Paramagnetic Separation of Uranium and Plutonium Application to Decontamination Projects

Size: px
Start display at page:

Download "Paramagnetic Separation of Uranium and Plutonium Application to Decontamination Projects"

Transcription

1 Summary Paramagnetic of Uranium and Plutonium Application to Decontamination Projects By J. W. Voss, EurIng, FINucE, CEng Terra Verde Group of Companies March 2000 Copyright Terra Verde Environmental, Inc All Rights Reserved Plutonium and uranium, in both elemental and oxide forms, are known to be paramagnetic. Within the past few years, commercial paramagnetic separation systems have been constructed that can generate sufficiently strong magnetic fields to isolate uranium and plutonium. In 1993 on the Nevada Test Site, the paramagnetic separation of uranium and plutonium was demonstrated to be applicable to the remediation of contaminated soils. This paper describes the technical basis for the application of the technology, the limitations, and the potential applications. Paramagnetism All elements and compounds exhibit one of three magnetic properties: Ferromagnetic Paramagnetic Diamagnetic (or nonmagnetic) The property is defined by the electron shell configuration. Consequently, one element may be para- or ferromagnetic in pure form, but diamagnetic in a particular compound. For example, some iron compounds are not magnetic at all. Figure 1 shows the periodic table, with an indication of the magnetic properties for each element when in its pure form.

2 Paramagnetic Page 2 Figure 1 Properties of All Elements in Pure Form H 1 Li 3 Na 11 K 19 Rb 37 Cs 55 Fr 87 Be 4 Mg 12 Ca 20 Sr 38 Ba 56 Ra 88 Sc 21 Y 39 La 57 Ac 89 Ti 22 Zr 40 Hf 72 V 23 Nb 41 Ta 73 Ce 58 Cr 24 Mo 42 W 74 Pr 59 Mn 25 Tc 43 Re 75 Nd 60 Fe 26 Ru 44 Os 76 Pm 61 Co 27 Rh 45 Ir 77 Sm 62 Ni 28 Pd 46 Pt 78 Eu 63 Cu 29 Ag 47 Au 79 Gd 64 Zn 30 Cd 48 Hg 80 Tb 65 B 5 Al 13 Ga 31 In 49 Tl 81 Dy 66 C 6 Si 14 Ge 32 Sn 50 Pb 82 Ho 67 N 7 P 15 As 33 Sb 51 Bi 83 Er 68 O 8 S 16 Se 34 Te 52 Po 84 Tm 69 F 9 Cl 17 Br 35 I 53 At 85 Yb 70 He 2 Ne 10 Ar 18 Kr 36 Xe 54 Rn 86 Lu 71 Th 90 Pa 91 U 92 Np 93 Pu 94 Am 95 Cm 96 Bk 97 Cf 98 Es 99 Fm 100 Md 101 No 102 Fe 26 Ferro U 92 Para Cm 96 Dia or non The difference between ferromagnetism and paramagnetism is shown in Figure 2.

3 Paramagnetic Page 3 Figure 2 Responses Response Ferromagnetism Paramagnetism Field The figure is best interpreted by considering iron dust and a magnet. When the magnetic field gets near the iron dust, the dust leaps to the magnet. In essence, increasing the strength of the magnet does little to increase the leap of the iron dust. This leap (a combination of the height that a particle would jump and the speed at which it would move) is the magnetic response. This behaviour describes ferromagnetism. Ferromagnetic species (iron, nickel, cobalt) all respond to magnetic fields with what can be considered for this discussion to be a step function. Increasing the magnetic field causes a slight increase in the response, but this increase is not material in magnitude in comparison to the initial step function. Paramagnetic species respond linearly to magnetic fields. Figure 2, while not quantitative, should be considered to be a log-log plot. Until a few years ago, it was not even practical to construct industrial magnets of sufficient field strength for any paramagnetic application. However, technological advances in this field have enabled the manufacture and application of industrial scale paramagnetic separation systems. The most advanced paramagnetic separators are manufactured by CARPCO in the UK and US. Figure 3 shows one of CARPCO s systems.

4 Paramagnetic Page 4 Figure 3 CARPCO Cryofilter High Gradient Separator (5 8 tonne per hour throughput) The (orange) cylinder in the centre of the photo is the magnet. The centre of the magnet is hollow. The long (silver) cylinder that is inserted into the magnet contains a cartridge that is used to remove paramagnetic material. Figure 4 diagrams a cross section of this.

5 Paramagnetic Page 5 Figure 4 Cross Section of Paramagnetic Separator Magnet Cartridge Magnet With the magnet on, a slurry is introduced into the cartridge. The slurry may be on the order of 5% to 7% solids, by weight. Prior to introduction into the magnet, the slurry has been conditioned, mainly by size reduction, to ensure that larger particles do not become clogged in the cartridge. The cartridge can take many forms. At its simplest, it may be packed with fine steel wool. On the other extreme, it may be packed with layers of steel mesh, with each layer rotated slightly from the one next to it. The cartridge packing is ferrous. Its intent is to break up the magnetic field lines. In the absence of this, all of the magnetic field lines run parallel to the axis of the hold in the magnet. Any material that will respond to a magnetic field will simply ride the field lines and pass through the magnet, unless the field lines are broken. The cartridge material accomplishes this. particles are drawn to the end of the field lines in this case, to sites on the media in the cartridge. When it is judged that the cartridge is nearly full, it is removed from the magnetic field, and backflushed. This is shown in Figure 5.

6 Paramagnetic Page 6 Figure 5 Backflushing Cartridge Magnet Magnet with Contaminant In trial demonstrations conducted on the Nevada Test Site to remove environmental plutonium oxide from soils, the backflushing is sufficiently effective so that the cartridge can be released without restrictions. Once the cartridge is outside of the magnetic field, the plutonium oxide will not adhere to the cartridge media and can be flushed with water. Paramagnetic separator systems operate at full industrial scale. Throughputs run as high as 50 tonnes per hour of dry material (which is diluted into a slurry, as noted above). The two dominant applications are associated with kaolin and bauxite. In both cases, large deposits of the resource contain small fractions of contaminants that are para- or ferromagnetic. By applying the magnetic separation technology, the resource value is enhanced from a subgrade to the highest commercial grade. Application to Waste Stream Decontamination Plutonium Only This discussion will describe how a magnetic separation system can be applied to remediating a site contaminated with plutonium. The flow diagram is also applicable to liquid waste streams containing suspended plutonium. The first point is to ask why this technology should be considered at all. It seems logical that gravimetric separation approaches, such as soil washing and/or sonic separation, should be able to decontaminate soils and sediments, given the density difference between plutonium and soil particles. The problem is in the particle size of the contaminant. Most environmental plutonium and uranium is less than 10 microns in size. The reason for this is that during the manufacture of

7 Paramagnetic Page 7 nuclear reactor fuel, the feed material is reduced to this size. Gravimetric separation systems have diminished effectiveness when the contaminant sizes drop below 100 microns. Hence, if a large volume of soil is contaminated with uranium and plutonium, and the U and Pu have particle sizes of less than 10 microns, some other separation method is needed. It is generally accepted that in such cases, the only other approach is dissolution and subsequent precipitation or adsorption. In some situations, economics would dictate that this approach is valid. For example, if the plutonium in contaminated soils could easily be taken into solution, then the economics would likely favour this approach, coupled with precipitation or adsorption. However, if the volume is large, then economics would discount the feasibility of chemical separation, and would require that alternate approaches be developed. As shown in Figure 1, elemental uranium and plutonium are paramagnetic. Plutonium oxides and uranium oxides are also paramagnetic. In the simplest example, sediments from a pond are contaminated with plutonium. The plutonium, entirely Pu 239, is at a concentration of 50 Bq/g. Free release of the sediments is 0.4 Bq/g. The concentration of plutonium, in mass terms, is 22 ppb, and must be reduced to approximately 0.44 ppb. A decontamination factor of at least 125 must be achieved. Treatability characterisation shows that the plutonium is in an oxide form and that the average particle is less than 10 microns in size. It is also shown that the sediments do not contain any other materials that are para- or ferromagnetic. The simplified flow sheet for this problem is shown in Figure 6.

8 Paramagnetic Page 8 Figure 6 Simplified Flow Sheet Plutonium from Dredge Size < 100 > 100 Pretreatment Fines & Gravimetric & Washing Additives Contaminant Waste The flow balance for this process is shown below in Table 1. Table 1 Flow Balance Simple of Plutonium from Dry Mass Pu Mass Pu Activity Pu Concentration kg (microgram) (Bq) (Bq/g) Dredged > 100 micron fraction Fines < 100 micron fraction <100 micron + fines Waste Total

9 Paramagnetic Page 9 The flow balance shown in Table 1 is, of course, hypothetical. There are a number of factors that can alter these figures. These include the presence of paramagnetic minerals in significant mass fractions in the sediments, chemical complexing of plutonium with sediment materials, and aggregation of plutonium in clay. Each of these factors leads to alterations of the flow sheet, and possible inclusion of other processing steps. The presence of uranium and americium as contaminants, with no other complications, should not alter significantly, the flow sheet and mass balance shown above. The key to making this (or any other) treatment feasible is the treatability test phase of work. In nearly every situation of environmental plutonium, the environmental managers have characterised the site to determine the nature and extent of contamination. This characterisation, while providing valuable information, does not provide the data that are necessary for design of a proper treatment system. It is an essential feasibility step. Application to Radioactive Site Decontamination Plutonium and Fission Products This situation can be quite complex and challenging to the site managers. One goal in remediating such a site is to minimise the quantity of total waste and of alpha-bearing waste. This creates a challenge the plutonium is mixed with the fission products. Generally speaking, the soils and sediments in such situations could simply be exhumed and packed for disposal. This would result in massive quantities of waste. The radioactive constituents can be separated and concentrated, but this results in all waste being alpha-bearing. The real challenge is to separate the plutonium from the other radioactive constituents and to minimise the volume of both. Figure 7 is a simplified flow diagram for this problem.

10 Paramagnetic Page 10 Figure 7 Simplified Flow Diagram: Decontamination of Soils with Plutonium and Fission Products Contaminated Soil Containing Pu & U plus Fission Products Physical of > 100 micron Fraction > 100 u Fraction: Wet Decon with and/or EDTA "Dirty Stream": Adsorb <100 u Fraction: Dilute Stream to ~ 5% Solids Soils Treat for Storage and/or Disposal Non-Pu Fraction: Wet Decon with EDTA "Dirty Stream": Adsorb Pu Fraction: Treat for Storage and/or Disposal In this system, the first separation is a physical split of soil particles that are smaller or larger than 100 microns. This split may involve a treatment such as grinding (eg, ball or rod mill). The physical separation may involve a sonic system to enhance the movement of plutonium into the <100 micron stream. The mass separation is a critical step, because if too much plutonium moves with the >100 micron stream, then the resulting waste may be considered to be alpha bearing, depending on the final treatment process. The >100 micron stream is then washed. may be sufficient, but an agent such as EDTA may also be used. If the EDTA (or equivalent) is used, then the resulting dirty stream can be readily adsorbed, and the resulting waste stream be treated for disposal as LLW (non-alphabearing).

11 Paramagnetic Page 11 The <100 micron stream is diluted and routed through the paramagnetic separation system for plutonium removal. The resulting alpha-waste stream should be extremely small in volume but should contain the majority of the plutonium. What Can Go Wrong? The first point here is that no technology is the universal fix for any waste treatment problem. Paramagnetic separation is simply one of a broad mix of gravimetric, physical, chemical, and thermal treatment technologies that must be considered when approaching a waste problem. Paramagnetic separation is somewhat unique amongst the group of treatment technologies available in that it preferentially separations plutonium, uranium and americium (as well as other species). This gives the environmental manager a tool that enables him to separate alpha and non-alpha wastes. In the absence of such a tool, the site manager must choose between generating large volumes of alpha wastes or taking no action other than minimising the off-site flow of radioactive material. In treating wastes containing plutonium, there are two technical objectives maximise the decontamination factor and the volume reduction. Virtually all of the things that can go wrong negatively affect one or both of these factors. In the initial attempts to demonstrate the applicability of paramagnetic separation on plutonium, the main problem was the presence of other magnetic material in the soils. This caused a waste volume to be generated that was unacceptably large. This problem can be anticipated and tested during the treatability characterisation phase of work. It can be technically managed by passing soils through the magnet at a lower field strength (assuming that the magnetic materials in the soils have a higher response to magnetic fields than the plutonium does), hence separating the plutonium from the other magnetic material. The plutonium-contaminated stream can then be passed through the magnet at a higher field strength, when the plutonium separation is accomplished. This is shown in Figure 8.

12 Paramagnetic Page 12 Figure 8 Two Pass Flow Diagram Dredge Size < 100 > 100 Pretreatment Fines & Gravimetric & Washing Additives Low-Field High-Field Contaminant Waste Another problem in the initial demonstration efforts was the physical bonding of plutonium in clay particles. This allowed the clay particles to pass through the magnet, and caused the resulting clean stream to have plutonium concentrations that were too high. This problem can be avoided in the initial physical treatment step. If the soils are crushed (eg, ball or rod mill) and then separated using a sonic separator, then the plutonium particles are released from the soil particles and are free to be removed by the magnet, as shown in Figure 9. This step can also be applied to the wastes coming from the magnet which contain plutonium, as shown in Figure 10.

13 Paramagnetic Page 13 Figure 9 Simplified Flow Diagram with Ball/Rod Mill and Sonic Dredge Ball or Rod Mill Sonic < 100 > 100 Pretreatment Fines & Gravimetric & Washing Additives Contaminant Waste

14 Paramagnetic Page 14 Figure 10 Simplified Flow Diagram: Two-Pass Treatment of Plutonium Stream with Ball/Rod Mill Treatment Dredge Ball or Rod Mill Sonic < 100 > 100 Pretreatment Fines & Gravimetric & Washing Additives Ball or Rod Mill Sonic Contaminant Waste There are, of course, situations in which magnetic separation is not the most efficient treatment approach for soils and sediments containing plutonium. Highest amongst such situations is where the plutonium is easily brought into solution. It can then be readily adsorbed on products such as KEECO s MetaLock adsorbent.

15 Paramagnetic Page 15 Safety The application of paramagnetic separation involves industrial hazards that are found in almost all treatment systems. Industrial safety is paramount and strict procedures must be established and adhered to. One unique hazard is the presence of the magnetic field. In the near proximity of the magnet, when at power, workers cannot be allowed to enter the field. This can be achieved by the erection of physical barriers. In terms of radiological safety, the paramagnetic system is entirely closed, and can be operated without any airborne effluent. If crushing is utilised on the feed material, then this crushing is done in a closed system, and is sprayed with water to minimise dust generation. Normal radiological safety procedures must also be established and adhered to, particularly if the resulting waste streams generate high radiation fields. Economics Paramagnetic separation systems can be constructed and applied for as little as US$300 per cubic metre of soils or sediments treated. This value can be higher if mixed fission products are present, or if more sophisticated physical separation systems are needed. The cost of this approach must always be compared with the costs avoided. If a site manager is required to remove radioactively-contaminated soils containing plutonium, then costs of removal, treatment, storage and disposal (if available) must all be considered. In most cases, no disposal system is available for alpha wastes, so the economic considerations must include long-term storage, possible repackaging of wastes, as well as ultimate disposal costs.

The Periodic Table. Periodic Properties. Can you explain this graph? Valence Electrons. Valence Electrons. Paramagnetism

The Periodic Table. Periodic Properties. Can you explain this graph? Valence Electrons. Valence Electrons. Paramagnetism Periodic Properties Atomic & Ionic Radius Energy Electron Affinity We want to understand the variations in these properties in terms of electron configurations. The Periodic Table Elements in a column

More information

Element Cube Project (x2)

Element Cube Project (x2) Element Cube Project (x2) Background: As a class, we will construct a three dimensional periodic table by each student selecting two elements in which you will need to create an element cube. Helpful Links

More information

Atoms and the Periodic Table

Atoms and the Periodic Table Atoms and the Periodic Table Parts of the Atom Proton Found in the nucleus Number of protons defines the element Charge +1, mass 1 Parts of the Atom Neutron Found in the nucleus Stabilizes the nucleus

More information

Radiometric Dating (tap anywhere)

Radiometric Dating (tap anywhere) Radiometric Dating (tap anywhere) Protons Neutrons Electrons Elements on the periodic table are STABLE Elements can have radioactive versions of itself called ISOTOPES!! Page 1 in your ESRT has your list!

More information

Solutions and Ions. Pure Substances

Solutions and Ions. Pure Substances Class #4 Solutions and Ions CHEM 107 L.S. Brown Texas A&M University Pure Substances Pure substance: described completely by a single chemical formula Fixed composition 1 Mixtures Combination of 2 or more

More information

Guide to the Extended Step-Pyramid Periodic Table

Guide to the Extended Step-Pyramid Periodic Table Guide to the Extended Step-Pyramid Periodic Table William B. Jensen Department of Chemistry University of Cincinnati Cincinnati, OH 452201-0172 The extended step-pyramid table recognizes that elements

More information

Instructions. 1. Do not open the exam until you are told to start.

Instructions. 1. Do not open the exam until you are told to start. Name: Lab Day and Time: Instructions 1. Do not open the exam until you are told to start. 2. This exam is closed note and closed book. You are not allowed to use any outside material while taking this

More information

Lab Day and Time: Instructions. 1. Do not open the exam until you are told to start.

Lab Day and Time: Instructions. 1. Do not open the exam until you are told to start. Name: Lab Day and Time: Instructions 1. Do not open the exam until you are told to start. 2. This exam is closed note and closed book. You are not allowed to use any outside material while taking this

More information

(C) Pavel Sedach and Prep101 1

(C) Pavel Sedach and Prep101 1 (C) Pavel Sedach and Prep101 1 (C) Pavel Sedach and Prep101 1 (C) Pavel Sedach and Prep101 2 (C) Pavel Sedach and Prep101 2 (C) Pavel Sedach and Prep101 3 (C) Pavel Sedach and Prep101 3 (C) Pavel Sedach

More information

CLASS TEST GRADE 11. PHYSICAL SCIENCES: CHEMISTRY Test 4: Matter and materials 1

CLASS TEST GRADE 11. PHYSICAL SCIENCES: CHEMISTRY Test 4: Matter and materials 1 CLASS TEST GRADE PHYSICAL SCIENCES: CHEMISTRY Test 4: Matter and materials MARKS: 45 TIME: hour INSTRUCTIONS AND INFORMATION. Answer ALL the questions. 2. You may use non-programmable calculators. 3. You

More information

Ch. 9 NOTES ~ Chemical Bonding NOTE: Vocabulary terms are in boldface and underlined. Supporting details are in italics.

Ch. 9 NOTES ~ Chemical Bonding NOTE: Vocabulary terms are in boldface and underlined. Supporting details are in italics. Ch. 9 NOTES ~ Chemical Bonding NOTE: Vocabulary terms are in boldface and underlined. Supporting details are in italics. I. Review: Comparison of ionic and molecular compounds Molecular compounds Ionic

More information

Modified from: Larry Scheffler Lincoln High School IB Chemistry 1-2.1

Modified from: Larry Scheffler Lincoln High School IB Chemistry 1-2.1 Modified from: Larry Scheffler Lincoln High School IB Chemistry 1-2.1 The development of the periodic table brought a system of order to what was otherwise an collection of thousands of pieces of information.

More information

Nucleus. Electron Cloud

Nucleus. Electron Cloud Atomic Structure I. Picture of an Atom Nucleus Electron Cloud II. Subatomic particles Particle Symbol Charge Relative Mass (amu) protons p + +1 1.0073 neutrons n 0 1.0087 electrons e - -1 0.00054858 Compare

More information

The Periodic Table of Elements

The Periodic Table of Elements The Periodic Table of Elements 8 Uuo Uus Uuh (9) Uup (88) Uuq (89) Uut (8) Uub (8) Rg () 0 Ds (9) 09 Mt (8) 08 Hs (9) 0 h () 0 Sg () 0 Db () 0 Rf () 0 Lr () 88 Ra () 8 Fr () 8 Rn () 8 At (0) 8 Po (09)

More information

(please print) (1) (18) H IIA IIIA IVA VA VIA VIIA He (2) (13) (14) (15) (16) (17)

(please print) (1) (18) H IIA IIIA IVA VA VIA VIIA He (2) (13) (14) (15) (16) (17) CHEM 10113, Quiz 3 September 28, 2011 Name (please print) All equations must be balanced and show phases for full credit. Significant figures count, show charges as appropriate, and please box your answers!

More information

Essential Chemistry for Biology

Essential Chemistry for Biology 1 Chapter 2 Essential Chemistry for Biology Biology and Society: More Precious than Gold A drought is a period of abnormally dry weather that changes the environment and one of the most devastating disasters.

More information

Chapter 3: Stoichiometry

Chapter 3: Stoichiometry Chapter 3: Stoichiometry Chem 6A Michael J. Sailor, UC San Diego 1 Announcements: Thursday (Sep 29) quiz: Bring student ID or we cannot accept your quiz! No notes, no calculators Covers chapters 1 and

More information

610B Final Exam Cover Page

610B Final Exam Cover Page 1 st Letter of Last Name NAME: 610B Final Exam Cover Page No notes or calculators of any sort allowed. You have 3 hours to complete the exam. CHEM 610B, 50995 Final Exam Fall 2003 Instructor: Dr. Brian

More information

Chemistry 431 Practice Final Exam Fall Hours

Chemistry 431 Practice Final Exam Fall Hours Chemistry 431 Practice Final Exam Fall 2018 3 Hours R =8.3144 J mol 1 K 1 R=.0821 L atm mol 1 K 1 R=.08314 L bar mol 1 K 1 k=1.381 10 23 J molecule 1 K 1 h=6.626 10 34 Js N A = 6.022 10 23 molecules mol

More information

Last 4 Digits of USC ID:

Last 4 Digits of USC ID: Chemistry 05 B Practice Exam Dr. Jessica Parr First Letter of last Name PLEASE PRINT YOUR NAME IN BLOCK LETTERS Name: Last 4 Digits of USC ID: Lab TA s Name: Question Points Score Grader 8 2 4 3 9 4 0

More information

CHEM 10113, Quiz 5 October 26, 2011

CHEM 10113, Quiz 5 October 26, 2011 CHEM 10113, Quiz 5 October 26, 2011 Name (please print) All equations must be balanced and show phases for full credit. Significant figures count, show charges as appropriate, and please box your answers!

More information

CHEM 130 Exp. 8: Molecular Models

CHEM 130 Exp. 8: Molecular Models CHEM 130 Exp. 8: Molecular Models In this lab, we will learn and practice predicting molecular structures from molecular formulas. The Periodic Table of the Elements IA 1 H IIA IIIA IVA VA VIA VIIA 3 5

More information

Circle the letters only. NO ANSWERS in the Columns!

Circle the letters only. NO ANSWERS in the Columns! Chemistry 1304.001 Name (please print) Exam 5 (100 points) April 18, 2018 On my honor, I have neither given nor received unauthorized aid on this exam. Signed Date Circle the letters only. NO ANSWERS in

More information

MANY ELECTRON ATOMS Chapter 15

MANY ELECTRON ATOMS Chapter 15 MANY ELECTRON ATOMS Chapter 15 Electron-Electron Repulsions (15.5-15.9) The hydrogen atom Schrödinger equation is exactly solvable yielding the wavefunctions and orbitals of chemistry. Howev er, the Schrödinger

More information

Lab Day and Time: Instructions. 1. Do not open the exam until you are told to start.

Lab Day and Time: Instructions. 1. Do not open the exam until you are told to start. Name: Lab Day and Time: Instructions 1. Do not open the exam until you are told to start. 2. This exam is closed note and closed book. You are not allowed to use any outside material while taking this

More information

The Periodic Table of the Elements

The Periodic Table of the Elements The Periodic Table of the Elements All matter is composed of elements. All of the elements are composed of atoms. An atom is the smallest part of an element which still retains the properties of that element.

More information

Made the FIRST periodic table

Made the FIRST periodic table Made the FIRST periodic table 1869 Mendeleev organized the periodic table based on the similar properties and relativities of certain elements Later, Henri Moseley organized the elements by increasing

More information

NAME: FIRST EXAMINATION

NAME: FIRST EXAMINATION 1 Chemistry 64 Winter 1994 NAME: FIRST EXAMINATION THIS EXAMINATION IS WORTH 100 POINTS AND CONTAINS 4 (FOUR) QUESTIONS THEY ARE NOT EQUALLY WEIGHTED! YOU SHOULD ATTEMPT ALL QUESTIONS AND ALLOCATE YOUR

More information

PART 1 Introduction to Theory of Solids

PART 1 Introduction to Theory of Solids Elsevier UK Job code: MIOC Ch01-I044647 9-3-2007 3:03p.m. Page:1 Trim:165 240MM TS: Integra, India PART 1 Introduction to Theory of Solids Elsevier UK Job code: MIOC Ch01-I044647 9-3-2007 3:03p.m. Page:2

More information

8. Relax and do well.

8. Relax and do well. CHEM 1515 Exam II John II. Gelder October 14, 1993 Name TA's Name Lab Section INSTRUCTIONS: 1. This examination consists of a total of 8 different pages. The last two pages include a periodic table, a

More information

Lab Day and Time: Instructions. 1. Do not open the exam until you are told to start.

Lab Day and Time: Instructions. 1. Do not open the exam until you are told to start. Name: Lab Day and Time: Instructions 1. Do not open the exam until you are told to start. 2. This exam is closed note and closed book. You are not allowed to use any outside material while taking this

More information

Metallurgical Chemistry. An Audio Course for Students

Metallurgical Chemistry. An Audio Course for Students Laval University From the SelectedWorks of Fathi Habashi February, 1987 Metallurgical Chemistry. An Audio Course for Students Fathi Habashi Available at: https://works.bepress.com/fathi_habashi/27/ METALLURGICAL

More information

Circle the letters only. NO ANSWERS in the Columns! (3 points each)

Circle the letters only. NO ANSWERS in the Columns! (3 points each) Chemistry 1304.001 Name (please print) Exam 4 (100 points) April 12, 2017 On my honor, I have neither given nor received unauthorized aid on this exam. Signed Date Circle the letters only. NO ANSWERS in

More information

M10/4/CHEMI/SPM/ENG/TZ2/XX+ CHEMISTRY. Wednesday 12 May 2010 (afternoon) 45 minutes INSTRUCTIONS TO CANDIDATES

M10/4/CHEMI/SPM/ENG/TZ2/XX+ CHEMISTRY. Wednesday 12 May 2010 (afternoon) 45 minutes INSTRUCTIONS TO CANDIDATES M10/4/CHEMI/SPM/ENG/TZ/XX+ 106116 CHEMISTRY standard level Paper 1 Wednesday 1 May 010 (afternoon) 45 minutes INSTRUCTIONS TO CANDIDATES Do not open this examination paper until instructed to do so. Answer

More information

7. Relax and do well.

7. Relax and do well. CHEM 1215 Exam II John II. Gelder October 7, 1998 Name TA's Name Lab Section INSTRUCTIONS: 1. This examination consists of a total of 5 different pages. The last page includes a periodic table and a solubility

More information

Using the Periodic Table

Using the Periodic Table MATH SKILLS TRANSPARENCY WORKSHEET Using the Periodic Table 6 Use with Chapter 6, Section 6.2 1. Identify the number of valence electrons in each of the following elements. a. Ne e. O b. K f. Cl c. B g.

More information

Lab Day and Time: Instructions. 1. Do not open the exam until you are told to start.

Lab Day and Time: Instructions. 1. Do not open the exam until you are told to start. Name: Lab Day and Time: Instructions 1. Do not open the exam until you are told to start. 2. This exam is closed note and closed book. You are not allowed to use any outside material while taking this

More information

PERIODIC TABLE OF THE ELEMENTS

PERIODIC TABLE OF THE ELEMENTS Useful Constants and equations: K = o C + 273 Avogadro's number = 6.022 x 10 23 d = density = mass/volume R H = 2.178 x 10-18 J c = E = h = hc/ h = 6.626 x 10-34 J s c = 2.998 x 10 8 m/s E n = -R H Z 2

More information

CHEM Come to the PASS workshop with your mock exam complete. During the workshop you can work with other students to review your work.

CHEM Come to the PASS workshop with your mock exam complete. During the workshop you can work with other students to review your work. It is most beneficial to you to write this mock midterm UNDER EXAM CONDITIONS. This means: Complete the midterm in 1.5 hours. Work on your own. Keep your notes and textbook closed. Attempt every question.

More information

DO NOW: Retrieve your projects. We will be reviewing them again today. Textbook pg 23, answer questions 1-3. Use the section 1.2 to help you.

DO NOW: Retrieve your projects. We will be reviewing them again today. Textbook pg 23, answer questions 1-3. Use the section 1.2 to help you. DO NOW: Retrieve your projects. We will be reviewing them again today. Textbook pg, answer questions. Use the section. to help you. Chapter test is FRIDAY. The Periodic Table of Elements 8 Uuo Uus Uuh

More information

SCIENCE 1206 UNIT 2 CHEMISTRY. September 2017 November 2017

SCIENCE 1206 UNIT 2 CHEMISTRY. September 2017 November 2017 SCIENCE 1206 UNIT 2 CHEMISTRY September 2017 November 2017 UNIT OUTLINE 1. Review of Grade 9 Terms & the Periodic Table Bohr diagrams Evidence for chemical reactions Chemical Tests 2. Naming & writing

More information

1 Genesis 1:1. Chapter 10 Matter. Lesson. Genesis 1:1 In the beginning God created the heavens and the earth. (NKJV)

1 Genesis 1:1. Chapter 10 Matter. Lesson. Genesis 1:1 In the beginning God created the heavens and the earth. (NKJV) 1 Genesis 1:1 Genesis 1:1 In the beginning God created the heavens and the earth. (NKJV) 1 Vocabulary Saturated having all the solute that can be dissolved at that temperature Neutron a particle with no

More information

8. Relax and do well.

8. Relax and do well. CHEM 1014 Exam I John I. Gelder September 16, 1999 Name TA's Name Lab Section Please sign your name below to give permission to post your course scores on homework, laboratories and exams. If you do not

More information

PHYSICAL SCIENCES GRADE : 10

PHYSICAL SCIENCES GRADE : 10 PHYSICAL SCIENCES GRADE : 0 TIME : hour TOTAL : 75 INSTRUCTIONS AND INFORMATION. Write your full name on your answer book in the appropriate place. 2. The question paper consists of SEVEN questions. Answer

More information

Faculty of Natural and Agricultural Sciences Chemistry Department. Semester Test 1. Analytical Chemistry CMY 283. Time: 120 min Marks: 100 Pages: 6

Faculty of Natural and Agricultural Sciences Chemistry Department. Semester Test 1. Analytical Chemistry CMY 283. Time: 120 min Marks: 100 Pages: 6 Faculty of Natural and Agricultural Sciences Chemistry Department Semester Test 1 Analytical Chemistry CMY 283 Date: 5 September 2016 Lecturers : Prof P Forbes, Dr Laurens, Mr SA Nsibande Time: 120 min

More information

Periodicity & Many-Electron Atoms

Periodicity & Many-Electron Atoms Chap. 8 ELECTRON CONFIGURAT N & CEMICAL PERIODICITY 8.1-8.2 Periodicity & Many-Electron Atoms Understand the correlation of electron configuration and the periodic character of atomic properties such as

More information

Secondary Support Pack. be introduced to some of the different elements within the periodic table;

Secondary Support Pack. be introduced to some of the different elements within the periodic table; Secondary Support Pack INTRODUCTION The periodic table of the elements is central to chemistry as we know it today and the study of it is a key part of every student s chemical education. By playing the

More information

Marks for each question are as indicated in [] brackets.

Marks for each question are as indicated in [] brackets. Name Student Number CHEMISTRY 140 FINAL EXAM December 10, 2002 Numerical answers must be given with appropriate units and significant figures. Please place all answers in the space provided for the question.

More information

CHM 101 PRACTICE TEST 1 Page 1 of 4

CHM 101 PRACTICE TEST 1 Page 1 of 4 CHM 101 PRACTICE TEST 1 Page 1 of 4 Please show calculations (stuffed equations) on all mathematical problems!! On the actual test, "naked answers, with no work shown, will receive no credit even if correct.

More information

8. Relax and do well.

8. Relax and do well. CHEM 1314 3;30 pm Theory Exam III John III. Gelder November 13, 2002 Name TA's Name Lab Section INSTRUCTIONS: 1. This examination consists of a total of 8 different pages. The last page include a periodic

More information

Chem Exam 1. September 26, Dr. Susan E. Bates. Name 9:00 OR 10:00

Chem Exam 1. September 26, Dr. Susan E. Bates. Name 9:00 OR 10:00 Chem 1711 Exam 1 September 26, 2013 Dr. Susan E. Bates Name 9:00 OR 10:00 N A = 6.022 x 10 23 mol 1 I A II A III B IV B V B VI B VII B VIII I B II B III A IV A V A VI A VII A inert gases 1 H 1.008 3 Li

More information

PHYSICAL SCIENCES MARCH CONTROLLED TEST GRADE

PHYSICAL SCIENCES MARCH CONTROLLED TEST GRADE PHYSICAL SCIENCES MARCH CONTROLLED TEST GRADE 11 018 MARKS : 75 TIME : 1.5 Hrs INSTRUCTIONS AND INFORMATION 1. Write your NAME and CLASS in your ANSWER BOOK.. This question paper consists of SIX questions.

More information

Chemistry 2 Exam Roane State Academic Festival. Name (print neatly) School

Chemistry 2 Exam Roane State Academic Festival. Name (print neatly) School Name (print neatly) School There are fifteen question on this exam. Each question is weighted equally. n the answer sheet, write your name in the space provided and your answers in the blanks provided.

More information

NAME: SECOND EXAMINATION

NAME: SECOND EXAMINATION 1 Chemistry 64 Winter 1994 NAME: SECOND EXAMINATION THIS EXAMINATION IS WORTH 100 POINTS AND CONTAINS 4 (FOUR) QUESTIONS THEY ARE NOT EQUALLY WEIGHTED! YOU SHOULD ATTEMPT ALL QUESTIONS AND ALLOCATE YOUR

More information

8. Relax and do well.

8. Relax and do well. CHEM 1215 Exam III John III. Gelder November 11, 1998 Name TA's Name Lab Section INSTRUCTIONS: 1. This examination consists of a total of 7 different pages. The last page includes a periodic table and

More information

Lab Day and Time: Instructions. 1. Do not open the exam until you are told to start. Page # Points possible Points awarded

Lab Day and Time: Instructions. 1. Do not open the exam until you are told to start. Page # Points possible Points awarded Name: Lab Day and Time: Instructions 1. Do not open the exam until you are told to start. 2. This exam is closed note and closed book. You are not allowed to use any outside material while taking this

More information

Grade 11 Science Practice Test

Grade 11 Science Practice Test Grade 11 Science Practice Test Nebraska Department of Education 2012 Directions: On the following pages of your test booklet are multiple-choice questions for Session 1 of the Grade 11 Nebraska State Accountability

More information

02/05/09 Last 4 Digits of USC ID: Dr. Jessica Parr

02/05/09 Last 4 Digits of USC ID: Dr. Jessica Parr Chemistry 05 B First Letter of PLEASE PRINT YOUR NAME IN BLOCK LETTERS Exam last Name Name: 02/05/09 Last 4 Digits of USC ID: Dr. Jessica Parr Lab TA s Name: Question Points Score Grader 2 2 9 3 9 4 2

More information

INSTRUCTIONS: Exam III. November 10, 1999 Lab Section

INSTRUCTIONS: Exam III. November 10, 1999 Lab Section CHEM 1215 Exam III John III. Gelder November 10, 1999 Name TA's Name Lab Section INSTRUCTIONS: 1. This examination consists of a total of 7 different pages. The last page includes a periodic table and

More information

9/20/2017. Elements are Pure Substances that cannot be broken down into simpler substances by chemical change (contain Only One Type of Atom)

9/20/2017. Elements are Pure Substances that cannot be broken down into simpler substances by chemical change (contain Only One Type of Atom) CAPTER 6: TE PERIODIC TABLE Elements are Pure Substances that cannot be broken down into simpler substances by chemical change (contain Only One Type of Atom) The Periodic Table (Mendeleev) In 1872, Dmitri

More information

DURATION: 2 HOUR 45 MINUTES

DURATION: 2 HOUR 45 MINUTES 1 Exam 9 Our country, our future 525/1 S6 CHEMISTRY PAPER 1 DURATION: 2 HOUR 45 MINUTES For Marking guide contact and consultations: Dr. Bbosa Science 0776 802709. Answer all question in part I and six

More information

1 of 5 14/10/ :21

1 of 5 14/10/ :21 X-ray absorption s, characteristic X-ray lines... 4.2.1 Home About Table of Contents Advanced Search Copyright Feedback Privacy You are here: Chapter: 4 Atomic and nuclear physics Section: 4.2 Absorption

More information

CHEM 107 (Spring-2005) Exam 3 (100 pts)

CHEM 107 (Spring-2005) Exam 3 (100 pts) CHEM 107 (Spring-2005) Exam 3 (100 pts) Name: ------------------------------------------------------------------------, Clid # ------------------------------ LAST NAME, First (Circle the alphabet segment

More information

What is the periodic table?

What is the periodic table? The periodic table of the elements represents one of the greatest discoveries in the history of science that certain elements, the basic chemical substances from which all matter is made, resemble each

More information

Lab Day and Time: Instructions. 1. Do not open the exam until you are told to start.

Lab Day and Time: Instructions. 1. Do not open the exam until you are told to start. Name: Lab Day and Time: Instructions 1. Do not open the exam until you are told to start. 2. This exam is closed note and closed book. You are not allowed to use any outside material while taking this

More information

30 Zn(s) 45 Rh. Pd(s) Ag(s) Cd(s) In(s) Sn(s) white. 77 Ir. Pt(s) Au. Hg(l) Tl. 109 Mt. 111 Uuu. 112 Uub. 110 Uun. 65 Tb. 62 Sm. 64 Gd. 63 Eu.

30 Zn(s) 45 Rh. Pd(s) Ag(s) Cd(s) In(s) Sn(s) white. 77 Ir. Pt(s) Au. Hg(l) Tl. 109 Mt. 111 Uuu. 112 Uub. 110 Uun. 65 Tb. 62 Sm. 64 Gd. 63 Eu. Enthalpy changes: experimentally it is much easier to measure heat flow at const pressure - this is enthalpy q p = )H : also nearly all chemical reactions are done at constant pressure. Enthalpy (heat)

More information

Why all the repeating Why all the repeating Why all the repeating Why all the repeating

Why all the repeating Why all the repeating Why all the repeating Why all the repeating Why all the repeating Why all the repeating Why all the repeating Why all the repeating Patterns What Patterns have you observed in your life? Where to Get Help If you don t understand concepts in chapter

More information

Chem GENERAL CHEMISTRY I MIDTERM EXAMINATION

Chem GENERAL CHEMISTRY I MIDTERM EXAMINATION Concordia University CHEM 205 Fall 2009, B LAST NAME: FIRST NAME: STUDENT ID: Chem 205 - GENERAL CHEMISTRY I MIDTERM EXAMINATION PLEASE READ THIS BOX WHILE WAITING TO START INSTRUCTIONS: Calculators are

More information

HANDOUT SET GENERAL CHEMISTRY II

HANDOUT SET GENERAL CHEMISTRY II HANDOUT SET GENERAL CHEMISTRY II Periodic Table of the Elements 1 2 3 4 5 6 7 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 IA VIIIA 1 2 H He 1.00794 IIA IIIA IVA VA VIA VIIA 4.00262 3 Li 6.941 11 Na 22.9898

More information

The exam must be written in ink. No calculators of any sort allowed. You have 2 hours to complete the exam. Periodic table 7 0

The exam must be written in ink. No calculators of any sort allowed. You have 2 hours to complete the exam. Periodic table 7 0 Email: The exam must be written in ink. No calculators of any sort allowed. You have 2 hours to complete the exam. CEM 610B Exam 3 Spring 2002 Instructor: Dr. Brian Pagenkopf Page Points 2 6 3 7 4 9 5

More information

K. 27 Co. 28 Ni. 29 Cu Rb. 46 Pd. 45 Rh. 47 Ag Cs Ir. 78 Pt.

K. 27 Co. 28 Ni. 29 Cu Rb. 46 Pd. 45 Rh. 47 Ag Cs Ir. 78 Pt. 1 IA 1 H Hydrogen 1.01 Atomic number Element symbol Element name Atomic mass VIIIA 1 H 1.01 IIA IIIA IVA VA VIA VIIA 2 He 4.00 Metalloids 3 Li 6.94 4 Be 9.01 5 B 10.81 6 C 12.01 7 N 14.01 8 O 16.00 9 F

More information

If anything confuses you or is not clear, raise your hand and ask!

If anything confuses you or is not clear, raise your hand and ask! CHM 1045 Dr. Light s Section December 10, 2002 FINAL EXAM Name (please print) Recitation Section Meeting Time This exam consists of six pages. Make sure you have one of each. Print your name at the top

More information

Instructions. 1. Do not open the exam until you are told to start.

Instructions. 1. Do not open the exam until you are told to start. Name: Lab Day and Time: Instructions 1. Do not open the exam until you are told to start. 2. This exam is closed note and closed book. You are not allowed to use any outside material while taking this

More information

lectures accompanying the book: Solid State Physics: An Introduction, by Philip ofmann (2nd edition 2015, ISBN-10: 3527412824, ISBN-13: 978-3527412822, Wiley-VC Berlin. www.philiphofmann.net 1 Bonds between

More information

5 questions, 3 points each, 15 points total possible. 26 Fe Cu Ni Co Pd Ag Ru 101.

5 questions, 3 points each, 15 points total possible. 26 Fe Cu Ni Co Pd Ag Ru 101. Physical Chemistry II Lab CHEM 4644 spring 2017 final exam KEY 5 questions, 3 points each, 15 points total possible h = 6.626 10-34 J s c = 3.00 10 8 m/s 1 GHz = 10 9 s -1. B= h 8π 2 I ν= 1 2 π k μ 6 P

More information

K. 27 Co. 28 Ni. 29 Cu Rb. 46 Pd. 45 Rh. 47 Ag Cs Ir. 78 Pt.

K. 27 Co. 28 Ni. 29 Cu Rb. 46 Pd. 45 Rh. 47 Ag Cs Ir. 78 Pt. 1 IA 1 ydrogen 1.01 Atomic number Element symbol Element name Atomic mass VIIIA 1 1.01 IIA IIIA IVA VA VIA VIIA 2 e 4.00 Metalloids 3 Li 6.94 4 Be 9.01 5 B 10.81 6 C 12.01 7 N 14.01 8 O 16.00 9 F 19.00

More information

Chapter 12 The Atom & Periodic Table- part 2

Chapter 12 The Atom & Periodic Table- part 2 Chapter 12 The Atom & Periodic Table- part 2 Electrons found outside the nucleus; negatively charged Protons found in the nucleus; positive charge equal in magnitude to the electron s negative charge Neutrons

More information

Atomic Structure & Interatomic Bonding

Atomic Structure & Interatomic Bonding Atomic Structure & Interatomic Bonding Chapter Outline Review of Atomic Structure Atomic Bonding Atomic Structure Atoms are the smallest structural units of all solids, liquids & gases. Atom: The smallest

More information

8. Relax and do well.

8. Relax and do well. CHEM 1314.03 Exam I John I. Gelder September 25, 1997 Name TA's Name Lab Section Please sign your name below to give permission to post, by the last 4 digits of your student I.D. number, your course scores

More information

CHEM 172 EXAMINATION 1. January 15, 2009

CHEM 172 EXAMINATION 1. January 15, 2009 CHEM 17 EXAMINATION 1 January 15, 009 Dr. Kimberly M. Broekemeier NAME: Circle lecture time: 9:00 11:00 Constants: c = 3.00 X 10 8 m/s h = 6.63 X 10-34 J x s J = kg x m /s Rydberg Constant = 1.096776 x

More information

Faculty of Natural and Agricultural Sciences Chemistry Department. Semester Test 1 MEMO. Analytical Chemistry CMY 283

Faculty of Natural and Agricultural Sciences Chemistry Department. Semester Test 1 MEMO. Analytical Chemistry CMY 283 Faculty of Natural and Agricultural Sciences Chemistry Department Semester Test 1 MEMO Analytical Chemistry CMY 283 Date: 5 September 2016 Lecturers : Prof P Forbes, Dr Laurens, Mr SA Nsibande Time: 90

More information

Chemistry 1 First Lecture Exam Fall Abbasi Khajo Levine Mathias Mathias/Ortiz Metlitsky Rahi Sanchez-Delgado Vasserman

Chemistry 1 First Lecture Exam Fall Abbasi Khajo Levine Mathias Mathias/Ortiz Metlitsky Rahi Sanchez-Delgado Vasserman Chemistry 1 First Lecture Exam Fall 2011 Page 1 of 9 NAME Circle the name of your recitation/lab instructor(s) Abbasi Khajo Levine Mathias Mathias/Ortiz Metlitsky Rahi Sanchez-Delgado Vasserman Before

More information

Fall 2011 CHEM Test 4, Form A

Fall 2011 CHEM Test 4, Form A Fall 2011 CHEM 1110.40413 Test 4, Form A Part I. Multiple Choice: Clearly circle the best answer. (60 pts) Name: 1. The common constituent in all acid solutions is A) H 2 SO 4 B) H 2 C) H + D) OH 2. Which

More information

INSTRUCTIONS: CHEM Exam I. September 13, 1994 Lab Section

INSTRUCTIONS: CHEM Exam I. September 13, 1994 Lab Section CHEM 1314.05 Exam I John I. Gelder September 13, 1994 Name TA's Name Lab Section Please sign your name below to give permission to post, by the last 4 digits of your student I.D. number, your course scores

More information

M11/4/CHEMI/SPM/ENG/TZ2/XX CHEMISTRY STANDARD LEVEL PAPER 1. Monday 9 May 2011 (afternoon) 45 minutes INSTRUCTIONS TO CANDIDATES

M11/4/CHEMI/SPM/ENG/TZ2/XX CHEMISTRY STANDARD LEVEL PAPER 1. Monday 9 May 2011 (afternoon) 45 minutes INSTRUCTIONS TO CANDIDATES M11/4/CHEMI/SPM/ENG/TZ/XX 116116 CHEMISTRY STANDARD LEVEL PAPER 1 Monday 9 May 011 (afternoon) 45 minutes INSTRUCTIONS TO CANDIDATES Do not open this examination paper until instructed to do so. Answer

More information

CHEM 167 FINAL EXAM MONDAY, MAY 2 9:45 11:45 A.M GILMAN HALL

CHEM 167 FINAL EXAM MONDAY, MAY 2 9:45 11:45 A.M GILMAN HALL PROF. JOHN VERKADE SPRING 2005 THIS EXAM CONSISTS OF 12 QUESTIONS ON 9 PAGES CHEM 167 HOUR EXAM IV APRIL 20, 2005 SEAT NO. NAME RECIT. INSTR. RECIT. SECT. GRADING PAGE Page 2 Page 3 Page 4 Page 5 Page

More information

7. Relax and do well.

7. Relax and do well. CHEM 1215 Exam II John II. Gelder October 13, 1999 Name TA's Name Lab Section INSTRUCTIONS: 1. This examination consists of a total of 5 different pages. The last page includes a periodic table and a solubility

More information

Advanced Placement. Chemistry. Integrated Rates

Advanced Placement. Chemistry. Integrated Rates Advanced Placement Chemistry Integrated Rates 204 47.90 9.22 78.49 (26) 50.94 92.9 80.95 (262) 52.00 93.94 83.85 (263) 54.938 (98) 86.2 (262) 55.85 0. 90.2 (265) 58.93 02.9 92.2 (266) H Li Na K Rb Cs Fr

More information

CMSC 313 Lecture 17 Postulates & Theorems of Boolean Algebra Semiconductors CMOS Logic Gates

CMSC 313 Lecture 17 Postulates & Theorems of Boolean Algebra Semiconductors CMOS Logic Gates CMSC 313 Lecture 17 Postulates & Theorems of Boolean Algebra Semiconductors CMOS Logic Gates UMBC, CMSC313, Richard Chang Last Time Overview of second half of this course Logic gates &

More information

Speed of light c = m/s. x n e a x d x = 1. 2 n+1 a n π a. He Li Ne Na Ar K Ni 58.

Speed of light c = m/s. x n e a x d x = 1. 2 n+1 a n π a. He Li Ne Na Ar K Ni 58. Physical Chemistry II Test Name: KEY CHEM 464 Spring 18 Chapters 7-11 Average = 1. / 16 6 questions worth a total of 16 points Planck's constant h = 6.63 1-34 J s Speed of light c = 3. 1 8 m/s ħ = h π

More information

CHEM 107 (Spring-2004) Exam 2 (100 pts)

CHEM 107 (Spring-2004) Exam 2 (100 pts) CHEM 107 (Spring-2004) Exam 2 (100 pts) Name: ------------------------------------------------------------------------, SSN -------------------------------- LAST NAME, First (Circle the alphabet segment

More information

BROOKLYN COLLEGE Department of Chemistry. Chemistry 1 Second Lecture Exam Nov. 27, Name Page 1 of 5

BROOKLYN COLLEGE Department of Chemistry. Chemistry 1 Second Lecture Exam Nov. 27, Name Page 1 of 5 BROOKLYN COLLEGE Department of Chemistry Chemistry 1 Second Lecture Exam Nov. 27, 2002 Name Page 1 of 5 Circle the name of your lab instructor Kobrak, Zhou, Girotto, Hussey, Du Before you begin the exam,

More information

HANDOUT SET GENERAL CHEMISTRY I

HANDOUT SET GENERAL CHEMISTRY I HANDOUT SET GENERAL CHEMISTRY I Periodic Table of the Elements 1 2 3 4 5 6 7 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 IA VIIIA 1 2 H He 1.00794 IIA IIIA IVA VA VIA VIIA 4.00262 3 Li 6.941 11 Na 22.9898

More information

From Quantum to Matter 2005

From Quantum to Matter 2005 From Quantum to Matter 2005 Ronald Griessen Vrije Universiteit, Amsterdam AMOLF, May 24, 2004 vrije Universiteit amsterdam Why such a course? From Quantum to Matter: The main themes Wave functions Molecules

More information

CHEM 108 (Spring-2008) Exam. 3 (105 pts)

CHEM 108 (Spring-2008) Exam. 3 (105 pts) CHEM 08 (Spring-008) Exam. (05 pts) Name: --------------------------------------------------------------------------, CLID # -------------------------------- LAST NAME, First (Circle the alphabet segment

More information

Chemistry Standard level Paper 1

Chemistry Standard level Paper 1 Chemistry Standard level Paper 1 Thursday 12 May 2016 (morning) 45 minutes Instructions to candidates Do not open this examination paper until instructed to do so. Answer all the questions. For each question,

More information

Atomic Emission Spectra. and. Flame Tests. Burlingame High School Chemistry

Atomic Emission Spectra. and. Flame Tests. Burlingame High School Chemistry Atomic Structure Atomic Emission Spectra and Flame Tests Flame Tests Sodium potassium lithium When electrons are excited they bump up to a higher energy level. As they bounce back down they release energy

More information

What monitoring techniques are appropriate and effective for detecting CO2 migration in groundwater: isotope-based monitoring Philippe Négrel

What monitoring techniques are appropriate and effective for detecting CO2 migration in groundwater: isotope-based monitoring Philippe Négrel What monitoring techniques are appropriate and effective for detecting CO2 migration in groundwater: isotope-based monitoring Philippe Négrel Acting in complicity with Pauline Humez. Results from Pauline

More information

CHEM 251 (Fall-2003) Final Exam (100 pts)

CHEM 251 (Fall-2003) Final Exam (100 pts) CEM 251 (Fall-2003) Final Exam (100 pts) Name: -------------------------------------------------------------------------------, SSN -------------------------------- LAST NAME, First (Circle the alphabet

More information

8. Relax and do well.

8. Relax and do well. CHEM 1225 Exam I John I. Gelder February 4, 1999 Name KEY TA's Name Lab Section Please sign your name below to give permission to post your course scores on homework, laboratories and exams. If you do

More information