Steady-state Packed Bed Reactor Modeling for Methanol Synthesis

Size: px
Start display at page:

Download "Steady-state Packed Bed Reactor Modeling for Methanol Synthesis"

Transcription

1 1 Steady-state Packed Bed Reactor Modeling for Methanol Synthesis K. R. Rout*, H. A. Jakobsen NTNU, Norway

2 2 Contents Motivation of methanol synthesis Types of reactor model Pseudo-homogeneous model Conventional heterogeneous model Simplified heterogeneous model Comparasion of Psedu-homogeneous-, conventional- and simplified heterogeneous model Numerics: least squares spectral element method. Results and Discussion Conclussion

3 3 Process evaluation for methanol synthesis Reactor Simulation for methanol synthesis Net power Total input Total output Reactor type design/size Best operating conditions Transport phenomena Kinetic study for methanol synthesis Catalyst preparation Kinetic rate Catalytic activity

4 4 Motivation for the process METHANOL is multipurpose based chemical. It can be used as chemical intermidiates. Easy for transportation. It has high octane number. Good antiknock performance. Future renewable energy sources (Methanol + Gasoline) Fuel combustion engine Methanol: Fuel cell

5 5 Motivation for steady-state reactor modeling METHANOL synthesis: Feed treatment purification Reforming Methanol synthesis Product purification and storage Intrinsic nonlinerity + complex phenomena = Computer Simulation Dynamic simulation: Start-up and shut down investigation System identification Reactor modeling? Safety, control, optimization Catalytic activity Pseudo-homogeneous Conventional- and simplified Heterogeneous Steady-state model

6 6 Reactions involved in Methanol synthesis CO + 2H 2 = CH 3 OH (1) CO 2 + H 2 = CO + H 2 O...(2) CO H 2 = CH 3 OH + H 2 O...(3) The over all reaction is exothermic. Side reactions (even through they are inhibited by high catalyst selectivity under normal operating conditions): CO + 3H 2 = CH 4 + H 2 O.(4) nco + 2nH 2 = C n H 2n+1 OH + (n-1) H 2 O (5) 2CH 3 OH = CH 3 OCH 3 + H 2 O.(6) This reaction occurs at 570 K; might lead to reactor instabilites due to of its high exothermicity. Catalyst: Cu/Zn/Al 2 O 3 (life cycle: 2 year)

7 7 Packed bed reactor models Derivation of Reactor model Massbasedmodel: Mole basedmodel: C Assumption of total numer of moles along the reactor axis is constant: this is not true Modeling of packed bed reactor Pseudo-homogeneous model Heterogeneous model do not account explicitly the seperate equation for the solid and presence of pellet Simplified interstitial Conventional fluid. Mass transport: 1. Wilke Model Mass transport: Efficiency 2. factors Maxwell-Stefan Multicomponent Model diffusion models 3. Dusty gas model

8 8 Pseudo-homogeneous reactor model Species Mass balance: Total continuity equation: Energy balance: Ergun Equation: j u (1 ) R g z k k jk k ( u z g ) 0 T 4U gcpguz (1 ) ( Hrk) krk Tw T d 2 P 1 uzg Re 3 dp t

9 9 Conventional a) Fluid phase equations: i Mass balance: guz kgiavg( is i) Energy: Ergun Eq.: b) Solid phase equations (Wilke, Maxwell-Stefan, Dusty gas model): Mass balance: J (1 ) R where J D ir, is, k k ik ir, gs, ri, r k r Energy: Q r s Heterogeneous Model T 4U Cp u h a ( T T) ( T T) d g g z f v s w t 2 P 1 uzg 1 ( ( )) ( ) 3 Re d p Ts (1 ) ( Hrk ) k Rk where Qs s r a) Fluid phase equations: i Mass balance: u Energy: Ergun Eq.: Simplified g z kgiavg( is i) T 4U gcpguz hfav( Ts T) ( Tw T) dt 2 P 1 uzg 1 ( ( )) ( ) 3 Re d b) Solid phase equations: Mass balance: avgkg, i( i i, s) (1 ) krkik 0 Energy: k ah ( TT) (1 ) ( H ) R 0 v f s rk k k p

10 10 Numerical scheme Least square spectral method (LSM)*. Because, for a given accuracy the high order spectral method requires only a few collocation points where as the low order methods such as the finite volume method (FVM), require a large number of grid points. The basic idea in the LSM is to minimize the integral of the square of the residual over the computational domain. *Rout K. R., Solsvik J., Nayak A. K., Jakobsen H. A. (2011) A numerical study of multicomponent mass diffusion and convection in porous pellets for the SE-SMR and desorption processes. Chemical Engineering Science 66:

11 11 Overall Purpose Comparison of pseudo-homogeneous reactor model, conventional- and simplified heterogeneous reactor models with experimental data. The proposal of best suitable reactor model under normal operating conditions of fixed bed Lurgi reactor. Comparasion of different multicomponent diffusion models.

12 12 Comparasion with Rezaie et al. Mole Temperature[K] fraction of CH OH 3 Simplified heterogenous(gas phase) Simplified heterogenous(gas phase) Simplified heterogenous(solid phase) Literature heterogenous(gas phase) Literature heterogenous(gas phase) Axial direction [m] [m] 6 8 Rezaie N., Jahanmiri A., Moghtaderi B. Rahimpour M.R (2005) A comparasion of homogeneous and heterogeneous dynamic models for industrial methanol Reactors in the presence of catalyst deactivation. Chemical Engineering and Processing 44:

13 13 Comparasion with different packed bed reactor models Mole fraction Pressure of [bar] CH OH Temperature[K] 3 Psedu-homogeneous Psedu-homogeneous Simplified Simplified heterogenous(gas heterogenous phase) phase) Simplified heterogenous(solid phase) phase) 7.7 x Conventional heterogenous 106 Conventional heterogenous(gas phase) phase) Conventional heterogenous(solid phase) phase Axial direction 4 [m] 6 8 Axial Axial direction direction [m] [m]

14 14 Comparasion with Experimental data by Rezaie et al Time (day) Plant (tonne/day) Pseudohomogeneous (tonne /day) Simplified heterogeneous (tonne/day) Conventional heterogeneous (tonne/day) Rezaie N., Jahanmiri A., Moghtaderi B. Rahimpour M.R (2005) A comparasion of homogeneous and heterogeneous dynamic models for industrial methanol Reactors in the presence of catalyst deactivation. Chemical Engineering and Processing 44:

15 15 Comparasion of different multicomponent diffusion models in conventional heterogeneous model Temperature [K] 530 Mole fraction of CH 3 OH Maxwell-Stefan Model Dusty gas Model Wilke Model Maxwell-Stefan Model Dusty gas Model Wilke Model r Axial direction [m] Axial direction [m]

16 16 Conclusion Both Pseudo-homogeneous- and simplified heterogeneous reactor model slightly overestimates with experimental data. However, the percentage of deviation is quite small. Conventional heterogeneous model is computationally expensive. As there is no significant deviation between gas- and solid phase concentrations of different components along the reactor axis, the pseudo-homogeneous reactor model seems to be best choice for methanol synthesis process.

17 17 Thank You

Modeling of the Unsteady State Methanol Synthesis at the Level of Catalyst Pellet

Modeling of the Unsteady State Methanol Synthesis at the Level of Catalyst Pellet Modeling of the Unsteady State Methanol Synthesis at the Level of Catalyst Pellet IONUT BANU, IOANA STOICA, GHEORGHE BUMBAC, GRIGORE BOZGA* University Politehnica of Bucharest, Department of Chemical and

More information

Modeling of Packed Bed Reactors: Hydrogen Production By the Steam Reforming of Methane and Glycerol

Modeling of Packed Bed Reactors: Hydrogen Production By the Steam Reforming of Methane and Glycerol Modeling of Packed Bed Reactors: Hydrogen Production By the Steam Reforming of Methane and Glycerol A. Dixon 1, B. MacDonald 1, A. Olm 1 1 Department of Chemical Engineering, Worcester Polytechnic Institute,

More information

A First Course on Kinetics and Reaction Engineering Unit D and 3-D Tubular Reactor Models

A First Course on Kinetics and Reaction Engineering Unit D and 3-D Tubular Reactor Models Unit 34. 2-D and 3-D Tubular Reactor Models Overview Unit 34 describes two- and three-dimensional models for tubular reactors. One limitation of the ideal PFR model is that the temperature and composition

More information

Chemical Reaction Engineering

Chemical Reaction Engineering Chemical Reaction Engineering Dr. Yahia Alhamed Chemical and Materials Engineering Department College of Engineering King Abdulaziz University General Mole Balance Batch Reactor Mole Balance Constantly

More information

Modeling of Packed Bed Reactors: Hydrogen Production by the Steam Reforming of Methane and Glycerol

Modeling of Packed Bed Reactors: Hydrogen Production by the Steam Reforming of Methane and Glycerol Modeling of Packed Bed Reactors: Hydrogen Production by the Steam Reforming of Methane and Glycerol A. G. Dixon *,1, B. MacDonald 1, A. Olm 1 1 Department of Chemical Engineering, Worcester Polytechnic

More information

Chemical Reaction Engineering - Part 16 - more reactors Richard K. Herz,

Chemical Reaction Engineering - Part 16 - more reactors Richard K. Herz, Chemical Reaction Engineering - Part 16 - more reactors Richard K. Herz, rherz@ucsd.edu, www.reactorlab.net More reactors So far we have learned about the three basic types of reactors: Batch, PFR, CSTR.

More information

A First Course on Kinetics and Reaction Engineering Unit 33. Axial Dispersion Model

A First Course on Kinetics and Reaction Engineering Unit 33. Axial Dispersion Model Unit 33. Axial Dispersion Model Overview In the plug flow reactor model, concentration only varies in the axial direction, and the sole causes of that variation are convection and reaction. Unit 33 describes

More information

BAE 820 Physical Principles of Environmental Systems

BAE 820 Physical Principles of Environmental Systems BAE 820 Physical Principles of Environmental Systems Catalysis of environmental reactions Dr. Zifei Liu Catalysis and catalysts Catalysis is the increase in the rate of a chemical reaction due to the participation

More information

Dynamics of forced and unsteady-state processes

Dynamics of forced and unsteady-state processes Dynamics of forced and unsteady-state processes Davide Manca Lesson 3 of Dynamics and Control of Chemical Processes Master Degree in Chemical Engineering Davide Manca Dynamics and Control of Chemical Processes

More information

Exploring The Fundamentals In Catalytic Partial Oxidation Of Methane: The Interaction Between Diffusion And Reaction In A Packed Bed Reactor

Exploring The Fundamentals In Catalytic Partial Oxidation Of Methane: The Interaction Between Diffusion And Reaction In A Packed Bed Reactor Exploring The Fundamentals In Catalytic Partial Oxidation Of Methane: The Interaction Between Diffusion And Reaction In A Packed Bed Reactor Songjun Liu; Ana Obradović; Joris W. Thybaut; Guy B. Marin Laboratory

More information

Modeling, Simulation and Control of a Tubular Fixed-bed Dimethyl Ether Reactor

Modeling, Simulation and Control of a Tubular Fixed-bed Dimethyl Ether Reactor E. YASARI et al., Modeling, Simulation and Control of a Tubular Fixed-bed, Chem. Biochem. Eng. Q. 24 (4) 415 423 (2010) 415 Modeling, Simulation and Control of a Tubular Fixed-bed Dimethyl Ether Reactor

More information

MODELING AND SIMULATION OF AN AUTOTHERMAL REFORMER

MODELING AND SIMULATION OF AN AUTOTHERMAL REFORMER Latin American Applied Research 36:89-9 (6) MODELING AND SIMULATION OF AN AUTOTHERMAL REFORMER J. PIÑA and D. O. BORIO PLAPIQUI (UNS-CONICET), Camino La Carrindanga Km 7. (8) Bahía Blanca, Argentina. julianap@plapiqui.edu.ar

More information

Environmental Engineering and Reactor Technology

Environmental Engineering and Reactor Technology Environmental Engineering and Reactor Technology Teaching and research principles of separation, reactor technology and process design The largest research group in the department about 40 PhD-students

More information

INTRODUCTION TO CATALYTIC COMBUSTION

INTRODUCTION TO CATALYTIC COMBUSTION INTRODUCTION TO CATALYTIC COMBUSTION R.E. Hayes Professor of Chemical Engineering Department of Chemical and Materials Engineering University of Alberta, Canada and S.T. Kolaczkowski Professor of Chemical

More information

Reaction and Diffusion in a Porous Catalyst Pellet. by Richard K. Herz

Reaction and Diffusion in a Porous Catalyst Pellet. by Richard K. Herz Reaction and Diffusion in a Porous Catalyst Pellet by Richard K. Herz Solid catalysts are often called "heterogeneous catalysts" meaning that they are in a different phase from fluid reactants

More information

TABLE OF CONTENT. Chapter 4 Multiple Reaction Systems 61 Parallel Reactions 61 Quantitative Treatment of Product Distribution 63 Series Reactions 65

TABLE OF CONTENT. Chapter 4 Multiple Reaction Systems 61 Parallel Reactions 61 Quantitative Treatment of Product Distribution 63 Series Reactions 65 TABLE OF CONTENT Chapter 1 Introduction 1 Chemical Reaction 2 Classification of Chemical Reaction 2 Chemical Equation 4 Rate of Chemical Reaction 5 Kinetic Models For Non Elementary Reaction 6 Molecularity

More information

Chemical Reactor flnolysis

Chemical Reactor flnolysis Introduction to Chemical Reactor flnolysis SECOND EDITION R.E. Hayes J.P. Mmbaga ^ ^ T..,«,,.«M.iirti,im.' TECHNISCHE INFORMATIONSBIBLIOTHEK UNWERSITATSBIBLIOTHEK HANNOVER i ii ii 1 J /0\ CRC Press ycf*

More information

Thermodynamics and Rate Processes. D.Kunzru Dept. of Chemical Engineering I.I.T.Kanpur

Thermodynamics and Rate Processes. D.Kunzru Dept. of Chemical Engineering I.I.T.Kanpur Thermodynamics and Rate Processes D.Kunzru Dept. of Chemical Engineering I.I.T.Kanpur Importance of Chemical Reaction Engineering chemical reactor is usually the heart of any process traditional applications:

More information

Chemical Equilibrium: Ch Dynamic Equilibrium. Dynamic Equilibrium. Three Approaches to Equilibrium The Equilibrium Constant Expression

Chemical Equilibrium: Ch Dynamic Equilibrium. Dynamic Equilibrium. Three Approaches to Equilibrium The Equilibrium Constant Expression Chemical Equilibrium: Ch. 15 15-1 Dynamic Equilibrium 15- The Equilibrium Constant Expression 15- Relationships Involving Equilibrium Constants 15-4 The Magnitude of an Equilibrium Constant 15-5 The Reaction

More information

Methane Oxidation Reactions

Methane Oxidation Reactions Methane Oxidation Reactions CH 4 + 2 O -> CO 2 2 + 2 H 2 O Total Oxidation (Combustion) CH 4 + 0.5 O -> CO 2 + 2 H 2 CO + 0.5 O -> CO 2 2 H 2 + 0.5 O -> H 2 2 O CH 4 + H 2 O->CO + 3 H 2 Partial Oxidation

More information

MODELING AND SIMULATION OF REFORMER AUTO- THERMAL REACTOR IN AMMONIA UNIT

MODELING AND SIMULATION OF REFORMER AUTO- THERMAL REACTOR IN AMMONIA UNIT Peet trool lleeuum & Cooaal ll IISSN 337-77 Available online at www.vuru.sk/c Petroleum & Coal 9 (), 6-7, 7 MODELING AND SIMULATION OF REFORMER AUTO- THERMAL REACTOR IN AMMONIA UNIT Kayvan Khorsand *,

More information

Supports, Zeolites, Mesoporous Materials - Chapter 9

Supports, Zeolites, Mesoporous Materials - Chapter 9 Supports, Zeolites, Mesoporous Materials - Chapter 9 Krijn P. de Jong Inorganic Chemistry and Catalysis Utrecht University NIOK CAIA Course, Schiermonnikoog, December 4 th, 2009 1 Overview of lecture Introduction

More information

Chemical Reaction Engineering Prof. Jayant Modak Department of Chemical Engineering Indian Institute of Science, Bangalore

Chemical Reaction Engineering Prof. Jayant Modak Department of Chemical Engineering Indian Institute of Science, Bangalore Chemical Reaction Engineering Prof. Jayant Modak Department of Chemical Engineering Indian Institute of Science, Bangalore Lecture No. #40 Problem solving: Reactor Design Friends, this is our last session

More information

APPLICATION OF CHEMICAL KINETICS IN THE HETEROGENEOUS CATALYSIS STUDIES

APPLICATION OF CHEMICAL KINETICS IN THE HETEROGENEOUS CATALYSIS STUDIES ALICATION OF CHEMICAL KINETICS IN THE HETEROGENEOUS CATALYSIS STUDIES L. A. ETROV SABIC Chair in Heterogeneous Catalysis Chemical and Materials Engineering Department College of Engineering, King Abdulaziz

More information

Chemical Reaction Engineering II Prof. Ganesh Vishwanathan. Department of Chemical Engineering Indian Institute of Technology, Bombay

Chemical Reaction Engineering II Prof. Ganesh Vishwanathan. Department of Chemical Engineering Indian Institute of Technology, Bombay Chemical Reaction Engineering II Prof. Ganesh Vishwanathan. Department of Chemical Engineering Indian Institute of Technology, Bombay Lecture -17 Packed-bed reactor design Friends, let us look at how to

More information

Diffusion and Reaction in Fe-Based Catalyst for Fischer- Tropsch Synthesis Using Micro Kinetic Rate Expressions

Diffusion and Reaction in Fe-Based Catalyst for Fischer- Tropsch Synthesis Using Micro Kinetic Rate Expressions Diffusion and Reaction in Fe-Based Catalyst for Fischer- Tropsch Synthesis Using Micro Kinetic Rate Expressions 3-D CFD Model for Shell & Tube Exchanger with 7 Tubes Ender Ozden and Ilker Tari (2010) Multitubular

More information

POSITION R & D Officer M.Tech. No. of questions (Each question carries 1 mark) 1 Verbal Ability Quantitative Aptitude Test 34

POSITION R & D Officer M.Tech. No. of questions (Each question carries 1 mark) 1 Verbal Ability Quantitative Aptitude Test 34 POSITION R & D Officer M.Tech Candidates having M.Tech / M.E. Chemical Engg. with 60% marks (aggregate of all semesters/years) and 50% for SC/ST/PWD are being called for Computer Based Test basis the information

More information

Method and process for combustion synthesized supported cobalt catalysts for fixed bed Fischer Tropsch reaction

Method and process for combustion synthesized supported cobalt catalysts for fixed bed Fischer Tropsch reaction Method and process for combustion synthesized supported cobalt catalysts for fixed bed Fischer Tropsch reaction Center for Sustainable Technologies Indian Institute of Science Bangalore IDF presentation

More information

Review for Final Exam. 1ChE Reactive Process Engineering

Review for Final Exam. 1ChE Reactive Process Engineering Review for Final Exam 1ChE 400 - Reactive Process Engineering 2ChE 400 - Reactive Process Engineering Stoichiometry Coefficients Numbers Multiple reactions Reaction rate definitions Rate laws, reaction

More information

Process Chemistry Toolbox - Mixing

Process Chemistry Toolbox - Mixing Process Chemistry Toolbox - Mixing Industrial diffusion flames are turbulent Laminar Turbulent 3 T s of combustion Time Temperature Turbulence Visualization of Laminar and Turbulent flow http://www.youtube.com/watch?v=kqqtob30jws

More information

Simulation of Methanol Production Process and Determination of Optimum Conditions

Simulation of Methanol Production Process and Determination of Optimum Conditions Est. 1984 ORIENTAL JOURNAL OF CHEMISTRY An International Open Free Access, Peer Reviewed Research Journal www.orientjchem.org ISSN: 0970-020 X CODEN: OJCHEG 2012, Vol. 28, No. (1): Pg. 145-151 Simulation

More information

Modelling and Simulation of hydrogen storage device for fuel cell using COMSOL Multiphysics

Modelling and Simulation of hydrogen storage device for fuel cell using COMSOL Multiphysics COMSOL USER CONFERENCE 2011,STUTTGART, GERMANY Modelling and Simulation of hydrogen storage device for fuel cell using COMSOL Multiphysics By: Akanji Olaitan Supervised by: Professor Andrei Kolesnikov

More information

Chemical Reaction Engineering Lecture 5

Chemical Reaction Engineering Lecture 5 Chemical Reaction Engineering g Lecture 5 The Scope The im of the Course: To learn how to describe a system where a (bio)chemical reaction takes place (further called reactor) Reactors Pharmacokinetics

More information

Partial Oxidation of Methane to Methanol in a Catalytc Packed Bed Reactor: Kinetic Modeling and Experimental Study

Partial Oxidation of Methane to Methanol in a Catalytc Packed Bed Reactor: Kinetic Modeling and Experimental Study World Applied Sciences Journal 6 (): 9-46, 009 ISSN 1818-495 IDOSI Publications, 009 Partial Oxidation of Methane to Methanol in a Catalytc Packed Bed Reactor: Kinetic Modeling and Experimental Study 1

More information

HANDBOOK SECOND EDITION. Edited by

HANDBOOK SECOND EDITION. Edited by HANDBOOK SECOND EDITION Edited by Martyn V. Twigg BSc, PhD, CChem., FRSC Catalytic Systems Division Johnson Matthey Plc. Formerly at the Catalysis Centre ICI Chemicals & Polymers Ltd MANSON PUBLISHING

More information

PROCESS ECONOMICS PROGRAM

PROCESS ECONOMICS PROGRAM Report No. 37 ACETIC ACID by SHIGEYOSHI TAKAOKA March 1968 A private report by the PROCESS ECONOMICS PROGRAM STANFORD RESEARCH INSTITUTE I I MENLO PARK, CALIFORNIA CONTENTS 1 INTRODUCTION........................

More information

PCE126 Chemical Reaction Engineering & Applied Chemical Kinetics

PCE126 Chemical Reaction Engineering & Applied Chemical Kinetics PCE126 Chemical Reaction Engineering & Applied Chemical Kinetics H.H. Sheikh Sultan Tower (0) Floor Corniche Street Abu Dhabi U.A.E www.ictd.ae ictd@ictd.ae Course Introduction: Chemical reactions occur

More information

NPTEL. Chemical Reaction Engineering II - Video course. Chemical Engineering. COURSE OUTLINE

NPTEL. Chemical Reaction Engineering II - Video course. Chemical Engineering.   COURSE OUTLINE NPTEL Syllabus Chemical Reaction Engineering II - Video course COURSE OUTLINE This is a typical second course in the subject of chemical reaction engineering with an emphasis on heterogeneous reaction

More information

Engineering and. Tapio Salmi Abo Akademi Abo-Turku, Finland. Jyri-Pekka Mikkola. Umea University, Umea, Sweden. Johan Warna.

Engineering and. Tapio Salmi Abo Akademi Abo-Turku, Finland. Jyri-Pekka Mikkola. Umea University, Umea, Sweden. Johan Warna. Chemical Reaction Engineering and Reactor Technology Tapio Salmi Abo Akademi Abo-Turku, Finland Jyri-Pekka Mikkola Umea University, Umea, Sweden Johan Warna Abo Akademi Abo-Turku, Finland CRC Press is

More information

Study Of Molar Flow, Mole Fraction, Partial Pressure Variation In Process Of Pure Hydrogen Production In Multichannel Membrane Reactor

Study Of Molar Flow, Mole Fraction, Partial Pressure Variation In Process Of Pure Hydrogen Production In Multichannel Membrane Reactor Study Of Molar Flow, Mole Fraction, Partial Pressure Variation In Process Of Pure Hydrogen Production In Multichannel Membrane Reactor Narges Rahimi Department: Chemical Engineering South Tehran Branch,

More information

High-purity hydrogen via the sorption-enhanced steam methane reforming reaction over a synthetic CaO-based sorbent and a Ni catalyst

High-purity hydrogen via the sorption-enhanced steam methane reforming reaction over a synthetic CaO-based sorbent and a Ni catalyst High-purity hydrogen via the sorption-enhanced steam methane reforming reaction over a synthetic CaO-based sorbent and a Ni catalyst M. Broda a, V. Manovic b, Q. Imtiaz a, A. M. Kierzkowska a, E. J. Anthony

More information

First-principles based catalytic reaction engineering Matteo Maestri

First-principles based catalytic reaction engineering Matteo Maestri CECAM International Summer School Hot topic 4 First-principles based catalytic reaction engineering Matteo Maestri July 23, 2013 Conversationshaus - Norderney, Germany Catalytic cycle Consists of the elementary

More information

Numerical Study of Flux Models for CO 2 : Enhanced Natural Gas Recovery and Potential CO 2 Storage in Shale Gas Reservoirs

Numerical Study of Flux Models for CO 2 : Enhanced Natural Gas Recovery and Potential CO 2 Storage in Shale Gas Reservoirs Numerical Study of Flux Models for CO 2 : Enhanced Natural Gas Recovery and Potential CO 2 Storage in Shale Gas Reservoirs Nilay J. Prajapati and Patrick L. Mills * Department of Chemical and Natural Gas

More information

Chemical Reaction Engineering. Dr. Yahia Alhamed

Chemical Reaction Engineering. Dr. Yahia Alhamed Chemical Reaction Engineering Dr. Yahia Alhamed 1 Kinetics and Reaction Rate What is reaction rate? It is the rate at which a species looses its chemical identity per unit volume. The rate of a reaction

More information

Experimental investigation of Methane Partial Oxidation for Hydrogen Production

Experimental investigation of Methane Partial Oxidation for Hydrogen Production Research Article Journal of Energy Management and Technology (JEMT) Vol. 2, Issue 1 20 Experimental investigation of Methane Partial Oxidation for Hydrogen Production HAMID REZA LARI 1 AND MOHAMMAD REZA

More information

Lecture (9) Reactor Sizing. Figure (1). Information needed to predict what a reactor can do.

Lecture (9) Reactor Sizing. Figure (1). Information needed to predict what a reactor can do. Lecture (9) Reactor Sizing 1.Introduction Chemical kinetics is the study of chemical reaction rates and reaction mechanisms. The study of chemical reaction engineering (CRE) combines the study of chemical

More information

COUPLING COMPLEX REFORMER CHEMICAL KINETICS WITH THREE- DIMENSIONAL COMPUTATIONAL FLUID DYNAMICS

COUPLING COMPLEX REFORMER CHEMICAL KINETICS WITH THREE- DIMENSIONAL COMPUTATIONAL FLUID DYNAMICS COUPLING COMPLEX REFORMER CHEMICAL KINETICS WITH THREE- DIMENSIONAL COMPUTATIONAL FLUID DYNAMICS Graham Goldin a, Huayang Zhu b, Kyle Kattke b, Anthony M. Dean b, Robert Braun b, Robert J. Kee b, Dan Zhang

More information

Oxidative Coupling of Methane: A Microkinetic Model Accounting for Intraparticle Surface-Intermediates Concentration Profiles

Oxidative Coupling of Methane: A Microkinetic Model Accounting for Intraparticle Surface-Intermediates Concentration Profiles pubs.acs.org/iecr Oxidative Coupling of Methane: A Microkinetic Model Accounting for Intraparticle Surface-Intermediates Concentration Profiles Panagiotis N. Kechagiopoulos, Joris W. Thybaut,* and Guy

More information

SIMULATION OF FLOW IN A RADIAL FLOW FIXED BED REACTOR (RFBR)

SIMULATION OF FLOW IN A RADIAL FLOW FIXED BED REACTOR (RFBR) SIMULATION OF FLOW IN A RADIAL FLOW FIXED BED REACTOR (RFBR) Aqeel A. KAREERI, Habib H. ZUGHBI, *, and Habib H. AL-ALI * Ras Tanura Refinery, SAUDI ARAMCO, Saudi Arabia * Department of Chemical Engineering,

More information

Mathematical Investigation and CFD Simulation of Monolith Reactors: Catalytic Combustion of Methane

Mathematical Investigation and CFD Simulation of Monolith Reactors: Catalytic Combustion of Methane Excerpt from the Proceedings of the COMSOL Conference 8 Hannover Mathematical Investigation and CFD Simulation of Monolith Reactors: Catalytic Combustion of Methane Maryam Ghadrdan *,, Hamid Mehdizadeh

More information

Engineering. Green Chemical. S. Suresh and S. Sundaramoorthy. and Chemical Processes. An Introduction to Catalysis, Kinetics, CRC Press

Engineering. Green Chemical. S. Suresh and S. Sundaramoorthy. and Chemical Processes. An Introduction to Catalysis, Kinetics, CRC Press I i Green Chemical Engineering An Introduction to Catalysis, Kinetics, and Chemical Processes S. Suresh and S. Sundaramoorthy CRC Press Taylor & Francis Group Boca Raton London New York CRC Press is an

More information

OH, is an important feedstock for the chemical industry.

OH, is an important feedstock for the chemical industry. 1 Methanol, CH 3 OH, is an important feedstock for the chemical industry. In the manufacture of methanol, carbon dioxide and hydrogen are reacted together in the reversible reaction shown below. CO 2 (g)

More information

Steam Reforming in a Packed Bed Membrane Reactor

Steam Reforming in a Packed Bed Membrane Reactor Steam Reforming in a Packed Bed Membrane Reactor Nico Jurtz, Prof. Matthias Kraume Technische Universität Berlin Chair for Chemical and Process Engineering nico.jurtz@tu-berlin.de Outline Motivation Modeling

More information

Process Design Decisions and Project Economics Prof. Dr. V. S. Moholkar Department of Chemical Engineering Indian Institute of Technology, Guwahati

Process Design Decisions and Project Economics Prof. Dr. V. S. Moholkar Department of Chemical Engineering Indian Institute of Technology, Guwahati Process Design Decisions and Project Economics Prof. Dr. V. S. Moholkar Department of Chemical Engineering Indian Institute of Technology, Guwahati Module - 2 Flowsheet Synthesis (Conceptual Design of

More information

Examination paper for TKP 4155 / KP 8903 REACTION KINETICS AND CATALYSIS

Examination paper for TKP 4155 / KP 8903 REACTION KINETICS AND CATALYSIS Department of Chemical Engineering Examination paper for TKP 4155 / KP 8903 REACTION KINETICS AND CATALYSIS Academic contact during examination: Professor Magnus Rønning Phone: 918 97 585 Examination date:

More information

ENZYME SCIENCE AND ENGINEERING PROF. SUBHASH CHAND DEPARTMENT OF BIOCHEMICAL ENGINEERING AND BIOTECHNOLOGY IIT DELHI

ENZYME SCIENCE AND ENGINEERING PROF. SUBHASH CHAND DEPARTMENT OF BIOCHEMICAL ENGINEERING AND BIOTECHNOLOGY IIT DELHI ENZYME SCIENCE AND ENGINEERING PROF. SUBHASH CHAND DEPARTMENT OF BIOCHEMICAL ENGINEERING AND BIOTECHNOLOGY IIT DELHI LECTURE 23 STEADY STATE ANALYSIS OF MASS TRANSFER & BIOCHEMICAL REACTION IN IME REACTORS

More information

CHEMICAL REACTION ENGINEERING LAB

CHEMICAL REACTION ENGINEERING LAB CHEMICAL REACTION ENGINEERING LAB EQUIPMENTS 1.CHEMICAL REACTORS SERVICE UNIT The chemical reactors service unit consists of a moulded ABS plinth which is used as a mounting for the chemical reactor to

More information

CHEMICAL ENGINEERING

CHEMICAL ENGINEERING CHEMICAL ENGINEERING Subject Code: CH Course Structure Sections/Units Section A Unit 1 Unit 2 Unit 3 Unit 4 Unit 5 Unit 6 Section B Section C Section D Section E Section F Section G Section H Section I

More information

Catalytic Pellet Based Heterocatalytic Reactor Bed Models Development Gy. Rádi *1, T. Varga 1, T. Chován 1

Catalytic Pellet Based Heterocatalytic Reactor Bed Models Development Gy. Rádi *1, T. Varga 1, T. Chován 1 Excerpt from the Proceedings of the COMSOL Conference 2010 Paris Catalytic Pellet Based Heterocatalytic Reactor Bed Models Development Gy. Rádi *1, T. Varga 1, T. Chován 1 1 Department of Process Engineering,

More information

Model for Propane Dehydrogenation

Model for Propane Dehydrogenation www.optience.com Model for Propane Dehydrogenation Objective: Develop a kinetic model for Propane Dehydrogenation In this example, we propose a simplified model for the catalytic dehydrogenation of propane

More information

Computational Fluid Dynamic Study On The Decomposition Of Methane Gas Into Hydrogen And Solid Carbon In A Packed Bed Fluid Catalytic Cracking Reactor

Computational Fluid Dynamic Study On The Decomposition Of Methane Gas Into Hydrogen And Solid Carbon In A Packed Bed Fluid Catalytic Cracking Reactor IOSR Journal of Applied Chemistry (IOSR-JAC) e-issn: 2278-5736. Volume 4, Issue 2 (Mar. Apr. 2013), PP 32-41 Computational Fluid Dynamic Study On The Decomposition Of Methane Gas Into Hydrogen And Solid

More information

Dr Panagiotis Kechagiopoulos. Lecturer in Chemical Engineering. School of Engineering

Dr Panagiotis Kechagiopoulos. Lecturer in Chemical Engineering. School of Engineering Catalytic reforming of biomass derived oxygenates for sustainable hydrogen production: Experimental investigations, microkinetic modelling and reactor design Dr Panagiotis Kechagiopoulos Lecturer in Chemical

More information

5. Diffusion/Reaction Application

5. Diffusion/Reaction Application 5. Diffusion/Reaction Application Diffusion of the reactants from the surface of the catalyst to the interior of its pores constitutes one of the resistances in a reaction system catalyzed by the solid

More information

Fuel, Air, and Combustion Thermodynamics

Fuel, Air, and Combustion Thermodynamics Chapter 3 Fuel, Air, and Combustion Thermodynamics 3.1) What is the molecular weight, enthalpy (kj/kg), and entropy (kj/kg K) of a gas mixture at P = 1000 kpa and T = 500 K, if the mixture contains the

More information

DETAILED DYNAMIC MODELING OF AUTO-THERMAL GASOLINE FUEL-PROCESSORS

DETAILED DYNAMIC MODELING OF AUTO-THERMAL GASOLINE FUEL-PROCESSORS F26SC33 DETAILED DYNAMIC MODELING OF AUTO-THERMAL GASOLINE FUEL-PROCESSORS 1 Böhme, Thomas R. *, 1 Onder, Christopher, 1 Guzzella, Lino 1 Measurement and Control Laboratory, ETH Zurich, Switzerland KEYWORDS

More information

3. Increased surface area (1) more collisions (1) 2

3. Increased surface area (1) more collisions (1) 2 3. Increased surface area (1) more collisions (1) 2 Mill Hill High School 1 [9] (c) (i) 2H 2 O 2 2H 2 O + O 2 1 (ii) Speeds up (alters the rate of) a chemical reaction 1 Remains unchanged (or not used

More information

Temperature: An increase in temperature increases the rate of reaction.

Temperature: An increase in temperature increases the rate of reaction. 9 Kinetics I Factors affecting the rate of reaction Temperature: An increase in temperature increases the rate of reaction. Concentration: An increase in the concentration of a solution of reactants increases

More information

DEVELOPMENT OF CFD BASED MATHEMATICAL MODELS TO STUDY HETEROCATALYTIC SYSTEMS

DEVELOPMENT OF CFD BASED MATHEMATICAL MODELS TO STUDY HETEROCATALYTIC SYSTEMS HUNGARIAN JOURNAL OF INDUSTRIAL CHEMISTRY VESZPRÉM Vol. 38(2). pp. 137-141 (2010) DEVELOPMENT OF CFD BASED MATHEMATICAL MODELS TO STUDY HETEROCATALYTIC SYSTEMS GY. RÁDI, T. VARGA, T. CHOVÁN Department

More information

A FINITE VOLUME-BASED NETWORK METHOD FOR THE PREDICTION OF HEAT, MASS AND MOMENTUM TRANSFER IN A PEBBLE BED REACTOR

A FINITE VOLUME-BASED NETWORK METHOD FOR THE PREDICTION OF HEAT, MASS AND MOMENTUM TRANSFER IN A PEBBLE BED REACTOR A FINITE VOLUME-BASED NETWORK METHOD FOR THE PREDICTION OF HEAT, MASS AND MOMENTUM TRANSFER IN A PEBBLE BED REACTOR GP Greyvenstein and HJ van Antwerpen Energy Systems Research North-West University, Private

More information

Lecture 4. Mole balance: calculation of membrane reactors and unsteady state in tank reactors. Analysis of rate data

Lecture 4. Mole balance: calculation of membrane reactors and unsteady state in tank reactors. Analysis of rate data Lecture 4 Mole balance: calculation of membrane reactors and unsteady state in tank reactors. nalysis of rate data Mole alance in terms of Concentration and Molar Flow Rates Working in terms of number

More information

CFD study of gas mixing efficiency and comparisons with experimental data

CFD study of gas mixing efficiency and comparisons with experimental data 17 th European Symposium on Computer Aided Process Engineering ESCAPE17 V. Plesu and P.S. Agachi (Editors) 2007 Elsevier B.V. All rights reserved. 1 CFD study of gas mixing efficiency and comparisons with

More information

Student Laboratory Module: The Kinetics of NH 3 Cracking. Jason C. Ganley 23 September

Student Laboratory Module: The Kinetics of NH 3 Cracking. Jason C. Ganley 23 September Student Laboratory Module: The Kinetics of NH 3 Cracking Jason C. Ganley 23 September 2014 1 Presentation Outline Laboratory work in traditional lecture courses Ammonia decomposition as a model reaction

More information

Model for Steam Reforming of Ethanol Using a Catalytic Wall Reactor

Model for Steam Reforming of Ethanol Using a Catalytic Wall Reactor Excerpt from the Proceedings of the COMSOL Conference 28 Hannover Model for Steam Reforming of Ethanol Using a Catalytic Wall Reactor J.A. Torres *1 and D. Montané 2 1 Centre Huile Lourde Ouvert et Expérimental

More information

Model Prediction on the Reliability of Fixed Bed Reactor for Ammonia Production

Model Prediction on the Reliability of Fixed Bed Reactor for Ammonia Production ISSN: 2410-9649 Ukpaka Chemistry and Izonowei International / Chemistry 3(1) International (2017) 46-57 3(1) (2017) 46-57 iscientic.org. Model Prediction on the Reliability of Fixed Bed Reactor for Ammonia

More information

Heterogeneous catalysis: the fundamentals

Heterogeneous catalysis: the fundamentals www.catalysiscourse.com Heterogeneous catalysis: the fundamentals Introduction Prof dr J W (Hans) Niemantsverdriet Schuit Institute of Catalysis What is Catalysis? a phenomenon in which a small quantity

More information

Providing an Entry Length in Heterogeneous Catalytic Reactors with Fast Diffusion

Providing an Entry Length in Heterogeneous Catalytic Reactors with Fast Diffusion Presented at the COMSOL Conference 2009 Milan Providing an Entry Length in Heterogeneous Catalytic Reactors with Fast Diffusion D. Dalle Nogare, P. Canu University of Padova, Italy From the PFR to the

More information

Part I.

Part I. Part I bblee@unimp . Introduction to Mass Transfer and Diffusion 2. Molecular Diffusion in Gasses 3. Molecular Diffusion in Liquids Part I 4. Molecular Diffusion in Biological Solutions and Gels 5. Molecular

More information

A Review Paper on Design and simulation of tubular heat exchanging reactor for coupling exothermic and endothermic reactions

A Review Paper on Design and simulation of tubular heat exchanging reactor for coupling exothermic and endothermic reactions A Review Paper on Design and simulation of tubular heat exchanging reactor for coupling exothermic and endothermic reactions S. S. Potdar 1, U. S. Patil 2, V. B. Pawar 3, S. D. Chougule 4, M. M. Joshi

More information

Numerical simulations of hydrogen peroxide decomposition in a monolithic catalyst for rocket engines applications

Numerical simulations of hydrogen peroxide decomposition in a monolithic catalyst for rocket engines applications Numerical simulations of hydrogen peroxide decomposition in a monolithic catalyst for rocket engines applications Nadia Maricelti DIAS - Department of Aerospace Engineering, University Federico II, P.le

More information

Reactions and Reactors

Reactions and Reactors Reactions and Reactors ChE 400 - Reactive Process Engineering If we want to run a chemical process in order to convert some reactants (the reactor feed) to some product (the reactor effluent), we have

More information

TRITIUM RECOVERY FROM WASTE USING A PALLADIUM MEMBRANE REACTOR

TRITIUM RECOVERY FROM WASTE USING A PALLADIUM MEMBRANE REACTOR TRITIUM RECOVERY FROM WASTE USING A PALLADIUM MEMBRANE REACTOR Stephen A. Birdsell and R. Scott Willms Los Alamos National Laboratory MS C348, Los Alamos, New Mexico 87545 ABSTRACT A large quantity of

More information

Chemical Reaction Engineering. Lecture 7

Chemical Reaction Engineering. Lecture 7 hemical Reaction Engineering Lecture 7 Home problem: nitroaniline synthesis the disappearance rate of orthonitrochlorobenzene [ ] d ONB ra k ONB NH dt Stoichiometric table: [ ][ ] 3 hange Remaining* oncentration**

More information

Chemical Engineering

Chemical Engineering Chemical Engineering Basic Principles: Energy and material balances Transport Processes Momentum Transfer: Fluid Flow Energy Transfer: Heat Mass Transfer: mixing and separation processes Physical and Chemical

More information

Two-dimensional mathematical modeling of oxidative coupling of methane in a membrane reactor

Two-dimensional mathematical modeling of oxidative coupling of methane in a membrane reactor Conference topics: cr11 TIChE International Conference 11 Two-dimensional mathematical modeling of oxidative coupling of methane in a membrane reactor Salamah Manundawee 1, Suttichai Assabumrungrat 1,

More information

Evaluation of diffusional resistances in the process of glucose isomerization to fructose by immobilized glucose isomerase

Evaluation of diffusional resistances in the process of glucose isomerization to fructose by immobilized glucose isomerase Enzyme and Microbial Technology 28 (2001) 246 252 www.elsevier.com/locate/enzmictec Evaluation of diffusional resistances in the process of glucose isomerization to fructose by immobilized glucose isomerase

More information

H 0 r = -18,000 K cal/k mole Assume specific heats of all solutions are equal to that of water. [10]

H 0 r = -18,000 K cal/k mole Assume specific heats of all solutions are equal to that of water. [10] Code No: RR320802 Set No. 1 III B.Tech II Semester Supplementary Examinations, November/December 2005 CHEMICAL REACTION ENGINEERING-I (Chemical Engineering) Time: 3 hours Max Marks: 80 Answer any FIVE

More information

1. Introduction. Olatunde Jogunola 1,*, Tapio Salmi 1, Johan Wärnå 1, Sébastien Leveneur 1,2, Jyri-Pekka Mikkola 1,3

1. Introduction. Olatunde Jogunola 1,*, Tapio Salmi 1, Johan Wärnå 1, Sébastien Leveneur 1,2, Jyri-Pekka Mikkola 1,3 Modelling of Simultaneous Reaction and Diffusion in hemical Reactors with Particle Size Distributions: Application of Ion-exchange Resins in Heterogeneous atalysis Olatunde Jogunola,*, Tapio Salmi, Johan

More information

SINOPEC MTP and MTX technologies

SINOPEC MTP and MTX technologies COPYRIGHT@SUNJUNNAN COPYRIGHT@SUNJUNNAN 18-19 th, July, 2016, Parsian Azadi Hotel, Tehran, Iran Methanol+Toluene to Xylenes SINOPEC MTP and MTX technologies July 18 th, 2016 CONTENT MTP Introduction S-MTP

More information

Module 1: Mole Balances, Conversion & Reactor Sizing (Chapters 1 and 2, Fogler)

Module 1: Mole Balances, Conversion & Reactor Sizing (Chapters 1 and 2, Fogler) CHE 309: Chemical Reaction Engineering Lecture-2 Module 1: Mole Balances, Conversion & Reactor Sizing (Chapters 1 and 2, Fogler) Module 1: Mole Balances, Conversion & Reactor Sizing Topics to be covered

More information

DYNAMIC MODELING AND CONTROLLABILITY ANALYSIS OF DME PRODUCTION IN AN ISOTHERMAL FIXED BED REACTOR. M. Farsi *

DYNAMIC MODELING AND CONTROLLABILITY ANALYSIS OF DME PRODUCTION IN AN ISOTHERMAL FIXED BED REACTOR. M. Farsi * DYNAMIC MODELING AND CONTROLLABILITY ANALYSIS OF DME PRODUCTION IN AN ISOTHERMAL FIXED BED REACTOR M. Farsi * Department of Chemical Engineering, School of Chemical and Petroleum Engineering, Shiraz University,

More information

Dynamic Simulation Using COMSOL Multiphysics for Heterogeneous Catalysis at Particle Scale

Dynamic Simulation Using COMSOL Multiphysics for Heterogeneous Catalysis at Particle Scale Dynamic Simulation Using COMSOL Multiphysics for Heterogeneous Catalysis at Particle Scale Ameer Khan Patan *1, Mallaiah Mekala 2, Sunil Kumar Thamida 3 Department of Chemical Engineering, National Institute

More information

Dynamic Simulation of the Lurgi-type Reactor for Methanol Synthesis

Dynamic Simulation of the Lurgi-type Reactor for Methanol Synthesis Dynamic Simulation of the Lurgi-type Reactor for Methanol Synthesis Flavio Manenti 1*, Silvia Cieri, Marco Restelli, Nadson Murilo Nascimento Lima 3, Lamia Zuniga Linan 3 1 Politecnico di Milano, CMIC

More information

Notes on reaction-diffusion cases with effectiveness factors greater than one! Richard K. Herz,

Notes on reaction-diffusion cases with effectiveness factors greater than one! Richard K. Herz, Notes on reaction-diffusion cases with effectiveness factors greater than one! Richard K. Herz, rherz@ucsd.edu For isothermal n-th order reactions where n >= 0, the catalyst effectiveness factor value

More information

Development of Dynamic Models. Chapter 2. Illustrative Example: A Blending Process

Development of Dynamic Models. Chapter 2. Illustrative Example: A Blending Process Development of Dynamic Models Illustrative Example: A Blending Process An unsteady-state mass balance for the blending system: rate of accumulation rate of rate of = of mass in the tank mass in mass out

More information

BASIC DESIGN EQUATIONS FOR MULTIPHASE REACTORS

BASIC DESIGN EQUATIONS FOR MULTIPHASE REACTORS BASIC DESIGN EQUATIONS FOR MULTIPHASE REACTORS Starting Reference 1. P. A. Ramachandran and R. V. Chaudhari, Three-Phase Catalytic Reactors, Gordon and Breach Publishers, New York, (1983). 2. Nigam, K.D.P.

More information

Lecture 11 Kjemisk reaksjonsteknikk Chemical Reaction Engineering

Lecture 11 Kjemisk reaksjonsteknikk Chemical Reaction Engineering Lecture Kjemisk reaksjonsteknikk Chemical Reaction Engineering Review of previous lectures Kinetic data analysis of heterogeneous reactions. Characterization of t catalysts. Kinetic study, find a kinetic

More information

Chemical Engineering 140. Chemical Process Analysis C.J. Radke Tentative Schedule Fall 2013

Chemical Engineering 140. Chemical Process Analysis C.J. Radke Tentative Schedule Fall 2013 Chemical Process Analysis C.J. Radke Tentative Schedule Fall 2013 Week 0 *8/30 1. Definition of Chemical Engineering: flow sheet, reactor trains and separation processes, raw materials, power production

More information

REACTIVE distillation is a separation process that combines

REACTIVE distillation is a separation process that combines Simulation of Reactive Distillation: Comparison of Equilibrium and Nonequilibrium Stage Models Asfaw Gezae Daful Abstract In the present study, two distinctly different approaches are followed for modeling

More information

Equation oriented modelling of UOP FCC units with high-efficiency regenerators

Equation oriented modelling of UOP FCC units with high-efficiency regenerators Equation oriented modelling of UOP FCC units with high-efficiency regenerators Alexandre J.S. Chambel a,b, Jorge F.P. Rocha a, Carla I.C. Pinheiro b and Nuno M.C. Oliveira a a CIEPQPF - Centre for Chemical

More information

AE 205 Materials and Energy Balances Asst. Prof. Dr. Tippabust Eksangsri. Chapter 4 Stoichiometry and MB with Reactions

AE 205 Materials and Energy Balances Asst. Prof. Dr. Tippabust Eksangsri. Chapter 4 Stoichiometry and MB with Reactions AE 205 Materials and Energy Balances Asst. Prof. Dr. Tippabust Eksangsri Chapter 4 Stoichiometry and MB with Reactions Stoichiometry Stoichiometry provides a quantitative means of relating the amount of

More information