Amino acids have the general structure: All amino acids have at least two acidic protons. One is the proton

Size: px
Start display at page:

Download "Amino acids have the general structure: All amino acids have at least two acidic protons. One is the proton"

Transcription

1 Worksheet rganic Acids and Bases II Amino Acids Acids are proton donors in aqueous solutions: A A - acid base conjugate conjugate base acid The strength of an acid is measured by the [ 3 + ] at equilibrium. The higher the concentration, the stronger the acid. This is given by the K a, the acid equilibrium constant. K a = [ 3 + ] [A - ] [A] The pk a of an acid is defined as the log K a. The smaller the pk a, the stronger the acid and the higher the [ 3 + ] at equilibrium. Amino acids have the general structure: All amino acids have at least two acidic protons. ne is the proton on the -. These generally have a pk a 2.0. The second proton is on the - 3 group. This is the conjugate acid of a R weak base. The pk a for this group is about Some amino acids have a third pk a due to an acidic proton on R, the side chain. ne of these is aspartic acid, shown below, with its pk a values. pka ( -N3 + ) = pka ( -) = 2.10 pka (R-) = 3.86 Rank the three groups from most acid to least acidic > > This will be the order in which the groups deprotonate during a titration. The most acidic group will also determine the initial p of a solution of this amino acid.

2 To make a 1.0 M solution of aspartic acid, 1.0 moles of the amino acid are dissolved in 1.0 L of water. What is the p of the resulting solution? First, assume that only the strongest acid (lowest pk a ) will react with water: The pk a for the strongest acid ( -) is 2.1. What it the acid equilibrium constant, K a, for this reaction? K a = 2. Set up an IE table and solve for the [ 3 + ] equilibrium. initial change equilibrium [A] [ 3 + ] [A - ] K a = [ 3 + ] e [A - ] e [A] e 3. alculate the initial p of the solution (p = - log [ 3 + ] e ). p = 4. What is the total charge on the amino acid in this solution? Remember, this is a weak acid and very little of it is deprotonated. charge = In a titration, a strong base would now be added and the p measured as a function of the amount of base added. Every equivalent of base will deprotonate one acidic proton. 5. ow many moles of base are needed to react completely with1.0 L of 1.0 M aspartic acid? moles of base =

3 3=2p<2.10The enderson-asselbalch equation relates the p of a solution to the pk a values of the species in solution. p = pk a + log [A - ] [A] When p < pk a, the log term is negative, meaning that the ratio [A - ]/[A] is less than one, i.e., there is little dissociation of the acid. When p > pk a, the log term is positive and indicates that the ratio [A - ]/[A] is greater than one, i.e. the acid has been deprotonated to a great extent. When exactly one-half of the acid has been deprotonated, ratio of [A - ]/[A] = 1, the equation reduces to p = pk a. This is called the halfway point, This can be applied to aspartic acid. The initial p of the 1.0 M solution was1.07 and all three acidic functional groups were protonated. 2 pka ( -) = 2.10 pka (R-) = 3.86 pka ( -N3 + ) = +N9.82Both carboxylic acids are neutral (no charge) and the ammonium ion has a charge of +1. The overall charge at this p is +1. At p = 2.10, the pk a of the strongest acid, exactly ½ of the α- group will be deprotonated. In the titration of 1.0 L of 1.0 M aspartic acid, addition of 0.50 moles of - will bring the p to 2.10, and will form a 50%/50% mixture of the two structures shown below: +N32 - p.10250%50%the charge on the amino acid at p = 2.10 is.

4 3+N33+N=2- The next important point in the titration curve is the first equivalence point. This comes after the addition of 1.0 moles of strong base to the 1.0 moles of aspartic acid. All of the α- will be deprotonated. +N2- p.98100%we can approximate the p at this point. All of the α- has been deprotonated (pk a = 2.10) but none of the R- has been deprotonated (pk a = 3.86). The average of these two pk a values is close to the observed p; ( ) / 2 = verall, the charge on the amino acid at this point is zero. This is the isoelectric point of aspartic acid, the p at which it will precipitate out of solution. The next significant point in the titration is the second half-way point, when p = pk a of the R- group %- p=50%addition of 1.5 equivalents (1.5 moles) of - gives this p. The charge on the amino acid is now. Draw the structure of aspartic acid at the second equivalence point and determine its charge and the p of the solution. p = charge =

5 Draw the structures, distribution and charge of aspartic acid at p = p = 9.82 charge = ow many equivalents of base need to be added to bring 1.0 L of 1.0 M aspartic acid to the third equivalence point? equivalents of base = Draw the structure and determine the charge on aspartic acid at the third equivalence point. charge = Summary of values: p charge initial 1 st half-way 1 st equiv. 2 nd half-way 2 nd equiv. 3 rd half-way 3 rd equiv. Use these values to plot the titration curve of 1.0 M aspartic acid on the next page. Also enter the charge at each point in the titration. Indicate which is the p I, isoelectic point. The curve should be relatively flat at the half-way points, since both the acid and its conjugate base are present, creating a buffer.

6 Plot these values in the titration curve below charge 10 8 p equivalents of base

[H O ][CH COO ] [CH COOH] 0.2 x

[H O ][CH COO ] [CH COOH] 0.2 x CEM1612 Answers to Problem Sheet 6 1. (a) 0.2 M acetic acid As acetic acid is a weak acid, [ 3 O + ] must be calculated: C 3 2 O 3 O + C 3 initial 0.2 large 0 0 change - negligible + + final 0.2 large

More information

Water. Water participates in H-bonding with biomolecules.

Water. Water participates in H-bonding with biomolecules. Water Most biochemical reactions occur in an aqueous environment. Water is highly polar because of its bent geometry. Water is highly cohesive because of intermolecular hydrogen bonding. Water participates

More information

Note that side chains serve as a) stabilizers of protein structure, b) reactive centers, and c) micro-environments. * + H 3 N-C-COOH H 2 N-C-COO -

Note that side chains serve as a) stabilizers of protein structure, b) reactive centers, and c) micro-environments. * + H 3 N-C-COOH H 2 N-C-COO - BIOCEMISTRY I AMINO ACIDS I. Amino Acid Structure One of the most important macromolecules (chains of distinct molecular units) in the biosphere is protein. Proteins are needed for catalysis, reaction,

More information

ACIDS, BASES & ACID/BASE EQUILIBRIA

ACIDS, BASES & ACID/BASE EQUILIBRIA Chapter 5 ACIDS, BASES & ACID/BASE EQUILIBRIA ill, Petrucci, McCreary & Perry 4 th Ed. ACIDS & BASES The Arrhenius Definition: In Water: Acid Substance which increases the concentration of ydrogen Ion,

More information

SUPPLEMENTAL HOMEWORK SOLUTIONS WEEK 8

SUPPLEMENTAL HOMEWORK SOLUTIONS WEEK 8 SUPPLEMETAL MEWRK SLUTIS WEEK 8 Assignment for Tuesday, March 7 th 7.36 a) + + b) + + c) 6 14 4 + 6 14 4 + + d) 6 5 3 7 + 6 5 7 + Be sure to write the correct charges for the products. 7.4 a) l + l + b)

More information

Midterm Exam III. CHEM 181: Introduction to Chemical Principles November 25, 2014 Answer Key

Midterm Exam III. CHEM 181: Introduction to Chemical Principles November 25, 2014 Answer Key Midterm Exam III EM 181: Introduction to hemical Principles ovember 25, 2014 Answer Key 1. For reference, here are the pk a values for three weak acids: 3 pk a = 7.2 pk a = 4.8 pk a = 15 ow consider this

More information

ACIDS AND BASES. Note: For most of the acid-base reactions, we will be using the Bronsted-Lowry definitions.

ACIDS AND BASES. Note: For most of the acid-base reactions, we will be using the Bronsted-Lowry definitions. DEFINITIONS: ACIDS AND BASES Arrhenius Definition An acid in aqueous solution produces H + ions. A base in aqueous solution produces OH - ions. Bronsted Lowry Theory An acid is a proton donor A base is

More information

Analyte: The substance whose concentration is not known in a titration. Usually the analyte is in the flask or beaker beneath the burette.

Analyte: The substance whose concentration is not known in a titration. Usually the analyte is in the flask or beaker beneath the burette. Key Worksheet 15 Acids & Base Equilibria: Acid Base Titrations Objectives To be able to calculate the ph, poh, and concentrations of all species present at any point of an acid base titration. Vocabulary

More information

Solution equilibria Effect of common ion Ex. HF K a = For a 1.0 M solution of HF: about ~2.7% dissociation

Solution equilibria Effect of common ion Ex. HF K a = For a 1.0 M solution of HF: about ~2.7% dissociation 15,16 Solution equilibria Effect of common ion Ex. F K a = 7. 10 4 For a 1.0 M solution of F: about ~.7% dissociation With the addition of 1.0 M NaF F (aq) + (aq) + F (aq) final 1.0-x x 1.0+x (M) K a x

More information

Learning Guide for Chapter 7 - Organic Reactions I

Learning Guide for Chapter 7 - Organic Reactions I Learning Guide for Chapter 7 - rganic Reactions I I. Introduction to Reactions II. Principles of Kinetics III. Principles of Thermodynamics IV. Nucleophiles and Electrophiles V. Acids and Bases What a

More information

Introduction to Acids & Bases. Packet #26

Introduction to Acids & Bases. Packet #26 Introduction to Acids & Bases Packet #26 Review I Svante Arrhenius was the first person to recognize the essential nature of acids and bases. Review II Arrhenius postulated that: Acids produce hydrogen

More information

CHEM 109A Organic Chemistry

CHEM 109A Organic Chemistry CHEM 109A Organic Chemistry https://labs.chem.ucsb.edu/zakarian/armen/courses.html Chapter 2 Acids and Bases Central to Understanding Organic Chemistry Draw the conjugate acid of each of the following:

More information

Answers to Practice Test Questions 12 Organic Acids and Bases

Answers to Practice Test Questions 12 Organic Acids and Bases Answers to Practice Test Questions 12 rganic Acids and Bases 1. (a) (b) pppp aa = llllll(kk aa ) KK aa = 10 pppp aa KK aa = 10 4.20 KK aa = 6.3 10 5 (c) Benzoic acid is a weak acid. We know this because

More information

Chapter 2 - Water 9/8/2014. Water exists as a H-bonded network with an average of 4 H-bonds per molecule in ice and 3.4 in liquid. 104.

Chapter 2 - Water 9/8/2014. Water exists as a H-bonded network with an average of 4 H-bonds per molecule in ice and 3.4 in liquid. 104. Chapter 2 - Water Water exists as a -bonded network with an average of 4 -bonds per molecule in ice and 3.4 in liquid. 104.5 o -bond: An electrostatic attraction between polarized molecules containing

More information

Chapter 16. The Danger of Antifreeze. Buffers. Aqueous Equilibrium

Chapter 16. The Danger of Antifreeze. Buffers. Aqueous Equilibrium hapter 16 Aqueous Equilibrium The Danger of Antifreeze Each year, thousands of pets and wildlife die from consuming antifreeze Most brands of antifreeze contain ethylene glycol sweet taste and initial

More information

tert-butyl alcohol n-butyl alcohol methyl propyl ether (c) Explain briefly why n-butyl alcohol has a much higher bp than methyl propyl ether.

tert-butyl alcohol n-butyl alcohol methyl propyl ether (c) Explain briefly why n-butyl alcohol has a much higher bp than methyl propyl ether. 1. (15 points) Three 4 10 isomers are shown below, along with their boiling points. ( 3 ) 3 3 2 2 2 3 2 2 3 tert-butyl alcohol n-butyl alcohol methyl propyl ether bp: 82 118 39 (a) Based on their boiling

More information

Chem 5 PAL Worksheet Acids and Bases Smith text Chapter 8

Chem 5 PAL Worksheet Acids and Bases Smith text Chapter 8 D.CHO3HE.KOHB.NHC.CHC3OHHCl3F.H.CHHCH3COG.H2HCHEM 5 PAL Worksheet Acids and Bases Fall 2017 Chem 5 PAL Worksheet Acids and Bases Smith text Chapter 8 Many substances in the body are acids and bases. Many

More information

AQA Chemistry A-Level : Acids and Bases

AQA Chemistry A-Level : Acids and Bases AQA Chemistry A-Level 3.1.12: Acids and Bases Detailed Notes 3.1.12.1 - Brønsted-Lowry Acids and Bases Acid-base equilibria involve the transfer of protons between substances. Therefore substances can

More information

Chemistry 1A, Fall 2007 KEY Midterm Exam #2 October 16, 2007 (90 min, closed book)

Chemistry 1A, Fall 2007 KEY Midterm Exam #2 October 16, 2007 (90 min, closed book) Chemistry 1A, Fall 2007 KEY Midterm Exam #2 ctober 16, 2007 (90 min, closed book) ame: SID: GSI ame: ame The test consists of 6 short answer questions and a page of multiple choice questions. Put your

More information

Titration curve of amino acids. BCH 312 [Practical]

Titration curve of amino acids. BCH 312 [Practical] Titration curve of amino acids BCH 312 [Practical] Titration curve Titration Curves are produced by monitoring the ph of a given volume of a sample solution after successive addition of acid or alkali.

More information

Today. Solubility The easiest of all the equilibria. Polyprotic Acids determining something about an unknown by reacting it with a known solution

Today. Solubility The easiest of all the equilibria. Polyprotic Acids determining something about an unknown by reacting it with a known solution Today Solubility The easiest of all the equilibria Polyprotic Acids determining something about an unknown by reacting it with a known solution Solubility Equilibria Mg(OH)2 (s) Mg 2+ (aq) + 2OH - (aq)

More information

7-4 Systematic Treatment of Equilibrium

7-4 Systematic Treatment of Equilibrium 7-4 Systematic Treatment of Equilibrium The equilibrium problem can be solved by working n equations and n unknowns. n equations n-2 : chemical equilibrium conditions 2 : Charge balance Mass balance 1)

More information

Chapter 16: Applications of Aqueous Equilibrium Part 2. Acid-Base Titrations

Chapter 16: Applications of Aqueous Equilibrium Part 2. Acid-Base Titrations Chapter 16: Applications of Aqueous Equilibrium Part 2 Acid-Base Titrations When you add an acid and a base together, a neutralization rxn occurs. In the lab, we do neutralization rxns all the time as

More information

CHAPTER 7 Acid Base Equilibria

CHAPTER 7 Acid Base Equilibria 1 CHAPTER 7 Acid Base Equilibria Learning Objectives Acid base theories Acid base equilibria in water Weak acids and bases Salts of weak acids and bases Buffers Logarithmic concentration diagrams 2 ACID

More information

We need to find the new concentrations of the species in this buffer system. Remember that we also DILUTED the solution by adding 5.0 ml of the HCl.

We need to find the new concentrations of the species in this buffer system. Remember that we also DILUTED the solution by adding 5.0 ml of the HCl. 164 Take 100. ml of the previous buffer (0.05 M tris / 0.075 M tris-hcl), and add 5.0 ml of.10 M HCl. What is the ph of the mixture? The HCl reacts with the tris base, converting it to tris-hcl We need

More information

A. Two of the common amino acids are analyzed. Amino acid X and amino acid Y both have an isoionic point in the range of

A. Two of the common amino acids are analyzed. Amino acid X and amino acid Y both have an isoionic point in the range of Questions with Answers- Amino Acids & Peptides A. Two of the common amino acids are analyzed. Amino acid X and amino acid Y both have an isoionic point in the range of 5.0-6.5 (Questions 1-4) 1. Which

More information

C H C H 3. aspirin CHEMISTRY Topic #4: Organic Chemistry Fall 2018 Dr. Susan Findlay See Exercises in Topic 12

C H C H 3. aspirin CHEMISTRY Topic #4: Organic Chemistry Fall 2018 Dr. Susan Findlay See Exercises in Topic 12 = = 3 EMISTY 2000 aspirin Topic #4: rganic hemistry Fall 2018 Dr. Susan Findlay See Exercises in Topic 12 rganic Acids (arboxylic Acids) When you hear the term organic acid, it s generally referring to

More information

E. Incorrect. Look carefully there is a statement that is true about weak acid dissociation.

E. Incorrect. Look carefully there is a statement that is true about weak acid dissociation. AP Chemistry - Problem Drill 21: Acids and Bases No. 1 of 10 1. Which of the following is true for the dissociation of a weak acid? A. K a is large. B. The equilibrium lies far to the right. C. The equilibrium

More information

Acid-Base Chemistry. Chapter Brønsted Acid-Base Chemistry R P

Acid-Base Chemistry. Chapter Brønsted Acid-Base Chemistry R P Chapter 5 Acid-Base Chemistry 5.1 Brønsted Acid-Base Chemistry R P The equilibrium constant (K eq ) gives quick insight into whether the reactant or product is more stable, and the extent to which the

More information

Chapter 2: Acids and Bases

Chapter 2: Acids and Bases hapter 2: Acids and Bases 32 hapter 2: Acids and Bases Problems 2.1 Write each acid- reaction as a proton-transfer reaction. Label which reactant is the acid and which the, as well as which product is

More information

Triprotic H3A, H2A -, HA 2-, A 3-

Triprotic H3A, H2A -, HA 2-, A 3- Today Quick solubility question Polyprotic Acids determining something about an unknown by reacting it with a known solution Silver Nitrate (AgNO3) and Potassium Chloride (KCl) are both soluble salts.

More information

Judith Herzfeld 1996,1998. These exercises are provided here for classroom and study use only. All other uses are copyright protected.

Judith Herzfeld 1996,1998. These exercises are provided here for classroom and study use only. All other uses are copyright protected. Judith Herzfeld 1996,1998 These exercises are provided here for classroom and study use only. All other uses are copyright protected. 3.3-010 According to Bronsted-Lowry Theory, which of the following

More information

Definitions. Acids give off Hydrogen ions (protons) Bases give off hydroxide ions

Definitions. Acids give off Hydrogen ions (protons) Bases give off hydroxide ions Acids and Bases Arrhenius- Definitions Acids give off Hydrogen ions (protons) Bases give off hydroxide ions This definition did not include enough acids but does explain many. Brønsted-Lowry Acids are

More information

Chemistry 102 Summary July 24 th. Question: Sketch a generic curve for a diprotic acid titration with a strong base. Answer:

Chemistry 102 Summary July 24 th. Question: Sketch a generic curve for a diprotic acid titration with a strong base. Answer: Polyprotic Acid Titrations * Chemistry 102 Summary July 24 th Question: Sketch a generic curve for a diprotic acid titration with a strong base. Answer: Question: Consider the titration curve of 50.0 ml

More information

Chemistry 2000 Lecture 19: Organic acids

Chemistry 2000 Lecture 19: Organic acids Chemistry 2000 Lecture 19: Organic acids Marc R. Roussel March 8, 2018 Marc R. Roussel Chemistry 2000 Lecture 19: Organic acids March 8, 2018 1 / 22 Organic acids The acid dissociation constant, K a The

More information

1.12 Acid Base Equilibria

1.12 Acid Base Equilibria .2 Acid Base Equilibria BronstedLowry Definition of acid Base behaviour A BronstedLowry acid is defined as a substance that can donate a proton. A BronstedLowry base is defined as a substance that can

More information

... so we need to find out the NEW concentrations of each species in the system.

... so we need to find out the NEW concentrations of each species in the system. 171 Take 100. ml of the previous buffer (0.050 M tris / 0.075 M tris-hcl), and add 5.0 ml of 0.10 M HCl. What is the ph of the mixture? The HCl should react with basic component of the buffer (tris), and

More information

BIOC 460 General Chemistry Review: Chemical Equilibrium, Ionization of H 2 O, ph, pk a

BIOC 460 General Chemistry Review: Chemical Equilibrium, Ionization of H 2 O, ph, pk a BIOC 460 General Chemistry Review: Chemical Equilibrium, Ionization of H 2 O, ph, pk a General Equilibrium: What are the UNITS of K eq? Example reactions: A --> B units of K eq? A --> B + C units of K

More information

1) Which of the following represents the breaking of a noncovalent interaction? Topic: The Nature of Noncovalent Interactions

1) Which of the following represents the breaking of a noncovalent interaction? Topic: The Nature of Noncovalent Interactions Multiple Choice Questions 1) Which of the following represents the breaking of a noncovalent interaction? A) hydrolysis of an ester B) dissolving of salt crystals C) ionization of water D) decomposition

More information

14-Jul-12 Chemsheets A

14-Jul-12 Chemsheets A www.chemsheets.co.uk 14-Jul-12 Chemsheets A2 009 1 BRONSTED-LOWRY ACIDS & BASES Bronsted-Lowry acid = proton donor (H + = proton) Bronsted-Lowry base = proton acceptor (H + = proton) Bronsted-Lowry acid-base

More information

Acid-Base Equilibria (Chapter 10.) Problems: 2,3,6,13,16,18,21,30,31,33

Acid-Base Equilibria (Chapter 10.) Problems: 2,3,6,13,16,18,21,30,31,33 Acid-Base Equilibria (Chapter 10.) Problems: 2,3,6,13,16,18,21,30,31,33 Review acid-base theory and titrations. For all titrations, at the equivalence point, the two reactants have completely reacted with

More information

Last week, we discussed the Brønsted Lowry concept of acids and bases. According to this model:

Last week, we discussed the Brønsted Lowry concept of acids and bases. According to this model: Last week, we discussed the Brønsted Lowry concept of acids and bases This model is not limited to aqueous solutions; it can be extended to reactions in the gas phase! According to this model: Acids are

More information

Make a mixture of a weak acid and its conjugate base (as the SALT) Make a mixture of a weak base and its conjugate acid (as the SALT)

Make a mixture of a weak acid and its conjugate base (as the SALT) Make a mixture of a weak base and its conjugate acid (as the SALT) 175 BUFFERS - resist ph change caused by either the addition of strong acid/base OR by dilution Made in one of two ways: Make a mixture of a weak acid and its conjugate base (as the SALT) Make a mixture

More information

5 Acid Base Reactions

5 Acid Base Reactions Aubrey High School AP Chemistry 5 Acid Base Reactions 1. Consider the formic acid, HCOOH. K a of formic acid = 1.8 10 4 a. Calculate the ph of a 0.20 M solution of formic acid. Name Period Date / / 5.2

More information

Full file at

Full file at Essential Organic Chemistry, 2e (Bruice) Chapter 2 Acids and Bases 1) Which of the following is not a conjugate acid-base pair? A) B) C) HSO- 4, H2SO4 D) -OH, O2- E) NO3 -, NO2-2) Which is defined as a

More information

Many Organic compounds are acids or bases (or both) Many Organic compounds undergo acid-base reactions

Many Organic compounds are acids or bases (or both) Many Organic compounds undergo acid-base reactions Objective 4 Intro to Reactivity 1: identify acids and bases using Lewis definition. Use curved arrows to show how base reacts with acid. Relate strength to pk a. Determine direction of equilibrium. Use

More information

Acid-Base Titration Solution Key

Acid-Base Titration Solution Key Key CH3NH2(aq) H2O(l) CH3NH3 (aq) OH - (aq) Kb = 4.38 x 10-4 In aqueous solution of methylamine at 25 C, the hydroxide ion concentration is 1.50 x 10-3 M. In answering the following, assume that temperature

More information

OCR (A) Chemistry A-level Topic Acids, Bases and Buffers

OCR (A) Chemistry A-level Topic Acids, Bases and Buffers OCR (A) Chemistry A-level Topic 5.1.3 - Acids, Bases and Buffers Flashcards Define a Bronsted-Lowry acid Define a Bronsted-Lowry acid Proton donor Define a Bronsted-Lowry base Define a Bronsted-Lowry base

More information

Chem 3719 Klein Chapter Practice Problems

Chem 3719 Klein Chapter Practice Problems Chem 379 Klein Chapter Practice Problems Dr. Peter Norris, 208 Klein Chapter Problems : Review of General Chemistry. Draw viable structures for molecules with the following molecular formulae. Remember

More information

CHEMISTRY 102 Fall 2010 Hour Exam III. 1. My answers for this Chemistry 102 exam should be graded with the answer sheet associated with:

CHEMISTRY 102 Fall 2010 Hour Exam III. 1. My answers for this Chemistry 102 exam should be graded with the answer sheet associated with: 1. My answers for this Chemistry 10 exam should be graded with the answer sheet associated with: a) Form A b) Form B c) Form C d) Form D e) Form E Consider the titration of 30.0 ml of 0.30 M HCN by 0.10

More information

IB Chemistry ABS Introduction An acid was initially considered a substance that would produce H + ions in water.

IB Chemistry ABS Introduction An acid was initially considered a substance that would produce H + ions in water. IB Chemistry ABS Introduction An acid was initially considered a substance that would produce H + ions in water. The Brønsted-Lowry definition of an acid is a species that can donate an H + ion to any

More information

Chem(Bio) Week 6 Expt F: Amino Acid pka from potentiometry. Identification of an Amino Acid through Potentiometric Titration

Chem(Bio) Week 6 Expt F: Amino Acid pka from potentiometry. Identification of an Amino Acid through Potentiometric Titration Objectives: Identification of an Amino Acid through Potentiometric Titration Keywords: Amino acid, zwitterions, enderson asselbach, pka, p arry out rough and then an accurate potentiometric titration of

More information

Introduction to Acids & Bases II. Packet #26

Introduction to Acids & Bases II. Packet #26 Introduction to Acids & Bases II Packet #26 1 Review I Svante Arrhenius was the first person to recognize the essential nature of acids and bases. 2 Review II Arrhenius postulated that: Acids produce hydrogen

More information

4. Acid Base Equilibria

4. Acid Base Equilibria 4. Acid Base Equilibria BronstedLowry Definition of acid Base behaviour A BronstedLowry acid is defined as a substance that can donate a proton. A BronstedLowry base is defined as a substance that can

More information

Acids and Bases: Molecular Structure and Acidity

Acids and Bases: Molecular Structure and Acidity Tutorial Contents A. Introduction B. Resonance C. Atomic Radius D. Electronegativity E. Inductive Effect F. Exercises G. Exercise Solutions Acids and Bases: Molecular Structure and Acidity Review the Acids

More information

Amino Acids and Peptides

Amino Acids and Peptides Amino Acids Amino Acids and Peptides Amino acid a compound that contains both an amino group and a carboxyl group α-amino acid an amino acid in which the amino group is on the carbon adjacent to the carboxyl

More information

ADVANCED PLACEMENT CHEMISTRY ACIDS, BASES, AND AQUEOUS EQUILIBRIA

ADVANCED PLACEMENT CHEMISTRY ACIDS, BASES, AND AQUEOUS EQUILIBRIA ADVANCED PLACEMENT CHEMISTRY ACIDS, BASES, AND AQUEOUS EQUILIBRIA Acids- taste sour Bases(alkali)- taste bitter and feel slippery Arrhenius concept- acids produce hydrogen ions in aqueous solution while

More information

Content : Properties of amino acids.. Separation and Analysis of Amino Acids

Content : Properties of amino acids.. Separation and Analysis of Amino Acids قسم الكيمياء الحيوية.دولت على سالمه د. استاذ الكيمياء الحيوية ٢٠١٥-٢٠١٤ المحاضرة الثانية 1 Content : Properties of amino acids.. Separation and Analysis of Amino Acids 2 3 Physical Properties of Amino

More information

12. Acid Base Equilibria

12. Acid Base Equilibria 2. Acid Base Equilibria BronstedLowry Definition of acid Base behaviour A BronstedLowry acid is defined as a substance that can donate a proton. A BronstedLowry base is defined as a substance that can

More information

MULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the question.

MULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the question. Exam Name MULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the question. 1) Which one of the following is the weakest acid? 1) A) HF (Ka = 6.8 10-4) B) HNO2 (Ka

More information

Department of Chemistry University of Texas at Austin

Department of Chemistry University of Texas at Austin Polyprotic and Special Cases Calculations Supplemental Worksheet KEY For the following polyprotic acid questions: Citric acid (H3C6H5O6) Ka1 = 8.4 x 10 4 Ka2 = 1.8 x 10 5 Ka3 = 4.0 x 10 6 Oxalic acid (H2C2O4)

More information

11/15/11. Chapter 16. HA(aq) + H 2 O(l) H 3 O + (aq) + A (aq) acid base conjugate conjugate

11/15/11. Chapter 16. HA(aq) + H 2 O(l) H 3 O + (aq) + A (aq) acid base conjugate conjugate Chapter 16 Table of Contents Chapter 16 16.1 16.2 16.3 16.4 16.5 16.6 Buffered Solutions Copyright Cengage Learning. All rights reserved 2 Models of Arrhenius: Acids produce H + ions in solution, bases

More information

Buffer solutions المحاليل المنظمة

Buffer solutions المحاليل المنظمة Buffer solutions المحاليل المنظمة Presented by Dr. Mohammad Saadeh The requirements for the Pharmaceutical Biochemistry I Philadelphia University Faculty of pharmacy Understanding ph balance The human

More information

Problem 1 C 6 H 5 [ COOH C 6 H[H 5 COO + ] - + H [ I C - x + x + x E x x x

Problem 1 C 6 H 5 [ COOH C 6 H[H 5 COO + ] - + H [ I C - x + x + x E x x x Problem 1 What is the ph of a 291mL sample of 2.993M benzoic acid (C 6 H 5 COOH) (K a =6.4x10 5 )? Write out acid dissociation reaction: C 6 H 5 COOH C 6 H 5 COO H Make an ICE chart since this is a weak

More information

+ H 2 O HPO 4. (a) In this system, there are two acid-base conjugate pairs. These are (1) HPO4

+ H 2 O HPO 4. (a) In this system, there are two acid-base conjugate pairs. These are (1) HPO4 1 The dihydrogenphosphate-hydrogenphosphate ion system is an important buffer in the human body. H 2 PO 4 H 2 O HPO 4 2 H 3 O (a) In this system, there are two acid-base conjugate pairs. These are acid

More information

Department of Chemistry University of Texas at Austin

Department of Chemistry University of Texas at Austin Aqueous Equilibria Unit Activity Readiness Assessment Quiz KEY KNOW YOUR ACIDS AND BASES: For each problem: I. Identify what is in the final solution (acid, base, salt, combination). II. Identify whether

More information

5.1.3 Acids, Bases and Buffers

5.1.3 Acids, Bases and Buffers 5..3 Acids, Bases and Buffers BronstedLowry Definition of Acid Base behaviour A BronstedLowry acid is defined as a substance that can donate a proton. A BronstedLowry base is defined as a substance that

More information

D. Ammonia can accept a proton. (Total 1 mark)

D. Ammonia can accept a proton. (Total 1 mark) 1. Which statement explains why ammonia can act as a Lewis base? A. Ammonia can donate a lone pair of electrons. B. Ammonia can accept a lone pair of electrons. C. Ammonia can donate a proton. D. Ammonia

More information

2. Acids and Bases (text )

2. Acids and Bases (text ) 2009, Department of hemistry, The University of Western ntario 2.1 2. Acids and Bases (text 2.1 2.6) Acid-base reactions are one of the most important reaction types in organic chemistry and biology, e.g.:

More information

ORGANIC - BROWN 8E CH AMINO ACIDS AND PROTEINS.

ORGANIC - BROWN 8E CH AMINO ACIDS AND PROTEINS. !! www.clutchprep.com CONCEPT: INTRODUCTION TO PROTEINS Proteins are polypeptides that have some biological function. Peptides are composed of polymers of monomeric units called α-amino acids The 20 most

More information

Chapter 16. Acids and Bases. Copyright Cengage Learning. All rights reserved 1

Chapter 16. Acids and Bases. Copyright Cengage Learning. All rights reserved 1 Chapter 16 Acids and Bases Copyright Cengage Learning. All rights reserved 1 Section 16.1 Acids and Bases Models of Acids and Bases Arrhenius: Acids produce H + ions in solution, bases produce OH ions.

More information

1 The following reaction is at equilibrium at 250 K:

1 The following reaction is at equilibrium at 250 K: version: master Exam 2 - master This MC portion of the exam should have 17 questions. The point values are given with each question. Bubble in your answer choices on the bubblehseet provided. Your score

More information

Chapter 17 Answers. Practice Examples [H3O ] 0.018M, 1a. HF = M. 1b. 30 drops. 2a.

Chapter 17 Answers. Practice Examples [H3O ] 0.018M, 1a. HF = M. 1b. 30 drops. 2a. Chapter 17 Answers Practice Examples 1a. + [HO ] 0.018M, 1b. 0 drops [HF] = 0.8 M. [H O + ] = 0.10 M, HF = 0.97 M. a. + HO 1.10 M, CHO = 0.150 M. b. 15g NaCHO a. The hydronium ion and the acetate ion react

More information

10.1 Acids and Bases in Aqueous Solution

10.1 Acids and Bases in Aqueous Solution 10.1 Acids and Bases in Aqueous Solution Arrhenius Definition of Acids and Bases An acid is a substance that gives hydrogen ions, H +, when dissolved in water. In fact, H + reacts with water and produces

More information

Chapter 9. Aqueous Solutions and Chemical Equilibria

Chapter 9. Aqueous Solutions and Chemical Equilibria Chapter 9 Aqueous Solutions and Chemical Equilibria Classifying Solutions of Electrolytes Electrolytes form ions when dissolved in solvent and thus produce solutions that conduct electricity. Strong electrolytesionize

More information

CHM 112 Dr. Kevin Moore

CHM 112 Dr. Kevin Moore CHM 112 Dr. Kevin Moore Reaction of an acid with a known concentration of base to determine the exact amount of the acid Requires that the equilibrium of the reaction be significantly to the right Determination

More information

Strong & Weak Acid (ph, pka, Kw) Question Paper

Strong & Weak Acid (ph, pka, Kw) Question Paper For more awesome GSE and level resources, visit us at www.savemyexams.co.uk/ Strong & Weak cid (ph, pka, Kw) Question Paper Level Subject Exam oard Topic Sub Topic ooklet Paper Type Level hemistry Edexcel

More information

Equilibrium Acids and Bases 6

Equilibrium Acids and Bases 6 1. Strong Acids and Bases Equilibrium Acids and Bases 6 Examples of strong acids are H 2 SO 4, HNO 3, HCl, HBr, and HI. (There are a few others, e.g. HClO 4, which we will not discuss.) Since strong acids

More information

Midterm Exam III. CHEM 181: Introduction to Chemical Principles Solutions C HC N H 3 C. pka = 9.7

Midterm Exam III. CHEM 181: Introduction to Chemical Principles Solutions C HC N H 3 C. pka = 9.7 Midterm Exam III EM 181: Introduction to hemical Principles Solutions 1. For reference, here are the pk a values for four weak acids (not all resonance structures shown): N 3 N N 3 3 2 pka = 3.5 pka =

More information

LEARNING OBJECTIVES SEPARATION SCIENCE CHEMICAL EQUILIBRIUM UNIT

LEARNING OBJECTIVES SEPARATION SCIENCE CHEMICAL EQUILIBRIUM UNIT LEARNING OBJECTIVES SEPARATION SCIENCE CHEMICAL EQUILIBRIUM UNIT Thomas Wenzel, Bates College Introductory Material After the introductory material covered in the text and lecture form, the student will

More information

Acid Base Equilibria

Acid Base Equilibria Acid Base Equilibria Acid Ionization, also known as acid dissociation, is the process in where an acid reacts with water to produce a hydrogen ion and the conjugate base ion. HC 2 H 3 O 2(aq) H + (aq)

More information

LS1a Midterm Exam 1 Review Session Problems

LS1a Midterm Exam 1 Review Session Problems LS1a Midterm Exam 1 Review Session Problems 1. n aqueous mixture of a weak acid and its conjugate base is often used in the laboratory to prepare solutions referred to as buffers. ne commonly used acid

More information

Find this material useful? You can help our team to keep this site up and bring you even more content consider donating via the link on our site.

Find this material useful? You can help our team to keep this site up and bring you even more content consider donating via the link on our site. Find this material useful? You can help our team to keep this site up and bring you even more content consider donating via the link on our site. Still having trouble understanding the material? Check

More information

Unit 9. Acids, Bases, & Salts Acid/Base Equilibrium

Unit 9. Acids, Bases, & Salts Acid/Base Equilibrium Unit 9 Acids, Bases, & Salts Acid/Base Equilibrium Properties of Acids sour or tart taste strong acids burn; weak acids feel similar to H 2 O acid solutions are electrolytes acids react with most metals

More information

1. What colour would 1.0 M HCl be in an indicator mixture consisting of phenol red and

1. What colour would 1.0 M HCl be in an indicator mixture consisting of phenol red and cids Practice Test 2 1. What colour would 1.0 M Hl be in an indicator mixture consisting of phenol red and thymolphthalein? red blue yellow colourless 2. uring a titration, what volume of 0.500 M KOH is

More information

Edexcel Chemistry A-level Topic 12 - Acid-Base Equilibria

Edexcel Chemistry A-level Topic 12 - Acid-Base Equilibria Edexcel Chemistry A-level Topic 12 - Acid-Base Equilibria Flashcards Define a Bronsted-Lowry acid Define a Bronsted-Lowry acid Proton donor Define a Bronsted-Lowry base Define a Bronsted-Lowry base Proton

More information

Department of Chemistry University of Texas at Austin

Department of Chemistry University of Texas at Austin Titrations and Buffers Supplemental Worksheet KEY HINT: When calculating the ph of a solution use the following 3 steps Titrations The next six problems represent many points along a titration curve of

More information

Applications of Aqueous Equilibria Chapter 15. Titration Curves & Indicators Sections 4-5

Applications of Aqueous Equilibria Chapter 15. Titration Curves & Indicators Sections 4-5 Applications of Aqueous Equilibria Chapter 15 Titration Curves & Indicators Sections 45 Strong Acid vs. Strong Base Titration Titrate 50.0 ml of 0.200 M HNO 3 with 0.100 M NaOH What is the ph when no NaOH

More information

Buffer solutions Strong acids and bases dissociate completely and change the ph of a solution drastically. Buffers are solutions that resist changes i

Buffer solutions Strong acids and bases dissociate completely and change the ph of a solution drastically. Buffers are solutions that resist changes i 18.3 ph Curves Buffer solutions Strong acids and bases dissociate completely and change the ph of a solution drastically. Buffers are solutions that resist changes in ph even when acids and bases are added

More information

ORGANIC - CLUTCH CH. 3 - ACIDS AND BASES.

ORGANIC - CLUTCH CH. 3 - ACIDS AND BASES. !! www.clutchprep.com CONCEPT: OVERVIEW OF CHEMICAL REACTIONS There are 4 types of common chemical reactions that we need to be familiar with in organic chemistry 1. Acid-Base Reactions: Two molecules

More information

= ) = )

= ) = ) Basics of calculating ph 1. Find the ph of 0.07 M HCl. 2. Find the ph of 0.2 M propanoic acid (K a = 10-4.87 ) 3. Find the ph of 0.4 M (CH 3 ) 3 N (K b = 10-4.20 ) 4. Find the ph of 0.3 M CH 3 COO - Na

More information

Chem Chapter 18: Sect 1-3 Common Ion Effect; Buffers ; Acid-Base Titrations Sect 4-5 Ionic solubility Sect 6-7 Complex Formation

Chem Chapter 18: Sect 1-3 Common Ion Effect; Buffers ; Acid-Base Titrations Sect 4-5 Ionic solubility Sect 6-7 Complex Formation Chem 106 3--011 Chapter 18: Sect 1-3 Common Ion Effect; Buffers ; Acid-Base Titrations Sect 4-5 Ionic solubility Sect 6-7 Complex Formation 3//011 1 The net ionic equation for the reaction of KOH(aq) and

More information

AP CHEMISTRY NOTES 10-1 AQUEOUS EQUILIBRIA: BUFFER SYSTEMS

AP CHEMISTRY NOTES 10-1 AQUEOUS EQUILIBRIA: BUFFER SYSTEMS AP CHEMISTRY NOTES 10-1 AQUEOUS EQUILIBRIA: BUFFER SYSTEMS THE COMMON ION EFFECT The common ion effect occurs when the addition of an ion already present in the system causes the equilibrium to shift away

More information

CHEM J-3 June 2012

CHEM J-3 June 2012 CEM1611 2012-J-3 June 2012 In a standard acid-base titration, 25.00 ml of 0.1043 M a solution was found to react exactly with 28.45 ml of an Cl solution of unknown concentration. What is the p of the unknown

More information

Sample Free-Response Questions

Sample Free-Response Questions Exam Information Sample Free-Response Questions Question 1 is a long constructed-response question that should require about 20 minutes to answer. Questions 2, 3, and 4 are short constructed-response questions

More information

Buffer Solutions. Buffer Solutions

Buffer Solutions. Buffer Solutions Buffer Solutions A buffer solution is comprised of a mixture of an acid (base) with its conjugate base (acid) that resists changes in ph when additional acid or base is added The Henderson-Hasselbalch

More information

Essential Organic Chemistry, 3e (Bruice) Chapter 2 Acids and Bases: Central to Understanding Organic Chemistry

Essential Organic Chemistry, 3e (Bruice) Chapter 2 Acids and Bases: Central to Understanding Organic Chemistry Essential Organic Chemistry Canadian 3rd Edition Bruice TEST BANK Full downdoad at: https://testbankreal.com/download/essential-organic-chemistrycanadian-3rd-edition-bruice-test-bank/ Essential Organic

More information

CHEM 3.6 (5 credits) Demonstrate understanding of equilibrium principals in aqueous systems

CHEM 3.6 (5 credits) Demonstrate understanding of equilibrium principals in aqueous systems CHEM 3.6 (5 credits) Demonstrate understanding of equilibrium principals in aqueous systems sparingly soluble ionic solids acidic and basic solutions concentrations of dissolved species K s calculations

More information

173 Buffer calculation: Tris buffer - Tris(hydroxymethyl)-aminomethane. tris base

173 Buffer calculation: Tris buffer - Tris(hydroxymethyl)-aminomethane. tris base 173 Buffer calculation: Tris buffer - Tris(hydroxymethyl)-aminomethane tris base tris-hcl (conjugate acid of tris base) Calculate the ph of a buffer made from 50 ml of 0.10M tris and 50 ml of 0.15M tris-hcl.

More information

Strong Acids and Bases C020

Strong Acids and Bases C020 Strong Acids and Bases C020 Strong Acids and Bases 1 Before discussing acids and bases examine the concept of chemical equilibrium At reaction is at equilibrium when it is proceeding forward and backwards

More information