Absorption studies of tripositive praseodymium and neodymium doped zinc fluoride borophosphate (ZFBP) glasses

Size: px
Start display at page:

Download "Absorption studies of tripositive praseodymium and neodymium doped zinc fluoride borophosphate (ZFBP) glasses"

Transcription

1 Indian Journal of Engineering & Materials Sciences Vol. 12, February 2005, pp Absorption studies of tripositive praseodymium and neodymium doped zinc fluoride borophosphate (ZFB) glasses Y K Sharma a*, R Dubedi b, V Joshi c, K B Karnataka a & S S L Surana d a Department of hysics, Government ost Graduate College, Uttarkashi , India b Department of Chemistry, Amardeep Degree College, Firozabad , India c Department of Chemistry, Government College Dhakpathar, Vikashnagar, Dehradun, India d Department of hysics, J. N. V. University, Jodhpur , India Received 20 January 2004; accepted 8 October 2004 Zinc fluoride borophosphate (ZFB) glasses doped with tripositive praseodymium and neodymium ions have been prepared by melt quenching technique. The final composition of glasses in mol.% is B 2 O O Na 2 O Al 2 O ZnF 2 R Ln (where R= 0.0, 0.1, 0.3 and 0.5 mol % and Ln = r 3+ and Nd 3+ ). The absorption spectra of doped ZFB glasses have been recorded at room temperature. Eight absorption bands have been observed from the ground state 3 H 4 to excited states 3 F 3 2, F 3 3, F 1 4, G 1 4, D 2, 3 0, 3 1 and 3 2 in r 3+ doped ZFB glasses and twelve absorption bands from the ground state 4 I 9/2 to excited states 4 F 3/2, 4 F 5/2, 4 F 7/2, 4 S 3/2, 4 F 9/2, 2 H 11/2, 4 G 5/2, 4 G 7/2, 4 G 9/2, 2 G 9/2, 4 G 11/2, and 2 1/2 in the case of Nd 3+ doped ZFB glasses. From these spectral data various energy interaction parameters like Slater-Condon parameter F k (k=2, 4, 6), Lande parameter ζ 4f and Racah parameters E k (k=1,2,3) have been computed. Nephelauxetic ratio (β ) and bonding parameters (b 1/2 ) have also been computed from these parameters to study the nature of bonding in doped glasses. The intensities of the f-f transitions in the absorption spectra have been analyzed by the application of the Judd-Ofelt theory. J-O parameters (Ω λ ) have been computed. Ω λ parameters of ZFB glasses have been compared with those of similar glasses to infer the nature of bonding in these glasses. IC Code: C03C 3/00 The tripositive lanthanide ions have unique spectroscopic properties 1. Since the 4f shell is efficiently shielded by the close 5s and 5p shells, the ligand environment has only a weak influence on the electronic cloud of the lanthanide ion. Although weak, this perturbation is responsible for the spectral fine structure. The absorption spectrum of a lanthanide ion doped into single crystal shows groups of many fine lines, resembling an atomic spectrum. In solutions and glasses, the line transitions within one group are broadened to form one band. However, the line width of this band is still much smaller than that in the absorption spectrum of transition metal ion. The peak positions of the spectral lines reveal the electronic structure of the 4f n configuration. The ligand field splitting gives information about the symmetry of the lanthanide site and the shape of the coordination polyhedron, and the intensities of spectral transitions reflect the interaction between the lanthanide ion and its environment. In recent years, much attention has been focused on the search for new rare earth doped materials to be *For correspondence ( dryksharma@yahoo.com) used as hosts for optical devices. Rare earth doped heavy metal fluoride glasses are transparent from ultraviolet to the infrared region. They can be easily prepared and a range of concentration of transition metal and rare earth ions can be incorporated into the glass 2. Fluoride 3-5 glasses have smaller multiphonon emission rates and are chemically stable. They are also stable against atmospheric moisture 2-4,6-8. On the other hand, borate, phosphate and borophosphate glasses 1,9-17 are much useful as host materials for laser action and amplifiers. In order to combine the properties of both fluoride and borophosphate glasses, zinc fluoride borophosphate glasses have been prepared. They are expected to be good materials for optical devices such as lasers and optical fibres. In this paper, a new kind of trivalent praseodymium and neodymium doped zinc fluoride borophosphate (ZFB) glasses have been prepared. The absorption spectra of trivalent praseodymium and neodymium ions doped ZFB glasses have been investigated. From these spectral data various energy interaction parameters like Slater-Condon parameter F k (k=2,4,6), Lande parameter ζ 4f and Racah parameters E k (k=1,2,3) have been computed. From these parameters

2 66 INDIAN J. ENG. MATER. SCI., FEBRUARY 2005 nephelauxetic ratio (β ) and bonding parameters (b 1/2 ) have been computed to study the nature of bonding in doped glasses. Intensities of the f-f transitions in the absorption spectra have been analysed by the application of Judd-Ofelt theory. Experimental rocedure The zinc fluoride borophosphate glasses of the final composition in mol % B 2 O O Na 2 O Al 2 O ZnF 2 R Ln (where R= 0.0, 0.1, 0.3 and 0.5 mol.% and Ln = r 3+ and Nd 3+ ) have been prepared by the melt quenching technique 18 from reagents of analytical grade in 10 g batches. The lanthanide oxides (99.99% pure) were obtained from the Indian Rare Earth Ltd. Batches containing 0.0, 0.1, 0.3 and 0.5 mol.% of r 3+ and Nd 3+ in the base glass materials were mixed in an agate pestle mortar for 2 h and were thermally treated for 6 h in an alumina crucible up to 950±25 C. Homogeneity of the melt was ensured by stirring the melt with an alumina rod from time to time. The melt was quenched by pouring it into a rectangular shaped brass mould placed on a pre-heated (200 o C) heavy copper plate. The glass specimens so prepared were taken away after 24 h and annealed for 3 h at 300 C so as to remove stresses and to give them thermal stability and strength. Samples of the size mm 3 were cut and polished on all sides to make the faces flat and parallel. The initial and final polishing of the samples were done with the help of fine powder of cerium oxide. These samples were again annealed at 250 C for further removing mechanical stresses developed during polishing. The glass samples so prepared were of good optical quality and were transparent. X-ray diffractogram of the glass sample was studied with Rigaku X-ray diffractometer Geigerflex D/max-B system. The X-ray diffractogram showed no prominent peaks indicating the absence of a crystalline phase. The absorption spectra in the spectral range nm and nm were recorded on a double beam UV-VIS/NIR Spectrophotometer Hitachi model 330. The absorption spectra have been recorded in terms of relative absorption (I o /I) versus wavelength (nm), where I o is the intensity of the radiation transmitted through the undoped glass specimen and I is the intensity of the radiation transmitted through the doped glass specimen of the same thickness. The density ρ of the glass samples was determined by Archimedeś displacement method, using xylene as the immersion liquid and sensitive ADAIR DUTT analytical microprocessor based electronic single pan digital top loading balance Model AD 180. It has max. capacity of 180 g with an accuracy of 0.1 mg. The refractive index of glass specimens were measured on an Abbé refractometer (ATAGO 3T). An ordinary lamp was used as the light source. The path length was measured to the nearest of 0.01 cm with the help of a micrometer. Results and Discussion The representative absorption spectra of r 3+ and Nd 3+ doped ZFB glass specimens have been presented in Figs 1-3 in terms of relative absorption (I o /I) versus wavelength (nm), where I and I o are intensities of the radiation transmitted through doped specimens and undoped specimens of equal thickness. The various physical properties have been collected in Table 1. The absorption spectra of lanthanide ions lie in the visible and near infrared regions and correspond to Fig. 1 Absorption spectrum of praseodymium (0.3 mol%) doped ZFB glass specimen in the visible region Fig. 2 Absorption spectrum of praseodymium (0.3 mol%) doped ZFB glass specimen in near I R region

3 SHARMA et al.: ZINC FLUORIDE BOROHOSHATE GLASSES 67 transitions from the ground state to various excited states of 4f N configuration. The relevant theoretical background along with the interpretation of the observed absorption spectra of r 3+ and Nd 3+ doped ZFB glasses in terms of the energy interaction parameters and Judd-Ofelt intensity parameters is given below. Energy interaction parameters The absorption spectra of lanthanide ions in the visible and near infra-red regions are known to arise due to 4f- 4f transitions 19. The energy level structure of 4f-configuration may be considered to arise from the electrostatic and magnetic interactions between the 4f electrons. Taylor series 20 expansion may be used to express the energy of the jth electronic level by the equation: E E F E F F E 0 0 j j j ( k, ζ 4f ) = oj ( k,ζ 4f ) + Δ k + Δζ4f k = 2,4,6 Fk ζ4f (1) where E oj is the zero-order energy of the jth level and ΔF k and Δζ 4f are the small changes in the corresponding parameters. The values of ΔF k and Δζ 4f may be evaluated using observed energy values (E j ), reported values 20 of zero order energies (E 0j ) and partial derivatives E j / F k and E j / ζ 4f by partial regression method 21,22. The values of Slater-Condon, F k, (k=2,4,6) and spinorbit interaction, ζ 4f, parameters are then evaluated using equations F k = F k o + ΔF k ζ 4f = ζ 4f o + Δζ 4f (2) where ΔF k <<F o k, Δζ 4f <<ζ 4f o and F k o and ζ 4f o are the zero-order values of Slater-Condon and spin orbit interaction parameters as reported by Wong 20. The Racah parameters E k (k=1, 2, 3) are related to F k parameters by the following relations: E 1 = (1/9) (70F F F 6 ) Fig. 3 Absorption spectrum of neodymium (0.3 mol%) doped ZFB glass specimen in the visible region E 2 = (1/9) (F 2 3F 4 + 7F 6 ) E 3 = (1/3) (5F 2 + 6F 4-91F 6 ) (3) and have been evaluated using these equations. The absorption bands, on the basis of energy separation between the energy levels of r 3+ free ion and the observed intensities of the bands, have been assigned to transitions from the ground state 3 H 4 to different energy levels. Eight absorption bands have been observed from the ground state 3 H 4 to the excited states 3 F 2, 3 F 3, 3 F 4, 1 G 4, 1 D 2, 3 0, 3 1 and 3 2 in r 3+ doped ZFB glass specimens. The experimental and calculated energy of various bands are given in Table 2. The observed band positions of r 3+ ion in Table 1 hysical properties of various undoped and praseodymium and neodymium doped ZFB Glass specimens with dopent concentrations (mol %) in paranthesis Dopant ions Specimen code athlength (cm) Refractive index Density (g/cm 3 ) Concentration, dopant (mol %) r 3+ Nd 3+ ZFB(0.0) undoped ZFB(0.1) ZFB(0.3) ZFB(0.5) ZFB(0.0) undoped ZFB(0.1) ZFB(0.3) ZFB(0.5)

4 68 INDIAN J. ENG. MATER. SCI., FEBRUARY 2005 Table 2 Experimental energy ( ) and calculated energy ( ) with their differences ( ) for various absorption bands for the different doping concentrations (mol %) of r 3+ doped ZFB glass specimens Absorption bands ZFB (0.1) ZFB (0.3) ZFB (0.5) 3 H 4 3 F F F G D r.m.s. deviation (σ) ± 272 ± 267 ± 254 different glasses are best fitted with energy levels observed in the case of free ion. The band positions agree with previously reported band positions of r 3+ ion in other glass systems 9,21. The values of Slater- Condon (F k ), Racah (E k ) and Lande (ζ 4f ) parameters have been computed by using the observed energies of the bands, the values of zero order energies (E 0j ) and partial derivatives with the help of partial regression method 22. The values of F k, E k and ζ 4f parameters have been given in Table 3. In the ZFB glass specimens, the relation among different F k parameters is found to be F 2 > F 4 > F 6. It is interesting to note that the observed values of F 4 /F 2 ~ and F 6 /F 2 ~ (Table 3) are nearly same as calculated considering radial eigen functions to be hydrogenic (F 4 /F 2 ~ 0.14 and F 6 /F 2 ~0.015) 23. The E k parameters have been given in Table 3. The ratio of E 1 /E 3 and E 2 /E 3 for all the r 3+ doped glasses under study are about and respectively, which are almost equal to the ratios calculated for the hydrogenic wave functions 23. This implies that r 3+ ions at different doping concentrations are subjected to similar force fields. Bonding in the glasses can be inferred from the nephelauxetic ratio β defined 24,25 by the relation, β = F 2 (glass)/f 2 (free ion) (4) where F 2 (glass) is the Slater-Condon energy interaction parameter and F 2 (free ion) is the same parameter for free ion. If β is less than one, it indicates covalent bonding, while its value greater than one indicates ionic bonding. Henrie and Choppin 26 have defined another bonding parameter b 1/2 in terms of β, given by Table 3 Calculated values of Slater-Condon, Lande, Racah, Nephelauxetic ratio and bonding parameters for r 3+ doped ZFB glass specimens of different doping concentrations arameters Free ion ZFB (0.1) ZFB (0.3) ZFB (0.5) ZCB* F F F ζ 4f E E E F 4 /F F 6 /F E 1 /E E 2 /E β b 1/ *Zinc chloride borophosphate glass (Ref. 13) b 1/2 = [(1-β )/2] 1/2 (5) A real value of b 1/2 indicates covalent bonding. This parameter is very useful for comparative study of bonding between the central R.E. ion and the surrounding glass matrix. The values of nephlauxetic ratio (β ) and bonding parameter (b 1/2 ) for r 3+ ion in ZFB glasses are ~0.96 and ~( ) respectively (Table 3). Twelve absorption bands have been observed for different dopent concentrations of Nd 3+ ion ranging from 0.1 to 0.5 mol% in ZFB glasses. The assignment of these bands from the ground state 4 I 9/2 to the various excited states 4 F 3/2, 4 F 5/2, 4 F 7/2, 4 S 3/2, 4 F 9/2, 2 H 11/2, 4 G 5/2, 4 G 7/2, 4 G 9/2, 2 G 9/2, 4 G 11/2, and 2 1/2 are

5 SHARMA et al.: ZINC FLUORIDE BOROHOSHATE GLASSES 69 Table 4 Experimental energy ( ) and calculated energy ( ) with their differences ( ) for various absorption bands of Nd 3+ doped ZFB glass specimens of different doping concentrations Absorption level ZFB (0.1) ZFB (0.3) ZFB (0.5) 4 I 9/2 4 F 3/ F 5/ F 7/ S 3/ F 9/ H 11/ G 5/ G 7/ G 9/ G 9/ G 11/ / r.m.s. deviation(σ) ±90 ±96 ±91 observed in all the doped ZFB glasses. The experimental and calculated energy band positions are given in Table 4 for Nd 3+ doped ZFB glass specimens. The values of F k, E k and ζ 4f parameters have been computed by using the observed energies of the bands, E 0j and partial derivatives with the help of partial regression method 22 and given in Table 5. The relation among different F k parameters is found to be F 2 >F 4 >F 6 in Nd 3+ doped ZFB glass specimens. The value of F 2 ~ ( cm -1 ) is nearly same as ~ cm -1 for fluoro glasses 27,28. F 4 /F 2 ~ ( ) and F 6 /F 2 ~( ) are nearly same as reported in other glasses 14. The ζ 4f value ~ ( cm -1 ) is of the same order as is observed in the case of fluorophosphate glasses 27,28. However, the calculated value of ζ 4f by Blume et al. 29 is ~1130 cm -1. The higher calculated value may be due to the use of analytical non-relativistic Hartree-Fock wave functions for the f-orbitals. It may be pointed out that ζ 4f values in the case of Nd 3+ doped glasses are higher than that in r 3+ doped glasses. Further, the change in ζ 4f values is larger than the changes in F k values. This suggests that in doped glasses the spin-orbit coupling is affected more as compared to the electrostatic repulsion by the surrounding ligand field. The values of E 1, E 2, E 3 parameters have been given in Table 5. The ratio of E 1 /E 3 ~ ( ) and E 2 /E 3 ~ ( ) are found to remain almost Table 5 Calculated values of Slater-Condon, Lande, Racah, Nephelauxetic ratio and bonding parameters of Nd 3+ doped ZFB glass specimens of different doping concentrations arameters Free ion ZFB (0.1) ZFB (0.3) ZFB (0.5) ZCB* F F F ζ 4f E E E F 4 /F F 6 /F E 1 /E E 2 /E β b 1/ *Zinc chloride borophosphate glass (Ref. 14) constant over the entire range of Nd 3+ doping concentrations and are in good agreement with the corresponding hydrogenic ratios (Table 5). Using F 2 parameters, nephelauxetic ratio (β ) and bonding parameter (b 1/2 ) are found to be ~0.99 and respectively for Nd 3+ ions in ZFB glasses. On comparing (Tables 3 and 5) energy interaction parameters and bonding parameters of present r 3+ and Nd 3+ ZFB glasses with those of zinc chloride borophosphate glasses, it is found that in the case of

6 70 INDIAN J. ENG. MATER. SCI., FEBRUARY 2005 doped glasses there is a little change in the bonding parameter but Nd 3+ doped glasses show that on addition of ZnF 2 to borophosphate glasses, a marked decrease in the % covalent character (or increase in % ionic character) between the central R.E. ion and its surrounding glass matrix is observed. Small values of r.m.s. deviation σ' between experimental energy ( ) and calculated energy ( ) of absorption levels in praseodymium and neodymium ions doped ZFB glass specimens justify the suitability of the use of Taylor series expansion method 20,30. r 3+ Judd-Ofelt intensity parameters The intensities of absorption bands under Gaussian approximation are measured in terms of experimental oscillator strength, exp, calculated by the relation 1 I = log Δν (6) cl I 9 0 exp 1/2 where c is the molar concentration of the absorbing ion per unit volume, l is the path length and log (I 0 /I) is the absorptivity or optical density and Δν 1/2 is half band width. However, for a solid material it is generally expressed in terms of line strength S exp which is related to experimental oscillator strength exp by the relation π mcν ( n + 2) exp = S 3 h (2J + 1) 9 n and S exp = S exp /e 2 exp (7) where ν is the average energy of the transition in cm -1, J is the total angular momentum of the initial level, the factor (n 2 + 2) 2 /9 n represents the local field correction for an ion embeded in a dielectric medium of refractive index, n, under the tight binding approximation and the other symbols have their usual meaning. Judd 31 and Ofelt 32 have worked out the theoretical background for the calculation of induced electric dipole transition moments. The odd part of the crystal field potential is considered as a perturbation for mixing states of opposite parity into the 4f N configuration. In simple form the line strength (S cal ) of an electric dipole transition between initial J manifold 4f N (α,s,l) J > and terminal J manifold 4f N (α,s,l ) J > is given by 31,32 S = e Ω < 4f (α, S, L) J U cal and 2 N (λ) λ λ = 2,4,6 N 2 4 f (α, S, L ) J > S cal =S cal /e 2 (8) where e stands for electron charge, 4f N (α,s,l)j > are the basis states in the LS coupling scheme and α represents an extra quantum number that might be necessary to describe the states completely, U (λ) are the unit tensor operators of rank λ which are doubly reduced to yield the matrix elements < U (λ) > in the intermediate coupling scheme 31 and Ω λ are the phenomenological Judd-Ofelt intensity parameters which specify the electric dipole moment between any two electronic levels and contain implicitly the odd symmetric crystal field terms, radial integrals, and perturbation denominators. An attempt has been made by Quimby and Mininscalco 33 to further modify the theory, though the basic consideration remains the same. In order to test the validity of Judd-Ofelt approach, used to interpret the spectral intensities, a reduced chisquare test between S exp and S cal values has been performed. The reduced chi-square is given 4 by Reduced chi-square = ( S cal S exp ) 2 /ξ 3 (9) where ξ is the number of absorption bands used in the computation. The low value of this statistical parameter is a measure of the goodness of fit. The experimental line strengths S exp (Tables 6 and 7) for different bands and reported values of unit tensor matrix elements < U (λ) > for different lanthanide ions 34, may be put in Eq. (8) to get as many equations as the number of bands. Then partial regression method 19 is used to obtain the Judd-Ofelt intensity parameters. The resulting values of Ω 2, Ω 4 and Ω 6 have been given in Tables 8 and 9 for different doping concentrations of r 3+ and Nd 3+ ions ranging from 0.1 to 0.5 mol.% in ZFB glass specimens. The computed values of Ω λ parameters are very important since they are used in the calculation of laser parameters. In the case of r 3+ and Nd 3+ doped ZFB glass specimens eight bands and eleven bands respectively in the visible and near IR regions have been used in the computation of Ω λ parameters. The calculated line strengths agree well with the experimental values. Reported values of Ω λ

7 SHARMA et al.: ZINC FLUORIDE BOROHOSHATE GLASSES 71 Table 6 Experimental (S exp ) and calculated line strength (S cal ) with their differences (Δś) for various absorption bands of r 3+ doped ZFB glass specimens for different doping concentrations Absorption ZFB (0.1) ZFB(0.3) ZFB(0.5) level S exp (10-20 ) S cal (10-20 ) Δś (10-20 ) S exp (10-20 ) S cal (10-20 ) Δś (10-20 ) S exp (10-20 ) S cal (10-20 ) Δś (10-20 ) cm 2 cm 2 cm 2 cm 2 cm 2 cm 2 cm 2 cm 2 cm 2 3 H 3 4 F F F G D Goodness of fit Table 7 Experimental (S exp ) and calculated line strength (S cal ) with their differences (Δś) for various absorption bands of Nd 3+ doped ZFB glass specimens for different doping concentrations Absorption level ZFB(0.1) ZFB(0.3) ZFB(0.5) S exp (10-20 ) S cal (10-20 ) Δś (10-20 ) S exp (10-20 ) S cal (10-20 ) Δś (10-20 ) S exp (10-20 ) S cal (10-20 ) Δś (10-20 ) cm 2 cm 2 cm 2 cm 2 cm 2 cm 2 cm 2 cm 2 cm 2 4 I 9/2 4 F 3/ F 2 5/2, H 9/ F 4 7/2, S 3/ F 9/ H 11/ G 2 5/2, G 7/ K 13/2, 4 G 7/ G 9/ K 15/2, 2 G 9/ ( 2 D, 2 ) 3/2, 4 G 11/ /2, 2 D 5/ Goodness of fit parameters for zinc chloride borophosphate 13,14, borate 16,17, phosphate 15,35, fluorophosphate 36,37, ZBLAN 3,38 and CLB 39 glasses have been given in Tables 8 and 9 for comparison. In all the three r 3+ doped ZFB glasses, the three J-O parameters follow the order Ω 4 < Ω 2 < Ω 6. Same ordering has been observed in the case of r 3+ doped zinc chloride borophosphate glasses 13, but in other glasses (Table 8) the ordering is different. This is because different glass matrixes have different covalent bonding between the central RE ion and the surrounding glass matrix. Rigidity of the glass also varies from matrix to matrix and it affects the ordering of Ω λ parameters. According to JØrgensen Ω 2 is covalency dependent parameter and Ω 4 and Ω 6 are structure dependent parameters. Ratio Ω 4 /Ω 6 in the present r 3+ Table 8 Judd-Ofelt intensity parameters, Ω λ, for r 3+ doped ZFB glass specimens of different doping concentration and compare with other similar glasses Glass ZFB(0.1) ZFB(0.3) ZFB(0.5) ZCB Borate hosphate Fluorophosphate ZBLAN CLB Judd-Ofelt parameters Ω 2 Ω 4 Ω 6 (10-20 (10-20 (10-20 cm 2 ) cm 2 ) cm 2 ) ZFB- Zinc fluoride borophosphate ZCB- Zinc chloride borophosphate CLB- Chloro borophosphate Ω 4 /Ω Ref

8 72 INDIAN J. ENG. MATER. SCI., FEBRUARY 2005 glasses (Table 8) is ~0.25, which shows that they are less rigid as compared to other oxide glasses 13,15,17 and ZBLAN glass 3 in which the ratio Ω 4 /Ω 6 is ~1.70. The ZBLAN glass is well known for its rigidity. CLB glass 39 is also equally rigid. Nageno et al. 42 have also studied various alkali borate and phosphate glasses and reached to a similar conclusion that Ω 4 and Ω 6 parameters are related to the rigidity of the glass matrix. As far as covalency is concerned 43, values of Ω 2 parameters indicate that the degree of covalency in the present ZFB glasses is lower than the degree of covalency found in zinc chloride borophosphate glasses and ZBLAN glass is least covalent (% ionic character is highest) borate and phosphate glasses are known to have higher degree of covalency but this model many times 44 fails to predict so. In many r 3+ doped glasses it is found that the phenomenological Ω 2 parameter is negative which is very from definition 45 of the Ω λ parameters is not acceptable. This may be 45 due to the mixing of lowest excited configuration of opposite parity (4f 1 5d 1 ) into the ground configuration (4f 2 ). This configuration (4f 1 5d 1 ) is too close (~45,000 cm -1 ) to the ground configuration, invalidating the approximations 44 made in Judd-Ofelt theory. However, in Nd 3+ glasses where the energy separation between the lowest excited configuration and the ground configuration (~65,000 cm -1 ) is reasonably high, the predictions of this model are fairly accurate. In Nd 3+ doped ZFB glasses (Table 9) the ratio of Ω 4 /Ω 6 is ~0.8 which is comparable to that found in fluorophosphates glass (~0.86) but in zinc chloride borophosphate glass and ZBLAN glass the ratio is quite high. This shows that zinc chloride borophosphate glass is more rigid as compared to ZFB glass and other oxide glasses. Similarly Ω 2 parameter shows that the degree of covalency in the present glasses is lower than the degree of covalency present in zinc chloride borophosphate and other glasses and it is least in ZBLAN glass. The decrease in covalency as compared to oxide glasses may be due to the presence of mixed oxy-fluoride coordination shells 46 of 5+ and Zn 2+ cations in close vicinity of the central rare earth ion. These coordination shells are formed because in the presence of ZnF 2 a continuous structural break down of the polymeric phosphate chain and polymeric boroxol ring takes place. Therefore, in the present glasses Nd 3+ may have eight coordination number due to eight oxygens provided both by [O 4 ] 3- chains and non-bridging oxygens bonded only to a single boron atom. The presence of Table 9 Judd-Ofelt intensity parameters, Ω λ, for Nd 3+ doped ZFB glass specimens of different doping concentrations and compared with other similar glasses Glass ZFB(0.1) ZFB(0.3) ZFB(0.5) ZCB Borate hosphate Fluorophosphate ZBLAN Judd-Ofelt parameters Ω 4 (10-20 cm 2 ) Ω 2 (10-20 cm 2 ) Ω 6 (10-20 cm 2 ) Ω 4 /Ω Ref non-bridging oxygens have been confirmed experimentally (fluorescence line narrowing and Raman scattering measurements) by an investigation of the phonon side bands in the case of Eu 3+ doped sodium borate glasses by Tanabe et al. 47 and by Gatterer et al. 48 in the case of Nd 3+ doped borate glasses. Ω 2 parameter involves the long range terms in the crystal field potential and is most sensitive 3,48,49 to the local structural changes. The intensity of the 3 H 4 3 F 2 (r 3+ ) and 4 I 9/2 4 G 5/2 (Nd 3+ ) transitions are the principal determiners of the Ω 2 parameter. This transition satisfies the selection rule ΔJ 2 and is known 40 as hypersensitive transition. The intensities of the hypersensitive bands in the present glasses (Tables 6 and 7) are comparable to those observed in fluoro phosphate glasses 36,44,50 but much smaller than those observed in oxide glasses 44 and zinc chloride borophosphate glass 13,14.That is why the value of Ω 2 parameter in present glasses is smaller than the value of the Ω 2 parameter observed in oxide glasses and zinc chloride borophosphate glass. A good agreement is found between the calculated and experimental line strengths (Tables 6 and 7). The low values of goodness of fit indicate 50 the validity of the Judd-Ofelt theory. Conclusions Optical absorption spectra of six r 3+ and Nd 3+ doped zinc fluoride borophosphate glasses have been measured at room temperature in UV-VIS/NIR spectral regions. Using the values of observed energy levels, energy interaction parameters have been evaluated. Nephelauxetic ratio and bonding parameter have also been calculated. A comparison with ZnCl 2

9 SHARMA et al.: ZINC FLUORIDE BOROHOSHATE GLASSES 73 borophosphate glass shows that addition of ZnF 2 to the borophosphate glass decreases the % covalent character (or increases the % ionic character) between the central R.E. ion and its surrounding glass matrix. Using the observed line strength Judd-Ofelt intensity parameters, Ω λ, have been evaluated and compared with the Ω λ parameters of other similar oxide glasses like borate, phosphate and borophosphate glasses. Statistical problems may arise in the calculation of Ω λ parameters from the observed line strengths in the case of r 3+ doped glasses. As far as the rigidity is concerned, zinc chloride borophosphate glass is better than ZFB glasses and other oxide glasses. A comparison of Ω 2 values also shows that the degree of covalency in the present glasses is lower than the degree of covalency present in zinc chloride borophosphate and other oxide glasses and it is least in the ZBLAN glass. The decrease in the covalency as compared to oxide glasses may be due to the presence of mixed oxy-fluoride coordination shells of 5+ and Zn 2+ cations surrounding the central RE ion. In the present glasses Nd 3+ may have overall coordination number eight. Acknowledgement The authors are thankful to rof. D C Dube, hysics Department, IIT, Delhi, for providing laboratory facilities to do the present work and rof. S Tandon for helpful discussions at various stages. One of the authors (YKS) is also thankful to UGC India for financial support in the form of a major research project. References 1 Reisfeld R & JØrgensen C K, in Handbook on the hysics and Chemistry of Rare Earths, edited by Gschneidner Jr K A & Eyring L, (North-Holland: Amsterdam), Vol 9, Ch 58, 1987, p 1. 2 France W Ed, Fluoride glasses for optical fibers, (Blackie, London), Binnemans K, Verboven D, Görller-Walrand C, Lucas J, Duhamel-Henry N & Adam J L, J Alloys Compounds, 250 (1997) Binnemans K, Leebeeck H De, Görller-Walrand C & Adam J L, Chem hys Lett, 303 (1999) FlÓrez A, Martinez J F, FlÓrez M & orcher, J Non- Cryst Solids, 284 (2001) oulain M, & Maze G, Chemtronics, 3 (1998) Allain J Y, Moneri M & ognant H, Electron Lett, 26 (1990) Messaddeq Y, Delben A, Aegerter M A & oulain M, J Mater Res, 8 (1993) Sharma Y K, Tandon S, Surana S S L, Sharma M C & Gehlot C L, Can J Anal Sci Spectroscopy, 45 (2000) Sharma Y K, Surana S S L, Gehlot C L & Tandon S, Indian J Eng Mater Sci, 10 (2003) Surana S S L, Gehlot C L, Tandon S & Sharma Y K, Can J Anal Science Spectroscopy, 48 (2003) Sharma Y K, Sharma M C, Surana S S L & Tandon S ; roc Int conf hysics of Disordered Materials, edited by Saksena M, Saxena N S & Bhandari Deepika, NISCOM, New Delhi, India, 1997, pp Sharma Y K, Tandon S & Surana S S L, Mater Sci Eng, B77 (2000) Surana S S L, Sharma Y K & Tandon S, Mater Sci Eng, B83 (2001) Subramanyam Naidu K & Buddhudu S, J Mater Sci Lett, 11 (1992) Devi A R & Jayasankar C K, Mater Chem hys, 42 (1995) Devi A R & Jayasankar C K, hys Chem Glasses, 37 (1996) Dubedi R, Optical, physical and electrical studies of doped glasses, D hil Thesis, H.N.B. Garhwal University, Srinagar (Garhwal), India, Wyborne W G, Spectroscoic properties of rare earth, (Interscience ublishers, New Work) (1965). 20 Wong E Y, J Chem hys, 35 (1961) Binnemans K, Van Deun R, Görller-Walrand C & Adam J L, J Non-Cryst Solids, 238 (1998) Goublen C H, Method of statistical analysis, (Asia ublishing House, Bombay), Ch. 8, 1964, p Dieke G H, Spectra and energy levels of rare earth ions in crystals, edited by Crosswhite H M & Crosswhite H (Interscience ublishers, New York), JØrgensen C K, rog Inong Chem, 4 (1962) Sinha S & Schmidtke H H, Mol hys, 10 (1965) Henrie D E & Choppin G R, J Chem hys, 49 (1968) Sharma Y K, Spectral and Electrical studies of Lanthanide ions in different environments, h D Thesis, The University of Jodhpur, Jodhpur, India, Bishnoi N B, Spectral and Electrical roperties of Ions in Complexes and Glasses, h D Thesis, The University of Jodhpur, Jodhpur, India, Blume M, Freemen A J & Watson R E, hys Rev A, 32 (1964) Wong E Y, J Chem hys, 38 (1963) Judd B R, hys Rev, 127 (1962) Ofelt G S, J Chem hys, 37 (1962) Quimby R S & Mininscalco W J, J Appl hys, 75 (1994) Carnall W T, Field R & Rajnak K, J Chem hys, 49 (1968) 4412, 4424, Marion J E & Weber M J, Eur J Solid State Inorg Chem, 28 (1991) Stokowski R E, in Handbook of laser science and technology, edited by Weber M J (CRC ress, Boca Raton) vol 1, 1982, Stokowski R E, Saroyan R A & Weber M J, Nd-Doped Laser Glass Spectroscopic and hysical roperties, M-095 (Lawrence Livermore National Laboratory, Livermore, C A) Rev 2, vols 1&2, Mc Dougall J, Hollis D B & ayne M J B, hys Chem Glasses, 35 (1994) Moorthy L R, Rao T S, Janardhanam K & Radhapathy A, J Alloys & Compounds, 298 (2000) JØrgensen C K & Judd B R, Mol hys, 8 (1964) 281.

10 74 INDIAN J. ENG. MATER. SCI., FEBRUARY JØrgensen C K & Reisfeld R, J Less Common Met, 93 (1983) Nageno Y, Takebe H & Morinaga M, J Am Chem Soc, 76 (1993) Binnemans K & Görller-Walrand C, J hys: Condens Matter, 10 (1998) L Görller-Walrand C & Binnemans K, in Handbook on the physics and chemistry of rare earths, edited by Gschneidner Jr K A & Eyring L, (Elsevier Science B V), Ch 167, 998, p eacock R D, Struct & Bonding, 22 (1975) Weber M J & Almeida, J Non-Cryst Solids, 43 (1981) Tanabe S, Todoroki S, Hirao K & Soga N, J Non-Cryst Solids, 122 (1990) Gatterer K, ucker G, Fritzer H & Arafa S, J Non-Cryst Solids, 176 (1994) Tandon S, Sharma Y K, Bishnoi N B & Tandon K, Def Sci J, 47 (1997) Seeber W, Downing E A, Hesselink L, Fejer M M & Ehrt D, J Non-Cryst Solids, 189 (1995) 218.

Praseodymium Ion Doped Sodium Borosilicate Glasses: Energy Interaction and Radiative Properties

Praseodymium Ion Doped Sodium Borosilicate Glasses: Energy Interaction and Radiative Properties American Journal of Condensed Matter Physics 2015, 5(1): 10-18 DOI: 10.5923/j.ajcmp.20150501.02 Praseodymium Ion Doped Sodium Borosilicate Glasses: Energy Interaction and Radiative Properties Y. K. Sharma

More information

Optical Study of Rare Earth Lasing Material in Visible and Ir Region

Optical Study of Rare Earth Lasing Material in Visible and Ir Region Abstract Research Journal of hysical Sciences ISSN 30 4796 Res. J. hysical Sci. Optical Study of Rare Earth Lasing Material in Visible and Ir Region Gupta Anup Kumar and Ujjwal Shri Kishan Department of

More information

Correlation of radiative properties of rare earth ions (Pr 3+ and Nd 3+ ) in chlorophosphate glasses 0 1 and 0 5 mol% concentrations

Correlation of radiative properties of rare earth ions (Pr 3+ and Nd 3+ ) in chlorophosphate glasses 0 1 and 0 5 mol% concentrations Bull. Mater. Sci., Vol. 4, No. 5, October 001, pp. 539 545. Indian Academy of Sciences. Correlation of radiative properties of rare earth ions (Pr 3+ and Nd 3+ ) in chlorophosphate glasses and mol% concentrations

More information

Influence of Nd 3+ concentration on its optical absorption and luminescence properties in potassium borate glass

Influence of Nd 3+ concentration on its optical absorption and luminescence properties in potassium borate glass Influence of Nd 3+ concentration on its optical absorption and luminescence properties in potassium borate glass Y. C. Ratnakaram *; 1, Md. Abdul Altaf 1, R. P. S. Chakradhar 2,J.L.Rao 3, and J. Ramakrishna

More information

Variation in Electronic Spectral Parameters of Nd(III) and Er(III) with Respect to Ionic Strength of the Medium

Variation in Electronic Spectral Parameters of Nd(III) and Er(III) with Respect to Ionic Strength of the Medium http://www.e-journals.in Chemical Science Transactions DOI:10.7598/cst2015.949 2015, 4(1), 95-100 RESEARCH ARTICLE Variation in Electronic Spectral Parameters of Nd(III) and Er(III) with Respect to Ionic

More information

Judd-Ofelt intensity parameters

Judd-Ofelt intensity parameters Spectral properties of Nd 3+ ion in new fluorophosphates glasses: Judd-Ofelt intensity parameters J. H. Choi and F. G. Shi * Department of Chemical Engineering and Materials Science, University of California,

More information

Spectroscopic and radiative properties of Nd 3+ ions doped zinc bismuth borate glasses

Spectroscopic and radiative properties of Nd 3+ ions doped zinc bismuth borate glasses Indian Journal of Pure & Applied Physics Vol. 51, January 2013, pp. 18-25 Spectroscopic and radiative properties of Nd 3+ ions doped zinc bismuth borate glasses I Pal 1*, A Agarwal 1, S Sanghi 1, Sanjay

More information

Photonics applications II. Ion-doped ChGs

Photonics applications II. Ion-doped ChGs Photonics applications II Ion-doped ChGs 1 ChG as a host for doping; pros and cons - Important - Condensed summary Low phonon energy; Enabling emission at longer wavelengths Reduced nonradiative multiphonon

More information

Experimental Techniques and Methodology

Experimental Techniques and Methodology Chapter 2 Experimental Techniques and Methodology In this chapter we provide brief accounts of experimental techniques and methodology used for spectral analyses. The preparations of glass samples are

More information

Modeling of Er in ceramic YAG and comparison with single-crystal YAG

Modeling of Er in ceramic YAG and comparison with single-crystal YAG Modeling of Er in ceramic YAG and comparison with single-crystal YAG Bahram Zandi a, John B. Gruber b, Dhiraj K. Sardar c, Toomas H. Allik d a ARL/Adelphi Laboratory Center, 2800 Powder Mill RoadAdelphi,

More information

Fundamentals of Spectroscopy for Optical Remote Sensing. Course Outline 2009

Fundamentals of Spectroscopy for Optical Remote Sensing. Course Outline 2009 Fundamentals of Spectroscopy for Optical Remote Sensing Course Outline 2009 Part I. Fundamentals of Quantum Mechanics Chapter 1. Concepts of Quantum and Experimental Facts 1.1. Blackbody Radiation and

More information

Optical and Photonic Glasses. Lecture 31. Rare Earth Doped Glasses I. Professor Rui Almeida

Optical and Photonic Glasses. Lecture 31. Rare Earth Doped Glasses I. Professor Rui Almeida Optical and Photonic Glasses : Rare Earth Doped Glasses I Professor Rui Almeida International Materials Institute For New Functionality in Glass Lehigh University Rare-earth doped glasses The lanthanide

More information

Electronic Structure and Transition Intensities in Rare-Earth Materials

Electronic Structure and Transition Intensities in Rare-Earth Materials Electronic Structure and Transition Intensities in Rare-Earth Materials Michael F Reid School of Physical and Chemical Sciences Te Kura Matū University of Canterbury Christchurch, New Zealand http://www.phys.canterbury.ac.nz

More information

[Mohan, 3(2): February, 2014] ISSN: Impact Factor: 1.852

[Mohan, 3(2): February, 2014] ISSN: Impact Factor: 1.852 IJEST INTENATIONAL JOUNAL OF ENGINEEING SCIENCES & ESEACH TECHNOLOGY Optical Properties of Er 3+ -doped K 2 O Nb 2 O 5 SiO 2 Glasses for Fiber Amplifiers M. Murali Mohan Department of Physics, Sri Venkateswara

More information

Electronic Structure and Transition Intensities in Rare-Earth Materials

Electronic Structure and Transition Intensities in Rare-Earth Materials Electronic Structure and Transition Intensities in Rare-Earth Materials Michael F Reid School of Physical and Chemical Sciences Te Kura Matū University of Canterbury Christchurch, New Zealand http://www.phys.canterbury.ac.nz

More information

Electronic Spectra of Complexes

Electronic Spectra of Complexes Electronic Spectra of Complexes Interpret electronic spectra of coordination compounds Correlate with bonding Orbital filling and electronic transitions Electron-electron repulsion Application of MO theory

More information

Spectral studies of praseodymium doped heavy metal borate glass systems

Spectral studies of praseodymium doped heavy metal borate glass systems Research Inventy: International Journal Of Engineering And Science Vol.4, Issue 12 (December 2014), PP 17-24 Issn (e): 2278-4721, Issn (p):2319-6483, www.researchinventy.com Spectral studies of praseodymium

More information

CHAPTER 13 Molecular Spectroscopy 2: Electronic Transitions

CHAPTER 13 Molecular Spectroscopy 2: Electronic Transitions CHAPTER 13 Molecular Spectroscopy 2: Electronic Transitions I. General Features of Electronic spectroscopy. A. Visible and ultraviolet photons excite electronic state transitions. ε photon = 120 to 1200

More information

Electronic Structure and Transition Intensities in Rare-Earth Materials

Electronic Structure and Transition Intensities in Rare-Earth Materials Electronic Structure and Transition Intensities in Rare-Earth Materials Michael F Reid Department of Physics and Astronomy and MacDiarmid Institute for Advanced Materials and Nanotechnology University

More information

Green fluorescence of terbium ions in lithium fluoroborate glasses for fibre lasers and display devices

Green fluorescence of terbium ions in lithium fluoroborate glasses for fibre lasers and display devices Bull. Mater. Sci., Vol. 39, No. 3, June 2016, pp. 711 717. DOI 10.1007/s12034-016-1192-0 c Indian Academy of Sciences. Green fluorescence of terbium ions in lithium fluoroborate glasses for fibre lasers

More information

CHEM Atomic and Molecular Spectroscopy

CHEM Atomic and Molecular Spectroscopy CHEM 21112 Atomic and Molecular Spectroscopy References: 1. Fundamentals of Molecular Spectroscopy by C.N. Banwell 2. Physical Chemistry by P.W. Atkins Dr. Sujeewa De Silva Sub topics Light and matter

More information

O 3. : Er nanoparticles prospective system for energy convertors

O 3. : Er nanoparticles prospective system for energy convertors IOP Conference Series: Materials Science and Engineering PAPER OPEN ACCESS Interband optical transitions in Gd 2 O 3 : Er nanoparticles prospective system for energy convertors To cite this article: A

More information

Quantum Chemistry. NC State University. Lecture 5. The electronic structure of molecules Absorption spectroscopy Fluorescence spectroscopy

Quantum Chemistry. NC State University. Lecture 5. The electronic structure of molecules Absorption spectroscopy Fluorescence spectroscopy Quantum Chemistry Lecture 5 The electronic structure of molecules Absorption spectroscopy Fluorescence spectroscopy NC State University 3.5 Selective absorption and emission by atmospheric gases (source:

More information

Application of IR Raman Spectroscopy

Application of IR Raman Spectroscopy Application of IR Raman Spectroscopy 3 IR regions Structure and Functional Group Absorption IR Reflection IR Photoacoustic IR IR Emission Micro 10-1 Mid-IR Mid-IR absorption Samples Placed in cell (salt)

More information

Optical Properties of Trivalent Praseodymium Doped In A Polymeric Plastic Environment By: Dhiraj K. Sardar, Ph.D., and Anthony Sayka June 2008

Optical Properties of Trivalent Praseodymium Doped In A Polymeric Plastic Environment By: Dhiraj K. Sardar, Ph.D., and Anthony Sayka June 2008 Optical Properties of Trivalent Praseodymium Doped In A Polymeric Plastic Environment By: Dhiraj K. Sardar, Ph.D., and Anthony Sayka June 2008 A : HEMA based laser module has the potential for numerous

More information

Chapter 5 Absorption and Emission Spectral Studies of Lanthanide Ions in Lead Oxyfluoride Glasses

Chapter 5 Absorption and Emission Spectral Studies of Lanthanide Ions in Lead Oxyfluoride Glasses Chapter 5 Absorption and Emission Spectral Studies of Lanthanide Ions in Lead Oxyfluoride Glasses Lead bearing oxyhalide glasses were first identified and characterized by Rao et al XA Their characterization

More information

ARTICLE IN PRESS. Journal of Alloys and Compounds xxx (2008) xxx xxx. Contents lists available at ScienceDirect. Journal of Alloys and Compounds

ARTICLE IN PRESS. Journal of Alloys and Compounds xxx (2008) xxx xxx. Contents lists available at ScienceDirect. Journal of Alloys and Compounds Journal of Alloys and Compounds xxx (2008) xxx xxx Contents lists available at ScienceDirect Journal of Alloys and Compounds journal homepage: www.elsevier.com/locate/jallcom Intensity parametrizations

More information

Effects of MoO 3 Addition on Spectroscopic Properties of Lithium Zinc Borate Glass

Effects of MoO 3 Addition on Spectroscopic Properties of Lithium Zinc Borate Glass Physical Chemistry 2012, 2(6): 94-99 DOI: 10.5923/j.pc.20120206.02 Effects of MoO 3 Addition on Spectroscopic Properties of Lithium Zinc Borate Glass B. Thirumala Rao 1, Sandhya Cole 2, P. Syam Prasad

More information

Review of Optical Properties of Materials

Review of Optical Properties of Materials Review of Optical Properties of Materials Review of optics Absorption in semiconductors: qualitative discussion Derivation of Optical Absorption Coefficient in Direct Semiconductors Photons When dealing

More information

quantum dots, metallic nanoparticles, and lanthanide ions doped upconversion

quantum dots, metallic nanoparticles, and lanthanide ions doped upconversion Chapter 1 Introduction 1.1 Background Nanostructured materials have significantly different characteristics from their bulk counterparts. 1 Inorganic nanoparticles such as semiconductor quantum dots, metallic

More information

Available online Research Article

Available online  Research Article Available online www.ocpr.com Journal of Chemical and Pharmaceutical Research, 2013, 5(10):377-385 Research Article ISSN : 0975-7384 CODEN(USA) : JCPRC5 Comparative absorption spectral study for the interactions

More information

Spectroscopy. Practical Handbook of. J. W. Robinson, Ph.D., D.Sc, F.R.C.S. Department of Chemistry Louisiana State University Baton Rouge, Louisiana

Spectroscopy. Practical Handbook of. J. W. Robinson, Ph.D., D.Sc, F.R.C.S. Department of Chemistry Louisiana State University Baton Rouge, Louisiana Practical Handbook of Spectroscopy Edited by J. W. Robinson, Ph.D., D.Sc, F.R.C.S. Department of Chemistry Louisiana State University Baton Rouge, Louisiana CRC Press Boca Raton Ann Arbor Boston TABLE

More information

NPTEL/IITM. Molecular Spectroscopy Lectures 1 & 2. Prof.K. Mangala Sunder Page 1 of 15. Topics. Part I : Introductory concepts Topics

NPTEL/IITM. Molecular Spectroscopy Lectures 1 & 2. Prof.K. Mangala Sunder Page 1 of 15. Topics. Part I : Introductory concepts Topics Molecular Spectroscopy Lectures 1 & 2 Part I : Introductory concepts Topics Why spectroscopy? Introduction to electromagnetic radiation Interaction of radiation with matter What are spectra? Beer-Lambert

More information

DEPARTMENT OF PHYSICS UNIVERSITY OF PUNE PUNE SYLLABUS for the M.Phil. (Physics ) Course

DEPARTMENT OF PHYSICS UNIVERSITY OF PUNE PUNE SYLLABUS for the M.Phil. (Physics ) Course DEPARTMENT OF PHYSICS UNIVERSITY OF PUNE PUNE - 411007 SYLLABUS for the M.Phil. (Physics ) Course Each Student will be required to do 3 courses, out of which two are common courses. The third course syllabus

More information

Lecture 10. Lidar Effective Cross-Section vs. Convolution

Lecture 10. Lidar Effective Cross-Section vs. Convolution Lecture 10. Lidar Effective Cross-Section vs. Convolution q Introduction q Convolution in Lineshape Determination -- Voigt Lineshape (Lorentzian Gaussian) q Effective Cross Section for Single Isotope --

More information

Atomic spectra of one and two-electron systems

Atomic spectra of one and two-electron systems Atomic spectra of one and two-electron systems Key Words Term symbol, Selection rule, Fine structure, Atomic spectra, Sodium D-line, Hund s rules, Russell-Saunders coupling, j-j coupling, Spin-orbit coupling,

More information

CHEM6416 Theory of Molecular Spectroscopy 2013Jan Spectroscopy frequency dependence of the interaction of light with matter

CHEM6416 Theory of Molecular Spectroscopy 2013Jan Spectroscopy frequency dependence of the interaction of light with matter CHEM6416 Theory of Molecular Spectroscopy 2013Jan22 1 1. Spectroscopy frequency dependence of the interaction of light with matter 1.1. Absorption (excitation), emission, diffraction, scattering, refraction

More information

Supplementary Materials

Supplementary Materials Supplementary Materials Sample characterization The presence of Si-QDs is established by Transmission Electron Microscopy (TEM), by which the average QD diameter of d QD 2.2 ± 0.5 nm has been determined

More information

( ) electron gives S = 1/2 and L = l 1

( ) electron gives S = 1/2 and L = l 1 Practice Modern Physics II, W018, Set 1 Question 1 Energy Level Diagram of Boron ion B + For neutral B, Z = 5 (A) Draw the fine-structure diagram of B + that includes all n = 3 states Label the states

More information

( ) x10 8 m. The energy in a mole of 400 nm photons is calculated by: ' & sec( ) ( & % ) 6.022x10 23 photons' E = h! = hc & 6.

( ) x10 8 m. The energy in a mole of 400 nm photons is calculated by: ' & sec( ) ( & % ) 6.022x10 23 photons' E = h! = hc & 6. Introduction to Spectroscopy Spectroscopic techniques are widely used to detect molecules, to measure the concentration of a species in solution, and to determine molecular structure. For proteins, most

More information

Chapter 7: Optical Properties of Solids. Interaction of light with atoms. Insert Fig Allowed and forbidden electronic transitions

Chapter 7: Optical Properties of Solids. Interaction of light with atoms. Insert Fig Allowed and forbidden electronic transitions Chapter 7: Optical Properties of Solids Interaction of light with atoms Insert Fig. 8.1 Allowed and forbidden electronic transitions 1 Insert Fig. 8.3 or equivalent Ti 3+ absorption: e g t 2g 2 Ruby Laser

More information

Structure and Dynamics : An Atomic View of Materials

Structure and Dynamics : An Atomic View of Materials Structure and Dynamics : An Atomic View of Materials MARTIN T. DOVE Department ofearth Sciences University of Cambridge OXFORD UNIVERSITY PRESS Contents 1 Introduction 1 1.1 Observations 1 1.1.1 Microscopic

More information

2.1 Experimental and theoretical studies

2.1 Experimental and theoretical studies Chapter 2 NiO As stated before, the first-row transition-metal oxides are among the most interesting series of materials, exhibiting wide variations in physical properties related to electronic structure.

More information

3.1 Hydrogen Spectrum

3.1 Hydrogen Spectrum 3.1 Hydrogen Spectrum Light is electromagnetic radiation that can be produced at different energy levels. High energy light has a short wavelength (λ) and a high frequency (ƒ, ν) (gamma rays, x-rays, ultraviolet).

More information

Covalent Bonding. a. O b. Mg c. Ar d. C. a. K b. N c. Cl d. B

Covalent Bonding. a. O b. Mg c. Ar d. C. a. K b. N c. Cl d. B Covalent Bonding 1. Obtain the number of valence electrons for each of the following atoms from its group number and draw the correct Electron Dot Notation (a.k.a. Lewis Dot Structures). a. K b. N c. Cl

More information

U N I T T E S T P R A C T I C E

U N I T T E S T P R A C T I C E South Pasadena AP Chemistry Name 8 Atomic Theory Period Date U N I T T E S T P R A C T I C E Part 1 Multiple Choice You should allocate 25 minutes to finish this portion of the test. No calculator should

More information

Atomic Structure and Periodicity

Atomic Structure and Periodicity Atomic Structure and Periodicity Atoms and isotopes: Isotopes-#p + same for all but mass number is different b/c of # n o Average atomic mass is weighted average of all the isotopes for an element Average

More information

3. Anaemia can be diagnosed by (a) 15 P 31 (b) 15 P 32 (c) 26 Fe 59 (d) 11 Na 24. (b) α particle (Alpha particle)

3. Anaemia can be diagnosed by (a) 15 P 31 (b) 15 P 32 (c) 26 Fe 59 (d) 11 Na 24. (b) α particle (Alpha particle) MARCH 2010 PHYSICS Time Allowed: 3 Hours Maximum Marks: 150 PART - I 30 x 1 = 30 Note: i) Answer all the questions. ii) Choose and write the correct answer. 1. Electron microscope works on the principle

More information

Probing vacuum ultraviolet energy levels of trivalent gadolinium by two-photon spectroscopy

Probing vacuum ultraviolet energy levels of trivalent gadolinium by two-photon spectroscopy Journal of Luminescence 102 103 (2003) 211 215 Probing vacuum ultraviolet energy levels of trivalent gadolinium by two-photon spectroscopy P.S. Peijzel a, *, W.J.M. Schrama a, M.F. Reid b, A. Meijerink

More information

Rb, which had been compressed to a density of 1013

Rb, which had been compressed to a density of 1013 Modern Physics Study Questions for the Spring 2018 Departmental Exam December 3, 2017 1. An electron is initially at rest in a uniform electric field E in the negative y direction and a uniform magnetic

More information

ATOMIC STRUCTURE, ELECTRONS, AND PERIODICITY

ATOMIC STRUCTURE, ELECTRONS, AND PERIODICITY ATOMIC STRUCTURE, ELECTRONS, AND PERIODICITY All matter is made of atoms. There are a limited number of types of atoms; these are the elements. (EU 1.A) Development of Atomic Theory Atoms are so small

More information

Chapter 10: Multi- Electron Atoms Optical Excitations

Chapter 10: Multi- Electron Atoms Optical Excitations Chapter 10: Multi- Electron Atoms Optical Excitations To describe the energy levels in multi-electron atoms, we need to include all forces. The strongest forces are the forces we already discussed in Chapter

More information

C H E M 1 CHEM 101-GENERAL CHEMISTRY CHAPTER 6 THE PERIODIC TABLE & ATOMIC STRUCTURE INSTR : FİLİZ ALSHANABLEH

C H E M 1 CHEM 101-GENERAL CHEMISTRY CHAPTER 6 THE PERIODIC TABLE & ATOMIC STRUCTURE INSTR : FİLİZ ALSHANABLEH C H E M 1 CHEM 101-GENERAL CHEMISTRY CHAPTER 6 THE PERIODIC TABLE & ATOMIC STRUCTURE 0 1 INSTR : FİLİZ ALSHANABLEH CHAPTER 6 THE PERIODIC TABLE & ATOMIC STRUCTURE The Electromagnetic Spectrum The Wave

More information

Chapter 11. Intermolecular Forces and Liquids & Solids

Chapter 11. Intermolecular Forces and Liquids & Solids Chapter 11 Intermolecular Forces and Liquids & Solids The Kinetic Molecular Theory of Liquids & Solids Gases vs. Liquids & Solids difference is distance between molecules Liquids Molecules close together;

More information

Chemistry 483 Lecture Topics Fall 2009

Chemistry 483 Lecture Topics Fall 2009 Chemistry 483 Lecture Topics Fall 2009 Text PHYSICAL CHEMISTRY A Molecular Approach McQuarrie and Simon A. Background (M&S,Chapter 1) Blackbody Radiation Photoelectric effect DeBroglie Wavelength Atomic

More information

7a. Structure Elucidation: IR and 13 C-NMR Spectroscopies (text , , 12.10)

7a. Structure Elucidation: IR and 13 C-NMR Spectroscopies (text , , 12.10) 2009, Department of Chemistry, The University of Western Ontario 7a.1 7a. Structure Elucidation: IR and 13 C-NMR Spectroscopies (text 11.1 11.5, 12.1 12.5, 12.10) A. Electromagnetic Radiation Energy is

More information

Physical Chemistry Lab II CHEM 4644 Spring 2011 Final Exam 5 questions at 3 points each equals 15 total points possible.

Physical Chemistry Lab II CHEM 4644 Spring 2011 Final Exam 5 questions at 3 points each equals 15 total points possible. Physical Chemistry Lab II Name: KEY CHEM 4644 Spring 2011 Final Exam 5 questions at 3 points each equals 15 total points possible. Constants: c = 3.00 10 8 m/s h = 6.63 10-34 J s 1 Hartree = 4.36 10-18

More information

Vacuum ultraviolet 5d-4f luminescence of Gd 3+ and Lu 3+ ions in fluoride matrices

Vacuum ultraviolet 5d-4f luminescence of Gd 3+ and Lu 3+ ions in fluoride matrices Vacuum ultraviolet 5d-4f luminescence of Gd 3+ and Lu 3+ ions in fluoride matrices M. Kirm, 1 G. Stryganyuk, 2,3 S. Vielhauer, 1 G. Zimmerer, 2,3 V.N. Makhov, 1,4 B.Z. Malkin, 5 O.V. Solovyev, 5 R.Yu.

More information

Supplementary Information

Supplementary Information Supplementary Information Dependence of Eu 2+ Emission Energy on the Host Structure c/a Ratio The Eu 2+ emission wavelength offset was observed in the row of ternary sulfides with common chemical formulae

More information

Atoms, Molecules and Solids (selected topics)

Atoms, Molecules and Solids (selected topics) Atoms, Molecules and Solids (selected topics) Part I: Electronic configurations and transitions Transitions between atomic states (Hydrogen atom) Transition probabilities are different depending on the

More information

(b) The wavelength of the radiation that corresponds to this energy is 6

(b) The wavelength of the radiation that corresponds to this energy is 6 Chapter 7 Problem Solutions 1. A beam of electrons enters a uniform 1.0-T magnetic field. (a) Find the energy difference between electrons whose spins are parallel and antiparallel to the field. (b) Find

More information

Characterization of spectroscopic and laser properties of Pr 3 in Sr 5 PO 4 3 F crystal

Characterization of spectroscopic and laser properties of Pr 3 in Sr 5 PO 4 3 F crystal JOURNAL OF APPLIED PHYSICS VOLUME 91, NUMBER 3 1 FEBRUARY 2002 Characterization of spectroscopic and laser properties of Pr 3 in Sr 5 PO 4 3 F crystal Dhiraj K. Sardar and Francisco Castano Department

More information

6.2. Introduction to Spectroscopic states and term symbols

6.2. Introduction to Spectroscopic states and term symbols Chemistry 3820 Lecture Notes Dr. M. Gerken Page62 6.2. Introduction to Spectroscopic states and term symbols From the number of absorption bands we have already seen that usually more d-d transitions are

More information

Raman and stimulated Raman spectroscopy of chlorinated hydrocarbons

Raman and stimulated Raman spectroscopy of chlorinated hydrocarbons Department of Chemistry Physical Chemistry Göteborg University KEN140 Spektroskopi Raman and stimulated Raman spectroscopy of chlorinated hydrocarbons WARNING! The laser gives a pulsed very energetic and

More information

Orbitals and energetics

Orbitals and energetics Orbitals and energetics Bonding and structure Molecular orbital theory Crystal field theory Ligand field theory Provide fundamental understanding of chemistry dictating radionuclide complexes Structure

More information

PHYSICS. Course Syllabus. Section 1: Mathematical Physics. Subject Code: PH. Course Structure. Electromagnetic Theory

PHYSICS. Course Syllabus. Section 1: Mathematical Physics. Subject Code: PH. Course Structure. Electromagnetic Theory PHYSICS Subject Code: PH Course Structure Sections/Units Topics Section 1 Section 2 Section 3 Section 4 Section 5 Section 6 Section 7 Section 8 Mathematical Physics Classical Mechanics Electromagnetic

More information

MOLECULAR SPECTROSCOPY

MOLECULAR SPECTROSCOPY MOLECULAR SPECTROSCOPY First Edition Jeanne L. McHale University of Idaho PRENTICE HALL, Upper Saddle River, New Jersey 07458 CONTENTS PREFACE xiii 1 INTRODUCTION AND REVIEW 1 1.1 Historical Perspective

More information

Perhaps the most striking aspect of many coordination compounds of transition metals is that they have vivid colors. The UV-vis spectra of

Perhaps the most striking aspect of many coordination compounds of transition metals is that they have vivid colors. The UV-vis spectra of 1 Perhaps the most striking aspect of many coordination compounds of transition metals is that they have vivid colors. The UV-vis spectra of coordination compounds of transition metals involve transitions

More information

Infra Red Spectroscopy

Infra Red Spectroscopy CH 2252 Instrumental Methods of Analysis Unit I Infra Red Spectroscopy M. Subramanian Assistant Professor Department of Chemical Engineering Sri Sivasubramaniya Nadar College of Engineering Kalavakkam

More information

P. W. Atkins and R. S. Friedman. Molecular Quantum Mechanics THIRD EDITION

P. W. Atkins and R. S. Friedman. Molecular Quantum Mechanics THIRD EDITION P. W. Atkins and R. S. Friedman Molecular Quantum Mechanics THIRD EDITION Oxford New York Tokyo OXFORD UNIVERSITY PRESS 1997 Introduction and orientation 1 Black-body radiation 1 Heat capacities 2 The

More information

ANALYSIS ON THE STRUCTURAL, SPECTROSCOPIC, AND DIELECTRIC PROPERTIES OF BORATE GLASS

ANALYSIS ON THE STRUCTURAL, SPECTROSCOPIC, AND DIELECTRIC PROPERTIES OF BORATE GLASS Digest Journal of Nanomaterials and Biostructures Vol. 11, No. 1, January - March 2016, p. 177-183 ANALYSIS ON THE STRUCTURAL, SPECTROSCOPIC, AND DIELECTRIC PROPERTIES OF BORATE GLASS D. SHAJAN a, P. MURUGASEN

More information

Chem 442 Review of Spectroscopy

Chem 442 Review of Spectroscopy Chem 44 Review of Spectroscopy General spectroscopy Wavelength (nm), frequency (s -1 ), wavenumber (cm -1 ) Frequency (s -1 ): n= c l Wavenumbers (cm -1 ): n =1 l Chart of photon energies and spectroscopies

More information

GCE Chemistry Eduqas AS Component 1

GCE Chemistry Eduqas AS Component 1 GCE Chemistry Eduqas AS Component 1 C1.1 FORMULAE AND EQUATIONS formulae of common compounds and common ions and how to write formulae for ionic compounds oxidation numbers of atoms in a compound or ion

More information

V( x) = V( 0) + dv. V( x) = 1 2

V( x) = V( 0) + dv. V( x) = 1 2 Spectroscopy 1: rotational and vibrational spectra The vibrations of diatomic molecules Molecular vibrations Consider a typical potential energy curve for a diatomic molecule. In regions close to R e (at

More information

Gamma Ray Shielding and Structural Properties of Bi 2 O 3 -B 2 O 3 -Na 2 WO 4 Glass System

Gamma Ray Shielding and Structural Properties of Bi 2 O 3 -B 2 O 3 -Na 2 WO 4 Glass System Universal Journal of Physics and Application 11(5): 190-195, 2017 DOI: 10.13189/ujpa.2017.110508 http://www.hrpub.org Gamma Ray Shielding and Structural Properties of Bi 2 O 3 -B 2 O 3 -Na 2 WO 4 Glass

More information

Investigations of the electron paramagnetic resonance spectra of VO 2+ in CaO Al 2 O 3 SiO 2 system

Investigations of the electron paramagnetic resonance spectra of VO 2+ in CaO Al 2 O 3 SiO 2 system PRAMANA c Indian Academy of Sciences Vol. 73, No. 6 journal of December 2009 physics pp. 1087 1094 Investigations of the electron paramagnetic resonance spectra of VO 2+ in CaO Al 2 O 3 SiO 2 system Q

More information

Shift and broadening of emission lines in Nd 3+ :YAG laser crystal influenced by input energy

Shift and broadening of emission lines in Nd 3+ :YAG laser crystal influenced by input energy PRAMANA c Indian Academy of Sciences Vol. 86, No. 6 journal of June 16 physics pp. 1307 1312 Shift and broadening of emission lines in Nd 3+ :YAG laser crystal influenced by input energy SEYED EBRAHIM

More information

Optical and Photonic Glasses. Lecture 37. Non-Linear Optical Glasses I - Fundamentals. Professor Rui Almeida

Optical and Photonic Glasses. Lecture 37. Non-Linear Optical Glasses I - Fundamentals. Professor Rui Almeida Optical and Photonic Glasses : Non-Linear Optical Glasses I - Fundamentals Professor Rui Almeida International Materials Institute For New Functionality in Glass Lehigh University Non-linear optical glasses

More information

Section 11: Electron Configuration and Periodic Trends

Section 11: Electron Configuration and Periodic Trends Section 11: Electron Configuration and Periodic Trends The following maps the videos in this section to the Texas Essential Knowledge and Skills for Science TAC 112.35(c). 11.01 The Bohr Model of the Atom

More information

SPECTROSCOPIC AND LASER PROPERTIES OF LiNbO 3 : Dy 3+ CRYSTALS

SPECTROSCOPIC AND LASER PROPERTIES OF LiNbO 3 : Dy 3+ CRYSTALS Vol. 90 (1996) ACTA PHYSICA POLONICA A No.1 Proceedings of the nd Winter Workshop S&SRES 96, Polanica Zdrdj 1996 SPECTROSCOPIC AND LASER PROPERTIES OF LiNbO 3 : Dy 3+ CRYSTALS M. MALINOWSKI, P. MYZIAK,

More information

Nephelauxetic effect of low phonon antimony oxide glass in absorption and photoluminescence of rare-earth ions

Nephelauxetic effect of low phonon antimony oxide glass in absorption and photoluminescence of rare-earth ions Nephelauxetic effect of low phonon antimony oxide glass in absorption and photoluminescence of rare-earth ions Tirtha Som, Basudeb Karmakar* Glass Science and Technology Section, Glass Division, Central

More information

Lecture 2: Atom and Bonding Semester /2013

Lecture 2: Atom and Bonding Semester /2013 EMT 110 Engineering Materials Lecture 2: Atom and Bonding Semester 1 2012/2013 Atomic Structure Fundamental Concept Atoms are the structural unit of all engineering materials! Each atoms consist of nucleus

More information

Atomic Theory and Periodic Trends Practice AP Chemistry Questions

Atomic Theory and Periodic Trends Practice AP Chemistry Questions AP Chemistry/1516 Atomic Theory and Periodic Trends Practice AP Chemistry Questions 1. 2007 B, question #2 Answer the following problems about gases. (b) A major line in the emission spectrum of neon corresponds

More information

Ionic Bonds. H He: ... Li Be B C :N :O :F: :Ne:

Ionic Bonds. H He: ... Li Be B C :N :O :F: :Ne: Ionic Bonds Valence electrons - the electrons in the highest occupied energy level - always electrons in the s and p orbitals - maximum of 8 valence electrons - elements in the same group have the same

More information

How to identify types of transition in experimental spectra

How to identify types of transition in experimental spectra 17 18 19 How to identify types of transition in experimental spectra 1. intensity 2. Band width 3. polarization Intensities are governed by how well the selection rules can be applied to the molecule under

More information

Particle nature of light & Quantization

Particle nature of light & Quantization Particle nature of light & Quantization A quantity is quantized if its possible values are limited to a discrete set. An example from classical physics is the allowed frequencies of standing waves on a

More information

Chapters 31 Atomic Physics

Chapters 31 Atomic Physics Chapters 31 Atomic Physics 1 Overview of Chapter 31 Early Models of the Atom The Spectrum of Atomic Hydrogen Bohr s Model of the Hydrogen Atom de Broglie Waves and the Bohr Model The Quantum Mechanical

More information

ATOMIC STRUCTURE, ELECTRONS, AND PERIODICITY

ATOMIC STRUCTURE, ELECTRONS, AND PERIODICITY ATOMIC STRUCTURE, ELECTRONS, AND PERIODICITY All matter is made of atoms. There are a limited number of types of atoms; these are the elements. (EU 1.A) Development of Atomic Theory Atoms are so small

More information

Introductory Physical Chemistry Final Exam Points of Focus

Introductory Physical Chemistry Final Exam Points of Focus Introductory Physical Chemistry Final Exam Points of Focus Gas Laws: Understand the foundations of the basic SI units of Pressure and Temperature. Know and be able to use the ideal gas law. Know and be

More information

Atomic Structure Ch , 9.6, 9.7

Atomic Structure Ch , 9.6, 9.7 Ch. 9.2-4, 9.6, 9.7 Magnetic moment of an orbiting electron: An electron orbiting a nucleus creates a current loop. A current loop behaves like a magnet with a magnetic moment µ:! µ =! µ B " L Bohr magneton:

More information

Infrared Spectroscopy

Infrared Spectroscopy Infrared Spectroscopy The Interaction of Light with Matter Electric fields apply forces to charges, according to F = qe In an electric field, a positive charge will experience a force, but a negative charge

More information

DO PHYSICS ONLINE STRUCTURE OF THE ATOM FROM IDEAS TO IMPLEMENTATION ATOMS TO TRANSISTORS STRUCTURE OF ATOMS AND SOLIDS

DO PHYSICS ONLINE STRUCTURE OF THE ATOM FROM IDEAS TO IMPLEMENTATION ATOMS TO TRANSISTORS STRUCTURE OF ATOMS AND SOLIDS DO PHYSIS ONLINE FROM IDEAS TO IMPLEMENTATION 9.4.3 ATOMS TO TRANSISTORS STRUTURE OF ATOMS AND SOLIDS STRUTURE OF THE ATOM In was not until the early 1930 s that scientists had fully developed a model

More information

Molecular spectroscopy Multispectral imaging (FAFF 020, FYST29) fall 2017

Molecular spectroscopy Multispectral imaging (FAFF 020, FYST29) fall 2017 Molecular spectroscopy Multispectral imaging (FAFF 00, FYST9) fall 017 Lecture prepared by Joakim Bood joakim.bood@forbrf.lth.se Molecular structure Electronic structure Rotational structure Vibrational

More information

"What Do I Remember From Introductory Chemistry?" - A Problem Set

What Do I Remember From Introductory Chemistry? - A Problem Set 1 "What Do I Remember From Introductory Chemistry?" - A Problem Set These problems review a portion of the material from introductory chemistry that you should be very familiar with. 1. The electron configuration

More information

Basics of Lanthanide Photophysics

Basics of Lanthanide Photophysics Basics of Lanthanide Photophysics Jean-Claude G. Bünzli and Svetlana V. Eliseeva Abstract The fascination for lanthanide optical spectroscopy dates back to the 1880s when renowned scientists such as Sir

More information

Wolfgang Demtroder. Molecular Physics. Theoretical Principles and Experimental Methods WILEY- VCH. WILEY-VCH Verlag GmbH & Co.

Wolfgang Demtroder. Molecular Physics. Theoretical Principles and Experimental Methods WILEY- VCH. WILEY-VCH Verlag GmbH & Co. Wolfgang Demtroder Molecular Physics Theoretical Principles and Experimental Methods WILEY- VCH WILEY-VCH Verlag GmbH & Co. KGaA v Preface xiii 1 Introduction 1 1.1 Short Historical Overview 2 1.2 Molecular

More information

Lasers PH 645/ OSE 645/ EE 613 Summer 2010 Section 1: T/Th 2:45-4:45 PM Engineering Building 240

Lasers PH 645/ OSE 645/ EE 613 Summer 2010 Section 1: T/Th 2:45-4:45 PM Engineering Building 240 Lasers PH 645/ OSE 645/ EE 613 Summer 2010 Section 1: T/Th 2:45-4:45 PM Engineering Building 240 John D. Williams, Ph.D. Department of Electrical and Computer Engineering 406 Optics Building - UAHuntsville,

More information

Lecture 06. Fundamentals of Lidar Remote Sensing (4) Physical Processes in Lidar

Lecture 06. Fundamentals of Lidar Remote Sensing (4) Physical Processes in Lidar Lecture 06. Fundamentals of Lidar Remote Sensing (4) Physical Processes in Lidar Physical processes in lidar (continued) Doppler effect (Doppler shift and broadening) Boltzmann distribution Reflection

More information

Saturation Absorption Spectroscopy of Rubidium Atom

Saturation Absorption Spectroscopy of Rubidium Atom Saturation Absorption Spectroscopy of Rubidium Atom Jayash Panigrahi August 17, 2013 Abstract Saturated absorption spectroscopy has various application in laser cooling which have many relevant uses in

More information

Chemistry 111 Dr. Kevin Moore

Chemistry 111 Dr. Kevin Moore Chemistry 111 Dr. Kevin Moore Black Body Radiation Heated objects emit radiation based on its temperature Higher temperatures produce higher frequencies PhotoElectric Effect Light on a clean metal surface

More information