ENERGY BARRIERS AND STRUCTURE OF cis-, MUCO-, AND ALLO-INOSITOL HEXAACETATES IN SOLUTION'

Size: px
Start display at page:

Download "ENERGY BARRIERS AND STRUCTURE OF cis-, MUCO-, AND ALLO-INOSITOL HEXAACETATES IN SOLUTION'"

Transcription

1 ENERGY BARRIERS AND STRUCTURE OF cis-, MUCO-, AND ALLO-INOSITOL HEXAACETATES IN SOLUTION' S. BROWNSTEIN Division of Applied Chemistry, National Research Cozcncil, Ottawa, Canada Received September 29, 1961 ABSTRACT The proton resonance spectra of cis-, muco-, and allo-inositol hexaacetates as a function of tenlperature yield enthalpies of activation and Arrhenius factors for sorne of the sbeleta1 oscillatiolls of the sis-membered ring. INTRODUCTION When the location of substituents on a cyclohexane ring is such that one conformation is strongly favored, proton resonance spectroscopy may often be used to determine axial and equatorial substituents and the conformation of the ring (1-4). In those cases where rapid inversion of the chair form of the cyclohexane ring exchanges the substituents between. axial and equatorial positions only an averaged signal is observed. However, by lowering the temperature to reduce the rate of inversion it is often possible to observe the individual co~lfor~nations and determine the rate of inversion (5-9). When the rate of exchange of a substituent between an axial and equatorial position is comparable to the difference in chemical shift between them, the spectral lines corresponding to the individual positions merge to a single averaged line. This yields a single rate measurement, and an Arrhenius factor of 1013 has been assumed to obtain the enthalpy of activation. Quantitative calculatioils of line shape as a function of exchange rate have been made (10-12), enabling exchange rates to be deternlined over a temperature range. In the cyclohexa~le system for those cases where the Arrhenius factor was obtained by nuclear magnetic resonance methods values of 1010,1, 101L3, and were found (6, 9). The results obtained in the present study also indicate that the "normal" Arrhenius factor may be a poor approximation in the cyclohexane system. An investigation of ring inversions for some ~nollosubstituted cyclohexanes by ultrasonic relaxation yields "normal" Arrhenius factors (13). The activation energies are in agreement with those obtained by proton resonance measurernellts (7). From the limited results available it is difficult to determine under what circulnstances "normal" Arrhenius factors may be assumed. It is also proposed that the ring inversion may occur via a chair-planar-chair pathway a~lalogous to the Alg vibrational mode in cyclohexaile (13). The limited data presently available suggest that a solutio~l of the problem of ring inversions in the cyclohexane system will require careful examination of many more coinpounds. The results for a few compounds are presented in this paper. DISCUSSION The geometrical relationship of the substitue~lts in cis-, allo-, and muco-inositol hexaacetate as a planar model and in the chair forms is shown in Fig. 1. The acetate groups are shown but the protons attached to the cyclohexane ring are not indicated. In these three isomers an illversio~l of the chair form of the cyclohexane ring causes the three 'l'ssued as N.R.C. No Canadian Journal of Chemistry. Volume 40 (1902) 870

2 BROWNSTEIN : INOSITOL HEXAACETATES cis W FIG. I.-[ The relationship of the substituents ill cis-, allo-, and muco-inositol hesaacetates. axial substituents to become equatorial and vice versa, resulting in an identical conformation. Therefore changes in the proton resonance spectrum with temperature will only reflect a change in the inversion rate since contributions from varying amounts of two conformations cannot occur. In Fig. 2 some representative spectra of these con~pou~lds are shown. The rate constants are obtained by fitting the observed spectra with those theoretically calculated in the cis ring cis acetate allo ring 0110 ac,etate muco ring muco acetate FIG. 2. Proton resonance spectra of i~~ositol hexaacetates. case of the cis and a110 isomers (12, 14). For the nluco isomer two magnetic averaging mechanisms are occurring. The one which is observed at low temperatures yields a complex pattern of overlapping lines which cannot be rigorously analyzed. However, the rate of this averaging process can be estinlated as 12.5 sec-' at 197.2' K from the coalescence of the individual peaks at this temperature. If the assumption is made that the Arrhenius factor for this averaging process is the mean of those observed for the cis and a110 isomers an enthalpy of activation of 4.7 ltcal/mole is obtained. There will be considerable uncertainty in this value because of the approximate nature of the rate and the assumptio~l of a value for the Arrhenius factor. The magnetic averaging which is observed at high telnperatures causes the merging of the two sharp peaks due to the acetate protons. It was not possible to obtain sufficiently high telnperatures to cause complete lnerging of the separate acetate peaks in the ~nuco isomer. The rates were calculated from the decrease in separation of the lines, assullling they had a negligible width (15). The results

3 872 C.-1NADIAN JOURNAL OF CHEMISTRY. VOL. 40, 1962 are plotted in Fig. 3 and the thermodynamic quantities are listed in Table I. These were derived froin a least-squares fit of the experirne~ltal points except for the low-temperature 2.0 log k FIG. 3. Temperature dependence of the inversion rate. TABLE I Activation enthalpies and Arrhenius factors for ring oscillations of some inositol hexaacetates Isomer AH* log A cis 6.60~t all0 5.48f n~uco f averaging for the nluco isomer, as described previously. The greater uncertainties for the high-temperature averaging for the inuco isomer are readily explained by the error inherent in measuring the separation of two lines which are at most 1.91 cycles apart. The assumption of negligible line width may also be expected to introduce an error. In the chair form of the cis isomer there are two groups of three geonzetrically identical acetate substituents and a similar arrangement of hydrogens attached to the cyclohexane ring. The proton resollance spectrum, when iiiversioil is sufficiently slow, has two pealcs of equal intensity for both the acetate groups and the ring protons, which agrees with this structure. For the chair form of the a110 isomer there are three equatorial and three axial acetate groups but all those in a given group are no longer identical. Nevertheless two peaks of equal intensity ruay be observed for the acetate protons. A complex trace is obtained for the ring protons which indicates the variety of environments. This too agrees with the chair structure for the a110 isomer. In the chair forin of the ~IIUCO isomer there are also three equatorial and three axial acetate groups, with those in a given group not identical. Therefore when inversion is slow one would expect either two pealcs of equal intensity or more than two pealcs. Similarly for the ring protons a complex trace might be expected. If inversion between the two chair forms of the cyclohexane ring is rapid this still does not average all the acetate groups. In a given conformatioil there is one equatorial acetate group which has an

4 BROWNSTEIN: INOSITOL I-IEXAXCETATES 873 equatorial acetate on each side of it. There is also an axial group with axial acetate groups 011 each adjacent ring carbon atom. When inversion to the other chair conformation occurs these two groups exchange environments and appear in an average magnetic environment if the rate of exchange is sufficiently rapid. Similarly there are two equatorial and two axial acetate groups, each of which is situated between an axial and an equatorial group. I~lversio~l of the cyclohexa~le ring can also average the environment of these four acetate groups. However, the environments of the two and the four acetate groups remain unique. This can be visualized by inspection of the chair conformation of muco-inositol hexaacetate shown in Fig. 1. The observed spectra agree with this interpretation. At the lowest temperature a complex spectrum containing at least three pealcs is observed, as shown in Fig. 2. A total of four peaks with intensity ratio 1:2:2:1 might occur. I-Iowever, overlap of two of these would give rise to the observed spectrum. As the temperature is raised a two-line pattern is eventually obtained, with intensity ratio of 2:l. This correspo~lds to rapid inversioll of the chair form of the cyclohexane ring. At still higher tenlperatures the separation between the lines decreases from 1.9 to 1.4 cycles at the highest temperature reached. This requires an additional averaging mechanism. Conversion to the boat form might possibly be such a mechanism. In Fig. 4 are shown four possible conformations when the ring is in a boat configuration. FIG. 4. Boat conformations of muco-inositol hexaacetate. In confornlation I all six acetate groups are in a pseudoequatorial location. I-Iowever, the two distinguished by marl;s are not equivalent to the other four. If the ring inverts confor~nation IV is obtained. This is not equivalent to confornlation I since now all six acetate groups are in pseudoaxial positions. A great deal of steric repulsion may reasonably be expected between the acetate groups, causing this conformation to have a much higher energy than conformation I. The ring protons in confornlation I will all be axial and will have the same configuration as shown for the acetate groups in conformation IV. Another mode of motion for the boat form of the cyclohexane ring allows an infinite nunlber of intermediate configurations without altering the carbon-carbon bond angles (16). When substituents are placed on the cyclohexane ring to give the stereochelnistry of muco-inositol hexaacetate the possibilities are reduced to those shown by conformations Confornlation I1 may be generated from conformation I by a rotation about all the carbon-carbon bonds of the cyclohexane ring. Atoms 3 and 6 are now at the prows of the boat instead of 1 and 4. By a further rotation atonls 2 and 5 talce up this position as shown in conformation 111. Conformations I1 and I11 are identical, except for a mirror inlage transformation because labels are on two of the acetate groups. However, they are not the same as conformation I. The two acetate groups which are averaged by chair-chair inversion of the cyclol~exane ring correspond to those at the prows of the boat. They will still be different from the other four acetate groups. Even though the same groups of two and four remain non-equivalent

5 874 C-4NADIAN JOURNAL OF CHEMISTRY. VOL during a chair-boat conversion magnetic averaging will still occur provided that the magnetic environment of the two acetate groups is different in the boat conforlnation I than in the average of the two chair conformations. A similar situation will apply for the four equivalent acetate groups. An averaging of all six acetate groups could occur by transforn~ations among conforinations I, 11, and 111. Since confor~nations I1 and 111 contain two axial acetate groups they might be of higher potential energy than conforination I and the extent of this type of inagiletic averaging is difficult to estimate. In the chair-chair inversion of cis-inositol hexaacetate all six acetate groups have to pass by each other. In the a110 isoiner four pairs are adjacent during inversion and in the muco isoiner only two pairs. The observed enthalpies of activation also decrease in this order. Since a chair-chair inversion is presuinably involved in all three of these averaging processes it may be safe to assume a similar Arrhenius factor for the muco isomer. The magnetic averaging observed at high temperatures for the muco isomer must occur by a different mechanism, resulting in a very different Arrhenius factor. EXPERIMENTAL The proton resonance spectra were obtained on a Varian Associates high-resolution nuclear magnetic resonance spectrometer operating at 56.4 Mc/sec. The spectra were calibrated using side-band nlodulation, with the modulating frequency altered during recording of the spectra. The modulating frequencies were determined to 0.1 cycle/sec by counting with a Hewlett Paclzard Model 521C frequency counter. By averaging many determillations peak positions were determined to an accuracy of 0.1 cycle/sec for mucoinositol hexaacetate. This accuracy was not necessary for the other isomers since line shapes rather than peak positions were used to calculate the inversion rates. Since the widths of the resonance lines due to the inositol acetates were often temperature dependent they could not be used as a criterion of instrument resolution. The width at half height of a modulation sideband from the solvent signal was used to determine resolution. This width was between 0.5 and 1.1 cycle/sec in all the measurements. The thermostated probe assembly has been described previously, but was inodilied by using polyurethanefoam-jacketed glass tubes to introduce the thermostating gas, and by attaching the outlet to a water aspirator to increase the pressure differential across the probe assembly (1'7). A temperature range of f 140" C could be obtained. Chloroform solutions of the acetates were used. Purity of the inositol acetates was determined by vapor phase chromatography to be 97% for the a110 isomer, 99% for the cis isomer, and 99.8y0 for the muco isomer. ACKNOWLEDGMENTS The author is indebted to Professor S. J. Angyal for kindly supplying the inositol hexaacetates and a description of their purity. A referee suggested the low-temperature measuren~ents of the inuco isomer. REFERENCES 1. R. U. LEMIEUX, R. I<. I~ULLNIG, H. J. BERNSTEIN, and W. G. SCHNEIDER. J. Am. Chem. Soc. 79, 1005 (1957); 80, 6098 (1958). 2. R. U. LEMIEUX, R. I<. I<ULLNIG, and R. Y. MOIR. J. Am. Chem. Soc. 80, 2237 (1958). 3. S. BROWNSTEIN. J. Am. Chem. Soc. 81, 1606 (1959). 4. E. L. ELIEL. Chem. & Ind. (London), 568 (1959). 5. F. R. JENSEN, D. S. NOYCE, C. H. SEDERHOLM, and A. J. BERLIN. J. Am. Chem. Soc. 82, 1256 (1960). 6. G. V. D. TIERS. Proc. Chem. Soc. 389 (1960). 7. L. W. REEVES and I<. 0. STROMME. Trans. Faraday Soc. 57, 390 (1961). 8. W. B. MONIZ and J. A. DIXON. J. Am. Chem. Soc. 83, 1671 (1961). 9. G. CLAESON, G. ANDROES, and M. CALVIN. J. Am. Chem. Soc. 83, 4357 (1961). 10. H. S. GUTOWSKY and C. H. HOLM. J. Chem. Phys. 25, 1228 (1956). 11. E. GRUNWALD, A. LOEWENSTEIN, and S. MEIBOOM. J. Chenl. Phys. 27, 630 (1957). 12. S. MEIBOOM. Tables of exchange broadened nmr multiplets. ASTIA No. AD J. E. PIERCY. J. ACOUS~. SOC. Am. 33, 198 (1961). 14. A. LOEWENSTEIN and S. MEIBOOM. J. Chem. Phys. 27, 831 (1957). 15. S. BROWNSTEIN and A. E. STILLMAN. J. Phys. Chem. 63, 2061 (1959). 16. P. HAZEBROEIC and L. J. OOSTERHOFF. Discussions Faraday Soc. 10, 87 (1951). 17. S. BROWNSTEIN. Can. J. Chem. 37, 1119 (1959).

THE CONFIGURATION AND CONFORMATION OF THYMIDINE1

THE CONFIGURATION AND CONFORMATION OF THYMIDINE1 THE CONFIGURATION AND CONFORMATION OF THYMIDINE1 ABSTRACT The nuclear magnetic resonance spectrum for the anomer of the naturally occurring deoxyribonucleoside thymidine allowed a conclusion as to its

More information

BIOCHEMICAL AND BIOPHYSICAL RESEARCH COMMUNICATIONS. HINDERED ROTATION IN N-METHYLFORMAMIDE. A PEPTIDE-BOND MODEL SYSTEM.*t

BIOCHEMICAL AND BIOPHYSICAL RESEARCH COMMUNICATIONS. HINDERED ROTATION IN N-METHYLFORMAMIDE. A PEPTIDE-BOND MODEL SYSTEM.*t HINDERED ROTATION IN N-METHYLFORMAMIDE. A PEPTIDE-BOND MODEL SYSTEM.*t Robert C. Neuman, Jr., Violet Jonas, Karen Anderson, and Ronald Barry Department of Chemistry University of California Riverside,

More information

Exam Analysis: Organic Chemistry, Midterm 1

Exam Analysis: Organic Chemistry, Midterm 1 Exam Analysis: Organic Chemistry, Midterm 1 1) TEST BREAK DOWN: There are three independent topics covered in the first midterm, which are hybridization, structure and isomerism, and resonance. The test

More information

STEREOCHEMISTRY OF ALKANES AND CYCLOALKANES CONFORMATIONAL ISOMERS

STEREOCHEMISTRY OF ALKANES AND CYCLOALKANES CONFORMATIONAL ISOMERS STEREOCHEMISTRY OF ALKANES AND CYCLOALKANES CONFORMATIONAL ISOMERS 1 CONFORMATIONAL ISOMERS Stereochemistry concerned with the 3-D aspects of molecules Rotation is possible around C-C bonds in openchain

More information

Module 13: Chemical Shift and Its Measurement

Module 13: Chemical Shift and Its Measurement Subject Chemistry Paper No and Title Module No and Title Module Tag Paper 12: Organic Spectroscopy CHE_P12_M13_e-Text TABLE OF CONTENTS 1. Learning Outcomes 2. Introduction 3. Shielding and deshielding

More information

Chapter 15 Lecture Outline

Chapter 15 Lecture Outline Organic Chemistry, First Edition Janice Gorzynski Smith University of Hawaii Chapter 5 Lecture Outline Introduction to NMR Two common types of NMR spectroscopy are used to characterize organic structure:

More information

(1) Recall the different isomers mentioned in this tutorial.

(1) Recall the different isomers mentioned in this tutorial. DAT Organic Chemistry - Problem Drill 08: Conformational Analysis Question No. 1 of 10 Question 1. Isomers that differ by rotation about a single bond are called: Question #01 (A) Stereoisomers (B) Constitutional

More information

4. Stereochemistry of Alkanes and Cycloalkanes

4. Stereochemistry of Alkanes and Cycloalkanes 4. Stereochemistry of Alkanes and Cycloalkanes Based on McMurry s Organic Chemistry, 6 th edition, Chapter 4 2003 Ronald Kluger Department of Chemistry University of Toronto The Shapes of Molecules! The

More information

Chapter 13 Nuclear Magnetic Resonance Spectroscopy

Chapter 13 Nuclear Magnetic Resonance Spectroscopy Organic Chemistry, 6 th Edition L. G. Wade, Jr. Chapter 13 Nuclear Magnetic Resonance Spectroscopy Jo Blackburn Richland College, Dallas, TX Dallas County Community College District 2006, Prentice Hall

More information

STEREOGENIC CENTER (Chiral Center,Asymmetric Center)

STEREOGENIC CENTER (Chiral Center,Asymmetric Center) STEREOGENI ENTER (hiral enter,asymmetric enter) Atom (usually carbon) to which 4 different groups are attached: W Z X Y Many, but not all, molecules which contain a stereogenic center are chiral. (A molecule

More information

Química Orgânica I. Nuclear Magnetic Resonance Spectroscopy (II) Ciências Farmacêuticas Bioquímica Química AFB QO I 2007/08 1 AFB QO I 2007/08 2

Química Orgânica I. Nuclear Magnetic Resonance Spectroscopy (II) Ciências Farmacêuticas Bioquímica Química AFB QO I 2007/08 1 AFB QO I 2007/08 2 Química Orgânica I Ciências Farmacêuticas Bioquímica Química AFB QO I 2007/08 1 Nuclear Magnetic Resonance Spectroscopy (II) AFB QO I 2007/08 2 1 Adaptado de Organic Chemistry, 6th Edition; L.G. Wade,

More information

Nuclear Magnetic Resonance Spectroscopy: Tools for Structure Determination

Nuclear Magnetic Resonance Spectroscopy: Tools for Structure Determination Nuclear Magnetic Resonance Spectroscopy: Tools for Structure Determination Chung-Ming Sun Department of Applied Chemistry National Chiao Tung University Hualien 300, Taiwan Introduction NMR (Nuclear Magnetic

More information

STEREOGENIC CENTER (Chiral Center,Asymmetric Center) Atom (usually carbon) to which 4 different groups are attached: W Z C X Y

STEREOGENIC CENTER (Chiral Center,Asymmetric Center) Atom (usually carbon) to which 4 different groups are attached: W Z C X Y STEREOGENI ENTER (hiral enter,asymmetric enter) Atom (usually carbon) to which 4 different groups are attached: W Z X Y Many, but not all, molecules which contain a stereogenic center are chiral. (A molecule

More information

Chapter 14. Nuclear Magnetic Resonance Spectroscopy

Chapter 14. Nuclear Magnetic Resonance Spectroscopy Organic Chemistry, Second Edition Janice Gorzynski Smith University of Hawai i Chapter 14 Nuclear Magnetic Resonance Spectroscopy Prepared by Rabi Ann Musah State University of New York at Albany Copyright

More information

Chapter 13 Structure t Determination: Nuclear Magnetic Resonance Spectroscopy

Chapter 13 Structure t Determination: Nuclear Magnetic Resonance Spectroscopy John E. McMurry www.cengage.com/chemistry/mcmurry Chapter 13 Structure t Determination: ti Nuclear Magnetic Resonance Spectroscopy Revisions by Dr. Daniel Holmes MSU Paul D. Adams University of Arkansas

More information

Lab Workshop 1: Alkane and cycloalkane conformations

Lab Workshop 1: Alkane and cycloalkane conformations Lab Workshop : lkane and cycloalkane conformations ach student work group choose a Leader (reads activity out loud, poses questions to group), Facilitator (makes sure everyone is participating equally,

More information

16.1 Introduction to NMR Spectroscopy. Spectroscopy. Spectroscopy. Spectroscopy. Spectroscopy. Spectroscopy 4/11/2013

16.1 Introduction to NMR Spectroscopy. Spectroscopy. Spectroscopy. Spectroscopy. Spectroscopy. Spectroscopy 4/11/2013 What is spectroscopy? NUCLEAR MAGNETIC RESONANCE (NMR) spectroscopy may be the most powerful method of gaining structural information about organic compounds. NMR involves an interaction between electromagnetic

More information

Organic Chemistry 1 Lecture 6

Organic Chemistry 1 Lecture 6 CEM 232 Organic Chemistry I Illinois at Chicago Organic Chemistry 1 Lecture 6 Instructor: Prof. Duncan Wardrop Time/Day: T & R, 12:30-1:45 p.m. January 28, 2010 1 Self Test Question Which form of strain

More information

Conformational Isomers. Isomers that differ as a result of sigma bond rotation of C-C bond in alkanes

Conformational Isomers. Isomers that differ as a result of sigma bond rotation of C-C bond in alkanes Conformational Isomers Isomers that differ as a result of sigma bond Isomers that differ as a result of sigma bond rotation of C-C bond in alkanes Bond Rotation and Newman Projections As carbon-carbon

More information

PDF hosted at the Radboud Repository of the Radboud University Nijmegen

PDF hosted at the Radboud Repository of the Radboud University Nijmegen PDF hosted at the Radboud Repository of the Radboud University Nijmegen The following full text is a publisher's version. For additional information about this publication click this link. http://hdl.handle.net/2066/143098

More information

Chapter 2 Alkanes and Cycloalkanes; Conformational and Geometrical Isomerism

Chapter 2 Alkanes and Cycloalkanes; Conformational and Geometrical Isomerism Chapter 2 Alkanes and Cycloalkanes; Conformational and Geometrical Isomerism Alkanes are hydrocarbons containing only single Bonds saturated General formula: CnH2n+2 Drawing chemical structures Several

More information

Chapter 3 AN INTRODUCTION TO ORGANIC COMPOUNDS NOMENCLATURE, PHYSICAL PROPERTIES, REPRESENTATION OF STRUCTURE AND

Chapter 3 AN INTRODUCTION TO ORGANIC COMPOUNDS NOMENCLATURE, PHYSICAL PROPERTIES, REPRESENTATION OF STRUCTURE AND ORGANIC CHEMISTRY, 2 ND EDITION PAULA YURKANIS BRUICE Chapter 3 AN INTRODUCTION TO ORGANIC COMPOUNDS NOMENCLATURE, PHYSICAL PROPERTIES, AND REPRESENTATION OF STRUCTURE RAED M. AL-ZOUBI, ASSISTANT PROFESSOR

More information

PAPER No. 12: ORGANIC SPECTROSCOPY. Module 19: NMR Spectroscopy of N, P and F-atoms

PAPER No. 12: ORGANIC SPECTROSCOPY. Module 19: NMR Spectroscopy of N, P and F-atoms Subject Chemistry Paper No and Title Module No and Title Module Tag Paper 12: Organic Spectroscopy CHE_P12_M19_e-Text TABLE OF CONTENTS 1. Learning Outcomes 2. 15 N NMR spectroscopy 3. 19 F NMR spectroscopy

More information

The Use of NMR Spectroscopy

The Use of NMR Spectroscopy Spektroskopi Molekul Organik (SMO): Nuclear Magnetic Resonance (NMR) Spectroscopy All is adopted from McMurry s Organic Chemistry The Use of NMR Spectroscopy Used to determine relative location of atoms

More information

Andrew Rosen *Note: If you can rotate a molecule to have one isomer equal to another, they are both the same

Andrew Rosen *Note: If you can rotate a molecule to have one isomer equal to another, they are both the same *Note: If you can rotate a molecule to have one isomer equal to another, they are both the same *Note: For hybridization, if an SP 2 is made, there is one unhybridized p orbital (because p usually has

More information

Structure Determination: Nuclear Magnetic Resonance Spectroscopy

Structure Determination: Nuclear Magnetic Resonance Spectroscopy Structure Determination: Nuclear Magnetic Resonance Spectroscopy Why This Chapter? NMR is the most valuable spectroscopic technique used for structure determination More advanced NMR techniques are used

More information

Dr. Mishu Singh Chemistry Department Maharana Paratap Govt. P.G College Hardoi.

Dr. Mishu Singh Chemistry Department Maharana Paratap Govt. P.G College Hardoi. Dr. Mishu Singh Chemistry Department Maharana Paratap Govt. P.G College Hardoi. 1 Conformations The infinite number of arrangements of the atoms or groups of a molecule in three dimentional space which

More information

ORGANIC - EGE 5E CH. 5 - ALKANES AND CYCLOALKANES.

ORGANIC - EGE 5E CH. 5 - ALKANES AND CYCLOALKANES. !! www.clutchprep.com CONCEPT: ALKANE NOMENCLATURE Before 1919, chemists literally had to memorize thousands of random (common) chemical names. IUPAC naming provides a systematic method to give every chemical

More information

Alkanes. Introduction

Alkanes. Introduction Introduction Alkanes Recall that alkanes are aliphatic hydrocarbons having C C and C H bonds. They can be categorized as acyclic or cyclic. Acyclic alkanes have the molecular formula C n H 2n+2 (where

More information

Basic Organic Chemistry Course code : CHEM (Pre-requisites : CHEM 11122)

Basic Organic Chemistry Course code : CHEM (Pre-requisites : CHEM 11122) Basic Organic Chemistry Course code : CHEM 12162 (Pre-requisites : CHEM 11122) Chapter 01 Mechanistic Aspects of S N2,S N1, E 2 & E 1 Reactions Dr. Dinesh R. Pandithavidana Office: B1 222/3 Phone: (+94)777-745-720

More information

Constitutional Isomers and Conformations of Alkanes & Cycloalkanes

Constitutional Isomers and Conformations of Alkanes & Cycloalkanes Discovering Molecular Models #1: Constitutional Isomers Conformations of Alkanes & Cycloalkanes There are no additional tutorial or laboratory notes. Read bring your course notes, as they provide all of

More information

Constitutional Isomers and Conformations of Alkanes & Cycloalkanes

Constitutional Isomers and Conformations of Alkanes & Cycloalkanes Discovering Molecular Models #1: Constitutional Isomers Conformations of Alkanes & Cycloalkanes There are no additional tutorial or laboratory notes. Read bring your course notes, as they provide all of

More information

Suggested solutions for Chapter 16

Suggested solutions for Chapter 16 s for Chapter 16 16 PRBLEM 1 Identify the chair or boat rings in the following structures and say why this particular structure is adopted.. Exploration of simple examples of chair and boat forms. The

More information

Module 20: Applications of PMR in Structural Elucidation of Simple and Complex Compounds and 2-D NMR spectroscopy

Module 20: Applications of PMR in Structural Elucidation of Simple and Complex Compounds and 2-D NMR spectroscopy Subject Chemistry Paper No and Title Module No and Title Module Tag Paper 12: Organic Spectroscopy Module 20: Applications of PMR in Structural Elucidation of Simple and Complex Compounds and 2-D NMR spectroscopy

More information

H B. θ = 90 o. Lecture notes Part 4: Spin-Spin Coupling. θ θ

H B. θ = 90 o. Lecture notes Part 4: Spin-Spin Coupling. θ θ Lecture notes Part 4: Spin-Spin Coupling F. olger Försterling October 4, 2011 So far, spins were regarded spins isolated from each other. owever, the magnetic moment of nuclear spins also have effect on

More information

Homework Problem Set 4 Solutions

Homework Problem Set 4 Solutions Chemistry 380.37 Dr. Jean M. Standard omework Problem Set 4 Solutions 1. A conformation search is carried out on a system and four low energy stable conformers are obtained. Using the MMFF force field,

More information

3 Chemical exchange and the McConnell Equations

3 Chemical exchange and the McConnell Equations 3 Chemical exchange and the McConnell Equations NMR is a technique which is well suited to study dynamic processes, such as the rates of chemical reactions. The time window which can be investigated in

More information

Br OAc. OAc. Problem R-11L (C 16 H 21 BrO 10 ) 270 MHz 1 H NMR spectrum in CDCl 3 Source: Ieva Reich (digitized hard copy) g. AcO. AcO H.

Br OAc. OAc. Problem R-11L (C 16 H 21 BrO 10 ) 270 MHz 1 H NMR spectrum in CDCl 3 Source: Ieva Reich (digitized hard copy) g. AcO. AcO H. Problem R-11L (C 16 21 O ) 270 Mz 1 NMR spectrum in CDCl 3 30 20 0 z 1541.1 1544.3 1530.9 1534.3 1501.8 1506.0 1509.4 1511.3 1512.6 1492.1 1476.0 1466.4 1456.8 1403.1 1406.8 1393.2 1397.2 1198.2 1201.9

More information

Calculate a rate given a species concentration change.

Calculate a rate given a species concentration change. Kinetics Define a rate for a given process. Change in concentration of a reagent with time. A rate is always positive, and is usually referred to with only magnitude (i.e. no sign) Reaction rates can be

More information

NUCLEAR MAGNETIC RESONANCE AND INTRODUCTION TO MASS SPECTROMETRY

NUCLEAR MAGNETIC RESONANCE AND INTRODUCTION TO MASS SPECTROMETRY NUCLEAR MAGNETIC RESONANCE AND INTRODUCTION TO MASS SPECTROMETRY A STUDENT SHOULD BE ABLE TO: 1. Identify and explain the processes involved in proton ( 1 H) and carbon-13 ( 13 C) nuclear magnetic resonance

More information

Practice Hour Examination # 1-2

Practice Hour Examination # 1-2 CHEM 346 Organic Chemistry I Fall 2013 Practice Hour Examination # 1-2 Solutions Key Page 1 of 12 CHEM 346 Organic Chemistry I (for Majors) Instructor: Paul J. Bracher Practice Hour Examination # 1-2 Monday,

More information

Basic One- and Two-Dimensional NMR Spectroscopy

Basic One- and Two-Dimensional NMR Spectroscopy Horst Friebolin Basic One- and Two-Dimensional NMR Spectroscopy Third Revised Edition Translated by Jack K. Becconsall WILEY-VCH Weinheim New York Chichester Brisbane Singapore Toronto Contents XV 1 The

More information

Magnetic Nuclei other than 1 H

Magnetic Nuclei other than 1 H Magnetic Nuclei other than 1 H 2 H (Deuterium): I = 1 H,D-Exchange might be used to simplify 1 H-NMR spectra since H-D couplings are generally small; - - - -O- - - -D 2 -O- triplet of triplets slightly

More information

Magnetic Resonance Spectroscopy

Magnetic Resonance Spectroscopy INTRODUCTION TO Magnetic Resonance Spectroscopy ESR, NMR, NQR D. N. SATHYANARAYANA Formerly, Chairman Department of Inorganic and Physical Chemistry Indian Institute of Science, Bangalore % I.K. International

More information

Nuclear magnetic resonance spectroscopy II. 13 C NMR. Reading: Pavia Chapter , 6.7, 6.11, 6.13

Nuclear magnetic resonance spectroscopy II. 13 C NMR. Reading: Pavia Chapter , 6.7, 6.11, 6.13 Nuclear magnetic resonance spectroscopy II. 13 NMR Reading: Pavia hapter 6.1-6.5, 6.7, 6.11, 6.13 1. General - more/better/additional structural information for larger compounds -problems: a) isotopes

More information

75. A This is a Markovnikov addition reaction. In these reactions, the pielectrons in the alkene act as a nucleophile. The strongest electrophile will

75. A This is a Markovnikov addition reaction. In these reactions, the pielectrons in the alkene act as a nucleophile. The strongest electrophile will 71. B SN2 stands for substitution nucleophilic bimolecular. This means that there is a bimolecular rate-determining step. Therefore, the reaction will follow second-order kinetics based on the collision

More information

When I lecture we will add more info, so leave spaces in your notes

When I lecture we will add more info, so leave spaces in your notes Title and Highlight Right side: NOTES! Topic: EQ: Date Date NOTES: Write out the notes from my website. Use different types of note-taking methods to help you recall info (different color pens/highlighters,

More information

Stereochemical Considerations in Planning Synthesis

Stereochemical Considerations in Planning Synthesis Chapter 2 Stereochemical Considerations in Planning Synthesis Chapter 2 Stereochemical Considerations in Planning Syntheses 2.1 Conformational Analysis Molecules that differ from each other by rotation

More information

Final Exam Chem 3045x Wednesday, Dec. 17, 1997

Final Exam Chem 3045x Wednesday, Dec. 17, 1997 Final Exam Chem 3045x Wednesday, Dec. 17, 1997 Instructions: This is a closed book examination. You may not use any notes, books or external materials during the course of the examination. Please print

More information

Nuclear Magnetic Resonance Spectroscopy: Purpose: Connectivity, Map of C-H framework

Nuclear Magnetic Resonance Spectroscopy: Purpose: Connectivity, Map of C-H framework Nuclear Magnetic Resonance Spectroscopy: Purpose: Connectivity, Map of C- framework Four Factors of Proton NMR (PMR OR NMR):. Symmetry: Number of chemically different protons (symmetry) as shown by number

More information

Chem 310, Organic Chemistry Lab Molecular Modeling Using Macromodel

Chem 310, Organic Chemistry Lab Molecular Modeling Using Macromodel Chem 310, Organic Chemistry Lab Molecular Modeling Using Macromodel This is a molecular modeling experiment, and should be written up in your lab notebook just as if it were a normal "wet-chemistry" experiment.

More information

Study of the Conformational Dependence of 13 C Chemical Shifts of Cycloalkanes using Regression Analysis Method. Abstract

Study of the Conformational Dependence of 13 C Chemical Shifts of Cycloalkanes using Regression Analysis Method. Abstract JJC Jordan Journal of Chemistry Vol. No., 00, pp. - Study of the Conformational Dependence of C Chemical Shifts of Cycloalkanes using Regression Analysis Method Emad A.S. Al-Hyali a *, Faiz M.A. Al-Abady

More information

GOODLUCK TUITION CENTER FOR CHEMISTRY. 655 A 48TH STREET 9 TH SECTOR CHENNAI - 78 Ph: Cell : ISOMERISM

GOODLUCK TUITION CENTER FOR CHEMISTRY. 655 A 48TH STREET 9 TH SECTOR CHENNAI - 78 Ph: Cell : ISOMERISM GOODLUCK TUITION CENTER FOR CHEMISTRY 655 A 48TH STREET 9 TH SECTOR CHENNAI - 78 Ph: 2366 3848 Cell : 9444357037 ISOMERISM 1. Mesotartaric acid is an optically inactive compound with asymmetric carbon

More information

CHE 321 Summer 2010 Exam 2 Form Choose the structure(s) that represent cis-1-sec-butyl-4-methylcyclohexane. I II III

CHE 321 Summer 2010 Exam 2 Form Choose the structure(s) that represent cis-1-sec-butyl-4-methylcyclohexane. I II III CE 321 Summer 2010 Exam 2 orm 2 Multiple Choice Questions: 60 points 1. Choose the structure(s) that represent cis-1-sec-butyl-4-methylcyclohexane. I II III (A) I only (B) II only (C) I and II only II

More information

All measurement has a limit of precision and accuracy, and this must be taken into account when evaluating experimental results.

All measurement has a limit of precision and accuracy, and this must be taken into account when evaluating experimental results. Chapter 11: Measurement and data processing and analysis 11.1 Uncertainty and error in measurement and results All measurement has a limit of precision and accuracy, and this must be taken into account

More information

Chapter 13: Nuclear Magnetic Resonance (NMR) Spectroscopy direct observation of the H s and C s of a molecules

Chapter 13: Nuclear Magnetic Resonance (NMR) Spectroscopy direct observation of the H s and C s of a molecules hapter 13: Nuclear Magnetic Resonance (NMR) Spectroscopy direct observation of the s and s of a molecules Nuclei are positively charged and spin on an axis; they create a tiny magnetic field + + Not all

More information

unsaturated (one or more pi bonds) alkanes alkenes alkynes benzene naming alkanes C 4 H 10 C 5 H 12 C 6 H 14 C 7 H 16 C 8 H 18 C 9 H 20 C 10 H 22

unsaturated (one or more pi bonds) alkanes alkenes alkynes benzene naming alkanes C 4 H 10 C 5 H 12 C 6 H 14 C 7 H 16 C 8 H 18 C 9 H 20 C 10 H 22 hapter 4: Alkanes and ycloalkanes [Sections: 4.1-4.14] Basic Organic ompound Nomenclature hydrocarbons: comprised of just carbon and hydrogen saturated (no pi bonds) unsaturated (one or more pi bonds)

More information

Conformational Analysis

Conformational Analysis onformational Analysis Free Rotation about arbon-arbon Single Bonds A carbon carbon single bond is formed by the end-on overlap of cylindrically symmetrical sp 3 orbitals. Therefore, attached carbon atoms

More information

Conjugated Systems, Orbital Symmetry and UV Spectroscopy

Conjugated Systems, Orbital Symmetry and UV Spectroscopy Conjugated Systems, Orbital Symmetry and UV Spectroscopy Introduction There are several possible arrangements for a molecule which contains two double bonds (diene): Isolated: (two or more single bonds

More information

Chapter 4 Alkanes: Nomenclature, Conformational Analysis, and an Introduction to Synthesis"

Chapter 4 Alkanes: Nomenclature, Conformational Analysis, and an Introduction to Synthesis Chapter 4 Alkanes: Nomenclature, Conformational Analysis, and an Introduction to Synthesis" Alkanes = saturated hydrocarbons" Simplest alkane = methane C 4" " We can build additional alkanes by adding

More information

Chapter 4: Alkanes and Cycloalkanes

Chapter 4: Alkanes and Cycloalkanes 1. Nomenclature hapter 4: lkanes and ycloalkanes hydrocarbons: comprised of just carbon and hydrogen saturated (no pi bonds) [Sections: 4.1-4.14] unsaturated (one or more pi bonds) alkanes alkenes alkynes

More information

CHEM50002: Orbitals in Organic Chemistry- Stereoelectronics. LECTURE 2 Stereoelectronics of Ground States Conformational Analysis

CHEM50002: Orbitals in Organic Chemistry- Stereoelectronics. LECTURE 2 Stereoelectronics of Ground States Conformational Analysis CEM50002: rbitals in rganic Chemistry- Stereoelectronics 1 LECTUE 2 Stereoelectronics of Ground States Conformational Analysis Alan C. Spivey a.c.spivey@imperial.ac.uk Feb-Mar 2018 2 Format & scope of

More information

Spectroscopy. Empirical Formula: Chemical Formula: Index of Hydrogen Deficiency (IHD)

Spectroscopy. Empirical Formula: Chemical Formula: Index of Hydrogen Deficiency (IHD) Spectroscopy Empirical Formula: Chemical Formula: Index of Hydrogen Deficiency (IHD) A)From a structure: B)From a molecular formula, C c H h N n O o X x, Formula for saturated hydrocarbons: Subtract the

More information

Chemistry 3719, Fall 2002 Exam 1 Name:

Chemistry 3719, Fall 2002 Exam 1 Name: Chemistry 3719, Fall 2002 Exam 1 Name: This exam is worth 100 points out of a total of 600 points for Chemistry 3719/3719L. You have 50 minutes to complete the exam and you may use molecular models as

More information

Loudon Chapter 7 Review: Cyclic Compounds Jacquie Richardson, CU Boulder Last updated 8/24/2017

Loudon Chapter 7 Review: Cyclic Compounds Jacquie Richardson, CU Boulder Last updated 8/24/2017 Compounds with a single ring are monocyclic. For example: Assuming they have no double or triple bonds, they each have one degree of unsaturation. This means that their formulas follow the pattern C nh

More information

Chemistry 123: Physical and Organic Chemistry Topic 1: Organic Chemistry

Chemistry 123: Physical and Organic Chemistry Topic 1: Organic Chemistry Topic 1: Mechanisms and Curved Arrows etc Reactions of Alkenes:.Similar functional groups react the same way. Why? Winter 2009 Page 73 Topic 1: Mechanisms and Curved Arrows etc Reactivity:.Electrostatic

More information

CHEM1102 Worksheet 4 Answers to Critical Thinking Questions Model 1: Infrared (IR) Spectroscopy

CHEM1102 Worksheet 4 Answers to Critical Thinking Questions Model 1: Infrared (IR) Spectroscopy CEM1102 Worksheet 4 Answers to Critical Thinking Questions Model 1: Infrared (IR) Spectroscopy 1. See below. Model 2: UV-Visible Spectroscopy 1. See below. 2. All of the above. 3. Restricted to the identification

More information

Organic Chemistry Peer Tutoring Department University of California, Irvine

Organic Chemistry Peer Tutoring Department University of California, Irvine Organic Chemistry Peer Tutoring Department University of California, Irvine Arash Khangholi (akhangho@uci.edu) Cassandra Amezquita (camezqu1@uci.edu) Jiana Machhor (jmachhor@uci.edu) OCHEM 51A Professor

More information

Nuclear Magnetic Resonance H-NMR Part 1 Introduction to NMR, Instrumentation, Sample Prep, Chemical Shift. Dr. Sapna Gupta

Nuclear Magnetic Resonance H-NMR Part 1 Introduction to NMR, Instrumentation, Sample Prep, Chemical Shift. Dr. Sapna Gupta Nuclear Magnetic Resonance H-NMR Part 1 Introduction to NMR, Instrumentation, Sample Prep, Chemical Shift Dr. Sapna Gupta Introduction NMR is the most powerful tool available for organic structure determination.

More information

ORGANIC - BRUICE 8E CH.3 - AN INTRODUCTION TO ORGANIC COMPOUNDS

ORGANIC - BRUICE 8E CH.3 - AN INTRODUCTION TO ORGANIC COMPOUNDS !! www.clutchprep.com CONCEPT: INDEX OF HYDROGEN DEFICIENCY (STRUCTURAL) A saturated molecule is any molecule that has the maximum number of hydrogens possible for its chemical structure. The rule that

More information

First Name MIKE. Chem 30A Winter 2005 MIDTERM #1 (50 Min) Weds February 2nd

First Name MIKE. Chem 30A Winter 2005 MIDTERM #1 (50 Min) Weds February 2nd Last First MI Student ID Number: Total Score Circle the name of your TA: MIKE ROB Discussion Section Day: Time: / 00 Chem 30A Winter 2005 MIDTERM # (50 Min) Weds February 2nd INTERPRETATION OF TE QUESTIONS

More information

CHEMISTRY MIDTERM # 1 answer key October 05, 2010

CHEMISTRY MIDTERM # 1 answer key October 05, 2010 CEMISTRY 313-03 MIDTERM # 1 answer key ctober 05, 2010 Statistics: Average: 73 pts (73%); ighest: 99 pts (99%); Lowest: 31 pts (31%) Number of students performing at or above average: 61 (52%) Number of

More information

4. NMR spectra. Interpreting NMR spectra. Low-resolution NMR spectra. There are two kinds: Low-resolution NMR spectra. High-resolution NMR spectra

4. NMR spectra. Interpreting NMR spectra. Low-resolution NMR spectra. There are two kinds: Low-resolution NMR spectra. High-resolution NMR spectra 1 Interpreting NMR spectra There are two kinds: Low-resolution NMR spectra High-resolution NMR spectra In both cases the horizontal scale is labelled in terms of chemical shift, δ, and increases from right

More information

LECTURE 2 STRUCTURE AND PROPERTIES OF ORGANIC MOLECULES

LECTURE 2 STRUCTURE AND PROPERTIES OF ORGANIC MOLECULES LECTURE 2 STRUCTURE AND PROPERTIES OF ORGANIC MOLECULES 1. Atomic wave functions and orbitals. LCAO. The important thing to know is that atomic orbitals are represented by wave functions, and they have

More information

a. Does the model have a plane of symmetry? Yes No The central carbon is said to be a stereocenter, stereogenic center, or chiral carbon.

a. Does the model have a plane of symmetry? Yes No The central carbon is said to be a stereocenter, stereogenic center, or chiral carbon. Name: TA Name Lab Section: Day Time OPTICAL ISOMERISM 1. Construct a model that has a central carbon atom with 4 different colored spheres attached to it, representing four different atoms or groups. Draw

More information

Chemistry 333. Examination #1

Chemistry 333. Examination #1 Chemistry 333 Examination #1 June 19, 2006 Professor Charonnat Be certain that your examination has six (6) pages including this one. Put your name on each page of this examination booklet. By putting

More information

Course Goals for CHEM 202

Course Goals for CHEM 202 Course Goals for CHEM 202 Students will use their understanding of chemical bonding and energetics to predict and explain changes in enthalpy, entropy, and free energy for a variety of processes and reactions.

More information

H C H H. sawhorse projection

H C H H. sawhorse projection Alkanes arbons are sp 3 hybridized. Bonds are σ-bonds. - bonds ~ 1.54Å; - bonds ~ 1.10Å. Bond angles ~ 109 o. Ethane sawhorse projection Newman projection Different arrangements of atoms in a molecule

More information

4. Studying Dynamic Processes by NMR

4. Studying Dynamic Processes by NMR 4. Studying Dynamic Processes by NMR Intramolecular processes rotations (M-C, M-M, C-C or other bonds) skeletal rearrangements ring whizzing (migration of metal on 1 -C 5 H 5 rings) hapticity changes (

More information

UCI DEPARTMENT OF ORGANIC CHEMISTRY PEER TUTORING REVIEW SESSION FEEDBACK EVALUATION

UCI DEPARTMENT OF ORGANIC CHEMISTRY PEER TUTORING REVIEW SESSION FEEDBACK EVALUATION UCI DEPARTMENT OF ORGANIC CHEMISTRY PEER TUTORING REVIEW SESSION FEEDBACK EVALUATION Quarter: Fall Date: 12/07/18 Class: Rychnovsky Final Review Tutors Names: Ying Chow, Hannah Nguyen, Joshua Torosyan

More information

NAME: STUDENT NUMBER: Page 1 of 4

NAME: STUDENT NUMBER: Page 1 of 4 NAME: STUDENT NUMBER: Page 1 of 4 Chemistry 2.339 Midterm Test Friday ctober 28, 2005 This test is worth 40 Marks. You must complete all work within the class period. Put all answers in the space provided.

More information

Chemistry 605 (Reich)

Chemistry 605 (Reich) Chemistry 60 (Reich) SECD UR EXAM Sat. April 9, 0 Question/oints R-A /0 R-B / R-C /0 R-D / R-E /0 R-F /0 Total /00 Average 6 i 9 Mode Median 6 AB 7 BC Distribution from grade list (average: 6.; count:

More information

Alkanes and Cycloalkanes

Alkanes and Cycloalkanes Chapter 3 Alkanes and Cycloalkanes Two types Saturated hydrocarbons Unsaturated hydrocarbons 3.1 Alkanes Also referred as aliphatic hydrocarbons General formula: CnH2n+2 (straight chain) and CnH2n (cyclic)

More information

16.1 Introduction to NMR. Spectroscopy

16.1 Introduction to NMR. Spectroscopy 16.1 Introduction to NMR What is spectroscopy? Spectroscopy NUCLEAR MAGNETIC RESNANCE (NMR) spectroscopy may be the most powerful method of gaining structural information about organic compounds. NMR involves

More information

Analysis of NMR Spectra Part 2

Analysis of NMR Spectra Part 2 Analysis of NMR Spectra Part 2-1- Analysis of NMR Spectra Part 2 "Things should be made as simple as possible, but not any simpler." Albert Einstein 1.1 Review of Basic NMR Concepts NMR analysis is a complex

More information

Alicyclic Hydrocarbons can be classified into: Cycloalkanes Cycloalkenes Cycloalkynes

Alicyclic Hydrocarbons can be classified into: Cycloalkanes Cycloalkenes Cycloalkynes Cycloalkanes Open-chain The carbon atoms are attached to one another to form chains Ex: CH 3 -CH 2 -CH 2 -CH 3 n-butane Cyclic compounds the carbon atoms are arranged to form rings called: cyclic compounds,

More information

Chemistry: The Central Science. Chapter 9: Molecular Geometry and Bonding Theory

Chemistry: The Central Science. Chapter 9: Molecular Geometry and Bonding Theory Chemistry: The Central Science Chapter 9: Molecular Geometry and Bonding Theory The shape and size of a molecule of a particular substance, together with the strength and polarity of its bonds, largely

More information

et[ailn B:ag;el Research Limited LIBRARY TECHNICAL FILES.

et[ailn B:ag;el Research Limited LIBRARY TECHNICAL FILES. ja 15 ' 76 et[ailn B:ag;el Research Limited LIBRARY TECHNICAL FILES.,...., rife -+ {-- *b A.- i a e; t V t~ AX ;, A, : d d-. *. -. -1s \ I '~:, - r... -_,-, -...-- _.---.A..h $ I. m THE INSTITUTE OF PAPER

More information

CHEM 344 Summer 2016 Spectroscopy and WebMO Exam (75 pts)

CHEM 344 Summer 2016 Spectroscopy and WebMO Exam (75 pts) CHEM 344 Summer 2016 Spectroscopy and WebMO Exam (75 pts) Name: TA Name: Exam Length = 120 min DO NOT REMOVE ANY PAGES FROM THIS EXAM PACKET. Directions for drawing molecules, reactions, and electron-pushing

More information

Clickers. a. I watched all 5 videos b. The dog ate my iphone

Clickers. a. I watched all 5 videos b. The dog ate my iphone Clickers a. I watched all 5 videos b. The dog ate my iphone 40% 33% 33% 40% 59% 67% of you: Watch youtube! PRBLEMS: Complete end of chapter 13 problems 1 10 from Lab Manual Answers 1 NMR Protons (nucleus

More information

Chapter 8 Alkyl Halides and Elimination Reactions

Chapter 8 Alkyl Halides and Elimination Reactions Organic Chemistry, Second Edition Janice Gorzynski Smith University of Hawai i Chapter 8 Alkyl Halides and Elimination Reactions Prepared by Rabi Ann Musah State University of New York at Albany Copyright

More information

A Combined Optical and EPR Spectroscopy Study: Azobenzene-Based Biradicals as Reversible Molecular Photoswitches

A Combined Optical and EPR Spectroscopy Study: Azobenzene-Based Biradicals as Reversible Molecular Photoswitches Electronic Supplementary Material (ESI) for Physical Chemistry Chemical Physics. This journal is the Owner Societies 2017 A Combined Optical and EPR Spectroscopy Study: Azobenzene-Based Biradicals as Reversible

More information

CHAPTER 2. Structure and Reactivity: Acids and Bases, Polar and Nonpolar Molecules

CHAPTER 2. Structure and Reactivity: Acids and Bases, Polar and Nonpolar Molecules CHAPTER 2 Structure and Reactivity: Acids and Bases, Polar and Nonpolar Molecules 2-1 Kinetics and Thermodynamics of Simple Chemical Processes Chemical thermodynamics: Is concerned with the extent that

More information

ISOMERIC NITROPROPENES AND THEIR NUCLEAR IvlAGNETIC RESONANCE SPECTRA

ISOMERIC NITROPROPENES AND THEIR NUCLEAR IvlAGNETIC RESONANCE SPECTRA Tetrahedron, 1964, Vol. 20, pp. 1519 to 1526. Pergamon Press Ltd. Printed in Northern Ireland ISOMERIC NITROPROPENES AND THEIR NUCLEAR IvlAGNETIC RESONANCE SPECTRA Yu. V. BASKOv,*f T. URBAŃSKI, M. WITANOWSKI

More information

Chapter 2. Alkanes and Cycloalkanes; Conformational and Geometrical Isomerism

Chapter 2. Alkanes and Cycloalkanes; Conformational and Geometrical Isomerism Chapter 2 Alkanes and Cycloalkanes; Conformational and Geometrical Isomerism Hydrocarbons are compounds that contain only carbon and hydrogen. There are three main classes of hydrocarbons, based on the

More information

9. Stereochemistry: Introduction to Using Molecular Models

9. Stereochemistry: Introduction to Using Molecular Models 9. Stereochemistry: Introduction to Using Molecular Models The first part of this document reviews some of the most important stereochemistry topics covered in lecture. Following the introduction, a number

More information

O N N. electrons in ring

O N N. electrons in ring ame I. ( points) Page 1 A. The compound shown below is a commonly prescribed antifungal drug. It belongs to a category of compounds known as triazoles. Analyze the geometry and other properties for various

More information

1,2-Dienes: 1,2-Dienes have two double bonds both joined to a central carbon which is often represented by a dot: R 2 R 1 R 4

1,2-Dienes: 1,2-Dienes have two double bonds both joined to a central carbon which is often represented by a dot: R 2 R 1 R 4 LETURE 2 Alkenes: In alkenes we make the σ-bonds between carbon atoms by overlapping sp 2 hybrid orbitals which have been produced by the hybridisation of one s and only two p orbitals. These sp 2 hybrids

More information

CHEM 231 (Davis) Organic Chemistry FINAL EXAM May 15, YOUR NAME (Last, First, M.I.) DISCUSSION SECTION #53 (5 Points)

CHEM 231 (Davis) Organic Chemistry FINAL EXAM May 15, YOUR NAME (Last, First, M.I.) DISCUSSION SECTION #53 (5 Points) CHEM 231 (Davis) rganic Chemistry FINAL EXAM May 15, 2006 YUR NAME (Last, First, M.I.) DISCUSSIN SECTIN #53 (5 Points) Initial of last name Instructions Please fill in your name in the space above and

More information

NMR Spectroscopy. Chapter 19

NMR Spectroscopy. Chapter 19 NMR Spectroscopy Chapter 19 Nuclear Magnetic Resonance spectroscopy is a powerful analytical technique used to characterize organic molecules by identifying carbon-hydrogen frameworks within molecules.

More information