MODULE No.9 : Symmetry and optical activity and dipole moment. Paper No 13 Applications of Group Theory

Size: px
Start display at page:

Download "MODULE No.9 : Symmetry and optical activity and dipole moment. Paper No 13 Applications of Group Theory"

Transcription

1 1 Subject Chemistry Paper No and Title Paper No 13 Applications of Group Theory Module No and Title 9 :Symmetry and optical activity and dipole moment Module Tag CE_P13_M9 CEMISTRY 1

2 2 TABLE O CONTENTS 1. Learning outcome: 2. Introduction 3. Meaning of optical activity in terms of symmetry 3.1 Examples of dissymmetric molecule having optical activity 3.2 Examples of molecules lacking σ and I but still optically inactive 3.3 Conditions for optical activity 4. Symmetry and optical activity 4.1 Symmetry properties of molecules 4.2 Examples of finding DPM using symmetry criteria 5. Summary CEMISTRY 2

3 3 1. Learning Outcomes After studying this module, you shall be able to 2. Introduction o Know about optical activity o Symmetry aspects of optical activity o Examples of dissymmetric molecules o That absence of S n axis of any order means compound is optically active o Conditions for optical activity o Know about DPM o Know about symmetry and dipole moment o General symmetry criteria for DPM in a molecule o Some examples of finding DPM Optical activity has both classical and quantum mechanical roots, Of all the natural phenomenon observed in nature, none has so profound effect on chemical thoughts as that of natural optical rotatory power.(leiher, A.D., J. Phys-Chem, 1964, 40, 1965). Chirality or optical activity can be applied to molecular structures as well as to individual molecular species. In 1813 Jean Baptiste Biot noticed that plane-polarized light was rotated either to the right or the left when it passed through single crystals of quartz or aqueous solutions of tartaric acid or sugar. Substances that can rotate plane-polarized light are said to be optically active. Those that rotate the plane clockwise are said to be dextrorotatory those that rotate the plane counterclockwise are called levorotatory. Louis Pasteur in 1848 noted that sodium ammonium tartrate forms two different kinds of crystals that are mirror images of each other and rotate the plane polarised light. In this module details of optical activity will not be discussed. 3. Meaning of optical activity in terms of symmetry Criterion for optical activity of a molecule involves the test of superismposability of its mirror image on the original one. igure.1 shows non-superimposability of mirror image arrangement of tetrahedrons with different substituents. CEMISTRY 3

4 4 a a c d b b d c Br Cl Mirror Cl Br mirror ig.1 Reflection of two tetrahedrons through a mirror The tetrahedron I and tetrahedron II are not superimposable and thus are optically active. Take II tetrahedron and try to rotate or manipulate in other way it can not be superimposed on tetrahedron I.Non superimposable mirror images are optically compound and known as enantiomers. It is always easy to draw the mirror image of a structure, but to test whether or not the mirror image is superimposable on the original is very difficult exercise. This type of comparison of original and mirror image is still made for more difficult by the practice of using various projection formulae for the molecules. or example 2- iodobutane C 4 9 I can be written in different projection forms as shown in figure.2 C 3 I C 3 i C 3 C 3 iii C 3 C 3 ii C 3 iv C 3 ig.2 Various projection formulae for 2-iodobutane. In three dimensional projection forms the spatial position of each substituent is fixed. So any type of rotation or manipulation will not change the relative position of the substituents. In the projection form of type iii with its mirror image one is temped to rotate the molecule about dotted line and try to super impose original and its mirror image on each other as shown in figure.3 CEMISTRY 4

5 5 C 3 C 3 a C 3 b C 3 rotate C 3 C 3 iii c ig.3 Mirror images of 2-iodobutane in projection form iii ere a and b are the mirror images and c is the rotated image. Rotated image c now can be superimposed on a projection form and hence the molecule looks to be optically inactive which is not so. Thus this form of projection can miss lead to wrong result. The error arises due to the fact that during such rotations the groups which were forward earlier now go backward and backward groups come forward. rom projection formulas it is not clear. Superimposability test can be easily performed for simple molecules but when complicated molecules are examined such visualizations become more difficult and cumbersome and time consuming. Is there is a simple way of looking whether molecule will be optically active or not? Symmetry properties of the molecules can help in this direction.the earlier definition of a molecule to be optically active nor not was that it should be asymmetric and should not have any symmetry element in it. or a molecule to be optically active it should not have mirror plane and centre of inversion. This definition has been modified. All molecules which lack S n axis of any order will be dissymmetric and optically active i.e. molecule and its mirror image cannot be superimposed in any manner i.e. by rotational or translational motion of the whole molecule. We know that S 1 = σ and S 2 = i. So molecules having S 1 and S 2 axes respectively means that these have σ and i respectively and thus cannot be optically active. Optically compound need not be asymmetric. These may have symmetry axes 3.1 Examples of dissymmetric molecules having optical activity: Let us examine this new definition by taking the example of substituted cyclopropane. The example we take is that of cis- and trans -1, 2-dichlorocyclopropane. Cis-form has S 1 = σ so can not be optically active Trans-form has axis in the plane of three member ring system bisecting C-C bond bearing Cl atoms and passing through C which has two hydrogen atoms attached to it, i.e. ethylene carbon atom. igure.4 shows these symmetry elements in these two forms of 1, 2-choloropropane. CEMISTRY 5

6 6 Cl Cl Trans- Cl Trans- Cl (ii) (i) Mirror images are superimposable Cl Cl Cl Cl Cis- Cis- Mirror images are superimposable Mirror images are not superimposable ig.4 Optical activity of trans- 1,2- dichlorocyclopropane The trans- 1, 2-dichlorocyclopropane (ii) does not have S 1 (= σ ) or S 2 (= i ) axis so it is optically active. But trans- form and its mirror image have -axis i.e. do not lack symmetry.these are dissymmetric but not asymmetric (without symmetry element). The only symmetry element that dissymmetric (optically active) compounds can have are one or more C n axes. Many dissymmetric compounds have axis. Most optically active compounds are asymmetric as well as dissymmetric and hence have only C 1 axis. S n axis (n>2) is difficult to find. 3.2 Examples of molecules lacking σ and i still optically inactive : Let us take an example of a molecule which does not have S 1 ( σ ) or S 2 ( i ) axis in it but still it is optically inactive. The example we take here is that of spiro compound 3, 4, 3, 4 - tetramethyl spiro (1, 1) bipyrrolidinium ion. This molecule does not have S 1 (σ ) or S 2 ( i ) and so it should be optically active but it is not so as it contains S 4 axis coinciding with axis ig.5 shows the presence of S 4 axis in this molecule. Molecule does not have σ but combination of σ and C 4 axis results in S 4 axis. Thus the molecule is optically inactive even if it does not have σ. As it contains S 4 axis so it is optically inactive. CEMISTRY 6

7 + 7 C 3 3 C C 3 3 C 3 C N + σ C 3 S 4 3 C N + C 3 3 C C 4 C 3 N C 3 3 C ig.5 Presence of S 4 axis in 3, 4, 3, 4 - tetramethyl spiro (1, 1) bipyrrolidinium ion Let us another similar example of a molecule which does not have σ or i in it but still it is optically inactive. Example we take is that of 1,3,5,7-tetrafluorocyclooctatetraene. It lacks both σ and i. It is not optically active. This molecule has a axis and S 4 axis along this axis as shown in figure.6 CEMISTRY 7

8 C 4 along σ C 4 S ig. S 4 in 1,3,5,7-tetrafluorocyclooctatetraene. Thus the molecule has S 4 axis so it is optically inactive 3.3 Condition for optical activity: conditions for optical activity,asymmetry and dissymmetry can be summarized as: (i) If the molecule possesses only C n axis it is dissymmetric and optically active (ii) If n=1 in C n the molecule is asymmetric as well as dissymmetric (iii) If molecule possesses S n axis of any order it cannot be optically active. S 1 means σ and S 2 means i. 4. Symmetry and optical activity: ow to determine that a molecule has dipole moment? (i) Draw correct Lewis dot structure of the molecule. (ii) Draw geometry according to VSPER theory. (iii) ind whether the molecule is totally symmetrical or not. (iv) Polarity in a bond means pull in a particular direction. If the pull is equal the there will be no polarity. Criteria for dipole moment (i) If the molecule is diatomic and atoms are different then there will be DPM in it. (ii) A molecule which just has one electron pair in it will have DPM. CEMISTRY 8

9 9 (iii) If all end atoms are similar and there is no lone pair in it, then the molecule will be no polar (iv) If the molecule is unsymmetrical it will have DPM. Thus we see that if we want to know whether the molecule has DPM or not we have to go through these points and come to a conclusion. ere symmetry property of the molecule comes to our rescue and just by noting the presence of symmetry elements one can easily predict whether the molecule will have the DPM or not 4.1 Symmetry properties of molecules : Dipole moment (DPM) is vector property.it has both magnitude and direction and it results from unequal sharing of electrons between atoms of a bond in molecule. It is a stationary and not a dynamic property. Stationary properties must remain unchanged by every symmetry operation of the molecule. In order that dipole moment remains unchanged, dipole moment vector must lie in each of the symmetry elements of the molecule. Some of the main points about dipole moment and symmetry are given as : (i) Molecules having i can not have DPM, as vector can not lie in a point. (ii) Molecules having C n axis only have DPM vector along C n axis. (iii) Molecules having σ, have DPM vector in this plane. (iv Molecules which have more than one C n axis (n>1) cannot have DPM, as vector can not lie along each and every axis at the same time. (v) Molecules belonging to C 1, and σ v have dipole moment along C n and σ v. CEMISTRY C s, C n, C nv only can have DPM i.e. molecules having C n (vi) If DPM of a molecule is known symmetry of the molecule can be predicted. (vii) Symmetry arguments can only fix the direction of DPM vector. It can not give its magnitude and can not tell about the +ve and ve ends of it. If one knows these points about dipole moment and symmetry elements present in the molecules then one can immediately predict the structure or direction of magnitude in the molecule. 4.2 Examples of finding DPM using symmetry criteria Let us take (i) CO 2 (ii) 2 O (iii) CCl 4 (iv) 2 SO (i) CO 2 belongs to D h point group it. It has C axis and has n C axes perpendicular to C axis. DPM vector can not lie in each and every axis so molecule has no DPM. (ii) 2 O molecule belongs to v point group has axis and two σ v. DPM will be along axis and will lie in these planes only. (iii) CCl 4 molecule is highly symmetrical and has multiple axes of several order. DPM can not lie in each every axis. So molecule has no DPM. 9

10 10 (iv) 2 SO molecule S O has only one mirror plane and belongs to C s point group and hence it will have DPM in the plane only. 5.Summary In brief optical activity in molecules explained Symmetry aspects of optical activity explained by taking suitable examples Example of dissymmetric molecule cis- and trans- 1,2-dicholoro cyclopropane was discussed Criteria for optical activity ie absence of S n axis explained by taking suitable examples. Some conditions for optical activity are given Symmetry and DPM explained by taking suitable examples Some main points about symmetry and DPM given and explained with the help of examples CEMISTRY 10

PRESENTATION ISOMERISM. Dr. Susmita Bajpai

PRESENTATION ISOMERISM. Dr. Susmita Bajpai PRESENTATION OF ISOMERISM Dr. Susmita Bajpai Department Chemistry B.N.D. College, Kanpur ISOMERISM What is isomerism:- The compounds which have the some molecular formula but differ from each other in

More information

CH 3 C 2 H 5. Tetrahedral Stereochemistry

CH 3 C 2 H 5. Tetrahedral Stereochemistry Ch 5 Tetrahedral Stereochemistry Enantiomers - Two non-superimposable mirror image molecules - They are stereoisomers with the same atoms and bonds, but different spatial geometries. - The two molecules

More information

Chiroptical Spectroscopy

Chiroptical Spectroscopy Chiroptical Spectroscopy Theory and Applications in Organic Chemistry Lecture 1: It all started with a piece of quartz. Masters Level Class (181 041) Mondays, 8.15-9.45 am, C 02/99 Wednesdays, 10.15-11.45

More information

02/07/2017. Isomerism. Structural isomerism. 1. Structural isomerism different linkages of atoms. Same molecular formula Different structural formulae

02/07/2017. Isomerism. Structural isomerism. 1. Structural isomerism different linkages of atoms. Same molecular formula Different structural formulae hain isomerism Position isomerism Metamerism Tautomerism Functional group isomerism Geometrical isomerism Optical isomerism 02/07/2017 Isomerism The presence of two or more compounds which has the same

More information

Stereochemistry. Based on McMurry s Organic Chemistry, 6 th edition

Stereochemistry. Based on McMurry s Organic Chemistry, 6 th edition Stereochemistry Based on McMurry s Organic Chemistry, 6 th edition Stereochemistry! Some objects are not the same as their mirror images (technically, they have no plane of symmetry)! A right-hand glove

More information

Organic Chemistry. M. R. Naimi-Jamal. Faculty of Chemistry Iran University of Science & Technology

Organic Chemistry. M. R. Naimi-Jamal. Faculty of Chemistry Iran University of Science & Technology Organic Chemistry M. R. Naimi-Jamal Faculty of Chemistry Iran University of Science & Technology Chapter 6. Stereochemistry Based on McMurry s Organic Chemistry, 6 th edition Stereochemistry Some objects

More information

Stereochemistry. 3-dimensional Aspects of Tetrahedral Atoms

Stereochemistry. 3-dimensional Aspects of Tetrahedral Atoms Stereochemistry 3-dimensional Aspects of Tetrahedral Atoms Chiral Entire molecules or simply atoms that do not possess a plane of symmetry are called chiral. Conversely, the term achiral is applied to

More information

10/4/2010. Chapter 5 Stereochemistry at Tetrahedral Centers. Handedness. 5.1 Enantiomers and the Tetrahedral Carbon

10/4/2010. Chapter 5 Stereochemistry at Tetrahedral Centers. Handedness. 5.1 Enantiomers and the Tetrahedral Carbon John E. McMurry http://www.cengage.com/chemistry/mcmurry Chapter 5 Stereochemistry at Tetrahedral Centers Richard Morrison University of Georgia, Athens Handedness Right and left hands are not identical

More information

Organic Chemistry. Chemical Bonding and Structure (2)

Organic Chemistry. Chemical Bonding and Structure (2) For updated version, please click on http://ocw.ump.edu.my Organic Chemistry Chemical Bonding and Structure (2) by Dr. Seema Zareen & Dr. Izan Izwan Misnon Faculty of Industrial Science & Technology seema@ump.edu.my

More information

Chapter 5 Stereochemistry

Chapter 5 Stereochemistry Chapter 5 Stereochemistry References: 1. Title: Organic Chemistry (fifth edition) Author: Paula Yurkanis Bruice Publisher: Pearson International Edition 2. Title: Stereokimia Author: Poh Bo Long Publisher:

More information

Electronic Spectra and Magnetic Properties of Transition Metal Complexes)

Electronic Spectra and Magnetic Properties of Transition Metal Complexes) Subject Chemistry Paper No and Title Module No and Title Module Tag Paper 7: Inorganic Chemistry-II (Metal-Ligand Bonding, Electronic Spectra and Magnetic Properties of Transition Metal 22: Isomerism part

More information

Chapter 5 Stereochemistry. Stereoisomers

Chapter 5 Stereochemistry. Stereoisomers Chapter 5 Stereochemistry Stereoisomers Same bonding sequence Different arrangement in space Example: OOC-C=C-COO has two geometric (cis-trans) isomers: COO COO COO COO Stereochemistry Slide 5-2 1 Chirality

More information

Organic Chemistry Chapter 5 Stereoisomers H. D. Roth

Organic Chemistry Chapter 5 Stereoisomers H. D. Roth Organic Chemistry Chapter 5 Stereoisomers. D. Roth 11. Chirality of conformationally mobile systems ring compounds Monosubstituted cycloalkanes cannot have an asymmetric carbon in the ring, because there

More information

9. Stereochemistry. Stereochemistry

9. Stereochemistry. Stereochemistry 9. Stereochemistry Stereochemistry Some objects are not the same as their mirror images (technically, they have no plane of symmetry) A right-hand glove is different than a left-hand glove (See Figure

More information

CHEM 261 Feb. 2, Stereochemistry and Chirality

CHEM 261 Feb. 2, Stereochemistry and Chirality 70 EM 261 eb. 2, 2017 Stereochemistry and hirality hiral object or molecule: has a non-superimposable mirror image Achiral object: not chiral, has a superimposable mirror image 1848 - Louis Pasteur separated

More information

240 Chem. Stereochemistry. Chapter 5

240 Chem. Stereochemistry. Chapter 5 240 Chem Stereochemistry Chapter 5 1 Isomerism Isomers are different compounds that have the same molecular formula. Constitutional isomers are isomers that differ because their atoms are connected in

More information

CHEMISTRY PAPER No. : 7 MODULE No. : 23 (Optical Isomerism)

CHEMISTRY PAPER No. : 7 MODULE No. : 23 (Optical Isomerism) Subject Chemistry Paper No and Title Module No and Title Module Tag Paper 7 : Inorganic Chemistry-II (Metal-Ligand Bonding, Electronic Spectra and Magnetic Properties of Transition Metal Complexes) 23

More information

CHAPTER 5. Stereoisomers

CHAPTER 5. Stereoisomers CHAPTER 5 Stereoisomers We have already covered two kinds of isomerism: Constitutional Isomers (structural isomers) Stereoisomers Examples of Constitutional Isomers: Examples of Stereoisomers: Another

More information

For more info visit

For more info visit Bond Fission: a) Homolytic fission: Each atom separates with one electron, leading to the formation of highly reactive entities called radicals, owing their reactivity to their unpaired electron. b) Heterolytic

More information

Two enantiomers of a racemic carboxylic acid (to be separated)

Two enantiomers of a racemic carboxylic acid (to be separated) 7.8 FISCER PRJECTINS 237 (R)-RC 2 (S)-RC 2 Two enantiomers of a racemic carboxylic acid (to be separated) Figure 7.5 RESLUTIN F A RACEMIC CARBYLIC ACID. (S)-RN 2 ne enantiomer of a chiral amine + (R)-RC

More information

Chapter 6. Isomers and Stereochemistry

Chapter 6. Isomers and Stereochemistry Chapter 6. Isomers and Stereochemistry Learning objectives: 1. Differentiate chiral and achiral molecules. 2. Recognize and draw structural isomers (constitutional isomers), stereoisomers including enantiomers

More information

PAPER No. : 8 (PHYSICAL SPECTROSCOPY) MODULE No. : 16 (CLASSIFICATION OF MOLECULES)

PAPER No. : 8 (PHYSICAL SPECTROSCOPY) MODULE No. : 16 (CLASSIFICATION OF MOLECULES) Subject Chemistry Paper No and Title Module No and Title Module Tag 8: Physical Spectroscopy 16: Classification of Molecules CHE_P8_M16 TABLE OF CONTENTS 1. Learning Outcomes. Introduction 3. Classification

More information

Chapter 5 Stereochemistry

Chapter 5 Stereochemistry Organic Chemistry, Second Edition Janice Gorzynski Smith University of Hawai i Chapter 5 Stereochemistry Prepared by Rabi Ann Musah State University of New York at Albany Copyright The McGraw-Hill Companies,

More information

GOODLUCK TUITION CENTER FOR CHEMISTRY. 655 A 48TH STREET 9 TH SECTOR CHENNAI - 78 Ph: Cell : ISOMERISM

GOODLUCK TUITION CENTER FOR CHEMISTRY. 655 A 48TH STREET 9 TH SECTOR CHENNAI - 78 Ph: Cell : ISOMERISM GOODLUCK TUITION CENTER FOR CHEMISTRY 655 A 48TH STREET 9 TH SECTOR CHENNAI - 78 Ph: 2366 3848 Cell : 9444357037 ISOMERISM 1. Mesotartaric acid is an optically inactive compound with asymmetric carbon

More information

STEREOGENIC CENTER (Chiral Center,Asymmetric Center) Atom (usually carbon) to which 4 different groups are attached: W Z C X Y

STEREOGENIC CENTER (Chiral Center,Asymmetric Center) Atom (usually carbon) to which 4 different groups are attached: W Z C X Y STEREOGENI ENTER (hiral enter,asymmetric enter) Atom (usually carbon) to which 4 different groups are attached: W Z X Y Many, but not all, molecules which contain a stereogenic center are chiral. (A molecule

More information

4Types of Isomers. 1. Structural Isomers/(Constitutional) 2. Geometric Isomers/(Cis/Trans) 3. Optical Isomers A. Enantiomers B.

4Types of Isomers. 1. Structural Isomers/(Constitutional) 2. Geometric Isomers/(Cis/Trans) 3. Optical Isomers A. Enantiomers B. 4Types of Isomers 1. Structural Isomers/(Constitutional) 2. Geometric Isomers/(Cis/Trans) 3. Optical Isomers A. Enantiomers B. Diastereomers 4Types of Isomers C 4 10 C 4 10 O O O O O O O O O O O O C 3

More information

STEREOGENIC CENTER (Chiral Center,Asymmetric Center)

STEREOGENIC CENTER (Chiral Center,Asymmetric Center) STEREOGENI ENTER (hiral enter,asymmetric enter) Atom (usually carbon) to which 4 different groups are attached: W Z X Y Many, but not all, molecules which contain a stereogenic center are chiral. (A molecule

More information

Chapter 6 Principles of Stereochemistry

Chapter 6 Principles of Stereochemistry 6.1 (a) This compound is chiral. Methane is achiral. Instructor Supplemental Solutions to Problems 2010 Roberts and Company Publishers Chapter 6 Principles of Stereochemistry Solutions to In-Text Problems

More information

Stereochemistry Structural or constitutional isomers... have the same molecular formula but different connectivity (skeletal, positional, functional)

Stereochemistry Structural or constitutional isomers... have the same molecular formula but different connectivity (skeletal, positional, functional) Stereochemistry Structural or constitutional isomers... have the same molecular formula but different connectivity (skeletal, positional, functional) Stereoisomers... have the same connectivity but a different

More information

Isomerism. Introduction

Isomerism. Introduction Isomerism Introduction The existence of two or more compounds with same molecular formula but different properties (physical, chemical or both) is known as isomerism; and the compounds themselves are called

More information

Lecture Topics: I. Stereochemistry Stereochemistry is the study of the three dimensional structure of molecules

Lecture Topics: I. Stereochemistry Stereochemistry is the study of the three dimensional structure of molecules Stereochemistry eading: Wade chapter 5, sections 5-- 5-7 Study Problems: 5-26, 5-3, 5-32, 5-33, 5-34 Key oncepts and Skills: assify molecules as chiral or achiral, and identify planes of symmetry. Identify

More information

Stereochemistry. In organic chemistry, subtle differences in spatial arrangements can give rise to prominent effects.

Stereochemistry. In organic chemistry, subtle differences in spatial arrangements can give rise to prominent effects. Stereochemistry This is study of the 3 dimensional arrangement in space of molecules. In organic chemistry, subtle differences in spatial arrangements can give rise to prominent effects. E.g. the isomers

More information

Symmetrical: implies the species possesses a number of indistinguishable configurations.

Symmetrical: implies the species possesses a number of indistinguishable configurations. Chapter 3 - Molecular Symmetry Symmetry helps us understand molecular structure, some chemical properties, and characteristics of physical properties (spectroscopy) used with group theory to predict vibrational

More information

Concepts of Chemical Bonding and Molecular Geometry Part 1: Ionic and Covalent Bonds. David A. Katz Pima Community College Tucson, AZ

Concepts of Chemical Bonding and Molecular Geometry Part 1: Ionic and Covalent Bonds. David A. Katz Pima Community College Tucson, AZ Concepts of Chemical Bonding and Molecular Geometry Part 1: Ionic and Covalent Bonds David A. Katz Pima Community College Tucson, AZ Chemical Bonds Three basic types of bonds: Ionic Electrostatic attraction

More information

C 4 H 10 O. butanol. diethyl ether. different carbon skeleton different functional group different position of FG

C 4 H 10 O. butanol. diethyl ether. different carbon skeleton different functional group different position of FG hapter 5: Stereoisomerism- three-dimensional arrangement of atoms (groups) in space 5. verview of Isomerism Isomers: different chemical compounds with the same formula onstitutional isomers: same formula,

More information

Organic Chemistry. Stereochemistry

Organic Chemistry. Stereochemistry Organic Chemistry by Nurlin Abu Samah, Dr. Md. Shaheen & Dr. Nadeem Akhtar Faculty of Industrial Sciences & Technology nurlin@ump.edu.my Chapter Description Aims The students should understand the fundamental

More information

Molecular Symmetry. Symmetry is relevant to: spectroscopy, chirality, polarity, Group Theory, Molecular Orbitals

Molecular Symmetry. Symmetry is relevant to: spectroscopy, chirality, polarity, Group Theory, Molecular Orbitals Molecular Symmetry Symmetry is relevant to: spectroscopy, chirality, polarity, Group Theory, Molecular Orbitals - A molecule has a symmetry element if it is unchanged by a particular symmetry operation

More information

10/4/2010. Sequence Rules for Specifying Configuration. Sequence Rules for Specifying Configuration. 5.5 Sequence Rules for Specifying.

10/4/2010. Sequence Rules for Specifying Configuration. Sequence Rules for Specifying Configuration. 5.5 Sequence Rules for Specifying. 5.5 Sequence Rules for Specifying Configuration Configuration The three-dimensional arrangement of substituents at a chirality center Sequence rules to specify the configuration of a chirality center:

More information

Stereochemistry CHAPTER SUMMARY

Stereochemistry CHAPTER SUMMARY 2 7 2 7. Introduction APTER SUMMARY Isomers are compounds with identical molecular formulas but different structural formulas. Structural or constitutional isomers differ in the bonding arrangement of

More information

Chapter 3. Molecular symmetry and symmetry point group

Chapter 3. Molecular symmetry and symmetry point group hapter Molecular symmetry and symmetry point group Why do we study the symmetry concept? The molecular configuration can be expressed more simply and distinctly. The determination of molecular configuration

More information

Name. Optical Isomers

Name. Optical Isomers Name KEY Lab Day Optical Isomers Introduction: Stereoisomers are compounds that have the same structural formulas, but differ in their spatial arrangements. Two major types of stereoisomers are geometric

More information

Lecture 4: 12.4 Isomerism

Lecture 4: 12.4 Isomerism Lecture 4: 12.4 Isomerism Learning Outcomes: At the end of the lesson the students should be able to : Define isomerism. Explain constitutional isomerism. chain isomers positional isomers functional group

More information

Chemistry 123: Physical and Organic Chemistry Topic 1: Organic Chemistry

Chemistry 123: Physical and Organic Chemistry Topic 1: Organic Chemistry Concept Check: Topic 1: Conformation Winter 2009 Page 112 Concept Check: Topic 1: Conformation Winter 2009 Page 113 1 STEREOCHEMISTRY Winter 2009 Page 114 We have already covered two kinds of isomerism:

More information

CHEM 261 Feb. 2, Pheromone: from Greek pherein horman meaning to carry excitement. Only about 50 % of the population can smell this compound

CHEM 261 Feb. 2, Pheromone: from Greek pherein horman meaning to carry excitement. Only about 50 % of the population can smell this compound 70 EM 61 eb., 017 Pheromone: from Greek pherein horman meaning to carry excitement O Only about 50 % of the population can smell this compound omenclature of Alkynes Rules: - ind longest chain with max

More information

Chemistry 102 Organic Chemistry: Introduction to Isomers Workshop

Chemistry 102 Organic Chemistry: Introduction to Isomers Workshop Chemistry 102 Organic Chemistry: Introduction to Isomers Workshop What are isomers? Isomers are molecules with the same molecular formula, but different arrangements of atoms. There are different types

More information

Chapter 6. Isomers and Stereochemistry

Chapter 6. Isomers and Stereochemistry hapter 6. Isomers and Stereochemistry Learning objectives: 1. Differentiate chiral and achiral molecules. 2. Recognize and draw structural isomers (constitutional isomers), stereoisomers including enantiomers

More information

CHEMICAL BONDING. Chemical Bonds. Ionic Bonding. Lewis Symbols

CHEMICAL BONDING. Chemical Bonds. Ionic Bonding. Lewis Symbols CHEMICAL BONDING Chemical Bonds Lewis Symbols Octet Rule whenever possible, valence electrons in covalent compounds distribute so that each main-group element is surrounded by 8 electrons (except hydrogen

More information

INTRODUCTION. Fig. 1.1

INTRODUCTION. Fig. 1.1 1 INTRODUCTION 1.1 SYMMETRY: AN INTRODUCTION In nature, when we see the fascinating world of plants, flowers, birds, architectural buildings (Lotus Temple of Delhi, Taj Mahal, Ashoka Pillar, Rastrapati

More information

geometric isomers (diastereomers)

geometric isomers (diastereomers) Symmetry Monarch butterfly: bilateral symmetry= mirror symmetry Whenever winds blow butterflies find a new place on the willow tree -Basho (~6-69) 5 hapter 7: Stereochemistry - three-dimensional arrangement

More information

Group Theory: Matrix Representation & Consequences of Symmetry

Group Theory: Matrix Representation & Consequences of Symmetry Group Theory: Matrix Representation & Consequences of Symmetry Matrix Representation of Group Theory Reducible and Irreducible Representations The Great Orthogonality Theorem The ive Rules The Standard

More information

Experiment Seven - Molecular Geometry

Experiment Seven - Molecular Geometry Experiment Seven - Geometry Introduction Although it has recently become possible to image molecules and even atoms using a highresolution microscope, our understanding of the molecular world allows us

More information

Chapter 3: Stereochemistry & Chirality

Chapter 3: Stereochemistry & Chirality Chapter 3: Stereochemistry & Chirality 1. Chiral & Achiral Compounds - Identifying Stereocenters 2. Assigning R & S configurations 3. Diastereomers - Molecules with two or more stereocenters 4. Properties

More information

Seventh Meeting, May 9th, 1884.

Seventh Meeting, May 9th, 1884. 28 Seventh Meeting, May 9th, 1884. THOMAS Mcin, Esq., LL.D., F.R.S.E., President, in the chair. The Hypothesis of Le Bel and Van 't Hoff. By Professor A CBUM BROWN, University of Edinburgh. Arago observed

More information

9. Stereochemistry: Introduction to Using Molecular Models

9. Stereochemistry: Introduction to Using Molecular Models 9. Stereochemistry: Introduction to Using Molecular Models The first part of this document reviews some of the most important stereochemistry topics covered in lecture. Following the introduction, a number

More information

24/ Rayleigh and Raman scattering. Stokes and anti-stokes lines. Rotational Raman spectroscopy. Polarizability ellipsoid. Selection rules.

24/ Rayleigh and Raman scattering. Stokes and anti-stokes lines. Rotational Raman spectroscopy. Polarizability ellipsoid. Selection rules. Subject Chemistry Paper No and Title Module No and Title Module Tag 8/ Physical Spectroscopy 24/ Rayleigh and Raman scattering. Stokes and anti-stokes lines. Rotational Raman spectroscopy. Polarizability

More information

E30 ENANTIOMERS Chirality in organic chemistry

E30 ENANTIOMERS Chirality in organic chemistry E30 ENANTIMERS hirality in organic chemistry TE TASK To investigate the nature of chirality in organic chemistry. TE SKILLS By the end of the experiment you should be able to: use molecular modelling kits

More information

Optical Isomerism. Types of isomerism. chemrevise.org 20/08/2013. N Goalby Chemrevise.org. Isomerism. Structural isomerism.

Optical Isomerism. Types of isomerism. chemrevise.org 20/08/2013. N Goalby Chemrevise.org. Isomerism. Structural isomerism. ptical Isomerism N Goalby hemrevise.org Types of isomerism Isomerism Structural isomerism Stereoisomerism Geometric isomerism ptical isomerism 1 ptical Isomerism ptical isomerism occurs in carbon compounds

More information

PAPER No. : 8 (PHYSICAL SPECTROSCOPY) MODULE NO. : 23 (NORMAL MODES AND IRREDUCIBLE REPRESENTATIONS FOR POLYATOMIC MOLECULES)

PAPER No. : 8 (PHYSICAL SPECTROSCOPY) MODULE NO. : 23 (NORMAL MODES AND IRREDUCIBLE REPRESENTATIONS FOR POLYATOMIC MOLECULES) Subject Chemistry Paper No and Title Module No and Title Module Tag 8/ Physical Spectroscopy 23/ Normal modes and irreducible representations for polyatomic molecules CHE_P8_M23 TABLE OF CONTENTS 1. Learning

More information

Experiment 8 Optical Isomers. In this experiment you will be given the opportunity to see the 3-dimensional aspects of

Experiment 8 Optical Isomers. In this experiment you will be given the opportunity to see the 3-dimensional aspects of Experiment 8 Optical Isomers In this experiment you will be given the opportunity to see the 3-dimensional aspects of stereochemistry and optical isomers. Previously in class you were exposed to the concept

More information

Lecture 8: September 13, 2012

Lecture 8: September 13, 2012 CHM 223 Organic Chemistry I Fall 2012, Des Plaines Prof. Chad Landrie Lecture 8: September 13, 2012 Skillbuilder 2 Ch. 5: Stereochemistry (Sec8ons 5.1-5.5) CHM 223 Organic Chemistry I Fall 2012, Des Plaines

More information

4. Circular Dichroism - Spectroscopy

4. Circular Dichroism - Spectroscopy 4. Circular Dichroism - Spectroscopy The optical rotatory dispersion (ORD) and the circular dichroism (CD) are special variations of absorption spectroscopy in the UV and VIS region of the spectrum. The

More information

Structure of Coordination Compounds

Structure of Coordination Compounds Chapter 22 COORDINATION CHEMISTRY (Part II) Dr. Al Saadi 1 Structure of Coordination Compounds The geometry of coordination compounds plays a significant role in determining their properties. The structure

More information

If you like us, please share us on social media. The latest UCD Hyperlibrary newsletter is now complete, check it out.

If you like us, please share us on social media. The latest UCD Hyperlibrary newsletter is now complete, check it out. Sign In Forgot Password Register username username password password Sign In If you like us, please share us on social media. The latest UCD Hyperlibrary newsletter is now complete, check it out. ChemWiki

More information

MEDICINAL CHEMISTRY I EXAM #1

MEDICINAL CHEMISTRY I EXAM #1 MEDICIAL CEMISTRY I EXAM #1 1 September 30, 2005 ame SECTI A. Answer each question in this section by writing the letter corresponding to the best answer on the line provided (2 points each; 50 points

More information

Chapter 1 Fundamental Concepts

Chapter 1 Fundamental Concepts Chapter 1 Fundamental Concepts 1-1 Symmetry Operations and Elements 1-2 Defining the Coordinate System 1-3 Combining Symmetry Operations 1-4 Symmetry Point Groups 1-5 Point Groups of Molecules 1-6 Systematic

More information

Due Date: 2) What is the relationship between the following compounds?

Due Date: 2) What is the relationship between the following compounds? Assignment #5 Name CHEM201 Student #: Due Date: MULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the question. 1) What type of isomers are CH3CH2OCH3 and CH3CH2CH2OH?

More information

SECOND YEAR ORGANIC CHEMISTRY - REVISION COURSE Lecture 1 MOLECULAR STRUCTURE 1: STEREOCHEMISTRY & CONFORMATIONAL ANALYSIS

SECOND YEAR ORGANIC CHEMISTRY - REVISION COURSE Lecture 1 MOLECULAR STRUCTURE 1: STEREOCHEMISTRY & CONFORMATIONAL ANALYSIS Prof Ben Davis SECND YEAR RGANIC CEMISTRY - REVISIN CURSE Lecture 1 MLECULAR STRUCTURE 1: STERECEMISTRY & CNFRMATINAL ANALYSIS Good books and reading: Carey and Sundberg, Part A, Ch 2 & 3 Stereochemistry

More information

ORGANIC - BROWN 8E CH.3 - STEREOISOMERISM AND CHIRALITY.

ORGANIC - BROWN 8E CH.3 - STEREOISOMERISM AND CHIRALITY. !! www.clutchprep.com CONCEPT: TYPES OF ISOMERS Isomers are used to describe relationships between similar molecules. We can order these relationships in order of increasing similarity Page 2 CONCEPT:

More information

CSUS - CH6B Fischer projection and R/S configurations Instructor: J.T., P: 1. a) Fischer Projection can be rotated by 180 only!

CSUS - CH6B Fischer projection and R/S configurations Instructor: J.T., P: 1. a) Fischer Projection can be rotated by 180 only! CSUS - C6B Fischer projection and R/S configurations Instructor: J.T., P: () Fischer Projection: orizontal line is coming out of the plane of the page. Vertical line is going back behind of the plane of

More information

Option II: Chiral + Achiral = Optically Active Diastereomers

Option II: Chiral + Achiral = Optically Active Diastereomers Option II: Chiral + Achiral = Optically Active Diastereomers What about additions to chiral alkenes? The previous examples were reactions done on achiral alkenes. What is the difference when an alkene

More information

Basic Stereochemical Considerations

Basic Stereochemical Considerations Basic Stereochemical Considerations Key words: chirality, chiral carbon, enantiomers, diastereomers, absolute configuration, relative configuration, optical activity 1 Key Concepts Basics of projection

More information

The attractions that hold together the atoms in water and carbon dioxide can not be explained by ionic bonding. Ionic bonding =

The attractions that hold together the atoms in water and carbon dioxide can not be explained by ionic bonding. Ionic bonding = In unit six, we discussed ionic compounds, which are generally crystalline solids with high melting points. Other compounds, however, have very different properties. Water is a liquid at room temperature.

More information

OPTICAL ISOMERISM UNIT-1

OPTICAL ISOMERISM UNIT-1 OPTICAL ISOMERISM UNIT-1 K.Anita priyadharshini, Lecturer, Dept.of Pharmaceutical Chemistry, SRM College of Pharmacy TYPES OF ISOMERISM CHAIN ISOMERISM STRUCTURAL ISOMERISM Same molecular formula but different

More information

It is possible for organic molecules with the same molecular formula to have different structures

It is possible for organic molecules with the same molecular formula to have different structures Isomerism It is possible for organic molecules with the same molecular formula to have different structures Definition- Structural isomers: same molecular formula different structures (or structural formulae)

More information

This is the most difficult part of stereochemistry; that is the visualization of molecules just by thought process in three-dimensional space.

This is the most difficult part of stereochemistry; that is the visualization of molecules just by thought process in three-dimensional space. Course on Stereochemistry Professor Amit Basak Department of Chemistry Indian Institute of Technology Kharagpur Module No 01 Lecture 01: Constitution and Configuration (V2-note-version) Welcome to this

More information

1) H2 2) O2 3) N2. 4) HCl 5) H2O CHEMISTRY LAB MODELING COVALENT MOLECULES BOND TYPE(S) LEWIS STRUCTURE POLARITY OF MOLECULE ELECTRONIC SHAPE

1) H2 2) O2 3) N2. 4) HCl 5) H2O CHEMISTRY LAB MODELING COVALENT MOLECULES BOND TYPE(S) LEWIS STRUCTURE POLARITY OF MOLECULE ELECTRONIC SHAPE CHEMISTRY LAB MODELING COVALENT S NAME: PER: FORMULA MOLECULAR 1) H2 hydrogen gas 2) O2 oxygen gas 3) N2 nitrogen gas 4) HCl hydrochloric acid 5) H2O dihydrogen oxide FORMULA MOLECULAR 6) CO2 carbon dioxide

More information

PAPER No. : 8 (PHYSICAL SPECTROSCOPY) MODULE No. : 5 (TRANSITION PROBABILITIES AND TRANSITION DIPOLE MOMENT. OVERVIEW OF SELECTION RULES)

PAPER No. : 8 (PHYSICAL SPECTROSCOPY) MODULE No. : 5 (TRANSITION PROBABILITIES AND TRANSITION DIPOLE MOMENT. OVERVIEW OF SELECTION RULES) Subject Chemistry Paper No and Title Module No and Title Module Tag 8 and Physical Spectroscopy 5 and Transition probabilities and transition dipole moment, Overview of selection rules CHE_P8_M5 TABLE

More information

MOLECULAR MODELS : STEREOISOMERS

MOLECULAR MODELS : STEREOISOMERS MM.1 MOLEULAR MODELS : STEREOISOMERS Note: No pre-laboratory summary is required for this experiment, but there are some topics you most probably need to review from 351 and you may want to start work

More information

Chemistry: The Central Science. Chapter 24: Chemistry of Coordination Compounds

Chemistry: The Central Science. Chapter 24: Chemistry of Coordination Compounds Chemistry: The Central Science Chapter 24: Chemistry of Coordination Compounds Metal compounds with complex assemblies of metals surrounded by molecules and ions are called coordination compounds 24.3:

More information

This content has been downloaded from IOPscience. Please scroll down to see the full text.

This content has been downloaded from IOPscience. Please scroll down to see the full text. This content has been downloaded from IOPscience. Please scroll down to see the full text. Download details: IP Address: 148.251.232.83 This content was downloaded on 09/05/2018 at 17:30 Please note that

More information

Experiment 10 Organic Molecules: Description, Nomenclature and Modeling

Experiment 10 Organic Molecules: Description, Nomenclature and Modeling Experiment 10 Organic Molecules: Description, Nomenclature and Modeling Objectives The objectives for this lab are: Part I: To learn the structures of and construct models for simple organic molecules,

More information

Three-Dimensional Structures of Drugs

Three-Dimensional Structures of Drugs Three-Dimensional Structures of Drugs Moore, T. (2016). Acids and Bases. Lecture presented at PHAR 422 Lecture in UIC College of Pharmacy, Chicago. Chiral drugs are sometimes sold as one enantiomer (pure

More information

Connexions module: m Stereochemistry. Andrew R. Barron. Figure 1: The two stereo isomers of butane: (a) n-butane and (b) iso-butane.

Connexions module: m Stereochemistry. Andrew R. Barron. Figure 1: The two stereo isomers of butane: (a) n-butane and (b) iso-butane. Connexions module: m34480 1 Stereochemistry Andrew R. Barron This work is produced by The Connexions Project and licensed under the Creative Commons Attribution License 1 Stereo isomers Stereo isomers

More information

Subtopic 4.2 MOLECULAR SHAPE AND POLARITY

Subtopic 4.2 MOLECULAR SHAPE AND POLARITY Subtopic 4.2 MOLECULAR SHAPE AND POLARITY 1 LEARNING OUTCOMES (covalent bonding) 1. Draw the Lewis structure of covalent molecules (octet rule such as NH 3, CCl 4, H 2 O, CO 2, N 2 O 4, and exception to

More information

Suggested solutions for Chapter 14

Suggested solutions for Chapter 14 s for Chapter 14 14 PRBLEM 1 Are these molecules chiral? Draw diagrams to justify your answer. 2 C 2 C Reinforcement of the very important criterion for chirality. Make sure you understand the answer.

More information

Paper 12: Organic Spectroscopy

Paper 12: Organic Spectroscopy Subject Chemistry Paper No and Title Module No and Title Module Tag Paper 12: Organic Spectroscopy 31: Combined problem on UV, IR, 1 H NMR, 13 C NMR and Mass - Part III CHE_P12_M31 TABLE OF CONTENTS 1.

More information

CHAPTER 8. Molecular Structure & Covalent Bonding Theories

CHAPTER 8. Molecular Structure & Covalent Bonding Theories CAPTER 8 Molecular Structure & Covalent Bonding Theories 1 Chapter Goals 1. A Preview of the Chapter 2. Valence Shell Electron Pair Repulsion (VSEPR) Theory 3. Polar Molecules:The Influence of Molecular

More information

10-1 You might start this exercise by drawing all of the isomers of C7H16 of which there are nine:

10-1 You might start this exercise by drawing all of the isomers of C7H16 of which there are nine: Copyright 2010 James K Whitesell 10-1 You might start this exercise by drawing all of the isomers of C7H16 of which there are nine: Pick one with both secondary and tertiary carbon atoms and simply add

More information

Chapter 10: Chemical Bonding II: Molecular Shapes; VSEPR, Valence Bond and Molecular Orbital Theories

Chapter 10: Chemical Bonding II: Molecular Shapes; VSEPR, Valence Bond and Molecular Orbital Theories C h e m i s t r y 1 A : C h a p t e r 1 0 P a g e 1 Chapter 10: Chemical Bonding II: Molecular Shapes; VSEPR, Valence Bond and Molecular Orbital Theories Homework: Read Chapter 10: Work out sample/practice

More information

Chapter 4: Stereochemistry

Chapter 4: Stereochemistry Chapter 4: Stereochemistry Introduction To Stereochemistry Consider two of the compounds we produced while finding all the isomers of C 7 16 : C 3 C 3 2-methylhexane 3-methylhexane C 2-methylhexane Bu

More information

Unit 11 Bonding. Identifying the type of bonding involved in a molecule will allow us to predict certain general properties of a compound.

Unit 11 Bonding. Identifying the type of bonding involved in a molecule will allow us to predict certain general properties of a compound. Unit 11 Bonding INTRODUCTION Within molecules, there are forces that hold atoms together These forces are called bonds There are different types of bonds, or more correctly, variations Identifying the

More information

SMK SULTAN ISMAIL JB, NUR FATHIN SUHANA BT AYOB

SMK SULTAN ISMAIL JB, NUR FATHIN SUHANA BT AYOB SMK SULTAN ISMAIL JB, NUR FATHIN SUHANA BT AYOB POLAR AND NON POLAR BONDS BOND POLARITY 1. Atoms with different electronegative from polar bonds (difference in EN) 2. Depicted as polar arrow : 3. Example

More information

Learning Guide for Chapter 17 - Dienes

Learning Guide for Chapter 17 - Dienes Learning Guide for Chapter 17 - Dienes I. Isolated, conjugated, and cumulated dienes II. Reactions involving allylic cations or radicals III. Diels-Alder Reactions IV. Aromaticity I. Isolated, Conjugated,

More information

Molecular Geometry and Electron Domain Theory *

Molecular Geometry and Electron Domain Theory * OpenStax-CNX module: m12594 1 Molecular Geometry and Electron Domain Theory * John S. Hutchinson This work is produced by OpenStax-CNX and licensed under the Creative Commons Attribution License 2.0 1

More information

What are covalent bonds?

What are covalent bonds? Covalent Bonds What are covalent bonds? Covalent Bonds A covalent bond is formed when neutral atoms share one or more pairs of electrons. Covalent Bonds Covalent bonds form between two or more non-metal

More information

Dipole Moment, Resonance. Dr. Sapna Gupta

Dipole Moment, Resonance. Dr. Sapna Gupta Dipole Moment, Resonance Dr. Sapna Gupta Dipole Moment This indicates whether a molecule is polar or not. Dipole moment ( ) is when a molecule can move in presence of an electric current. The higher the

More information

CHEMICAL BONDING. Valence Electrons. Chapter Ten

CHEMICAL BONDING. Valence Electrons. Chapter Ten CHEMICAL BONDING Chapter Ten Valence Electrons! The electrons occupying the outermost energy level of an atom are called the valence electrons; all other electrons are called the core electrons.! The valence

More information

Symmetry: - ~n~ o. Editors: Gy6rgy Darvas and Ddnes Nagy. Volume 4, Number 4, DLA fractal cluster of 10 ~ particles

Symmetry: - ~n~ o. Editors: Gy6rgy Darvas and Ddnes Nagy. Volume 4, Number 4, DLA fractal cluster of 10 ~ particles Symmetry: - ~n~ o The Quarterly of the International Society for the Interdisciplinary Study of Symmetry (ISIS-Symmetry) Editors: Gy6rgy Darvas and Ddnes Nagy. Volume 4, Number 4, 1993 DLA fractal cluster

More information

STEREOISOMERS ARRANGEMENTS IN 3D- SPACE

STEREOISOMERS ARRANGEMENTS IN 3D- SPACE STEREOISOMERS ARRANGEMENTS IN 3D- SPACE 1 Isomers 2 Physiological Proper@es of Stereoisomers (Enan@omers) Enan@omers can have very different physiological proper@es. 3 Oranges and Lemons found in oranges

More information

Chemical Bonding I: Covalent Bonding. How are atoms held together in compounds?

Chemical Bonding I: Covalent Bonding. How are atoms held together in compounds? I: Covalent Bonding How are atoms held together in compounds? IONIC or COVALENT bonds or forces For most atoms, a filled outer shell contains 8 electrons ----- an octet Atoms want to form octets when they

More information