi* d J. N. Sluk** Dptmt o Mthmti Mhht Adm o Egiig Aldi-45Pu Idi mkhi7@gmil.om *Dptmt o Mthmti (A.S.&H.

More information

User s Guide. Electronic Crossover Network. XM66 Variable Frequency. XM9 24 db/octave. XM16 48 db/octave. XM44 24/48 db/octave. XM26 24 db/octave Tube

User s Guide. Electronic Crossover Network. XM66 Variable Frequency. XM9 24 db/octave. XM16 48 db/octave. XM44 24/48 db/octave. XM26 24 db/octave Tube U Guid Elctnic Cv Ntwk XM66 Vaiabl Fquncy XM9 24 db/ctav XM16 48 db/ctav XM44 24/48 db/ctav XM26 24 db/ctav Tub XM46 24 db/ctav Paiv Lin Lvl XM126 24 db/ctav Tub Machand Elctnic Inc. Rcht, NY (585) 423

More information

Aakash. For Class XII Studying / Passed Students. Physics, Chemistry & Mathematics

Aakash. For Class XII Studying / Passed Students. Physics, Chemistry & Mathematics Aakash A UNIQUE PPRTUNITY T HELP YU FULFIL YUR DREAMS Fo Class XII Studying / Passd Studnts Physics, Chmisty & Mathmatics Rgistd ffic: Aakash Tow, 8, Pusa Road, Nw Dlhi-0005. Ph.: (0) 4763456 Fax: (0)

More information

Fourier Series and the Wave Equation

Fourier Series and the Wave Equation Fourier Series ad the Wave Equatio We start with the oe-dimesioal wave equatio u u =, x u(, t) = u(, t) =, ux (,) = f( x), u ( x,) = This represets a vibratig strig, where u is the displacemet of the strig

More information

Signal Processing in Mechatronics. Lecture 3, Convolution, Fourier Series and Fourier Transform

Signal Processing in Mechatronics. Lecture 3, Convolution, Fourier Series and Fourier Transform Sigal Processig i Mechatroics Summer semester, 1 Lecture 3, Covolutio, Fourier Series ad Fourier rasform Dr. Zhu K.P. AIS, UM 1 1. Covolutio Covolutio Descriptio of LI Systems he mai premise is that the

More information

Force & Motion: Newton s Laws

Force & Motion: Newton s Laws oce & otion: Newton Law ( t Law) If no net foce act on a body then the body velocity cannot change. Zeo net foce implie zeo acceleation. The ma of an object detemine how difficult it i to change the object

More information

Physics 111 Lecture 5 Circular Motion

Physics 111 Lecture 5 Circular Motion Physics 111 Lectue 5 Cicula Motion D. Ali ÖVGÜN EMU Physics Depatment www.aovgun.com Multiple Objects q A block of mass m1 on a ough, hoizontal suface is connected to a ball of mass m by a lightweight

More information

Do not turn over until you are told to do so by the Invigilator.

Do not turn over until you are told to do so by the Invigilator. UNIVERSITY OF EAST ANGLIA School of Mathematics Main Seies UG Examination 2015 16 FLUID DYNAMICS WITH ADVANCED TOPICS MTH-MD59 Time allowed: 3 Hous Attempt QUESTIONS 1 and 2, and THREE othe questions.

More information

A) is empty. B) is a finite set. C) can be a countably infinite set. D) can be an uncountable set.

A) is empty. B) is a finite set. C) can be a countably infinite set. D) can be an uncountable set. M.A./M.Sc. (Mathematics) Etrace Examiatio 016-17 Max Time: hours Max Marks: 150 Istructios: There are 50 questios. Every questio has four choices of which exactly oe is correct. For correct aswer, 3 marks

More information

Definition of z-transform.

Definition of z-transform. - Trasforms Frequecy domai represetatios of discretetime sigals ad LTI discrete-time systems are made possible with the use of DTFT. However ot all discrete-time sigals e.g. uit step sequece are guarateed

More information

Most text will write ordinary derivatives using either Leibniz notation 2 3. y + 5y= e and y y. xx tt t

Most text will write ordinary derivatives using either Leibniz notation 2 3. y + 5y= e and y y. xx tt t Itroductio to Differetial Equatios Defiitios ad Termiolog Differetial Equatio: A equatio cotaiig the derivatives of oe or more depedet variables, with respect to oe or more idepedet variables, is said

More information

The Structure of Z p when p is Prime

The Structure of Z p when p is Prime LECTURE 13 The Structure of Z p whe p is Prime Theorem 131 If p > 1 is a iteger, the the followig properties are equivalet (1) p is prime (2) For ay [0] p i Z p, the equatio X = [1] p has a solutio i Z

More information

LECTURE 14. m 1 m 2 b) Based on the second law of Newton Figure 1 similarly F21 m2 c) Based on the third law of Newton F 12

LECTURE 14. m 1 m 2 b) Based on the second law of Newton Figure 1 similarly F21 m2 c) Based on the third law of Newton F 12 CTU 4 ] NWTON W O GVITY -The gavity law i foulated fo two point paticle with ae and at a ditance between the. Hee ae the fou tep that bing to univeal law of gavitation dicoveed by NWTON. a Baed on expeiental

More information

Solid state physics. Lecture 3: chemical bonding. Prof. Dr. U. Pietsch

Solid state physics. Lecture 3: chemical bonding. Prof. Dr. U. Pietsch Solid stat physics Lctu 3: chmical bonding Pof. D. U. Pitsch Elcton chag dnsity distibution fom -ay diffaction data F kp ik dk h k l i Fi H p H; H hkl V a h k l Elctonic chag dnsity of silicon Valnc chag

More information

VERIFICATION OF FRAME INDIFFERENCE FOR COMPLICATED NUMERICAL CONSTITUTIVE MODELS

VERIFICATION OF FRAME INDIFFERENCE FOR COMPLICATED NUMERICAL CONSTITUTIVE MODELS ECTC Pocdig ASME Ealy Ca Tchical Coc otd y ASME Ditict E ad ivity o Akaa Suppot Povidd y th ASME Old Guad ad th Committ o Ealy Ca Dvlopmt Mach -Apil,, Fayttvill, A VEIFICATION OF FAME INDIFFEENCE FO COMPLICATED

More information

Lecture 3.2: Cosets. Matthew Macauley. Department of Mathematical Sciences Clemson University

Lecture 3.2: Cosets. Matthew Macauley. Department of Mathematical Sciences Clemson University Lctu 3.2: Costs Matthw Macauly Dpatmnt o Mathmatical Scincs Clmson Univsity http://www.math.clmson.du/~macaul/ Math 4120, Modn Algba M. Macauly (Clmson) Lctu 3.2: Costs Math 4120, Modn Algba 1 / 11 Ovviw

More information

ECE 422 Power System Operations & Planning 6 Small Signal Stability. Spring 2015 Instructor: Kai Sun

ECE 422 Power System Operations & Planning 6 Small Signal Stability. Spring 2015 Instructor: Kai Sun ECE 4 Power Sytem Operatio & Plaig 6 Small Sigal Stability Sprig 15 Itructor: Kai Su 1 Referece Saadat Chapter 11.4 EPRI Tutorial Chapter 8 Power Ocillatio Kudur Chapter 1 Power Ocillatio The power ytem

More information

Then the number of elements of S of weight n is exactly the number of compositions of n into k parts.

Then the number of elements of S of weight n is exactly the number of compositions of n into k parts. Geneating Function In a geneal combinatoial poblem, we have a univee S of object, and we want to count the numbe of object with a cetain popety. Fo example, if S i the et of all gaph, we might want to

More information

Name: Math 10550, Final Exam: December 15, 2007

Name: Math 10550, Final Exam: December 15, 2007 Math 55, Fial Exam: December 5, 7 Name: Be sure that you have all pages of the test. No calculators are to be used. The exam lasts for two hours. Whe told to begi, remove this aswer sheet ad keep it uder

More information

Some Results of Weighted Norlund-Euler. Statistical Convergence

Some Results of Weighted Norlund-Euler. Statistical Convergence Itatioal athmatical Foum Vol. 8 3 o. 37 797-8 HIAI td www.m-hiai.com htt//d.doi.og/.988/im.3.39 Som ult o Wightd Nolud-Eul Statitical Covgc Em A. Aljimi Datmt o athmatic Uivity o iaa iaë Albaia mhalimii@yahoo.co.u

More information

Section 25 Describing Rotational Motion

Section 25 Describing Rotational Motion Section 25 Decibing Rotational Motion What do object do and wh do the do it? We have a ve thoough eplanation in tem of kinematic, foce, eneg and momentum. Thi include Newton thee law of motion and two

More information

Numerical Methods for PDEs

Numerical Methods for PDEs Numerical Methods for PDEs Hyperbolic PDEs: Coupled system/noliear coservatio laws/a oliear Lax-Wedroff scheme (Lecture 18, Week 6 Markus Schmuck Departmet of Mathematics ad Maxwell Istitute for Mathematical

More information

This Technical Note describes how the program calculates the moment capacity of a noncomposite steel beam, including a cover plate, if applicable.

This Technical Note describes how the program calculates the moment capacity of a noncomposite steel beam, including a cover plate, if applicable. COPUTERS AND STRUCTURES, INC., BERKEEY, CAIORNIA DECEBER 001 COPOSITE BEA DESIGN AISC-RD93 Techical te This Techical te descibes how the ogam calculates the momet caacit of a ocomosite steel beam, icludig

More information

Standard Potentials. Redox Reaction - the basics. Ch. 14 & 16 An Introduction to Electrochemistry & Redox Titrations. Standard Electrode Potentials

Standard Potentials. Redox Reaction - the basics. Ch. 14 & 16 An Introduction to Electrochemistry & Redox Titrations. Standard Electrode Potentials Red Reactio - the basics Ch. 4 & 6 Itroductio to lectrochemistry & Red Titratios Reduced Oxidizig get Reducig get Oxidized Red reactios: ivolve trasfer of electros from oe species to aother. Oxidizig

More information

K owi g yourself is the begi i g of all wisdo.

K owi g yourself is the begi i g of all wisdo. I t odu tio K owi g yourself is the begi i g of all wisdo. A istotle Why You Need Insight Whe is the last ti e ou a e e e taki g ti e to thi k a out ou life, ou alues, ou d ea s o ou pu pose i ei g o this

More information

Q Q N, V, e, Quantum Statistics for Ideal Gas and Black Body Radiation. The Canonical Ensemble

Q Q N, V, e, Quantum Statistics for Ideal Gas and Black Body Radiation. The Canonical Ensemble Quantum Statistics fo Idal Gas and Black Body Radiation Physics 436 Lctu #0 Th Canonical Ensmbl Ei Q Q N V p i 1 Q E i i Bos-Einstin Statistics Paticls with intg valu of spin... qi... q j...... q j...

More information

EECE 301 Signals & Systems

EECE 301 Signals & Systems EECE 301 Sigals & Systems Prof. Mark Fowler Note Set #8 D-T Covolutio: The Tool for Fidig the Zero-State Respose Readig Assigmet: Sectio 2.1-2.2 of Kame ad Heck 1/14 Course Flow Diagram The arrows here

More information

Fooling Newton s Method

Fooling Newton s Method Foolig Newto s Method You might thik that if the Newto sequece of a fuctio coverges to a umber, that the umber must be a zero of the fuctio. Let s look at the Newto iteratio ad see what might go wrog:

More information

Lecture 20 - Wave Propagation Response

Lecture 20 - Wave Propagation Response .09/.093 Fiite Eleet Aalysis of Solids & Fluids I Fall 09 Lecture 0 - Wave Propagatio Respose Prof. K. J. Bathe MIT OpeCourseWare Quiz #: Closed book, 6 pages of otes, o calculators. Covers all aterials

More information

Einstein Classes, Unit No. 102, 103, Vardhman Ring Road Plaza, Vikas Puri Extn., Outer Ring Road New Delhi , Ph. : ,

Einstein Classes, Unit No. 102, 103, Vardhman Ring Road Plaza, Vikas Puri Extn., Outer Ring Road New Delhi , Ph. : , MB BINOMIAL THEOREM Biomial Epessio : A algebaic epessio which cotais two dissimila tems is called biomial epessio Fo eample :,,, etc / ( ) Statemet of Biomial theoem : If, R ad N, the : ( + ) = a b +

More information

Mark Lundstrom Spring SOLUTIONS: ECE 305 Homework: Week 5. Mark Lundstrom Purdue University

Mark Lundstrom Spring SOLUTIONS: ECE 305 Homework: Week 5. Mark Lundstrom Purdue University Mark udstrom Sprig 2015 SOUTIONS: ECE 305 Homework: Week 5 Mark udstrom Purdue Uiversity The followig problems cocer the Miority Carrier Diffusio Equatio (MCDE) for electros: Δ t = D Δ + G For all the

More information

Continuous Random Variables: Conditioning, Expectation and Independence

Continuous Random Variables: Conditioning, Expectation and Independence Cotiuous Radom Variables: Coditioig, Expectatio ad Idepedece Berli Che Departmet o Computer ciece & Iormatio Egieerig Natioal Taiwa Normal Uiversit Reerece: - D.. Bertsekas, J. N. Tsitsiklis, Itroductio

More information

Instruction Execution

Instruction Execution MIPS Piplining Cpt280 D Cuti Nlon Intuction Excution C intuction: x = a + b; Ambly intuction: a a,b,x Stp 1: Stp 2: Stp 3: Stp : Stp 5: Stp 6: Ftch th intuction Dtmin it i an a intuction Ftch th ata a

More information

Introduction to Systems of Differential Equations

Introduction to Systems of Differential Equations Chapte 4 Intoduction to Systes of Diffeential Equations Poject 4.1 Keple's aws and Planetay Obits The Section 4.1 poject in the text stats with Newton's invese-squae law of gavitation and outlines a deivation

More information

A New Result On A,p n,δ k -Summabilty

A New Result On A,p n,δ k -Summabilty OSR Joual of Matheatics (OSR-JM) e-ssn: 2278-5728, p-ssn:239-765x. Volue 0, ssue Ve. V. (Feb. 204), PP 56-62 www.iosjouals.og A New Result O A,p,δ -Suabilty Ripeda Kua &Aditya Kua Raghuashi Depatet of

More information

Elementary Mechanics of Fluids

Elementary Mechanics of Fluids CE 39 F an McKinny Elmntay Mcanics o Flui Flow in Pis Rynol Eximnt Rynol Num amina low: Fluid movs in smoot stamlins Tuulnt low: iolnt mixin, luid vlocity at a oint vais andomly wit tim Tansition to tuulnc

More information

Zeroth moment of the Boltzmann Equation The Equation of Continuity (Particle conservation)

Zeroth moment of the Boltzmann Equation The Equation of Continuity (Particle conservation) Plasas as Fluids At this poit w d to us a ub of basi quatios that dsib plasas as fluids. Whil it is possibl to alulat ths quatios fo fist piipls, usig Maxwll s ltoagti fild quatios ad Maxwll s vloity distibutio

More information

Honors Classical Physics I

Honors Classical Physics I Hono Claical Phyic I PHY141 Lectue 9 Newton Law of Gavity Pleae et you Clicke Channel to 1 9/15/014 Lectue 9 1 Newton Law of Gavity Gavitational attaction i the foce that act between object that have a

More information

Perhaps the greatest success of his theory of gravity was to successfully explain the motion of the heavens planets, moons, &tc.

Perhaps the greatest success of his theory of gravity was to successfully explain the motion of the heavens planets, moons, &tc. AP Phyic Gavity Si Iaac Newton i cedited with the dicovey of gavity. Now, of coue we know that he didn t eally dicove the thing let face it, people knew about gavity fo a long a thee have been people.

More information

GUIDE FOR SUPERVISORS 1. This event runs most efficiently with two to four extra volunteers to help proctor students and grade the student

GUIDE FOR SUPERVISORS 1. This event runs most efficiently with two to four extra volunteers to help proctor students and grade the student GUIDE FOR SUPERVISORS 1. This vn uns mos fficinly wih wo o fou xa voluns o hlp poco sudns and gad h sudn scoshs. 2. EVENT PARAMETERS: Th vn supviso will povid scoshs. You will nd o bing a im, pns and pncils

More information

Solid State Device Fundamentals

Solid State Device Fundamentals 8 Biasd - Juctio Solid Stat Dvic Fudamtals 8. Biasd - Juctio ENS 345 Lctur Cours by Aladr M. Zaitsv aladr.zaitsv@csi.cuy.du Tl: 718 98 81 4N101b Dartmt of Egirig Scic ad Physics Biasig uiolar smicoductor

More information

PHYSICS 151 Notes for Online Lecture 2.3

PHYSICS 151 Notes for Online Lecture 2.3 PHYSICS 151 Note for Online Lecture.3 riction: The baic fact of acrocopic (everda) friction are: 1) rictional force depend on the two aterial that are liding pat each other. bo liding over a waed floor

More information

THE SOLUTION OF NONLINEAR EQUATIONS f( x ) = 0.

THE SOLUTION OF NONLINEAR EQUATIONS f( x ) = 0. THE SOLUTION OF NONLINEAR EQUATIONS f( ) = 0. Noliear Equatio Solvers Bracketig. Graphical. Aalytical Ope Methods Bisectio False Positio (Regula-Falsi) Fied poit iteratio Newto Raphso Secat The root of

More information

ChE 471 Lecture 10 Fall 2005 SAFE OPERATION OF TUBULAR (PFR) ADIABATIC REACTORS

ChE 471 Lecture 10 Fall 2005 SAFE OPERATION OF TUBULAR (PFR) ADIABATIC REACTORS SAFE OPERATION OF TUBULAR (PFR) ADIABATIC REACTORS I a exothermic reactio the temperature will cotiue to rise as oe moves alog a plug flow reactor util all of the limitig reactat is exhausted. Schematically

More information

Teaching Mathematics Concepts via Computer Algebra Systems

Teaching Mathematics Concepts via Computer Algebra Systems Iteratioal Joural of Mathematics ad Statistics Ivetio (IJMSI) E-ISSN: 4767 P-ISSN: - 4759 Volume 4 Issue 7 September. 6 PP-- Teachig Mathematics Cocepts via Computer Algebra Systems Osama Ajami Rashaw,

More information

2017 PRACTICE MIDTERM SOLUTIONS

2017 PRACTICE MIDTERM SOLUTIONS CSE303 2017 PRACTICE MIDTERM SOLUTIONS 1 YES/NO questios 1. For a biar relatio R A A, R exists. Justif: defiitio 2. For a biar relatio R A A, R 1 exists. Justif: The set R 1 = {(b, a) : (a, b) R} alwas

More information

MATH 10550, EXAM 3 SOLUTIONS

MATH 10550, EXAM 3 SOLUTIONS MATH 155, EXAM 3 SOLUTIONS 1. I fidig a approximate solutio to the equatio x 3 +x 4 = usig Newto s method with iitial approximatio x 1 = 1, what is x? Solutio. Recall that x +1 = x f(x ) f (x ). Hece,

More information

Implicit function theorem

Implicit function theorem Jovo Jaric Implicit fuctio theorem The reader kows that the equatio of a curve i the x - plae ca be expressed F x, =., this does ot ecessaril represet a fuctio. Take, for example F x, = 2x x =. (1 either

More information

Extinction Ratio and Power Penalty

Extinction Ratio and Power Penalty Application Not: HFAN-.. Rv.; 4/8 Extinction Ratio and ow nalty AVALABLE Backgound Extinction atio is an impotant paamt includd in th spcifications of most fib-optic tanscivs. h pupos of this application

More information

Physics 235 Final Examination December 4, 2006 Solutions

Physics 235 Final Examination December 4, 2006 Solutions Physics 35 Fi Emitio Decembe, 6 Soutios.. Fist coside the two u quks. They e idetic spi ½ ptices, so the tot spi c be eithe o. The Pui Picipe equies tht the ove wvefuctio be echge tisymmetic. Sice the

More information

Erick L. Oberstar Fall 2001 Project: Sidelobe Canceller & GSC 1. Advanced Digital Signal Processing Sidelobe Canceller (Beam Former)

Erick L. Oberstar Fall 2001 Project: Sidelobe Canceller & GSC 1. Advanced Digital Signal Processing Sidelobe Canceller (Beam Former) Erick L. Obertar Fall 001 Project: Sidelobe Caceller & GSC 1 Advaced Digital Sigal Proceig Sidelobe Caceller (Beam Former) Erick L. Obertar 001 Erick L. Obertar Fall 001 Project: Sidelobe Caceller & GSC

More information

5.1. The Rayleigh s quotient. Definition 49. Let A = A be a self-adjoint matrix. quotient is the function. R(x) = x,ax, for x = 0.

5.1. The Rayleigh s quotient. Definition 49. Let A = A be a self-adjoint matrix. quotient is the function. R(x) = x,ax, for x = 0. 40 RODICA D. COSTIN 5. The Rayleigh s priciple ad the i priciple for the eigevalues of a self-adjoit matrix Eigevalues of self-adjoit matrices are easy to calculate. This sectio shows how this is doe usig

More information

CHAPTER 5: Circular Motion; Gravitation

CHAPTER 5: Circular Motion; Gravitation CHAPER 5: Cicula Motion; Gavitation Solution Guide to WebAssign Pobles 5.1 [1] (a) Find the centipetal acceleation fo Eq. 5-1.. a R v ( 1.5 s) 1.10 1.4 s (b) he net hoizontal foce is causing the centipetal

More information

PHYSICS. Time allowed: 90 minutes. Section A is a set of questions on data analysis. It requires work on graph paper.

PHYSICS. Time allowed: 90 minutes. Section A is a set of questions on data analysis. It requires work on graph paper. PHYSICS EXAMIATIO FOR ETRACE SCHOLARSHIPS JAUARY 7 Tie allowed: 9 inutes Section A is a set of questions on data analysis. It equies wok on gaph pape. Section B consists of nine questions. Attept as any

More information

What are S M U s? SMU = Software Maintenance Upgrade Software patch del iv ery u nit wh ich once ins tal l ed and activ ated prov ides a point-fix for

What are S M U s? SMU = Software Maintenance Upgrade Software patch del iv ery u nit wh ich once ins tal l ed and activ ated prov ides a point-fix for SMU 101 2 0 0 7 C i s c o S y s t e m s, I n c. A l l r i g h t s r e s e r v e d. 1 What are S M U s? SMU = Software Maintenance Upgrade Software patch del iv ery u nit wh ich once ins tal l ed and activ

More information

Net Radiation Incident at the Surface

Net Radiation Incident at the Surface EO 02 SURFAE ENERY FLUXES Nt Rditio Icidt t th Sufc R = K 1α εl εσ K L Vg Ly Soil αk εl εσ 1 Vticl mtu Pofil Vticl mtu Pofil 2 Soil t Flux Uwd d dowwd coductio of ibl ht Div by vticl tmtu gdit i oil Modultd

More information

Lecture 9: Diffusion, Electrostatics review, and Capacitors. Context

Lecture 9: Diffusion, Electrostatics review, and Capacitors. Context EECS 5 Sprig 4, Lecture 9 Lecture 9: Diffusio, Electrostatics review, ad Capacitors EECS 5 Sprig 4, Lecture 9 Cotext I the last lecture, we looked at the carriers i a eutral semicoductor, ad drift currets

More information

Math 508 Exam 2 Jerry L. Kazdan December 9, :00 10:20

Math 508 Exam 2 Jerry L. Kazdan December 9, :00 10:20 Math 58 Eam 2 Jerry L. Kazda December 9, 24 9: :2 Directios This eam has three parts. Part A has 8 True/False questio (2 poits each so total 6 poits), Part B has 5 shorter problems (6 poits each, so 3

More information

Complex Analysis Spring 2001 Homework I Solution

Complex Analysis Spring 2001 Homework I Solution Complex Aalysis Sprig 2001 Homework I Solutio 1. Coway, Chapter 1, sectio 3, problem 3. Describe the set of poits satisfyig the equatio z a z + a = 2c, where c > 0 ad a R. To begi, we see from the triagle

More information

Multidimensional Laplace Transforms over Quaternions, Octonions and Cayley-Dickson Algebras, Their Applications to PDE

Multidimensional Laplace Transforms over Quaternions, Octonions and Cayley-Dickson Algebras, Their Applications to PDE dac i Pu Mathatic 63-3 http://dxdoiog/436/ap3 Pubihd Oi Mach (http://scipog/oua/ap) Mutidiioa Lapac Tafo o uatio Octoio ad Cayy-Dico gba Thi ppicatio to PDE Sgy Victo Ludoy Dpatt of ppid Mathatic Moco

More information

Lecture 2: Frequency domain analysis, Phasors. Announcements

Lecture 2: Frequency domain analysis, Phasors. Announcements EECS 5 SPRING 24, ctu ctu 2: Fquncy domain analyi, Phao EECS 5 Fall 24, ctu 2 Announcmnt Th cou wb it i http://int.c.bkly.du/~5 Today dicuion ction will mt Th Wdnday dicuion ction will mo to Tuday, 5:-6:,

More information

HOMEWORK #10 SOLUTIONS

HOMEWORK #10 SOLUTIONS Math 33 - Aalysis I Sprig 29 HOMEWORK # SOLUTIONS () Prove that the fuctio f(x) = x 3 is (Riema) itegrable o [, ] ad show that x 3 dx = 4. (Without usig formulae for itegratio that you leart i previous

More information

ECE 901 Lecture 4: Estimation of Lipschitz smooth functions

ECE 901 Lecture 4: Estimation of Lipschitz smooth functions ECE 9 Lecture 4: Estiatio of Lipschitz sooth fuctios R. Nowak 5/7/29 Cosider the followig settig. Let Y f (X) + W, where X is a rado variable (r.v.) o X [, ], W is a r.v. o Y R, idepedet of X ad satisfyig

More information

% $ ( 3 2)R T >> T Fermi

% $ ( 3 2)R T >> T Fermi 6 he gad caoical eemble theoy fo a ytem i equilibium with a heat/paticle eevoi Hiohi Matuoka I thi chapte we will dicu the thid appoach to calculate themal popetie of a micocopic model the caoical eemble

More information

Polarization based Microscopy using a Fiber Optic Spectral Polarimeter

Polarization based Microscopy using a Fiber Optic Spectral Polarimeter izi bd Miy uig Fib Oi i Euh Ki, Dig Dv, Th E. Mi D f Bidi Egiig, Th Uiviy f Tx Aui ABTRCT W fib i i, iu h w u f h y vd. Th iu i f i f izi iiig M) fib id 5 wih h h i i wih iz du wh ii xi i igd h f xi f

More information

Announcements: The Rydberg formula describes. A Hydrogen-like ion is an ion that

Announcements: The Rydberg formula describes. A Hydrogen-like ion is an ion that Q: A Hydogelike io is a io that The Boh odel A) is cheically vey siila to Hydoge ios B) has the sae optical spectu as Hydoge C) has the sae ube of potos as Hydoge ) has the sae ube of electos as a Hydoge

More information

Fundamental Concepts: Surfaces and Curves

Fundamental Concepts: Surfaces and Curves UNDAMENTAL CONCEPTS: SURACES AND CURVES CHAPTER udametal Cocepts: Surfaces ad Curves. INTRODUCTION This chapter describes two geometrical objects, vi., surfaces ad curves because the pla a ver importat

More information

D. Bertsekas and R. Gallager, "Data networks." Q: What are the labels for the x-axis and y-axis of Fig. 4.2?

D. Bertsekas and R. Gallager, Data networks. Q: What are the labels for the x-axis and y-axis of Fig. 4.2? pd by J. Succ ECE 543 Octob 22 2002 Outl Slottd Aloh Dft Stblzd Slottd Aloh Uslottd Aloh Splttg Algoths Rfc D. Btsks d R. llg "Dt twoks." Rvw (Slottd Aloh): : Wht th lbls fo th x-xs d y-xs of Fg. 4.2?

More information

PH672 WINTER Problem Set #1. Hint: The tight-binding band function for an fcc crystal is [ ] (a) The tight-binding Hamiltonian (8.

PH672 WINTER Problem Set #1. Hint: The tight-binding band function for an fcc crystal is [ ] (a) The tight-binding Hamiltonian (8. PH67 WINTER 5 Poblm St # Mad, hapt, poblm # 6 Hint: Th tight-binding band function fo an fcc cstal is ( U t cos( a / cos( a / cos( a / cos( a / cos( a / cos( a / ε [ ] (a Th tight-binding Hamiltonian (85

More information

CHAPTER 6: UNIFORM CIRCULAR MOTION AND GRAVITATION

CHAPTER 6: UNIFORM CIRCULAR MOTION AND GRAVITATION College Physics Student s Manual Chapte 6 CHAPTER 6: UIORM CIRCULAR MOTIO AD GRAVITATIO 6. ROTATIO AGLE AD AGULAR VELOCITY. Sei- taile tucks hae an odoete on one hub of a taile wheel. The hub is weighted

More information

On Almost Increasing Sequences For Generalized Absolute Summability

On Almost Increasing Sequences For Generalized Absolute Summability Joul of Applied Mthetic & Bioifotic, ol., o., 0, 43-50 ISSN: 79-660 (pit), 79-6939 (olie) Itetiol Scietific Pe, 0 O Alot Iceig Sequece Fo Geelized Abolute Subility W.. Suli Abtct A geel eult coceig bolute

More information

GMm. 10a-0. Satellite Motion. GMm U (r) - U (r ) how high does it go? Escape velocity. Kepler s 2nd Law ::= Areas Angular Mom. Conservation!!!!

GMm. 10a-0. Satellite Motion. GMm U (r) - U (r ) how high does it go? Escape velocity. Kepler s 2nd Law ::= Areas Angular Mom. Conservation!!!! F Satllt Moton 10a-0 U () - U ( ) 0 f ow g dos t go? scap locty Kpl s nd Law ::= Aas Angula Mo. Consaton!!!! Nwton s Unsal Law of Gaty 10a-1 M F F 1) F acts along t ln connctng t cnts of objcts Cntal Foc

More information

A brief introduction to linear algebra

A brief introduction to linear algebra CHAPTER 6 A brief itroductio to liear algebra 1. Vector spaces ad liear maps I what follows, fix K 2{Q, R, C}. More geerally, K ca be ay field. 1.1. Vector spaces. Motivated by our ituitio of addig ad

More information

Lecture #5: Begin Quantum Mechanics: Free Particle and Particle in a 1D Box

Lecture #5: Begin Quantum Mechanics: Free Particle and Particle in a 1D Box 561 Fall 013 Lecture #5 page 1 Last time: Lecture #5: Begi Quatum Mechaics: Free Particle ad Particle i a 1D Box u 1 u 1-D Wave equatio = x v t * u(x,t): displacemets as fuctio of x,t * d -order: solutio

More information

Statistical Inference Procedures

Statistical Inference Procedures Statitical Iferece Procedure Cofidece Iterval Hypothei Tet Statitical iferece produce awer to pecific quetio about the populatio of iteret baed o the iformatio i a ample. Iferece procedure mut iclude a

More information