Selective-Area Atomic Layer Deposition of Copper Nanostructures for Direct Electro- Optical Solar Energy Conversion

Size: px
Start display at page:

Download "Selective-Area Atomic Layer Deposition of Copper Nanostructures for Direct Electro- Optical Solar Energy Conversion"

Transcription

1 Selective-Area Atomic Layer Deposition of Copper Nanostructures for Direct Electro- Optical Solar Energy Conversion Brian Willis UCONN Cancun, MX 2014

2 Plasmonics Au, Ag, Cu Nanoparticles interact strongly with visible/ near IR radiation, tunable by size/shape. Van Duyne, Nat. Mater E Quasi-Static Approximation α = 4πa 3 ε(ω) ε m ε(ω) + 2ε m Resonance at Re [ε(ω)] = -2ε m plasmons=collective modes that strongly concentrate light at the nanoscale. Plasmonic nanoparticles have applications for localized heating, SERS, nanophotonics, catalysis, sensors and more

3 Plasmonic Dimers hot spots are created by plasmonic dimers Nordlander, Science 2014 Geometric effect concentrates electric fields at nano-gaps leading to large field enhancements. EM field induces a voltage drop across the nanoelectrodes.

4 Plasmonic Enhancement Geometric Asymmetry Mayer, J. Phys. Conds. Mater nm radius tip Ag tip lightning rod effect <i+>/<i-> is rectification ratio Theoretical studies predict large enhancements in rectification ratios for plasmonic resonances. Lightning rod effect concentrates field at tip = asymmetry.

5 Optical Rectification Antenna Diode DC Filter Load I I( V ) I Concept: direct conversion of EM radiation (solar) into DC power by antenna coupled high speed diodes to rectify optical frequency charge waves. Potential Advantages: low cost fabrication, tunable absorbance including IR (waste heat), and device integration. DC photo I( V DC ) 1 V 4 2 photo 2 I V No band-gap limitations! 2

6 Literature Data Ward, Nat. Nano. v. 5, 732 (2010) Ward et al have demonstrated optical rectification in an electromigration junction. - not tuned for plasmonic resonance - not scalable - no control of geometry - isolated nanostructures

7 Rectenna Concept Electrically connected Sized for plasmon resonance in visible Asymmetric geometry Nanoscale tunnel gap Not commercially available!

8 Rectenna Challenges Nanoscale antenna tuned to visible/near-ir Geometric asymmetry, diode response at low voltage Electrically contacted, tunneling devices RC time constant, impedance matching Extremely fast diodes, Hz Diode is most critical need!

9 Rectenna Concept Electrically connected Asymmetric geometry Sized for plasmon resonance in visible Nanoscale tunnel gap ALD used to make tunnel diodes

10 ALD Metals Review Year Reactants GPC T window (nm) ( C) type 1998 Cu(II)thd 2 // H thermal 2003 bis(n,n -diisopropylacetamidinato)dicu(i) // H thermal 1,3-Diisopropyl-imidazolin-2-ylidene Cu(I) hexamethyldisilazide 2013 // H radicals plasma 2014 Cu(II)(OCHMeCH 2 NMe 3 ) 2 // BH 3 (NHMe 2 ) thermal 2007 (2,2-dimethylpropionato) Ag(I)triethylphosphine // H radicals plasma 2010 (hfac)ag(i)(1,5-cod) // propanol thermal 2011 Ag(I)(fod)(PEt 3 ) // H radicals plasma 2014 (hfac)ag(i)(pet 3 ) // HCHO thermal Au?? Choices for ALD Cu, Ag, and Au are limited, non-ideal. Cu(II)thd 2 /H 2 process is well-behaved for selective growth.

11 Selective Area Growth metal seed oxide/nitride Growth No growth Selective area ALD enables deposition on seeded regions and eliminates the need for etching. SA-ALD enables nanostructures.

12 Plasmonic Structures Pd nanostructures 10x10 Rectangular Dipole Rectenna Array, 550 nm x 800 nm spacing 10x10 Large Triangle Rectenna Array 500 nm x 500 nm spacing Electrically isolated structures are used to investigate tuning of plasmonic response by selective area ALD.

13 Resonance Tuning Gap size dependence Nanostructure size dependence bar size: 150 x 50 x 35 nm bar-shape structures FDTD simulations predict that resonance red-shifts for decreasing gap size and for increasing nanostructure size.

14 Tuning Plasmonics with ALD lightening rod effect further intensifies electric fields FDTD simulations Plasmonic dimers have strong electric field enhancement >10 3, with fields > 5x10 8 V/m 1. 1 Ward et al., Nature Nano v. 5 p. 732 (2010)

15 Optical measurements Focus spot is 3-7 um; sized to the test array.

16 Optical Response Red-shift & increased extinction Spectroscopy data show red-shift after ALD.

17 Red-Shifts Red-shift magnitude tracks ALD thickness/cycles. In-situ measurements would provide feedback on nanogap.

18 Nanoscale Tunnel Junctions by ALD geometric asymmetry SiO2 Device arrays with 1000 s of tips converge to tunneling similarly to suspended structures. Geometric asymmetry contributes to desired diode IV character.

19 Current (A) d 2 I/dV 2 Intensity ALD Grown Tunnel Junctions IETS Volts (V) adsorption Time (seconds) Trapping and IETS detection of Acetic Acid molecules in nanojunctions

20 HIM Images Hang Dong, Rutgers < 9 nm < 7 nm HIM provides some estimates for gap size.

21 Nano-Nucleation Challenges Without UVO With UVO Growth is sensitive to surface pre-treatment, growth inhibition is observed without UVO. ALD metal films are not layer-by-layer, Nanograins form with inherent surface roughness. How smooth can we achieve? Could be shape dependence, crystal structure effects.

22 UV/Ozone Sample Pre-treatment XPS acetate-like planar films ALD Cu roughness values are similar to other reports 2, scales with thickness. UVO enhances/enables growth, removes most C 1s, but residual C remains even after long time (60 min). 2 Winter et al. Chem. Mater. v. 26, p (2014)

23 Selectivity High T growth, 230 C Annealed in He at 600 C prior to growth at 220 C Selectivity is lost at higher temperatures, inverted selectivity? Selectivity was a mystery; how does Cu grow on oxide?

24 ALD Fundamentals with in-situ SE note O content of precursor Cu(thd) 2 is a solid source precursor. H 2 is coreactant. In-situ, real time SE provides saturation curves.

25 SE Growth Trajectory ~15/466 = 0.03 delta/cycle in-situ SE provides growth finger-print, sensitive to substrate preparation and growth conditions. extracted GPC ~ 0.04 nm/cycle matches SEM data.

26 Original Mechanism Martensson s mechanism Cu(thd) 2 adsorbs to saturation during precursor dose. Martensson et al, JES, v. 145, p (1998)

27 SE Growth Signature Cu ALD SrO ALD SrO ALD shows characteristic signature for stable precursors adsorption. Cu ALD has opposite signature with reversible adsorption.

28 Original mechanism is NOT consistent with Cu I CVD by disproportionation at C, and can t explain observed GPC. Martensson et al, JES, v. 145, p (1998) Original Mechanism Martensson s mechanism Selectivity follows from H 2 dissociation requirement.

29 New Mechanism New mechanism explains SE signature and is consistent with reversible adsorption. Also explains high GPC. Roll of Pd-H 2 is now more complex, strong chemisorption.

30 SE Growth vs. Temperature Real-time SE vs. Temp Coverage Simulations CuL 2 + 2* CuL* + L* Mechanism not sensitive to temperature. H* must be stable. Dissociative reversible adsorption is consistent with thermodynamics if H ads ~ 34 kcal/mol.

31 QCM Studies QCM measures mass and thermal effects. Reaction signal (at 150 C) is consistent with RTSE data, GPC ~ 0.04 nm/cycle.

32 Role of Pd XRD XPS Temperature and time dependence of Cu XRD and XPS signals indicate extensive Cu/Pd mixing. Lower temperatures = higher Cu/Pd ratios. ARXPS shows evidence for Pd enrichment at surface. Pd explains H chemisorption. What happens if the Pd runs out? Pd segregation

33 Cu/Pd vs. Cu/Pt Both Pt & Pd act as seed layers, but Pd mixes more extensively with Cu.

34 GPC on Pd/H* Cu ALD on Pd 150C GPC decreases as Cu/Pd becomes more Cu rich. Cu/Pd ratio measured as 45:1 for this sample.

35 Selectivity No adsorption/ desorption cycles for SiO 2, Si 3 N 4 Martensson et al, JES, v. 145, p (1998) Selectivity is evident from in-situ SE data, but how to explain non-selective growth on SiO 2?

36 Non-Selective Growth Mechanism? C 1s Growth on SiO 2 at 205 C O1s Cu 2p C 1s signal is removed by sputtering, but O 1s signal remains. Cu 2p signal could be Cu 0 or Cu I. Cu/O ratios are ~1.3. AES peaks indicates Cu I. CuO/Cu 2 O growth explains non-selective growth mechanism. Mechanism requires self-decomposition. H 2 not required, but may affect thickness. For thick Cu films, self-decomposition may contribute to growth.

37 ph2 (Torr) H 2 effect on Non-selective Growth C 1.5 Torr Excellent Good Poor 160 C 3 Torr Temperature (C) H 2 pressure plays a significant role for non-selective growth. Why?

38 H 2 effect on Non-Selective Growth 180 C 180 C 1.5 torr H2 3 torr H C 0.5 torr H2

39 GPC(nm/cycle) H 2 Effect on Selective Growth Cu ALD on Pd Seed Layers C 160C H 2 partial pressure (torr) GPC Measured by QCM in selective window shows no effect of H 2 partial pressure. No growth without H 2.

40 Summary ALD Cu is useful for tuning the optical response of plasmonic materials. ALD of Ag, Au would be nice. Selective Area Cu ALD works well and is useful for tunnel junctions with many potential applications. Cu ALD mechanism is partially understood, Pd, H effects are important.

41 Acknowledgements Co-Pi s (Physics, Penn State): Darin Zimmerman, Gary Weisel, James Chen Students: X. Jiang & J. Qi (UCONN) R. Wamboldt (Penn State) Funding: NSF-EECS

The goal of this project is to enhance the power density and lowtemperature efficiency of solid oxide fuel cells (SOFC) manufactured by atomic layer

The goal of this project is to enhance the power density and lowtemperature efficiency of solid oxide fuel cells (SOFC) manufactured by atomic layer Stanford University Michael Shandalov1, Shriram Ramanathan2, Changhyun Ko2 and Paul McIntyre1 1Department of Materials Science and Engineering, Stanford University 2Division of Engineering and Applied

More information

Shell-isolated nanoparticle-enhanced Raman spectroscopy

Shell-isolated nanoparticle-enhanced Raman spectroscopy Shell-isolated nanoparticle-enhanced Raman spectroscopy Jian Feng Li, Yi Fan Huang, Yong Ding, Zhi Lin Yang, Song Bo Li, Xiao Shun Zhou, Feng Ru Fan, Wei Zhang, Zhi You Zhou, De Yin Wu, Bin Ren, Zhong

More information

Fabrication at the nanoscale for nanophotonics

Fabrication at the nanoscale for nanophotonics Fabrication at the nanoscale for nanophotonics Ilya Sychugov, KTH Materials Physics, Kista silicon nanocrystal by electron beam induced deposition lithography Outline of basic nanofabrication methods Devices

More information

Nano Optics Based on Coupled Metal Nanoparticles

Nano Optics Based on Coupled Metal Nanoparticles Nano Optics Based on Coupled Metal Nanoparticles Shangjr Gwo ( 果尚志 ) Department of Physics National Tsing-Hua University, Hsinchu 30013, Taiwan E-mail: gwo@phys.nthu.edu.tw NDHU-Phys (2010/03/01) Background

More information

Supplementary Figure 1 Experimental setup for crystal growth. Schematic drawing of the experimental setup for C 8 -BTBT crystal growth.

Supplementary Figure 1 Experimental setup for crystal growth. Schematic drawing of the experimental setup for C 8 -BTBT crystal growth. Supplementary Figure 1 Experimental setup for crystal growth. Schematic drawing of the experimental setup for C 8 -BTBT crystal growth. Supplementary Figure 2 AFM study of the C 8 -BTBT crystal growth

More information

Hydrogenation of Single Walled Carbon Nanotubes

Hydrogenation of Single Walled Carbon Nanotubes Hydrogenation of Single Walled Carbon Nanotubes Anders Nilsson Stanford Synchrotron Radiation Laboratory (SSRL) and Stockholm University Coworkers and Ackowledgement A. Nikitin 1), H. Ogasawara 1), D.

More information

Modern Methods in Heterogeneous Catalysis Research: Preparation of Model Systems by Physical Methods

Modern Methods in Heterogeneous Catalysis Research: Preparation of Model Systems by Physical Methods Modern Methods in Heterogeneous Catalysis Research: Preparation of Model Systems by Physical Methods Methods for catalyst preparation Methods discussed in this lecture Physical vapour deposition - PLD

More information

ALD-enabled nanopatterning: area-selective ALD by area-activation

ALD-enabled nanopatterning: area-selective ALD by area-activation ALD-enabled nanopatterning: area-selective ALD by area-activation Adrie Mackus, Ageeth Bol, and Erwin Kessels w.m.m.kessels@tue.nl www.tue.nl/pmp Outline Introduction & Area-selective deposition Area-selective

More information

Photovoltaic Enhancement Due to Surface-Plasmon Assisted Visible-Light. Absorption at the Inartificial Surface of Lead Zirconate-Titanate Film

Photovoltaic Enhancement Due to Surface-Plasmon Assisted Visible-Light. Absorption at the Inartificial Surface of Lead Zirconate-Titanate Film Photovoltaic Enhancement Due to Surface-Plasmon Assisted Visible-Light Absorption at the Inartificial Surface of Lead Zirconate-Titanate Film Fengang Zheng, a,b, * Peng Zhang, a Xiaofeng Wang, a Wen Huang,

More information

B.-Y. Lin et al., Opt. Express 17, (2009).

B.-Y. Lin et al., Opt. Express 17, (2009). !!!! The Ag nanoparticle array can be considered Ag nanorods arranged in hexagonal pattern with an inter-nanorod gap (W). The rod diameter (D) is 25 nm and the rod length (L) is 100 nm. A series of curved

More information

Selective Manipulation of Molecules by Electrostatic Force and Detection of Single Molecules in Aqueous Solution

Selective Manipulation of Molecules by Electrostatic Force and Detection of Single Molecules in Aqueous Solution Supporting Information Selective Manipulation of Molecules by Electrostatic Force and Detection of Single Molecules in Aqueous Solution Zhongbo Yan, Ming Xia, Pei Zhang, and Ya-Hong Xie* Department of

More information

Simulated Study of Plasmonic Coupling in Noble Bimetallic Alloy Nanosphere Arrays

Simulated Study of Plasmonic Coupling in Noble Bimetallic Alloy Nanosphere Arrays CHAPTER 4 Simulated Study of Plasmonic Coupling in Noble Bimetallic Alloy Nanosphere Arrays 4.1 Introduction In Chapter 3, the noble bimetallic alloy nanosphere (BANS) of Ag 1-x Cu x at a particular composition

More information

Supplementary material for High responsivity mid-infrared graphene detectors with antenna-enhanced photo-carrier generation and collection

Supplementary material for High responsivity mid-infrared graphene detectors with antenna-enhanced photo-carrier generation and collection Supplementary material for High responsivity mid-infrared graphene detectors with antenna-enhanced photo-carrier generation and collection Yu Yao 1, Raji Shankar 1, Patrick Rauter 1, Yi Song 2, Jing Kong

More information

Supplementary Figure S1. AFM images of GraNRs grown with standard growth process. Each of these pictures show GraNRs prepared independently,

Supplementary Figure S1. AFM images of GraNRs grown with standard growth process. Each of these pictures show GraNRs prepared independently, Supplementary Figure S1. AFM images of GraNRs grown with standard growth process. Each of these pictures show GraNRs prepared independently, suggesting that the results is reproducible. Supplementary Figure

More information

Flexible, Transparent and Highly Sensitive SERS. Substrates with Cross-nanoporous Structures for

Flexible, Transparent and Highly Sensitive SERS. Substrates with Cross-nanoporous Structures for Electronic Supplementary Material (ESI) for Nanoscale. This journal is The Royal Society of Chemistry 2018 supplementary information Flexible, Transparent and Highly Sensitive SERS Substrates with Cross-nanoporous

More information

Understanding Nanoplasmonics. Greg Sun University of Massachusetts Boston

Understanding Nanoplasmonics. Greg Sun University of Massachusetts Boston Understanding Nanoplasmonics Greg Sun University of Massachusetts Boston Nanoplasmonics Space 100pm 1nm 10nm 100nm 1μm 10μm 100μm 1ns 100ps 10ps Photonics 1ps 100fs 10fs 1fs Time Surface Plasmons Surface

More information

Planar Organic Photovoltaic Device. Saiful I. Khondaker

Planar Organic Photovoltaic Device. Saiful I. Khondaker Planar Organic Photovoltaic Device Saiful I. Khondaker Nanoscience Technology Center and Department of Physics University of Central Florida http://www.physics.ucf.edu/~khondaker W Metal 1 L ch Metal 2

More information

A. Optimizing the growth conditions of large-scale graphene films

A. Optimizing the growth conditions of large-scale graphene films 1 A. Optimizing the growth conditions of large-scale graphene films Figure S1. Optical microscope images of graphene films transferred on 300 nm SiO 2 /Si substrates. a, Images of the graphene films grown

More information

Supporting Information

Supporting Information Supporting Information Yao et al. 10.1073/pnas.1416368111 Fig. S1. In situ LEEM imaging of graphene growth via chemical vapor deposition (CVD) on Pt(111). The growth of graphene on Pt(111) via a CVD process

More information

Supplementary Figure 1: Power dependence of hot-electrons reduction of 4-NTP to 4-ATP. a) SERS spectra of the hot-electron reduction reaction using

Supplementary Figure 1: Power dependence of hot-electrons reduction of 4-NTP to 4-ATP. a) SERS spectra of the hot-electron reduction reaction using Supplementary Figure 1: Power dependence of hot-electrons reduction of 4-NTP to 4-ATP. a) SERS spectra of the hot-electron reduction reaction using 633 nm laser excitation at different powers and b) the

More information

Instrumentation and Operation

Instrumentation and Operation Instrumentation and Operation 1 STM Instrumentation COMPONENTS sharp metal tip scanning system and control electronics feedback electronics (keeps tunneling current constant) image processing system data

More information

Nova 600 NanoLab Dual beam Focused Ion Beam IITKanpur

Nova 600 NanoLab Dual beam Focused Ion Beam IITKanpur Nova 600 NanoLab Dual beam Focused Ion Beam system @ IITKanpur Dual Beam Nova 600 Nano Lab From FEI company (Dual Beam = SEM + FIB) SEM: The Electron Beam for SEM Field Emission Electron Gun Energy : 500

More information

Electrochemically Synthesized Multi-block

Electrochemically Synthesized Multi-block Electrochemically Synthesized Multi-block Nanorods Sungho Park SungKyunKwan University, Department of Chemistry & SKKU Advanced Institute of Nanotechnology (SAINT) J. Am. Chem. Soc. 2003, 125, 2282-2290

More information

Fabrication Technology, Part I

Fabrication Technology, Part I EEL5225: Principles of MEMS Transducers (Fall 2004) Fabrication Technology, Part I Agenda: Microfabrication Overview Basic semiconductor devices Materials Key processes Oxidation Thin-film Deposition Reading:

More information

Wafer-scale fabrication of graphene

Wafer-scale fabrication of graphene Wafer-scale fabrication of graphene Sten Vollebregt, MSc Delft University of Technology, Delft Institute of Mircosystems and Nanotechnology Delft University of Technology Challenge the future Delft University

More information

Spectroscopy at nanometer scale

Spectroscopy at nanometer scale Spectroscopy at nanometer scale 1. Physics of the spectroscopies 2. Spectroscopies for the bulk materials 3. Experimental setups for the spectroscopies 4. Physics and Chemistry of nanomaterials Various

More information

NTEGRA for EC PRESENTATION

NTEGRA for EC PRESENTATION NTEGRA for EC PRESENTATION Application Purpose: In-situ control/modification of the surface morphology of single crystal and polycrystal electrodes (samples) during electrochemical process (in situ) in

More information

A Plasmonic Photocatalyst Consisting of Silver Nanoparticles Embedded in Titanium Dioxide. Ryan Huschka LANP Seminar February 19, 2008

A Plasmonic Photocatalyst Consisting of Silver Nanoparticles Embedded in Titanium Dioxide. Ryan Huschka LANP Seminar February 19, 2008 A Plasmonic Photocatalyst Consisting of Silver Nanoparticles Embedded in Titanium Dioxide Ryan Huschka LANP Seminar February 19, 2008 TiO 2 Applications White Pigment Photocatalyst Previous methods to

More information

Plasma Deposition (Overview) Lecture 1

Plasma Deposition (Overview) Lecture 1 Plasma Deposition (Overview) Lecture 1 Material Processes Plasma Processing Plasma-assisted Deposition Implantation Surface Modification Development of Plasma-based processing Microelectronics needs (fabrication

More information

High-density data storage: principle

High-density data storage: principle High-density data storage: principle Current approach High density 1 bit = many domains Information storage driven by domain wall shifts 1 bit = 1 magnetic nanoobject Single-domain needed Single easy axis

More information

Supporting Information

Supporting Information Supporting Information Superstructural Raman Nanosensors with Integrated Dual Functions for Ultrasensitive Detection and Tunable Release of Molecules Jing Liu #, Jianhe Guo #, Guowen Meng and Donglei Fan*

More information

Supplementary information for

Supplementary information for Supplementary information for Transverse electric field dragging of DNA in a nanochannel Makusu Tsutsui, Yuhui He, Masayuki Furuhashi, Rahong Sakon, Masateru Taniguchi & Tomoji Kawai The Supplementary

More information

Microscopical and Microanalytical Methods (NANO3)

Microscopical and Microanalytical Methods (NANO3) Microscopical and Microanalytical Methods (NANO3) 06.11.15 10:15-12:00 Introduction - SPM methods 13.11.15 10:15-12:00 STM 20.11.15 10:15-12:00 STS Erik Zupanič erik.zupanic@ijs.si stm.ijs.si 27.11.15

More information

In situ Studies of ALD Processes & Reaction Mechanisms

In situ Studies of ALD Processes & Reaction Mechanisms In situ Studies of ALD Processes & Reaction Mechanisms Erwin Kessels w.m.m.kessels@tue.nl www.tue.nl/pmp This tutorial presentation will give (1) an overview of methods for in situ studies of ALD processes

More information

Energy transport in metal nanoparticle plasmon waveguides

Energy transport in metal nanoparticle plasmon waveguides Energy transport in metal nanoparticle plasmon waveguides Stefan A. Maier, Pieter G. Kik, and Harry A. Atwater California Institute of Technology Thomas J. Watson Laboratory of Applied Physics, Pasadena,

More information

Supporting Information

Supporting Information Supporting Information Molecular Orbital Gating Surface-Enhanced Raman Scattering Chenyang Guo, 1, Xing Chen, 2, Song-Yuan Ding, 3, Dirk Mayer, 4 Qingling Wang, 1 Zhikai Zhao, 1,5 Lifa Ni, 1,6 Haitao Liu,

More information

Nanomaterials for Plasmonic Devices. Lih J. Chen

Nanomaterials for Plasmonic Devices. Lih J. Chen Nanomaterials for Plasmonic Devices Lih J. Chen Department of Materials Science and Engineering, National Tsing Hua University, Hsinchu, Taiwan Papers on Plasmon: 75,000 (6/25/2018) Papers on Plasmonics:

More information

Size-dependent Metal-insulator Transition Random Materials Crystalline & Amorphous Purely Electronic Switching

Size-dependent Metal-insulator Transition Random Materials Crystalline & Amorphous Purely Electronic Switching Nanometallic RRAM I-Wei Chen Department of Materials Science and Engineering University of Pennsylvania Philadelphia, PA 19104 Nature Nano, 6, 237 (2011) Adv Mater,, 23, 3847 (2011) Adv Func Mater,, 22,

More information

2D Materials for Gas Sensing

2D Materials for Gas Sensing 2D Materials for Gas Sensing S. Guo, A. Rani, and M.E. Zaghloul Department of Electrical and Computer Engineering The George Washington University, Washington DC 20052 Outline Background Structures of

More information

Title of file for HTML: Supplementary Information Description: Supplementary Figures and Supplementary References

Title of file for HTML: Supplementary Information Description: Supplementary Figures and Supplementary References Title of file for HTML: Supplementary Information Description: Supplementary Figures and Supplementary References Supplementary Figure 1. SEM images of perovskite single-crystal patterned thin film with

More information

Supplementary Figure 1. Extinction spectra of rhodium nanocubes. UV-vis spectra of the Rh nanocubes in ethanol solution (black) and on a porous Al2O3

Supplementary Figure 1. Extinction spectra of rhodium nanocubes. UV-vis spectra of the Rh nanocubes in ethanol solution (black) and on a porous Al2O3 Supplementary Figure 1. Extinction spectra of rhodium nanocubes. UV-vis spectra of the Rh nanocubes in ethanol solution (black) and on a porous Al2O3 support (blue). The Rh nanocubes in ethanol solution

More information

Secondaryionmassspectrometry

Secondaryionmassspectrometry Secondaryionmassspectrometry (SIMS) 1 Incident Ion Techniques for Surface Composition Analysis Mass spectrometric technique 1. Ionization -Electron ionization (EI) -Chemical ionization (CI) -Field ionization

More information

NanoEngineering of Hybrid Carbon Nanotube Metal Composite Materials for Hydrogen Storage Anders Nilsson

NanoEngineering of Hybrid Carbon Nanotube Metal Composite Materials for Hydrogen Storage Anders Nilsson NanoEngineering of Hybrid Carbon Nanotube Metal Composite Materials for Hydrogen Storage Anders Nilsson Stanford Synchrotron Radiation Laboratory (SSRL) and Stockholm University Coworkers and Ackowledgement

More information

Polarization control with plasmonic antenna-tips: A universal approach for optical nano-crystallography and vector-field imaging

Polarization control with plasmonic antenna-tips: A universal approach for optical nano-crystallography and vector-field imaging Supporting Information: Polarization control with plasmonic antenna-tips: A universal approach for optical nano-crystallography and vector-field imaging Kyoung-Duck Park 1,2 and Markus B. Raschke *1,2

More information

In-situ Monitoring of Thin-Film Formation Processes by Spectroscopic Ellipsometry

In-situ Monitoring of Thin-Film Formation Processes by Spectroscopic Ellipsometry In-situ Monitoring of Thin-Film Formation Processes by Spectroscopic Ellipsometry Alexey Kovalgin Chair of Semiconductor Components MESA+ Institute for Nanotechnology Motivation Advantages of in-situ over

More information

Plasma Chemistry Study in an Inductively Coupled Dielectric Etcher

Plasma Chemistry Study in an Inductively Coupled Dielectric Etcher Plasma Chemistry Study in an Inductively Coupled Dielectric Etcher Chunshi Cui, John Trow, Ken Collins, Betty Tang, Luke Zhang, Steve Shannon, and Yan Ye Applied Materials, Inc. October 26, 2000 10/28/2008

More information

Supporting Information

Supporting Information Supporting Information Scalable Binder-Free Supersonic Cold Spraying of Nanotextured Cupric Oxide (CuO) Films as Efficient Photocathodes Jong Gun Lee, a,, Do-Yeon Kim, a,, Jong-Hyuk Lee, a, Min-woo Kim

More information

Step Coverage by ALD Films: Theory and Examples

Step Coverage by ALD Films: Theory and Examples Step Coverage by ALD Films: Theory and Examples of Ideal and Non-Ideal Reactions Roy G. Gordon Cambridge, MA 1 L Step Coverage in Holes with High Aspect Ratio Step coverage = (b/a) x 100% a Aspect ratio

More information

Initial Stages of Growth of Organic Semiconductors on Graphene

Initial Stages of Growth of Organic Semiconductors on Graphene Initial Stages of Growth of Organic Semiconductors on Graphene Presented by: Manisha Chhikara Supervisor: Prof. Dr. Gvido Bratina University of Nova Gorica Outline Introduction to Graphene Fabrication

More information

ALD Nucleation and Area-Selective Deposition

ALD Nucleation and Area-Selective Deposition ALD Nucleation and Area-Selective Deposition Prof Gregory N. Parsons Department of Chemical and Biomolecular Engineering North Carolina State University Raleigh North Carolina USA 1 Outline 1. Nucleation

More information

Study of Surface Plasmon Excitation on Different Structures of Gold and Silver

Study of Surface Plasmon Excitation on Different Structures of Gold and Silver Nanoscience and Nanotechnology 2015, 5(4): 71-81 DOI: 10.5923/j.nn.20150504.01 Study of Surface Plasmon Excitation on Different Structures of Gold and Silver Anchu Ashok 1,*, Arya Arackal 1, George Jacob

More information

TiO2/sapphire Beam Splitter for High-order Harmonics

TiO2/sapphire Beam Splitter for High-order Harmonics Technical Communication TiO2/sapphire Beam Splitter for High-order Harmonics Y. Sanjo*1, M. Murata*1, Y. Tanaka*1, H. Kumagai*1, and M. Chigane*2 *1 Graduate School of Engineering,Osaka City University,

More information

Surface Chemistry and Reaction Dynamics of Electron Beam Induced Deposition Processes

Surface Chemistry and Reaction Dynamics of Electron Beam Induced Deposition Processes Surface Chemistry and Reaction Dynamics of Electron Beam Induced Deposition Processes e -? 2 nd FEBIP Workshop Thun, Switzerland 2008 Howard Fairbrother Johns Hopkins University Baltimore, MD, USA Outline

More information

A Novel Electroless Method for the Deposition of Single-Crystalline Platinum Nanoparticle Films On

A Novel Electroless Method for the Deposition of Single-Crystalline Platinum Nanoparticle Films On Supplementary Information A Novel Electroless Method for the Deposition of Single-Crystalline Platinum Nanoparticle Films On an Organic Solid Matrix in the Presence of Gold Single Crystals Khaleda Banu,,,*

More information

"Surface-Enhanced Raman Scattering

Surface-Enhanced Raman Scattering SMR: 1643/11 WINTER COLLEGE ON OPTICS ON OPTICS AND PHOTONICS IN NANOSCIENCE AND NANOTECHNOLOGY ( 7-18 February 2005) "Surface-Enhanced Raman Scattering presented by: Martin Moskovits University of California,

More information

Review of Nature Communications, NCOMMS In situ tracking of heterogeneous nanocatalytic processes. Reviewers' comments:

Review of Nature Communications, NCOMMS In situ tracking of heterogeneous nanocatalytic processes. Reviewers' comments: Reviewers' comments: Reviewer #1 (Remarks to the Author): This manuscript describes measurement of surface enhanced Raman spectra (SERS) during CO oxidation catalysis on metal catalysts (E.g, Pt, FePt,

More information

Theodore E. Madey. Department of Physics and Astronomy, and Laboratory for Surface Modification

Theodore E. Madey. Department of Physics and Astronomy, and Laboratory for Surface Modification The Science of Catalysis at the Nanometer Scale Theodore E. Madey Department of Physics and Astronomy, and Laboratory for Surface Modification http://www.physics.rutgers.edu/lsm/ Rutgers, The State University

More information

Supporting Information

Supporting Information Supporting Information Direct Chemical Vapor Deposition-Derived Graphene Glasses Targeting Wide Ranged Applications Jingyu Sun, Yubin Chen, Manish Kr. Priydarshi, Zhang Chen, Alicja Bachmatiuk,, Zhiyu

More information

Seminars in Nanosystems - I

Seminars in Nanosystems - I Seminars in Nanosystems - I Winter Semester 2011/2012 Dr. Emanuela Margapoti Emanuela.Margapoti@wsi.tum.de Dr. Gregor Koblmüller Gregor.Koblmueller@wsi.tum.de Seminar Room at ZNN 1 floor Topics of the

More information

SEIRA effects. Annemarie Pucci

SEIRA effects. Annemarie Pucci SEIRA effects Annemarie Pucci Kirchhoff Institute of Physics, Heidelberg University 1. Introduction 2. SEIRA with metal-island films 3. SEIRA with metal dots 4. Dynamic charge transfer 5. Effect of nanoantenna

More information

Large-Area and Uniform Surface-Enhanced Raman. Saturation

Large-Area and Uniform Surface-Enhanced Raman. Saturation Supporting Information Large-Area and Uniform Surface-Enhanced Raman Spectroscopy Substrate Optimized by Enhancement Saturation Daejong Yang 1, Hyunjun Cho 2, Sukmo Koo 1, Sagar R. Vaidyanathan 2, Kelly

More information

Layer-modulated synthesis of uniform tungsten disulfide nanosheet using gas-phase precursors.

Layer-modulated synthesis of uniform tungsten disulfide nanosheet using gas-phase precursors. Layer-modulated synthesis of uniform tungsten disulfide nanosheet using gas-phase precursors. Jusang Park * Hyungjun Kim School of Electrical and Electronics Engineering, Yonsei University, 262 Seongsanno,

More information

Spring 2009 EE 710: Nanoscience and Engineering

Spring 2009 EE 710: Nanoscience and Engineering Spring 009 EE 710: Nanoscience and Engineering Part 10: Surface Plasmons in Metals Images and figures supplied from Hornyak, Dutta, Tibbals, and Rao, Introduction to Nanoscience, CRC Press Boca Raton,

More information

Adjoint-Based Photonic Design: Optimization for Applications from Super-Scattering to Enhanced Light Extraction

Adjoint-Based Photonic Design: Optimization for Applications from Super-Scattering to Enhanced Light Extraction Adjoint-Based Photonic Design: Optimization for Applications from Super-Scattering to Enhanced Light Extraction Owen Miller Post-doc, MIT Applied Math PI: Steven Johnson Collaborators: Homer Reid (Math),

More information

U-Shaped Nano-Apertures for Enhanced Optical Transmission and Resolution

U-Shaped Nano-Apertures for Enhanced Optical Transmission and Resolution U-Shaped Nano-Apertures for Enhanced Optical Transmission and Resolution Mustafa Turkmen 1,2,3, Serap Aksu 3,4, A. Engin Çetin 2,3, Ahmet A. Yanik 2,3, Alp Artar 2,3, Hatice Altug 2,3,4, * 1 Electrical

More information

(Co-PIs-Mark Brongersma, Yi Cui, Shanhui Fan) Stanford University. GCEP Research Symposium 2013 Stanford, CA October 9, 2013

(Co-PIs-Mark Brongersma, Yi Cui, Shanhui Fan) Stanford University. GCEP Research Symposium 2013 Stanford, CA October 9, 2013 High-efficiency thin film nano-structured multi-junction solar James S. cells Harris (PI) (Co-PIs-Mark Brongersma, Yi Cui, Shanhui Fan) Stanford University GCEP Research Symposium 2013 Stanford, CA October

More information

Hotwire-assisted Atomic Layer Deposition of Pure Metals and Metal Nitrides

Hotwire-assisted Atomic Layer Deposition of Pure Metals and Metal Nitrides Hotwire-assisted Atomic Layer Deposition of Pure Metals and Metal Nitrides Alexey Kovalgin MESA+ Institute for Nanotechnology Semiconductor Components group a.y.kovalgin@utwente.nl 1 Motivation 1. Materials

More information

Supplementary Information

Supplementary Information Electronic Supplementary Material (ESI) for Nanoscale. This journal is The Royal Society of Chemistry 2014 Supplementary Information Large-scale lithography-free metasurface with spectrally tunable super

More information

Cover Page. The handle holds various files of this Leiden University dissertation

Cover Page. The handle   holds various files of this Leiden University dissertation Cover Page The handle http://hdl.handle.net/1887/24306 holds various files of this Leiden University dissertation Author: Verhagen, T.G.A. Title: Magnetism and magnetization dynamics in thin film ferromagnets

More information

J. Price, 1,2 Y. Q. An, 1 M. C. Downer 1 1 The university of Texas at Austin, Department of Physics, Austin, TX

J. Price, 1,2 Y. Q. An, 1 M. C. Downer 1 1 The university of Texas at Austin, Department of Physics, Austin, TX Understanding process-dependent oxygen vacancies in thin HfO 2 /SiO 2 stacked-films on Si (100) via competing electron-hole injection dynamic contributions to second harmonic generation. J. Price, 1,2

More information

Plasma Etching: Atomic Scale Surface Fidelity and 2D Materials

Plasma Etching: Atomic Scale Surface Fidelity and 2D Materials 1 Plasma Etching: Atomic Scale Surface Fidelity and 2D Materials Thorsten Lill, Keren J. Kanarik, Samantha Tan, Meihua Shen, Alex Yoon, Eric Hudson, Yang Pan, Jeffrey Marks, Vahid Vahedi, Richard A. Gottscho

More information

Shell-isolated nanoparticleenhanced Raman spectroscopy: Insight from COMSOL simulations

Shell-isolated nanoparticleenhanced Raman spectroscopy: Insight from COMSOL simulations Shell-isolated nanoparticleenhanced Raman spectroscopy: Insight from COMSOL simulations Song-Yuan Ding, Jun Yi, En-Ming You, and Zhong-Qun Tian 2016-11-03, Shanghai Excerpt from the Proceedings of the

More information

Supporting Information for: Photo-induced force mapping of plasmonic. nanostructures

Supporting Information for: Photo-induced force mapping of plasmonic. nanostructures Supporting Information for: Photo-induced force mapping of plasmonic nanostructures Thejaswi U. Tumkur,* # Xiao Yang,* # Benjamin Cerjan, Naomi J. Halas,*,,,, Peter Nordlander,*, Isabell Thomann*,,,, Corresponding

More information

Supplementary Figures Supplementary Figure 1

Supplementary Figures Supplementary Figure 1 Supplementary Figures Supplementary Figure 1 Optical images of graphene grains on Cu after Cu oxidation treatment at 200 for 1m 30s. Each sample was synthesized with different H 2 annealing time for (a)

More information

Lecture 11. Etching Techniques Reading: Chapter 11. ECE Dr. Alan Doolittle

Lecture 11. Etching Techniques Reading: Chapter 11. ECE Dr. Alan Doolittle Lecture 11 Etching Techniques Reading: Chapter 11 Etching Techniques Characterized by: 1.) Etch rate (A/minute) 2.) Selectivity: S=etch rate material 1 / etch rate material 2 is said to have a selectivity

More information

Characterisation of vibrational modes of adsorbed species

Characterisation of vibrational modes of adsorbed species 17.7.5 Characterisation of vibrational modes of adsorbed species Infrared spectroscopy (IR) See Ch.10. Infrared vibrational spectra originate in transitions between discrete vibrational energy levels of

More information

Surface Transfer Doping of Diamond by Organic Molecules

Surface Transfer Doping of Diamond by Organic Molecules Surface Transfer Doping of Diamond by Organic Molecules Qi Dongchen Department of Physics National University of Singapore Supervisor: Prof. Andrew T. S. Wee Dr. Gao Xingyu Scope of presentation Overview

More information

Alternative deposition solution for cost reduction of TSV integration

Alternative deposition solution for cost reduction of TSV integration Alternative deposition solution for cost reduction of TSV integration J. Vitiello, F. Piallat, L. Bonnet KOBUS 611 rue Aristide Bergès, Z.A. de Pré Millet, Montbonnot-Saint-Martin, 38330 France Ph: +33

More information

Film Deposition Part 1

Film Deposition Part 1 1 Film Deposition Part 1 Chapter 11 : Semiconductor Manufacturing Technology by M. Quirk & J. Serda Spring Semester 2013 Saroj Kumar Patra Semidonductor Manufacturing Technology, Norwegian University of

More information

Energy fluxes in plasmas for fabrication of nanostructured materials

Energy fluxes in plasmas for fabrication of nanostructured materials Energy fluxes in plasmas for fabrication of nanostructured materials IEAP, Universität Kiel 2nd Graduate Summer Institute "Complex Plasmas" August 5-13, 2010 in Greifswald (Germany) AG 1 Outline Motivation

More information

Photocatalysis: semiconductor physics

Photocatalysis: semiconductor physics Photocatalysis: semiconductor physics Carlos J. Tavares Center of Physics, University of Minho, Portugal ctavares@fisica.uminho.pt www.fisica.uminho.pt 1 Guimarães Where do I come from? 3 Guimarães 4 Introduction>>

More information

Dry Plasma Reduction to Supported Platinum Nanoparticles for Flexible Dye-sensitized. Solar Cells. Yuseong-Gu, Daejeon , Korea

Dry Plasma Reduction to Supported Platinum Nanoparticles for Flexible Dye-sensitized. Solar Cells. Yuseong-Gu, Daejeon , Korea Dry Plasma Reduction to Supported Platinum Nanoparticles for Flexible Dye-sensitized Solar Cells Van-Duong Dao a, Chinh Quoc Tran a, Seung-Hyeon Ko b, Ho-Suk Choi a * a Department of Chemical Engineering,

More information

OPTICAL PROPERTIES AND SPECTROSCOPY OF NANOAAATERIALS. Jin Zhong Zhang. World Scientific TECHNISCHE INFORMATIONSBIBLIOTHEK

OPTICAL PROPERTIES AND SPECTROSCOPY OF NANOAAATERIALS. Jin Zhong Zhang. World Scientific TECHNISCHE INFORMATIONSBIBLIOTHEK OPTICAL PROPERTIES AND SPECTROSCOPY OF NANOAAATERIALS Jin Zhong Zhang University of California, Santa Cruz, USA TECHNISCHE INFORMATIONSBIBLIOTHEK Y World Scientific NEW JERSEY. t'on.don SINGAPORE «'BEIJING

More information

The use of diagrams is good and the enhancement factors seen are reasonable but not in the league of gold or silver nanoparticles.

The use of diagrams is good and the enhancement factors seen are reasonable but not in the league of gold or silver nanoparticles. Reviewers' comments: Reviewer #1 (Remarks to the Author): This is a very interesting article and should be published. The authors demonstrate a method to produce metallic MoO2 nano-dumbbells as SERS substrate

More information

Surface plasmon waveguides

Surface plasmon waveguides Surface plasmon waveguides Introduction Size Mismatch between Scaled CMOS Electronics and Planar Photonics Photonic integrated system with subwavelength scale components CMOS transistor: Medium-sized molecule

More information

A Novel Approach to the Layer Number-Controlled and Grain Size- Controlled Growth of High Quality Graphene for Nanoelectronics

A Novel Approach to the Layer Number-Controlled and Grain Size- Controlled Growth of High Quality Graphene for Nanoelectronics Supporting Information A Novel Approach to the Layer Number-Controlled and Grain Size- Controlled Growth of High Quality Graphene for Nanoelectronics Tej B. Limbu 1,2, Jean C. Hernández 3, Frank Mendoza

More information

Special Properties of Au Nanoparticles

Special Properties of Au Nanoparticles Special Properties of Au Nanoparticles Maryam Ebrahimi Chem 7500/750 March 28 th, 2007 1 Outline Introduction The importance of unexpected electronic, geometric, and chemical properties of nanoparticles

More information

From manipulation of the charge state to imaging of individual molecular orbitals and bond formation

From manipulation of the charge state to imaging of individual molecular orbitals and bond formation Scanning Probe Microscopy of Adsorbates on Insulating Films: From manipulation of the charge state to imaging of individual molecular orbitals and bond formation Gerhard Meyer, Jascha Repp, Peter Liljeroth

More information

Supplementary Figure 1 Detailed illustration on the fabrication process of templatestripped

Supplementary Figure 1 Detailed illustration on the fabrication process of templatestripped Supplementary Figure 1 Detailed illustration on the fabrication process of templatestripped gold substrate. (a) Spin coating of hydrogen silsesquioxane (HSQ) resist onto the silicon substrate with a thickness

More information

There's Plenty of Room at the Bottom

There's Plenty of Room at the Bottom There's Plenty of Room at the Bottom 12/29/1959 Feynman asked why not put the entire Encyclopedia Britannica (24 volumes) on a pin head (requires atomic scale recording). He proposed to use electron microscope

More information

A Photonic Crystal Laser from Solution Based. Organo-Lead Iodide Perovskite Thin Films

A Photonic Crystal Laser from Solution Based. Organo-Lead Iodide Perovskite Thin Films SUPPORTING INFORMATION A Photonic Crystal Laser from Solution Based Organo-Lead Iodide Perovskite Thin Films Songtao Chen 1, Kwangdong Roh 2, Joonhee Lee 1, Wee Kiang Chong 3,4, Yao Lu 5, Nripan Mathews

More information

Surface Plasmon Resonance in Metallic Nanoparticles and Nanostructures

Surface Plasmon Resonance in Metallic Nanoparticles and Nanostructures Surface Plasmon Resonance in Metallic Nanoparticles and Nanostructures Zhi-Yuan Li Optical Physics Laboratory, Institute of Physics, CAS Beijing 18, China January 5-9, 7, Fudan University, Shanghai Challenges

More information

Supplementary Information. Characterization of nanoscale temperature fields during electromigration of nanowires

Supplementary Information. Characterization of nanoscale temperature fields during electromigration of nanowires Supplementary Information Characterization of nanoscale temperature fields during electromigration of nanowires Wonho Jeong,, Kyeongtae Kim,, *, Youngsang Kim,, Woochul Lee,, *, Pramod Reddy Department

More information

High-resolution Characterization of Organic Ultrathin Films Using Atomic Force Microscopy

High-resolution Characterization of Organic Ultrathin Films Using Atomic Force Microscopy High-resolution Characterization of Organic Ultrathin Films Using Atomic Force Microscopy Jing-jiang Yu Nanotechnology Measurements Division Agilent Technologies, Inc. Atomic Force Microscopy High-Resolution

More information

SUPPLEMENTARY INFORMATION

SUPPLEMENTARY INFORMATION doi:.38/nature09979 I. Graphene material growth and transistor fabrication Top-gated graphene RF transistors were fabricated based on chemical vapor deposition (CVD) grown graphene on copper (Cu). Cu foil

More information

Supplementary Figure 1 Scheme image of GIXD set-up. The scheme image of slot die

Supplementary Figure 1 Scheme image of GIXD set-up. The scheme image of slot die Supplementary Figure 1 Scheme image of GIXD set-up. The scheme image of slot die printing system combined with grazing incidence X-ray diffraction (GIXD) set-up. 1 Supplementary Figure 2 2D GIXD images

More information

Supporting Information

Supporting Information Supporting Information Under-Oil Switchable Superhydrophobicity to Superhydrophilicity Transition on TiO 2 Nanotube Arrays Hongjun Kang, Yuyan Liu, Hua Lai, Xiaoyan Yu, Zhongjun Cheng, and Lei Jiang MIIT

More information

Supplementary Information. Atomic Layer Deposition of Platinum Catalysts on Nanowire Surfaces for Photoelectrochemical Water Reduction

Supplementary Information. Atomic Layer Deposition of Platinum Catalysts on Nanowire Surfaces for Photoelectrochemical Water Reduction Supplementary Information Atomic Layer Deposition of Platinum Catalysts on Nanowire Surfaces for Photoelectrochemical Water Reduction Neil P. Dasgupta 1 ǂ, Chong Liu 1,2 ǂ, Sean Andrews 1,2, Fritz B. Prinz

More information

Transparent Electrode Applications

Transparent Electrode Applications Transparent Electrode Applications LCD Solar Cells Touch Screen Indium Tin Oxide (ITO) Zinc Oxide (ZnO) - High conductivity - High transparency - Resistant to environmental effects - Rare material (Indium)

More information

SUPPLEMENTARY INFORMATION

SUPPLEMENTARY INFORMATION Supplementary Information: Photocurrent generation in semiconducting and metallic carbon nanotubes Maria Barkelid 1*, Val Zwiller 1 1 Kavli Institute of Nanoscience, Delft University of Technology, Delft,

More information