PSN Chapter 13 Multi-format Test

Size: px
Start display at page:

Download "PSN Chapter 13 Multi-format Test"

Transcription

1 Name: Class: Date: ID: A PSN Chapter 13 Multi-format Test Modified True/False Indicate whether the statement is true or false. If false, change the identified word or phrase to make the statement true. 1. Two negative charges will attract one another. _ 2. The smallest quantity of electric charge that can be found in ordinary matter is represented by the letter c. _ 3. The majority of ordinary matter has a net charge of zero. _ 4. The number of protons plus the number of neutrons in the nucleus of an atom is known as the mass number. _ 5. The tiny core of an atom containing most of the mass of the atom is the neutron. _ 6. The nucleus of an atom that spontaneously breaks up to emits particles or pure energy may be called radioactive. _ 7. The strongest force in the universe is gravity. _ Completion Complete each statement. Select the correct term to complete each sentence. There are extra terms in the list. alpha beta spectroscope neutral charged isotopes strong nuclear gravitational weak 8. When the total charge on an object is zero, the object is electrically. 9. Atoms having the same atomic number but different mass numbers are described as. 10. The force which holds the nucleus together is the _ force. 11. The radioactive decay of an atom resulting in the decrease in the atomic number with no change in the atomic mass is decay. 12. The instrument used to separate the light given off by electrons into different colors is called a _. 13. The number of electrons that may be held in the third energy level of an atom is. 1

2 Name: ID: A Matching For the following element, match the letter with the type of information given. 14. name of element 15. symbol 16. atomic number Short Answer 17. How do electric and gravitational forces differ? 18. How is the atom of one element different from the atom of another element? 19. Where would a particle with a charge of +e be found in an atom? 20. A bismuth atom which contains 83 protons and 127 neutrons decays to produce an atom of polonium with a mass number of 210 and 84 protons. What type of decay does bismuth experience? 21. Of the three sub-atomic particles: electrons, protons and neutrons, which determines most of the properties of an element? 22. Two electrons, A and B, are temporarily raised to different energy levels. As they fall back toward the nucleus, A emits green light and B emits red light. Which electron has more energy before falling toward the nucleus? 23. In general, where are the highest energy electrons in an atom found? Problem 24. The mass number for an isotope of oxygen is 17 and the atomic number is 8. How many neutrons are present in this isotope of oxygen? 25. Uranium, with 92 protons and 146 neutrons, undergoes alpha decay and becomes thorium. How many protons and neutrons are present in the isotope of thorium produced by this decay? 26. A lead atom, with 82 protons and 128 neutrons, decays to produce an atom of bismuth with a mass number of 210. How many neutrons are in the nucleus of the isotope of bismuth produced? 2

3 Name: ID: A 27. Using the diagram below as a model, represent the electron energy levels of a fluorine atom, atomic number 9. Essay 28. Describe the difference between an electron and a proton. In your description tell (1) where each is found in the nucleus (2) the charge, if any, on each and (3) how their masses compare. 29. When a gas is heated, it may give off light. Explain how a scientist might identify the element or elements from which the gas is made. 30. Describe how Heisenberg s uncertainty principle applies to describing the variables of the quantum world. 31. What causes an electron to emit light? 3

4 PSN Chapter 13 Multi-format Test Answer Section MODIFIED TRUE/FALSE 1. ANS: F, repel DIF: basic REF: section 13.1 STA: S8P5c 2. ANS: F, e DIF: basic REF: section 13.1 STA: S8P5c 3. ANS: T DIF: basic REF: section 13.1 STA: S8P5c 4. ANS: T DIF: basic REF: section 13.1 STA: S8P1a 5. ANS: F, nucleus DIF: basic REF: section 13.1 STA: S8P1a 6. ANS: T DIF: basic REF: section 13.1 STA: S8P1a 7. ANS: F strong nuclear force the strong nuclear force DIF: basic REF: section 13.1 STA: S85a COMPLETION 8. ANS: neutral DIF: basic REF: section 13.1 STA: S8P5c 9. ANS: isotopes DIF: basic REF: section 13.1 STA: S8P1f 10. ANS: strong nuclear DIF: basic REF: section 13.1 STA: S8P3a 11. ANS: alpha DIF: intermediate REF: section 13.1 STA: S8P1f 12. ANS: spectroscope DIF: basic REF: section 13.2 STA: S8P4b 13. ANS: 8 1

5 MATCHING 14. ANS: C DIF: basic REF: section 13.1 STA: S8P1f 15. ANS: A DIF: basic REF: section 13.1 STA: S8P1f 16. ANS: B DIF: basic REF: section 13.1 STA: S8P1f SHORT ANSWER 17. ANS: Electric forces may be attractive or repulsive. Gravitational forces are attractive only. DIF: intermediate REF: section 13.1 STA: S8P5a 18. ANS: Atoms of different elements contain different numbers of protons in the nucleus. DIF: intermediate REF: section 13.1 STA: S8P1f 19. ANS: In the nucleus. DIF: intermediate REF: section 13.1 STA: S8P1a 20. ANS: beta decay DIF: advanced REF: section 13.1 STA: S8P1f 21. ANS: electrons DIF: basic REF: section 13.2 STA: S8P1a 22. ANS: electron A 23. ANS: On average, as you move farther away from the nucleus, the energy level of electrons increases. DIF: intermediate REF: section 13.2 STA: S8P1a PROBLEM 24. ANS: The number of neutrons is the difference between the mass number and the atomic number; 9 neutrons DIF: intermediate REF: section 13.1 STA: S8P1f 2

6 25. ANS: During alpha decay, 2 protons and 2 neutrons are emitted as an alpha particle, reducing the number of each by 2; 90 protons and 144 neutrons DIF: advanced REF: section 13.1 STA: S8P1f 26. ANS: When beta decay occurs, the mass number is unchanged but one neutron is lost, changed to a proton that remains in the nucleus, increasing the atomic number by one, and one electron that is emitted from the nucleus. The number of neutrons is the difference between the mass number and the atomic number, the number of protons; 127 neutrons DIF: advanced REF: section 13.1 STA: S8P1f 27. ANS: ESSAY 28. ANS: (1) The proton is found in the nucleus, the electron orbits outside the nucleus. (2) The proton has a positive charge and the electron a negative charge. (3) The proton is 1835 times more massive than the electron. DIF: basic REF: section 13.1 STA: S8P1a 29. ANS: The light from the gas, when examined with a spectroscope, will produce a bright line spectrum. The spectrum for each element is unique to that element and allows the scientist to identify the elements in the gas. 30. ANS: The uncertainty principle states that it is impossible to know all the variables exactly in the quantum world. This comes about because the quantum world is so small that you need to interact with the particles in order to observe them, and once you ve interacted with them, you ve changed the system you re trying to observe. For example, in determining the location of a particle, you must change its location and you don t know where exactly it is anymore. DIF: intermediate REF: section 13.2 STA: S8P1a 3

7 31. ANS: When an electron absorbs energy equal to the difference between two energy levels, the electron will move, temporarily, to the higher energy level. As it falls back to a lower energy level, it will emit light exactly equal to the difference between the levels from which it falls and the level to which it falls. DIF: advanced REF: section 13.2 STA: S8P2c 4

13.1 Fundamental Particles and Forces

13.1 Fundamental Particles and Forces 13.1 Fundamental Particles and Forces Scientists once believed atoms were the smallest particles of matter. With the advancement of technology, it became clear that atoms themselves are made of simpler

More information

SCIENCE 10: (7.1) ATOMIC THEORY, ISOTOPES AND RADIOACTIVE DECAY Name: Date: Block: (Textbook Reference pp in BC Science 10) into an

SCIENCE 10: (7.1) ATOMIC THEORY, ISOTOPES AND RADIOACTIVE DECAY Name: Date: Block: (Textbook Reference pp in BC Science 10) into an SCIENCE 10: (7.1) ATOMIC THEORY, ISOTOPES AND RADIOACTIVE DECAY Name: Date: Block: (Textbook Reference pp. 286-301 in BC Science 10) Natural background radiation: It has the ability to interact with an

More information

Radioactive Decay What is Radioactivity? http://explorecuriocity.org/explore/articleid/3033 http://explorecuriocity.org/explore/articleid/3035 http://explorecuriocity.org/explore/articleid/2160 Quick Review

More information

3 Types of Nuclear Decay Processes

3 Types of Nuclear Decay Processes 3 Types of Nuclear Decay Processes Radioactivity is the spontaneous decay of an unstable nucleus The radioactive decay of a nucleus may result from the emission of some particle from the nucleus. The emitted

More information

14.2 Stanford Notes Atom Structure Name

14.2 Stanford Notes Atom Structure Name 14.2 Stanford Notes Atom Structure Name MAIN POINTS: Write a summary of the main point of each paragraph. Page 322 Questions: Questions you should be able to answer after reading. The pattern of colors

More information

Chapter 6 The Atom Study Guide

Chapter 6 The Atom Study Guide Chapter 6 The Atom Study Guide Read pages 118-125 Look at all words in bold or colored print Look at the paragraph summaries on the sides Section 6.1 Fundamental Particles and Forces Vocabulary Definition

More information

Section 10: Natural Transmutation Writing Equations for Decay

Section 10: Natural Transmutation Writing Equations for Decay Section 10: Natural Transmutation Writing Equations for Decay Alpha Decay If a radioactive substance changes into another substance because particles are emitted from its nucleus, we say that the original

More information

Alta Chemistry CHAPTER 25. Nuclear Chemistry: Radiation, Radioactivity & its Applications

Alta Chemistry CHAPTER 25. Nuclear Chemistry: Radiation, Radioactivity & its Applications CHAPTER 25 Nuclear Chemistry: Radiation, Radioactivity & its Applications Nuclear Chemistry Nuclear Chemistry deals with changes in the nucleus The nucleus of an atom contains Protons Positively Charged

More information

Instead, the probability to find an electron is given by a 3D standing wave.

Instead, the probability to find an electron is given by a 3D standing wave. Lecture 24-1 The Hydrogen Atom According to the Uncertainty Principle, we cannot know both the position and momentum of any particle precisely at the same time. The electron in a hydrogen atom cannot orbit

More information

Fundamental Forces of the Universe

Fundamental Forces of the Universe Fundamental Forces of the Universe There are four fundamental forces, or interactions in nature. Strong nuclear Electromagnetic Weak nuclear Gravitational Strongest Weakest Strong nuclear force Holds the

More information

Basic Nuclear Theory. Lecture 1 The Atom and Nuclear Stability

Basic Nuclear Theory. Lecture 1 The Atom and Nuclear Stability Basic Nuclear Theory Lecture 1 The Atom and Nuclear Stability Introduction Nuclear power is made possible by energy emitted from either nuclear fission or nuclear fusion. Current nuclear power plants utilize

More information

Multiple Choice Identify the letter of the choice that best completes the statement or answers the question.

Multiple Choice Identify the letter of the choice that best completes the statement or answers the question. Radioactivity Test Review Multiple Choice Identify the letter of the choice that best completes the statement or answers the question. 1. Radioactive s have unstable a. electrons. c. protons. b. nuclei.

More information

Objectives: Atomic Structure: The Basics

Objectives: Atomic Structure: The Basics Objectives: Atomic Structure: The Basics 1. To be able to sketch an atom and indicate the location of the nucleus, the shells, and the electronic orbitals 2. To be able to calculate the maximum number

More information

Radioactive Decay and Radiometric Dating

Radioactive Decay and Radiometric Dating Radioactive Decay and Radiometric Dating Extra credit: chapter 7 in Bryson See online (link fixed) or moodle Radioactivity and radiometric dating Atomic nucleus Radioactivity Allows us to put numerical

More information

Radioactivity and Nuclear Reactions

Radioactivity and Nuclear Reactions chapter 20 Radioactivity and Nuclear Reactions section 1 The Nucleus What You ll Learn what particles make up an atom and its nucleus how the nucleus is held together what radioactivity is Before You Read

More information

Study Sheet for Modern Physics

Study Sheet for Modern Physics Study Sheet for Modern Physics Classical mechanics was meant to provide the general rules that govern the dynamics of all material bodies, such as cannon balls, planets, and pendulums, and is defined as

More information

Nuclear Chemistry. Lecture 10

Nuclear Chemistry. Lecture 10 Nuclear Chemistry Lecture 10 Atomic Nuclei The periodic table tells you about the average atom of an element. Atoms of an element can have different amounts of neutrons, this gives them different mass,

More information

The Structure of the Atom

The Structure of the Atom The Structure of the Atom Section 4.1 Early Theories of Matter In your textbook, read about the philosophers, John Dalton, and defining the atom. For each statement below, write true or false. 1. Ancient

More information

Chapter 19 - Nuclear Chemistry Nuclear Stability and Modes of Decay

Chapter 19 - Nuclear Chemistry Nuclear Stability and Modes of Decay Chapter 19 - Nuclear Chemistry Nuclear Stability and Modes of Decay History and Discovery of Radioactivity The Discovery of Radioactivity (1896) Antoine-Henri Bequerel designed experiment to determine

More information

Chapter 33: The Atomic Nucleus and Radioactivity Review questions pg. 658

Chapter 33: The Atomic Nucleus and Radioactivity Review questions pg. 658 Chapter 33: The Atomic Nucleus and Radioactivity Review questions pg. 658 5. How do the electric charges of alpha, beta and gamma rays differ? Ans. The alpha 'ray' consists of alpha particles. Each alpha

More information

16.5 Coulomb s Law Types of Forces in Nature. 6.1 Newton s Law of Gravitation Coulomb s Law

16.5 Coulomb s Law Types of Forces in Nature. 6.1 Newton s Law of Gravitation Coulomb s Law 5-10 Types of Forces in Nature Modern physics now recognizes four fundamental forces: 1. Gravity 2. Electromagnetism 3. Weak nuclear force (responsible for some types of radioactive decay) 4. Strong nuclear

More information

Particle Physics. Question Paper 1. Save My Exams! The Home of Revision. International A Level. Exam Board Particle & Nuclear Physics

Particle Physics. Question Paper 1. Save My Exams! The Home of Revision. International A Level. Exam Board Particle & Nuclear Physics For more awesome GSE and level resources, visit us at www.savemyexams.co.uk/ Particle Physics Question Paper 1 Level International Level Subject Physics Exam oard IE Topic Particle & Nuclear Physics Sub

More information

There are 82 protons in a lead nucleus. Why doesn t the lead nucleus burst apart?

There are 82 protons in a lead nucleus. Why doesn t the lead nucleus burst apart? Question 32.1 The Nucleus There are 82 protons in a lead nucleus. Why doesn t the lead nucleus burst apart? a) Coulomb repulsive force doesn t act inside the nucleus b) gravity overpowers the Coulomb repulsive

More information

Chemistry Mid-Term Practice Exam

Chemistry Mid-Term Practice Exam Chemistry Mid-Term Practice Exam Multiple Choice. Identify the choice that best completes the statement or answers the question. 1. A measure of the 3-D space matter occupies is a. density. c. volume.

More information

Isotopes of an element have the same symbol and same atomic number - Mass number refers to the protons plus neutrons in an isotope

Isotopes of an element have the same symbol and same atomic number - Mass number refers to the protons plus neutrons in an isotope 7.1 Atomic Theory and Radioactive Decay Natural background radiation exists all around us. This radiation consists of high energy particles or waves being emitted from a variety of materials Radioactivity

More information

7.1 Atomic Theory and Radioactive Decay

7.1 Atomic Theory and Radioactive Decay 7.1 Atomic Theory and Radioactive Decay exists all around us. This radiation consists of high energy particles or waves being emitted from a variety of materials. is the release of high energy particles

More information

Chapter 19 - Nuclear Chemistry Nuclear Stability and Modes of Decay

Chapter 19 - Nuclear Chemistry Nuclear Stability and Modes of Decay Chapter 19 - Nuclear Chemistry Nuclear Stability and Modes of Decay History and Discovery of Radioactivity The Discovery of Radioactivity (1896) Antoine-Henri Bequerel designed experiment to determine

More information

Chapter 30 Nuclear Physics and Radioactivity

Chapter 30 Nuclear Physics and Radioactivity Chapter 30 Nuclear Physics and Radioactivity 30.1 Structure and Properties of the Nucleus Nucleus is made of protons and neutrons Proton has positive charge: Neutron is electrically neutral: 30.1 Structure

More information

and the same number of... A beta particle is an... emitted The graph shows how the count rate from a sample of gold-198 changes with time.

and the same number of... A beta particle is an... emitted The graph shows how the count rate from a sample of gold-198 changes with time. Q1.There are many different isotopes of gold. The isotope, gold-198, is radioactive. An atom of gold-198 decays by emitting a beta particle. (a) Complete the following sentences. All atoms of gold have

More information

Nuclear Decays. Alpha Decay

Nuclear Decays. Alpha Decay Nuclear Decays The first evidence of radioactivity was a photographic plate, wrapped in black paper and placed under a piece of uranium salt by Henri Becquerel on February 26, 1896. Like many events in

More information

Unit 3. The Atom & Modern Atomic Theory

Unit 3. The Atom & Modern Atomic Theory Unit 3 The Atom & Modern Atomic Theory Theories of the Atom Early Models & Thoughts: Democritus Matter is made up of tiny particles called atoms. Smallest unit that retains the identity of the element

More information

Understanding the Atom

Understanding the Atom CHAPTER 7 Understanding the Atom LESSON 2 Protons, Neutrons, and Electrons How Atoms Differ What do you think? Read the three statements below and decide whether you agree or disagree with them. Place

More information

LECTURE 25 NUCLEAR STRUCTURE AND STABILITY. Instructor: Kazumi Tolich

LECTURE 25 NUCLEAR STRUCTURE AND STABILITY. Instructor: Kazumi Tolich LECTURE 25 NUCLEAR STRUCTURE AND STABILITY Instructor: Kazumi Tolich Lecture 25 2 30.1 Nuclear structure Isotopes Atomic mass 30.2 Nuclear stability Biding energy 30.3 Forces and energy in the nucleus

More information

Basic science. Atomic structure. Electrons. The Rutherford-Bohr model of an atom. Electron shells. Types of Electrons. Describing an Atom

Basic science. Atomic structure. Electrons. The Rutherford-Bohr model of an atom. Electron shells. Types of Electrons. Describing an Atom Basic science A knowledge of basic physics is essential to understanding how radiation originates and behaves. This chapter works through what an atom is; what keeps it stable vs. radioactive and unstable;

More information

Lecture 21 Fundamentals of Physics Phys 120, Fall 2015 Nuclear Physics

Lecture 21 Fundamentals of Physics Phys 120, Fall 2015 Nuclear Physics Lecture 21 Fundamentals of Physics Phys 120, Fall 2015 Nuclear Physics A. J. Wagner North Dakota State University, Fargo, ND 58102 Fargo, November 13, 2015 Overview Why care about nuclei? How do nuclei

More information

Understanding the Atom

Understanding the Atom Name Date Period 3.1 Discovering Parts of an Atom Directions: On the line before each statement, write correct if the statement is correct or not correct if the statement is not correct. If the statement

More information

Chapter 44. Nuclear Structure

Chapter 44. Nuclear Structure Chapter 44 Nuclear Structure Milestones in the Development of Nuclear Physics 1896: the birth of nuclear physics Becquerel discovered radioactivity in uranium compounds Rutherford showed the radiation

More information

UNIT 13: NUCLEAR CHEMISTRY

UNIT 13: NUCLEAR CHEMISTRY UNIT 13: NUCLEAR CHEMISTRY REVIEW: ISOTOPE NOTATION An isotope notation is written as Z A X, where X is the element, A is the mass number (sum of protons and neutrons), and Z is the atomic number. For

More information

Chemistry Day 10. Monday, September 17 th Tuesday, September 18 th, 2018

Chemistry Day 10. Monday, September 17 th Tuesday, September 18 th, 2018 Chemistry Day 10 Monday, September 17 th Tuesday, September 18 th, 2018 Do-Now Title: Brainstorm: Unit 1 1. Write down today s FLT 2. Draw what an atom looks like according to Democritus and Dalton 3.

More information

NOTES: 25.2 Nuclear Stability and Radioactive Decay

NOTES: 25.2 Nuclear Stability and Radioactive Decay NOTES: 25.2 Nuclear Stability and Radioactive Decay Why does the nucleus stay together? STRONG NUCLEAR FORCE Short range, attractive force that acts among nuclear particles Nuclear particles attract one

More information

The History of the Atom. How did we learn about the atom?

The History of the Atom. How did we learn about the atom? The History of the Atom How did we learn about the atom? The Atomic Theory of Matter All matter is made up of fundamental particles. What does fundamental mean? The Greek Philosophers, 400 B.C. Democritus

More information

AnswerIT! Atoms and isotopes. Structure of an atom Mass number, atomic number and isotopes Development of the model of the atom.

AnswerIT! Atoms and isotopes. Structure of an atom Mass number, atomic number and isotopes Development of the model of the atom. AnswerIT! Atoms and isotopes Structure of an atom Mass number, atomic number and isotopes Development of the model of the atom. Atoms and isotopes - AnswerIT 1. The diameter of an atom is about 0.000 000

More information

11. The bright-line spectra produced by four elements are represented in the diagram below.

11. The bright-line spectra produced by four elements are represented in the diagram below. 1. Which substance can not be broken down by a chemical change? A) ammonia B) ethanol C) propanal D) zirconium 2. Which particle has no charge? A) electron B) neutron C) positron D) proton 3. Which phrase

More information

Phys102 Lecture 29, 30, 31 Nuclear Physics and Radioactivity

Phys102 Lecture 29, 30, 31 Nuclear Physics and Radioactivity Phys10 Lecture 9, 30, 31 Nuclear Physics and Radioactivity Key Points Structure and Properties of the Nucleus Alpha, Beta and Gamma Decays References 30-1,,3,4,5,6,7. Atomic Structure Nitrogen (N) Atom

More information

Nuclear Physics and Nuclear Reactions

Nuclear Physics and Nuclear Reactions Slide 1 / 33 Nuclear Physics and Nuclear Reactions The Nucleus Slide 2 / 33 Proton: The charge on a proton is +1.6x10-19 C. The mass of a proton is 1.6726x10-27 kg. Neutron: The neutron is neutral. The

More information

Lecture 39. Chapter 33 Nuclear Physics - Part II

Lecture 39. Chapter 33 Nuclear Physics - Part II Lecture 39 Chapter 33 Nuclear Physics - Part II 3-Dec-10 Mass # (# protons + #neutrons) Atomic # (# protons) 1 1H Naming of Isotopes A Z E Ordinary Hydrogen 4 2 He Helium-4 (alpha particle) Element Symbol

More information

Vocabulary QUIZ: 1. The total number of particles in the nucleus 2. 1 / 12

Vocabulary QUIZ: 1. The total number of particles in the nucleus 2. 1 / 12 Sep 29 11:29 AM Vocabulary QUIZ: 1. The total number of particles in the nucleus 2. 1 / 12 th of the mass of a carbon atom 3. The weighted average mass of all the isotopes of a particular element 4. A

More information

Atomic Structure and Nuclear Chemistry Multiple Choice Questions PSI Chemistry

Atomic Structure and Nuclear Chemistry Multiple Choice Questions PSI Chemistry Atomic Structure and Nuclear Chemistry Multiple Choice Questions PSI Chemistry Name: 1. What was the first particle discovered inside an atom? A. Proton C. Electron 2. What characteristic of cathode rays

More information

Student Exploration: Nuclear Decay

Student Exploration: Nuclear Decay Name: Date: Student Exploration: Nuclear Decay Vocabulary: alpha particle, atomic number, beta particle, daughter product, gamma ray, isotope, mass number, nuclear decay, positron, radioactive, subatomic

More information

Atomic Structure Notes: Parts of the atom:

Atomic Structure Notes: Parts of the atom: Day 1 Atomic Structure Notes: Parts of the atom: Protons: Positively charged particles found in the Neutrons: Neutral charged particle found in the Electrons: Negatively charged particle found in the.

More information

Chapter 14 Atoms. What is the structure of an atom? What holds an atom together? What does light have to do with atoms?

Chapter 14 Atoms. What is the structure of an atom? What holds an atom together? What does light have to do with atoms? Chapter 14 Atoms Have you ever seen fireflies on a warm summer night? These amazing creatures use a process called bioluminescence (bio means living and luminesce means to glow ) to create light signals

More information

Name Period. CRHS Academic Chemistry Unit 3 - Atomic Structure & Nuclear Chemistry. Homework. Due Date Assignment On-Time (100) Late (70)

Name Period. CRHS Academic Chemistry Unit 3 - Atomic Structure & Nuclear Chemistry. Homework. Due Date Assignment On-Time (100) Late (70) Name Period CRHS Academic Chemistry Unit 3 - Atomic Structure & Nuclear Chemistry Homework Due Date Assignment On-Time (100) Late (70) 3.1 3.2 3.3 3.4 Warm-Ups EC Notes, Homework, Exam Reviews and Their

More information

1ST SEM MT CHAP 22 REVIEW

1ST SEM MT CHAP 22 REVIEW 1ST SEM MT CHAP 22 REVIEW Multiple Choice Identify the choice that best completes the statement or answers the question. (CAPITAL LETTERS ONLY PLEASE) 1. Mass defect is the difference between the mass

More information

Chemistry, Nuclear Chemistry & Nuclear Decay

Chemistry, Nuclear Chemistry & Nuclear Decay Name: Date: Hour: 2017-2018 Chemistry, Nuclear Chemistry & Nuclear Decay Instructions: Put on some headphones and access the video: Crash Course Chemistry, Nuclear Chemistry ( Part 1)[ http://kpts.pbslearningmedia.org/resource/520db484-0823-45ed-89b6-6db1da148d1a/nuclear-chemistry-crashcoursechemistry-38/

More information

Chapter 10 Section 4 Notes

Chapter 10 Section 4 Notes Chapter 10 Section 4 Notes This painting of an alchemist s laboratory was made around 1570. For centuries, these early scientists, known as alchemists, tried to use chemical reactions to make gold. The

More information

Unit 2 Atomic Structure and Nuclear Chemistry

Unit 2 Atomic Structure and Nuclear Chemistry Chemistry 1 West Linn High School Unit 2 Packet and Goals Name: Period: Unit 2 Atomic Structure and Nuclear Chemistry Unit Goals: As you work through this unit, you should be able to: 1. describe Dalton

More information

PARTICLE RELATIVE MASS RELATIVE CHARGE. proton 1 +1

PARTICLE RELATIVE MASS RELATIVE CHARGE. proton 1 +1 Q1. (a) Atoms are made up of three types of particle called protons, neutrons and electrons. Complete the table below to show the relative mass and charge of a neutron and an electron. The relative mass

More information

Multiple Choice Identify the letter of the choice that best completes the statement or answers the question.

Multiple Choice Identify the letter of the choice that best completes the statement or answers the question. The Bohr Atom Multiple Choice Identify the letter of the choice that best completes the statement or answers the question. 1. What is the energy of the emitted photon when an electron drops from the third

More information

Name: Date: Blk: Dalton Thomson Rutherford Bohr THOMSON

Name: Date: Blk: Dalton Thomson Rutherford Bohr THOMSON Name: Date: Blk: NOTES: ATOMIC STRUCTURE I. History of the Atom Dalton Thomson Rutherford Bohr 1803 1897 1909 1913 1. DALTON - everything is made of atoms - different elements combine to form compounds

More information

Observation information obtained through the senses; observation in science often involves measurement

Observation information obtained through the senses; observation in science often involves measurement Review Sheet Unit 1: The Atom Chemistry the study of the composition of matter and the changes matter undergoes Scientific Method Scientific method a logical, systematic approach to the solution of a scientific

More information

Card #1/28. Card #2/28. Science Revision P2. Science Revision P2. Science Revision P2. Card #4/28. Topic: F = ma. Topic: Resultant Forces

Card #1/28. Card #2/28. Science Revision P2. Science Revision P2. Science Revision P2. Card #4/28. Topic: F = ma. Topic: Resultant Forces Card #1/28 Card #2/28 Topic: Resultant Forces Topic: F = ma Topic: Distance-TIme Graphs Card #3/28 Card #4/28 Topic: Velocity-Time Graphs Card #2/28 Card #1/28 Card #4/28 Card #3/28 Card #5/28 Card #6/28

More information

Bi β + Po Bismuth-214 is radioactive. It has a half-life of 20 minutes. (a) The nuclide notation for bismuth-214 is Bi.

Bi β + Po Bismuth-214 is radioactive. It has a half-life of 20 minutes. (a) The nuclide notation for bismuth-214 is Bi. 1 Bismuth-214 is radioactive. It has a half-life of 20 minutes. (a) The nuclide notation for bismuth-214 is Bi. State the composition of the nucleus of bismuth-214. [2] (b) Bismuth-214 decays by β-decay

More information

Physics 107: Ideas of Modern Physics

Physics 107: Ideas of Modern Physics Physics 107: Ideas of Modern Physics Exam 3 Nov. 30, 2005 Name ID # Section # On the Scantron sheet, 1) Fill in your name 2) Fill in your student ID # (not your social security #) 3) Fill in your section

More information

Chemistry 19 Prep Test - Nuclear Processes

Chemistry 19 Prep Test - Nuclear Processes Chapter 9 Prep-Test Chemistry 9 Prep Test - Nuclear Processes Multiple Choice Identify the letter of the choice that best completes the statement or answers the question.. Which of the illustrations above

More information

Radioactive Decay. Becquerel. Atomic Physics. In 1896 Henri Becquerel. - uranium compounds would fog photographic plates as if exposed to light.

Radioactive Decay. Becquerel. Atomic Physics. In 1896 Henri Becquerel. - uranium compounds would fog photographic plates as if exposed to light. Radioactive Decay Atomic Physics Becquerel In 1896 Henri Becquerel - uranium compounds would fog photographic plates as if exposed to light. - a magnetic field could deflect the radiation that caused the

More information

Scientist wanted to understand how the atom looked. It was known that matter was neutral. It was known that matter had mass

Scientist wanted to understand how the atom looked. It was known that matter was neutral. It was known that matter had mass Atom Models Scientist wanted to understand how the atom looked It was known that matter was neutral It was known that matter had mass They used these ideas to come up with their models, however science

More information

Absorber Alpha emission Alpha particle Atom. Atomic line spectra Atomic mass unit Atomic number Atomic structure. Background radiation

Absorber Alpha emission Alpha particle Atom. Atomic line spectra Atomic mass unit Atomic number Atomic structure. Background radiation Material that prevent radioactive emission from passing through it Release of alpha particle from unstable nucleus(a 2+ helium ion or a helium nucleus) The nucleus of a helium atom (two protons and two

More information

4.1 Structure of the Atom

4.1 Structure of the Atom 4.1 Structure of the Atom How do atoms differ from each other? What are atoms composed of? What are the subatomic particles? 2-1 Structure of the Atom Atoms actually are divisible. They are composed of

More information

10. What word is used to describe properties of a substance that depend on the quantity of substance? Give two examples of such properties.

10. What word is used to describe properties of a substance that depend on the quantity of substance? Give two examples of such properties. 1. In which state does matter have a definite shape and volume? 2. In which state of matter are forces between particles least dominant? 3. What kind of change does not alter the composition or identity

More information

In 1931 scientists thought that atoms contained only protons and electrons.

In 1931 scientists thought that atoms contained only protons and electrons. 1 The diagram shows the structure of an atom. Not drawn to scale In 1931 scientists thought that atoms contained only protons and electrons. Suggest what happened in 1932 to change the idea that atoms

More information

Populating nucleon states. From the Last Time. Other(less stable) helium isotopes. Radioactivity. Radioactive nuclei. Stability of nuclei.

Populating nucleon states. From the Last Time. Other(less stable) helium isotopes. Radioactivity. Radioactive nuclei. Stability of nuclei. Nucleus: From the Last Time System of and neutrons bound by the strong force Proton number determines the element. Different isotopes have different # neutrons. Stable isotopes generally have similar number

More information

Unit 1 Test A Atomic Theory & Nuclear Decay 1. Which of these BEST describes any two atoms of the same element? a. same number of protons

Unit 1 Test A Atomic Theory & Nuclear Decay 1. Which of these BEST describes any two atoms of the same element? a. same number of protons 1. Which of these BEST describes any two atoms of the same element? same number of protons same number of chemical bonds same number of neutrons same number of particles in the nucleus Self Assessment

More information

Nuclear fission is used in nuclear power stations to generate electricity. Nuclear fusion happens naturally in stars.

Nuclear fission is used in nuclear power stations to generate electricity. Nuclear fusion happens naturally in stars. 1 (a) Nuclear fission is used in nuclear power stations to generate electricity. Nuclear fusion happens naturally in stars. (i) Explain briefly the difference between nuclear fission and nuclear fusion.

More information

Atoms have two separate parts. The nucleus and the electron cloud.

Atoms have two separate parts. The nucleus and the electron cloud. Name Ch. 5 - Atomic Structure Pre-AP Modern Atomic Theory All atoms are made of three subatomic (smaller than the atom) particles: the protons, the electrons and the neutrons. (P.E.N. s) There are particles

More information

Chapter 4 The Structure of the Atom

Chapter 4 The Structure of the Atom Chapter 4 The Structure of the Atom Read pg. 86-97 4.1 Early Theories of Matter The Philosophers Democritus Artistotle - Artistotle s influence so great and the science so primitive (lacking!) his denial

More information

Ch(3)Matter & Change. John Dalton

Ch(3)Matter & Change. John Dalton Ch(3)Matter & Change John Dalton What is Matter? Matter is anything that contains mass & volume (takes up space) Energy, such as light, heat, and sound, is NOT matter. The Particle Theory of Matter 1.

More information

Radioactivity Review (Chapter 7)

Radioactivity Review (Chapter 7) Science 10 Radioactivity Review (Chapter 7) 1. The alpha decay of radon-222 will yield which of the following? a. bismuth-220 c. astatine-222 b. francium-222 d. polonium-218 2. Which of the following types

More information

RADIOACTIVITY. An atom consists of protons, neutrons and electrons.

RADIOACTIVITY. An atom consists of protons, neutrons and electrons. RADIOACTIVITY An atom consists of protons, neutrons and electrons. - Protons and neutrons are inside the nucleus - Electrons revolve around the nucleus in specific orbits ATOMIC NUMBER: - Total number

More information

10.4 Fission and Fusion

10.4 Fission and Fusion This painting of an alchemist s laboratory was made around 1570. For centuries, these early scientists, known as alchemists, tried to use chemical reactions to make gold. The alchemists failed in their

More information

Friday, 05/06/16 6) HW QUIZ MONDAY Learning Target (NEW)

Friday, 05/06/16 6) HW QUIZ MONDAY Learning Target (NEW) Friday, 05/06/16 1) Warm-up: If you start with 100g of a radioactive substance, how much will be left after 3 half-lives? 2) Review HW & Nuclear Notes 3) Complete Modeling Energy Investigation 4) Complete:

More information

18.2 Comparing Atoms. Atomic number. Chapter 18

18.2 Comparing Atoms. Atomic number. Chapter 18 As you know, some substances are made up of only one kind of atom and these substances are called elements. You already know something about a number of elements you ve heard of hydrogen, helium, silver,

More information

Atomic Structure CONTENT REVIEW. indicates a fluorine atom that contains

Atomic Structure CONTENT REVIEW. indicates a fluorine atom that contains Atomic Structure Multiple Choice Identify the letter the choice that best completes the statement or answers the question. CONTENT REVIEW 1. Which the following statements is part Dalton's atomic theory

More information

Basic Chemistry. What is matter? Atomic Structure 8/25/2016

Basic Chemistry. What is matter? Atomic Structure 8/25/2016 Basic Chemistry What is matter? Any substance in the universe that has mass and occupies space. All matter is composed of atoms. Atoms are the smallest building block of chemistry. Smallest unit in chemical

More information

Chapter 4. Atomic Structure

Chapter 4. Atomic Structure Chapter 4 Atomic Structure Warm Up We have not discussed this material, what do you know already?? What is an atom? What are electron, neutrons, and protons? Draw a picture of an atom from what you know

More information

7.2 Isotopes and Radioactivity. radioactive decay radioactive transmutation radioactive element half-life synthetic element particle accelerator

7.2 Isotopes and Radioactivity. radioactive decay radioactive transmutation radioactive element half-life synthetic element particle accelerator 7.2 Isotopes and Radioactivity radioactive decay radioactive transmutation radioactive element half-life synthetic element particle accelerator How Many Neutrons 7.2 Isotopes and Radioactivity Isotopes

More information

Radioactive Decay. Scientists have discovered that when atoms of one kind of element emit radiation, they can change into atoms of a NEW element.

Radioactive Decay. Scientists have discovered that when atoms of one kind of element emit radiation, they can change into atoms of a NEW element. Radioactive Decay Radioactive Decay Scientists have discovered that when atoms of one kind of element emit radiation, they can change into atoms of a NEW element. Why would an atom emit radiation in the

More information

ConcepTest PowerPoints

ConcepTest PowerPoints ConcepTest PowerPoints Chapter 30 Physics: Principles with Applications, 6 th edition Giancoli 2005 Pearson Prentice Hall This work is protected by United States copyright laws and is provided solely for

More information

Chapter: Inside the Atom. Section 2: The Nucleus

Chapter: Inside the Atom. Section 2: The Nucleus Chapter: Inside the Atom Section 2: The Nucleus What you will learn Students will understand that atoms of different elements have a different number of sub particles Students will understand how to identify

More information

Atoms and Nuclear Chemistry. Atoms Isotopes Calculating Average Atomic Mass Radioactivity

Atoms and Nuclear Chemistry. Atoms Isotopes Calculating Average Atomic Mass Radioactivity Atoms and Nuclear Chemistry Atoms Isotopes Calculating Average Atomic Mass Radioactivity Atoms An atom is the smallest particle of an element that has all of the properties of that element. Composition

More information

Unit 02 Review: Atomic Theory and Periodic Table Review

Unit 02 Review: Atomic Theory and Periodic Table Review Practice Multiple Choice Questions Unit 02 Review: Atomic Theory and Periodic Table Review 1. The number of neutrons in an atom of radioactive C 14 is: a) 6 c) 8 b) 12 d) 14 2. When a radioactive nucleus

More information

25.1. Nuclear Radiation

25.1. Nuclear Radiation Nuclear Radiation Marie Curie was a Polish scientist whose research led to many discoveries about radiation and radioactive elements. In 1934 she died from leukemia caused by her long-term exposure to

More information

Atoms to Minerals CH 5.1

Atoms to Minerals CH 5.1 Atoms to Minerals CH 5.1 Objectives Identify the characteristics of matter Compare the particles that make up atoms of elements Describe the three types of chemical bonds Identify the characteristics of

More information

THE NUCLEUS OF AN ATOM

THE NUCLEUS OF AN ATOM VISUAL PHYSICS ONLINE THE NUCLEUS OF AN ATOM Models of the atom positive charge uniformly distributed over a sphere J. J. Thomson model of the atom (1907) ~2x10-10 m plum-pudding model: positive charge

More information

QUIZ: Physics of Nuclear Medicine Atomic Structure, Radioactive Decay, Interaction of Ionizing Radiation with Matter

QUIZ: Physics of Nuclear Medicine Atomic Structure, Radioactive Decay, Interaction of Ionizing Radiation with Matter QUIZ: Physics of Nuclear Medicine Atomic Structure, Radioactive Decay, Interaction of Ionizing Radiation with Matter 1. An atomic nucleus contains 39 protons and 50 neutrons. Its mass number (A) is a)

More information

Table O: Symbols Used in Nuclear Chemistry

Table O: Symbols Used in Nuclear Chemistry Packet 12: NUCLEAR CHEMISTRY STABLITY OF NUCLEI Most nuclei are stable and don t change. They are found within the belt of stability. Some nuclei are unstable and break down spontaneously giving off rays

More information

Matter. Anything that has mass and takes up space. (has volume)

Matter. Anything that has mass and takes up space. (has volume) Matter and more Matter Anything that has mass and takes up space. (has volume) Mass is the measure of the amount of matter something is made of. It is measured in grams Weight is the measure of gravitational

More information

Nuclear Chemistry CHAPTER

Nuclear Chemistry CHAPTER Reviewing Vocabulary Use each of the terms below just once to complete the following sentences. alpha particle gray nuclear reactor beta particle half-life radioactivity deuterium nuclear fission sievert

More information

Nuclear Physics Questions. 1. What particles make up the nucleus? What is the general term for them? What are those particles composed of?

Nuclear Physics Questions. 1. What particles make up the nucleus? What is the general term for them? What are those particles composed of? Nuclear Physics Questions 1. What particles make up the nucleus? What is the general term for them? What are those particles composed of? 2. What is the definition of the atomic number? What is its symbol?

More information

Isotopes and Radioactive Decay

Isotopes and Radioactive Decay NAME PERIOD DATE CHAPTER 4 NOTES: ISOTOPES Isotopes and Radioactive Decay ISOTOPES: Atoms that contain the same number of protons but a different number of neutrons. Isotopes containing more neutrons have

More information

Chapter 16: Ionizing Radiation

Chapter 16: Ionizing Radiation Chapter 6: Ionizing Radiation Goals of Period 6 Section 6.: To discuss unstable nuclei and their detection Section 6.2: To describe the sources of ionizing radiation Section 6.3: To introduce three types

More information