Size: px
Start display at page:

Download ""

Transcription

1 Inkjet-Printed Graphene for Flexible Micro-Supercapacitors L.T. Le 1, M.H. Ervin 2, H. Qiu 1, B.E. Fuchs 3, J. Zunino 3, and W.Y. Lee 1 1 Chemical Engineering and Materials Science, Stevens Institute of Technology, Hoboken, NJ 07030, USA 2 U.S. Army Research Laboratory, RDRL-SER-L, 2800 Powder Mill Road, Adelphi, MD 20783, USA 3 U.S. Army Armament Research, Development and Engineering Center, Picatinny Arsenal, NJ, 07806, USA wlee@stevens.edu Abstract Here we report our multi-institutional effort in exploring inkjet printing, as a scalable manufacturing pathway of fabricating graphene electrodes for flexible micro-supercapacitors. This effort is founded on our recent discovery that graphene oxide nanosheets can be easily inkjet-printed and thermally reduced to produce and pattern graphene electrodes on flexible substrates with a lateral spatial resolution of 50 µm. The highest specific energy and specific power were measured to be 6.74 Wh/kg and 2.19 kw/kg, respectively. The electrochemical performance of the graphene electrodes compared favorably to that of other graphene-based electrodes fabricated by traditional powder consolidation methods. This paper also outlines our current activities aimed at increasing the capacitance of the printed graphene electrodes and integrating and packaging with other supercapacitor materials. Index Terms Graphene, Graphene oxide, Inkjet Printing, Supercapacitor, Flexible Electronics I. INKJET-PRINTING FOR MICRO-SUPERCAPACTIORS There is a tremendous need for rechargeable power sources that have long cycle life and can be rapidly charged and discharged beyond what is possible with rechargeable batteries. Electric double layer capacitors, commonly referred to as supercapacitors, are promising in terms of providing fast charge/discharge rates in seconds while being able to withstand millions of charge/discharge cycles in comparison to thousands of cycles for batteries [1]. Supercapacitors utilize nanoscale electrostatic charge separation at electrode-electrolyte interfaces as an energy storage mechanism. This mechanism avoids faradic chemical reactions, dimensional changes, and solid-state diffusion between electrodes and electrolytes, and consequently provides long-term cycle stability and high specific power. For high capacitance, electrodes are typically fabricated of electrically conductive materials such as activated carbon with high surface area. While many supercapacitor research efforts are currently aimed at developing supercapacitors for electric vehicle applications, there is also another exciting opportunity to develop micro-supercapacitors for the rapidly emerging flexible electronics market. For example, with recent advances in mw-scale energy harvesting from mechanical vibration and other sources [2-4], we envision the possibility of inkjet printing a micro-supercapacitor and integrating it with a printable energy harvester on an implantable biomedical device. Such a self-powered implant does not have to be surgically removed from the patient s body due to the cycle life limitation associated with a rechargeable battery. However, to a large extent, integrated flexible microsupercapacitors do not exist in the marketplace today due to miniaturization challenges associated with conventional fabrication methods such as screen printing and spray deposition of electrode materials. In contrast to these techniques, inkjet printing offers (1) the ability to precisely pattern inter-digitized electrodes with a lateral spatial resolution of 50 µm; (2) direct phase transformation from liquid inks to heterogeneous nanoscale structures in an additive, net-shape manner with minimum nanomaterial use, handling and waste generation; and (3) rapid translation of new discoveries into integration with flexible electronics using commercially available inkjet printers ranging from desktop to roll-to-roll. Some of these transformative attributes are captured in our concept device design (Fig. 1). Fig. 1. Flexible micro-supercapacitor concept. II. GRAPHENE AS IDEAL ELECTRODE MATERIAL In order to increase capacitance, significant efforts are being made to explore carbon nanotubes (CNT) and graphene as ideal electrode materials with their theoretical surface areas of 1315 m 2 /g and 2630 m 2 /g, respectively [5,6]. Also, their

2 chemical stability, high electrical and thermal conductivity, and mechanical strength and flexibility are attractive as electrode materials. However, for inkjet printing, these nanomaterials as well as activated carbon nanoparticles are hydrophobic, and thus segregate in water even at very low concentrations (e.g., 5 ppm for single-walled CNT) unless surfactants are added or their surfaces are functionalized. However, the use of surfactants and surface modification during supercapacitor electrode fabrication is generally not desired, since they can significantly decrease capacitance. spherical ink droplets without clogging nozzles at a lateral spatial resolution of 50 µm. For example, the dot structure in Fig. 2c was produced with 20 printing passes to show that drop-to-drop placement and alignment could be repeated to increase thickness. Also, the average distance between the center locations of two neighbouring droplets could be adjusted to form continuous films. The overlap spacing of 15 µm was used for the film shown in Fig. 2d. In contrast to CNT and graphene, the recent re-discovery and commercial availability of hydrophilic graphene oxide (GO) at a reasonable price presents a unique opportunity to develop and use GO as an ideal ink with stable dispersion in pure water (up to 1 wt %) [7]. Although GO itself is not electrically conductive, it can be thermally, chemically, and photothermally reduced to graphene [8]. As shown in Fig. 2, we have recently found [9] that GO, stably dispersed in water at 0.2 wt %, can be inkjet-printed using a bench-scale inkjet printer (Fujifilm Dimatix DMP2800) and subsequently reduced at a moderate temperature of 200 C in flowing N 2 as a new means of producing and micropatterning electrically conductive graphene electrodes. Fig. 2. Inkjet Printing: (a) ink formulation based on stable GO dispersion in water, (b) ink droplets jetted by piezoelectric nozzles, (c) SEM image of a graphene dot printed on titanium substrate, and (d) SEM image of continuous graphene film on titanium. From Reference [9]. At room temperature, the viscosity and surface tension of the water-based GO ink at 0.2 wt% were measured to be 1.06 mpa s and 68 mn/m, respectively, and were similar to those of de-ionized water (0.99 mpa s and 72 mn/m). The physical properties of the GO ink were outside of the ranges recommended for normal inkjet printing (e.g., mpa s and mn/m). Nevertheless, as shown in Fig. 2b, we found that manipulating the firing voltage of piezoelectric nozzles as a function of time was effective in generating Fig. 3. Initial electrochemical performance: (a) cyclic voltammetry measured at different scan rates (b) specific capacitance retained over 1000 charge/discharge cycles at a constant scan rate of 50 mv/s and (c) Ragone plot. From Reference [9].

3 Titanium foils from Sigma Aldrich (100 µm thick, 99.99% purity) was used as an example of flexible substrate and current collector for our initial electrochemical characterization. Electrochemical performance was evaluated by cyclic voltammetry (Fig. 3a) and galvanostatic charge/discharge. Two identical electrodes were clamped with a Celgard separator. 1 M H 2 SO 4 was used as the electrolyte. The specific capacitance of the graphene electrodes was measured to be F/g in the scan range of 0.5 to 0.01 V/s. As shown in Fig. 3b, 96.8 % capacitance was retained over 1000 cycles. The specific power and energy density of the graphene electrodes are plotted in Fig. 3c. Table 1. Comparison of electrochemical performances As compared in Table 1, the capacitance of the graphene electrodes was similar to that reported for other graphene electrodes prepared by conventional powder-based methods in the absence of any pseudocapacitance materials added to the electrodes [5,10,11]. However, the power density of IPGEs was considerably lower than that of CNT-based electrodes which has been reported as high as 100 kw/kg [12,13]. The lower power density of the graphene electrodes may be partly explained by the lack of: (1) interconnectivity among 2D graphene nanosheets for electron conduction and (2) 3D mesoscale porosity for ion conduction. Nevertheless, the initial performance of the inkjet-printed is promising, and is expected to be further improved by optimizing printing and reduction conditions and by optimizing its 3D morphology. III. CHALLENGES AND CURRENT ACTIVITIES The fundamental scientific challenge for this research stems from the lack of understanding of and experience with graphene and GO as new nanoscale building blocks for 3D assembly. For example, our initial results show that we are currently utilizing less than 12% of the theoretical capacitance possible with graphene (i.e., 132 out of 1104 F/g for H 2 SO 4 electrolyte). We are currently exploring a concept of adding nanospacers to control the stacking behavior of conformal graphene nanosheets and therefore to increase specific surface area and capacitance. Also, as illustrated in Fig. 4, we are focusing on droplet coalescing as an important printing parameter that: (1) will determine optimum printing speed and (2) can be used to create disordered 3D assembly of graphene nanosheets as another means of controlling the conformal stacking behavior of the nanosheets. Fig. 4. Overlapped droplet spacing of: (a) 5 µm (b) 25 µm and (c) 15 µm. (d) illustration of nozzle and substrate movements during inkjet printing.

4 We observed the significant effect of droplet overlap spacing on the formation of continuous boundaries which appear as white lines in the SEM images (Figs. 4a-c). As evident from these SEM images, the average distance between the boundaries corresponded well to the overlap spacing of neighboring droplets used to prepare these graphene thin films. At a high magnification (Fig. 4c), graphene sheets appeared more wrinkly and less uniform at the boundaries than in areas between the boundaries. The results suggest that we may be able to control and use these boundaries as a mechanism to produce more disordered 3D assembly of the nanosheets. the specific electrolyte development and packaging issues and challenges associated with realizing microsupercapacitors that can be integrated with flexible electronics. Fig. 4d illustrates the 3D operation of multi-nozzle printing. d 1 and d 2 are the overlap spacings between two neighboring droplets, which can be controlled as low as 5 µm in the x- and y-directions, respectively. During typical operation, the printhead moves in the x-direction to place the first row of droplets for a specified distance. When the printhead comes back to its original x location, the substrate stage moves in the y-direction so that the printhead can place the second row of droplets. In addition to the spacing parameters, there are several key time variables to consider from a scaling perspective. t 1 is the time between placing two neighboring droplets in the x-axis direction with the controllable range of 0.5 ms, t 2 is the time it takes for the printhead to be ready to print the next row droplets in the y-direction (e.g., 10 s for 1 cm x-direction motion). t 3 is the time between placing the two layers of droplets in the z-direction (e.g., 4 min for 1 cm 2 ). The effects of these variables on the development of boundaries with GO ink are being evaluated. Once we are able to understand and control the formation of continuous boundaries, the new processing/structure knowledge may be used to: (1) assess surface area and capacitance enhancements associated with morphology tailoring and (2) scale fabrication using bench- and industrial scale printers while controlling electrode morphology. On the concept device fabrication and demonstration fronts, we have undertaken several activities. Kapton (DuPont) is initially chosen as a flexible substrate material. Inkjet printing of the GO ink on as-received Kapton substrate surface resulted in the formation of islands of about 1 to 2 mm (Fig. 5a). After the substrate surface was treated with potassium hydroxide for 3 h, the island formation was considerably reduced (Fig. 5b). This change was attributed to the spreading of hydrophilic ink droplets on the Kapton surface becoming hydrophilic with the treatment. For current collector, a commercially available silver nanoparticles CCi-300 ink (Cabot Inc.) is selected. This ink contains 20 nm silver nanoparticles suspended in a mixture of ethanol and ethylene glycol. We are evaluating several electrolytes for electrochemical compatibility with inkjetprinted silver. For packaging, we are exploring a heatsealing approach using heat-sealable Kapton FN as a primary method and soft-lithography as an alternative option. These initial investigations are expected to uncover Fig. 5. Islands formation as a function of substrate hydrophobicity: (a) hydrophobic surface of as-received Kapton and (b) hydrophilic surface of treated Kapton. IV. CONCLUSIONS Hydrophilic GO dispersed in water was found to be a stable ink for inkjet printing of GO with the lateral spatial resolution of 50 µm. Subsequent thermal reduction of the printed GO produced electrically conductive graphene electrodes with promising initial electrochemical performance for flexible micro-supercapacitor applications. ACKNOWLEDGMENT The authors thank the U.S. Army - ARDEC for funding this project under the contract of W15QKN-05-D REFERENCES [1] Conway, B.E., Electrochemical Supercapacitors: Scientific Fundamentals and Technological Applications, 2nd edition. 1999: Springer. [2] X. Chen, et al., 1.6 V Nanogenerator for Mechanical Energy Harvesting Using PZT Nanofibers, Nano Letters, 2010, 10(6), p

5 [3] R. Yang, et al., Power Generation with Laterally Packaged Piezoelectric Fine Wires, Nature Nanotechnology, 2009, 4, p [4] R. Yang, et al., Converting Biomechanical Energy into Electricity by a Muscle-Movement-Driven Nanogenerator, Nano Letters, 2009, 9(3), p [5] Stoller, M.D., et al., Graphene-Based Ultracapacitors. Nano Letters, (10): p [6] Geim, A.K. et al., The rise of graphene. Nature Materials, (3): p [7] Paredes, J.I., et al., Graphene Oxide Dispersions in Organic Solvents. Langmuir, (19): p [8] Zangmeister, C.D., Preparation and Evaluation of Graphite Oxide Reduced at 220 C. Chemistry of Materials, (19): p [9] Le, L.T., et al., Graphene supercapacitor electrodes fabricated by inkjet printing and thermal reduction of graphene oxide. Electrochemistry Communications, (4): p [10] Vivekchand, S., et al., Graphene-based electrochemical supercapacitors. Journal of Chemical Sciences, (1): p [11] Liu, C., et al., Graphene-Based Supercapacitor with an Ultrahigh Energy Density. Nano Letters, (12): p [12] Kaempgen, M., et al., Printable Thin Film Supercapacitors Using Single-Walled Carbon Nanotubes. Nano Letters, (5): p [13] Honda, Y., et al., Aligned MWCNT Sheet Electrodes Prepared by Transfer Methodology Providing High-Power Capacitor Performance. Electrochemical and Solid-State Letters, (4): p. A106-A110. [14] Z.S. Wu,et al., Anchoring Hydrous RuO 2 on Graphene Sheets for High-Performance Electrochemical Capacitors, Advanced Functional Materials, 2010, 20(20), p [15] H. Gómez, et al., Graphene-Conducting Polymer Nanocomposite as Novel Electrode for Supercapacitors, Journal of Power Sources, 2011, 196(8), p

Supplementary Figure S1. AFM image and height profile of GO. (a) AFM image

Supplementary Figure S1. AFM image and height profile of GO. (a) AFM image Supplementary Figure S1. AFM image and height profile of GO. (a) AFM image and (b) height profile of GO obtained by spin-coating on silicon wafer, showing a typical thickness of ~1 nm. 1 Supplementary

More information

Optimization of MnO2 Electrodeposits using Graphenated Carbon Nanotube Electrodes for Supercapacitors

Optimization of MnO2 Electrodeposits using Graphenated Carbon Nanotube Electrodes for Supercapacitors Optimization of MnO2 Electrodeposits using Graphenated Carbon Nanotube Electrodes for Supercapacitors Waleed Nusrat, 100425398 PHY 3090U Material Science Thursday April 9 th 2015 Researchers optimize the

More information

Capacitive characteristics of nanostructured mesoporous MnO2

Capacitive characteristics of nanostructured mesoporous MnO2 Undergraduate Research Opportunities Programme (UROP) Report Student Name: Chen Yu Supervisor: Dr Palani Balaya Mentor: Dr. S. Devaraj Capacitive characteristics of nanostructured mesoporous MnO2 INTRODUCTION

More information

Materials and Structural Design for Advanced Energy Storage Devices

Materials and Structural Design for Advanced Energy Storage Devices Materials and Structural Design for Advanced Energy Storage Devices Imran Shakir Sustainable Energy Technologies Center (SET) King Saud University Saudi Arabia Specific Power (W/kg) Introduction and Motivation

More information

Mechanical and Electrochemical Performance of Graphene- Based Flexible Supercapacitors

Mechanical and Electrochemical Performance of Graphene- Based Flexible Supercapacitors Mechanical and Electrochemical Performance of Graphene- Based Flexible Supercapacitors by Matthew H Ervin, Linh T Le, and Woo Y Lee ARL-TR-7042 August 2014 Approved for public release; distribution unlimited.

More information

Inkjet Printed Highly Transparent and Flexible Graphene Micro- Supercapacitors

Inkjet Printed Highly Transparent and Flexible Graphene Micro- Supercapacitors Electronic Supplementary Material (ESI) for Nanoscale. This journal is The Royal Society of Chemistry 2017 Inkjet Printed Highly Transparent and Flexible Graphene Micro- Supercapacitors Szymon Sollami

More information

A simple on-plastic/paper inkjet-printed solid-state Ag/AgCl pseudoreference

A simple on-plastic/paper inkjet-printed solid-state Ag/AgCl pseudoreference Supporting Information A simple on-plastic/paper inkjet-printed solid-state Ag/AgCl pseudoreference electrode Everson Thiago Santos Gerôncio da Silva,, Sandrine Miserere, Lauro Tatsuo Kubota and Arben

More information

Supplementary Figure 1 XPS, Raman and TGA characterizations on GO and freeze-dried HGF and GF. (a) XPS survey spectra and (b) C1s spectra.

Supplementary Figure 1 XPS, Raman and TGA characterizations on GO and freeze-dried HGF and GF. (a) XPS survey spectra and (b) C1s spectra. Supplementary Figure 1 XPS, Raman and TGA characterizations on GO and freeze-dried HGF and GF. (a) XPS survey spectra and (b) C1s spectra. (c) Raman spectra. (d) TGA curves. All results confirm efficient

More information

High-Performance Flexible Asymmetric Supercapacitors Based on 3D. Electrodes

High-Performance Flexible Asymmetric Supercapacitors Based on 3D. Electrodes Supporting Information for: High-Performance Flexible Asymmetric Supercapacitors Based on 3D Porous Graphene/MnO 2 Nanorod and Graphene/Ag Hybrid Thin-Film Electrodes Yuanlong Shao, a Hongzhi Wang,* a

More information

Nano-Flower MnO 2 Coated Graphene Composite Electrodes for Energy Storage Devices

Nano-Flower MnO 2 Coated Graphene Composite Electrodes for Energy Storage Devices Mater. Res. Soc. Symp. Proc. Vol. 1303 2011 Materials Research Society DOI: 10.1557/opl.2011.416 Nano-Flower MnO 2 Coated Graphene Composite Electrodes for Energy Storage Devices Qian Cheng, 1,2 Jie Tang,

More information

DEVELOPMENT OF POLYELECTROLYTES COMPLEX MEMBRANE FOR SUPERCAPACITOR

DEVELOPMENT OF POLYELECTROLYTES COMPLEX MEMBRANE FOR SUPERCAPACITOR DEVELOPMENT OF POLYELECTROLYTES COMPLEX MEMBRANE FOR SUPERCAPACITOR Pisut Wijitsettakun a, Stephan Thierry Dubas a a The Petroleum and Petrochemical College, Chulalongkorn University, Bangkok, Thailand

More information

Scalable Nanomaterials and Nanostructures for Energy and Flexible Electronics

Scalable Nanomaterials and Nanostructures for Energy and Flexible Electronics Scalable Nanomaterials and Nanostructures for Energy and Flexible Electronics Liangbing (Bing) Hu MSE & Energy Center University of Maryland College Park Email: binghu@umd.edu 1 Transparent Paper from

More information

Electronic Supplementary Information. A Flexible Alkaline Rechargeable Ni/Fe Battery Based on Graphene Foam/Carbon Nanotubes Hybrid Film

Electronic Supplementary Information. A Flexible Alkaline Rechargeable Ni/Fe Battery Based on Graphene Foam/Carbon Nanotubes Hybrid Film Electronic Supplementary Information A Flexible Alkaline Rechargeable Ni/Fe Battery Based on Graphene Foam/Carbon Nanotubes Hybrid Film Jilei Liu,, Minghua Chen, Lili Zhang, Jian Jiang, Jiaxu Yan, Yizhong

More information

Flexible Asymmetric Supercapacitors with High Energy and. High Power Density in Aqueous Electrolytes

Flexible Asymmetric Supercapacitors with High Energy and. High Power Density in Aqueous Electrolytes Supporting Information Flexible Asymmetric Supercapacitors with High Energy and High Power Density in Aqueous Electrolytes Yingwen Cheng, 1,2 Hongbo Zhang, 1,2 Songtao Lu, 1,2,3 Chakrapani V. Varanasi,

More information

Lei Zhou, Dawei He*, Honglu Wu, Zenghui Qiu

Lei Zhou, Dawei He*, Honglu Wu, Zenghui Qiu Synthesis of Three Dimensional Graphene/Multiwalled Carbon Nanotubes Nanocomposites Hydrogel and Investigation of their Electrochemical Properties as Electrodes of Supercapacitors Lei Zhou, Dawei He*,

More information

Supporting Information. Polyaniline-MnO 2 nanotubes hybrid nanocomposite as supercapacitor electrode material in acidic electrolyte

Supporting Information. Polyaniline-MnO 2 nanotubes hybrid nanocomposite as supercapacitor electrode material in acidic electrolyte Supporting Information Polyaniline-MnO 2 nanotubes hybrid nanocomposite as supercapacitor electrode material in acidic electrolyte Jaidev, R Imran Jafri, Ashish Kumar Mishra, Sundara Ramaprabhu* Alternative

More information

Carbon-based nanocomposite EDLC supercapacitors

Carbon-based nanocomposite EDLC supercapacitors Carbon-based nanocomposite EDLC supercapacitors C. Lei and C. Lekakou Faculty of Engineering and Physical Sciences, University of Surrey, Guildford, Surrey GU2 7XH, UK, C.Lekakou@surrey.ac.uk ABSTRACT

More information

CHAPTER 4 CHEMICAL MODIFICATION OF ACTIVATED CARBON CLOTH FOR POTENTIAL USE AS ELECTRODES IN CAPACITIVE DEIONIZATION PROCESS

CHAPTER 4 CHEMICAL MODIFICATION OF ACTIVATED CARBON CLOTH FOR POTENTIAL USE AS ELECTRODES IN CAPACITIVE DEIONIZATION PROCESS CHAPTER 4 CHEMICAL MODIFICATION OF ACTIVATED CARBON CLOTH FOR POTENTIAL USE AS ELECTRODES IN CAPACITIVE DEIONIZATION PROCESS 4.1 INTRODUCTION Capacitive deionization (CDI) is one of the promising energy

More information

Supplementary Information. Scalable Fabrication of High-Power Graphene Micro-Supercapacitors for. Flexible and On-Chip Energy Storage

Supplementary Information. Scalable Fabrication of High-Power Graphene Micro-Supercapacitors for. Flexible and On-Chip Energy Storage Supplementary Information Scalable Fabrication of High-Power Graphene Micro-Supercapacitors for Flexible and On-Chip Energy Storage Maher F. El-Kady 1,2 and Richard B. Kaner* 1,3 [1] Department of Chemistry

More information

Deposition of Multilayer Fibers and Beads by Near-Field Electrospinning for Texturing and 3D Printing Applications

Deposition of Multilayer Fibers and Beads by Near-Field Electrospinning for Texturing and 3D Printing Applications Deposition of Multilayer Fibers and Beads by Near-Field Electrospinning for Texturing and 3D Printing Applications Nicolas Martinez-Prieto, Jian Cao, and Kornel Ehmann Northwestern University SmartManufacturingSeries.com

More information

Supplementary Information for

Supplementary Information for Supplementary Information for Highly Self-healable 3D Microsupercapacitor with MXene-Graphene Composite Aerogel Yang Yue, Nishuang Liu, * Yanan Ma, Siliang Wang, Weijie Liu, Cheng Luo Hang Zhang, Feng

More information

Contents. Foreword by Darrell H. Reneker

Contents. Foreword by Darrell H. Reneker Table of Foreword by Darrell H. Reneker Preface page xi xiii 1 Introduction 1 1.1 How big is a nanometer? 1 1.2 What is nanotechnology? 1 1.3 Historical development of nanotechnology 2 1.4 Classification

More information

Mechanically Strong Graphene/Aramid Nanofiber. Power

Mechanically Strong Graphene/Aramid Nanofiber. Power Supporting Information Mechanically Strong Graphene/Aramid Nanofiber Composite Electrodes for Structural Energy and Power Se Ra Kwon, John Harris, Tianyang Zhou, Dimitrios Loufakis James G. Boyd, and Jodie

More information

Johary Rivera (Chemistry - University of Puerto Rico, Río Piedras Campus)

Johary Rivera (Chemistry - University of Puerto Rico, Río Piedras Campus) SUNFEST 2010 Evaluation of Composite Electronic Materials Based on Poly (3, 4 propylenedioxythiophene/poly (p Naptheleneethynylene) Wrapped Single Wall Carbon Nanotubes for Supercapacitors Johary Rivera

More information

Paper electronics platform

Paper electronics platform High volume printing of devices and sensors on paper Roger Bollström Functional Printing Laboratory Center for Functional Materials Åbo Akademi University Paper electronics platform Novel device concepts

More information

NanoLab, Inc 55 Chapel Street, Newton, MA USA

NanoLab, Inc 55 Chapel Street, Newton, MA USA TM 1221221 122211 NANOLAB NanoLab, Inc 55 Chapel Street, Newton, MA 02458 USA http://www.nano-lab.com info@nano-lab.com sales@nano-lab.com Phone (617) 581 6747 Fax (617) 581 6749 NanoLab, Inc. products

More information

Workshop II Nanomaterials Surfaces and Layers Commercialising Carbon Nanotubes

Workshop II Nanomaterials Surfaces and Layers Commercialising Carbon Nanotubes Workshop II Nanomaterials Surfaces and Layers Commercialising Carbon Nanotubes Harry Swan, Carbon Nanomaterials Business Manager, Thomas Swan & Co. Ltd. Introduction Thomas Swan & Co. Ltd. Carbon Nanotubes

More information

Large-Scale Multifunctional Electrochromic-Energy Storage Device Based on Tungsten Trioxide Monohydrate Nanosheets and Prussian White

Large-Scale Multifunctional Electrochromic-Energy Storage Device Based on Tungsten Trioxide Monohydrate Nanosheets and Prussian White Supporting Information Large-Scale Multifunctional Electrochromic-Energy Storage Device Based on Tungsten Trioxide Monohydrate Nanosheets and Prussian White Zhijie Bi, a,b Xiaomin Li,* a Yongbo Chen, a,b

More information

Supplementary Figure 1 Supplementary Figure 2

Supplementary Figure 1 Supplementary Figure 2 Supplementary Figure 1 XRD pattern of pure 3D PGC framework. The pure 3D PGC was obtained by immersing NaCl Na 2 S@GC in water to remove the NaCl and Na 2 S. The broad reflection peak in the range of 15

More information

Supporting information. School of optoelectronic engineering, Nanjing University of Post &

Supporting information. School of optoelectronic engineering, Nanjing University of Post & Electronic Supplementary Material (ESI) for RSC Advances. This journal is The Royal Society of Chemistry 2017 Supporting information Graphene/MnO 2 aerogel with both high compression-tolerant ability and

More information

Potential for energy storage applications with supercapacitor technology. Chris Stirling, Development Manager - Energy, Haydale Ltd.

Potential for energy storage applications with supercapacitor technology. Chris Stirling, Development Manager - Energy, Haydale Ltd. Potential for energy storage applications with supercapacitor technology. Chris Stirling, Development Manager - Energy, Haydale Ltd. Cambridge Graphene Technology Days 2015 3 rd CIR Graphene Business Conference,

More information

Supplementary Figure 1 A schematic representation of the different reaction mechanisms

Supplementary Figure 1 A schematic representation of the different reaction mechanisms Supplementary Figure 1 A schematic representation of the different reaction mechanisms observed in electrode materials for lithium batteries. Black circles: voids in the crystal structure, blue circles:

More information

Dr. Aoife Morrin. School of Chemical Sciences Dublin City University Ireland. The National Centre for Sensor Research

Dr. Aoife Morrin. School of Chemical Sciences Dublin City University Ireland. The National Centre for Sensor Research INVESTIGATION OF NANOSTRUCTURED MATERIALS FOR NOVEL BIOSENSOR FABRICATION METHODOLOGIES Dr. Aoife Morrin National Centre for Sensor Research School of Chemical Sciences Dublin City University Ireland Introduction

More information

Graphene for supercapacitor application Maria Sarno

Graphene for supercapacitor application Maria Sarno University of Salerno Graphene for supercapacitor application Maria Sarno Prof. Maria Sarno Professor of Chemical Engineering Director of NANO_MATES (Research Centre for NANOMAterials and nanotechnology

More information

Wire-shaped supercapacitor by hydrothermal self-assembly of graphene on copper wires

Wire-shaped supercapacitor by hydrothermal self-assembly of graphene on copper wires Wire-shaped supercapacitor by hydrothermal self-assembly of graphene on copper wires Andrea Lamberti 22 September 2015 Outline Introduction Supercapacitors Wearable SCs Graphene Aerogels Synthesis Characterizations

More information

Processing and Applications of Carbon Nanotubes, Graphene, and Beyond

Processing and Applications of Carbon Nanotubes, Graphene, and Beyond Processing and Applications of Carbon Nanotubes, Graphene, and Beyond Professor Mark C. Hersam Department of Materials Science and Engineering Northwestern University http://www.hersam-group.northwestern.edu/

More information

Supporting Information for: Inkjet Printing of High Conductivity, Flexible Graphene Patterns

Supporting Information for: Inkjet Printing of High Conductivity, Flexible Graphene Patterns Supporting Information for: Inkjet Printing of High Conductivity, Flexible Graphene Patterns Ethan B. Secor, Pradyumna L. Prabhumirashi, Kanan Puntambekar, Michael L. Geier, and,,, * Mark C. Hersam Department

More information

High Tap Density Secondary Silicon Particle. Anodes by Scalable Mechanical Pressing for

High Tap Density Secondary Silicon Particle. Anodes by Scalable Mechanical Pressing for Electronic Supplementary Material (ESI) for Energy & Environmental Science. This journal is The Royal Society of Chemistry 2015 Electronic Supplementary Information: High Tap Density Secondary Silicon

More information

Hydrothermally Activated Graphene Fiber Fabrics for Textile. Electrodes of Supercapacitors

Hydrothermally Activated Graphene Fiber Fabrics for Textile. Electrodes of Supercapacitors Supporting Information for Hydrothermally Activated Graphene Fiber Fabrics for Textile Electrodes of Supercapacitors Zheng Li, Tieqi Huang, Weiwei Gao*, Zhen Xu, Dan Chang, Chunxiao Zhang, and Chao Gao*

More information

Energy Storage material status and challenges for KSA and practical application of 3D holey-graphene structure. Imran Shakir

Energy Storage material status and challenges for KSA and practical application of 3D holey-graphene structure. Imran Shakir Energy Storage material status and challenges for KSA and practical application of 3D holey-graphene structure Imran Shakir Specific Power (W/kg) Energy Storage Research Group Objective Development of

More information

Electrical Conductive Adhesives with Nanotechnologies

Electrical Conductive Adhesives with Nanotechnologies Yi Li Daniel Lu C.P. Wong Electrical Conductive Adhesives with Nanotechnologies Springer 1 Introduction 1 1.1 Electronics Packaging and Interconnect 1 1.2 Interconnection Materials 11 1.2.1 Lead-Free Interconnect

More information

2014 GCEP Report - External

2014 GCEP Report - External 2014 GCEP Report - External Project title: High-Energy-Density Lithium Ion Battery using Self-Healing Polymers Investigators Zhenan Bao, Professor, Chemical Engineering Yi Cui, Professor, Material Sciences

More information

Synthesis of Oxidized Graphene Anchored Porous. Manganese Sulfide Nanocrystal via the Nanoscale Kirkendall Effect. for supercapacitor

Synthesis of Oxidized Graphene Anchored Porous. Manganese Sulfide Nanocrystal via the Nanoscale Kirkendall Effect. for supercapacitor Electronic Supplementary Material (ESI) for Journal of Materials Chemistry A. This journal is The Royal Society of Chemistry 2015 Synthesis of Oxidized Graphene Anchored Porous Manganese Sulfide Nanocrystal

More information

Tailorable and Wearable Textile Devices for Solar Energy Harvesting and Simultaneous Storage

Tailorable and Wearable Textile Devices for Solar Energy Harvesting and Simultaneous Storage Supporting Information Tailorable and Wearable Textile Devices for Solar Energy Harvesting and Simultaneous Storage Zhisheng Chai,, Nannan Zhang,, Peng Sun, Yi Huang, Chuanxi Zhao, Hong Jin Fan, Xing Fan,*,

More information

Printing Upconverting Nanoparticles using a Piezoelectric Inkjet Printer. Prepared by: Shawn Ray McCarther

Printing Upconverting Nanoparticles using a Piezoelectric Inkjet Printer. Prepared by: Shawn Ray McCarther Printing Upconverting Nanoparticles using a Piezoelectric Inkjet Printer Prepared by: Shawn Ray McCarther Faculty Advisors: Dr. Jon Kellar Dr. Grant Crawford Dr. William Cross Dr. Alfred Boysen Professor,

More information

SUPPLEMENTARY INFORMATION Low Temperature Atomic Layer Deposition of Zirconium Oxide for Inkjet Printed Transistor Applications

SUPPLEMENTARY INFORMATION Low Temperature Atomic Layer Deposition of Zirconium Oxide for Inkjet Printed Transistor Applications Electronic Supplementary Material (ESI) for RSC Advances. This journal is The Royal Society of Chemistry 2018 SUPPLEMENTARY INFORMATION Low Temperature Atomic Layer Deposition of Zirconium Oxide for Inkjet

More information

Institute for Electron Microscopy and Nanoanalysis Graz Centre for Electron Microscopy

Institute for Electron Microscopy and Nanoanalysis Graz Centre for Electron Microscopy Institute for Electron Microscopy and Nanoanalysis Graz Centre for Electron Microscopy Micromechanics Ass.Prof. Priv.-Doz. DI Dr. Harald Plank a,b a Institute of Electron Microscopy and Nanoanalysis, Graz

More information

Cobalt Ferrite bearing Nitrogen Doped Reduced. Graphene Oxide Layers Spatially Separated with. Electrocatalyst

Cobalt Ferrite bearing Nitrogen Doped Reduced. Graphene Oxide Layers Spatially Separated with. Electrocatalyst Supporting Information Cobalt Ferrite bearing Nitrogen Doped Reduced Graphene Oxide Layers Spatially Separated with Microporous Carbon as Efficient Oxygen Reduction Electrocatalyst Varchaswal Kashyap,,

More information

Flexible Asymmetrical Solid-state Supercapacitors Based on Laboratory Filter Paper

Flexible Asymmetrical Solid-state Supercapacitors Based on Laboratory Filter Paper SUPPORTING INFORMATION Flexible Asymmetrical Solid-state Supercapacitors Based on Laboratory Filter Paper Leicong Zhang,,,# Pengli Zhu,,,#, * Fengrui Zhou, Wenjin Zeng, Haibo Su, Gang Li, Jihua Gao, Rong

More information

Layered Sb 2 Te 3 and its nanocomposite: A new and outstanding electrode material for superior rechargeable Li-ion batteries

Layered Sb 2 Te 3 and its nanocomposite: A new and outstanding electrode material for superior rechargeable Li-ion batteries Electronic Supplementary Material (ESI) for Journal of Materials Chemistry A. This journal is The Royal Society of Chemistry 2016 Supplementary Information: Layered Sb 2 Te 3 and its nanocomposite: A new

More information

Electrochemical Preparation of Polypyrrole/Graphene Films on Titanium Mesh as Active Materials for Supercapacitors

Electrochemical Preparation of Polypyrrole/Graphene Films on Titanium Mesh as Active Materials for Supercapacitors CHINESE JOURNAL OF CHEMICAL PHYSICS VOLUME 30, NUMBER 1 FEBRUARY 27, 2017 ARTICLE Electrochemical Preparation of Polypyrrole/Graphene Films on Titanium Mesh as Active Materials for Supercapacitors Jun-hao

More information

Carbon Nanomaterials: Nanotubes and Nanobuds and Graphene towards new products 2030

Carbon Nanomaterials: Nanotubes and Nanobuds and Graphene towards new products 2030 Carbon Nanomaterials: Nanotubes and Nanobuds and Graphene towards new products 2030 Prof. Dr. Esko I. Kauppinen Helsinki University of Technology (TKK) Espoo, Finland Forecast Seminar February 13, 2009

More information

ELECTROSPRAY: NOVEL FABRICATION METHOD FOR BIODEGRADABLE POLYMERIC NANOPARTICLES FOR FURTHER APPLICATIONS IN DRUG DELIVERY SYSTEMS

ELECTROSPRAY: NOVEL FABRICATION METHOD FOR BIODEGRADABLE POLYMERIC NANOPARTICLES FOR FURTHER APPLICATIONS IN DRUG DELIVERY SYSTEMS ELECTROSPRAY: NOVEL FABRICATION METHOD FOR BIODEGRADABLE POLYMERIC NANOPARTICLES FOR FURTHER APPLICATIONS IN DRUG DELIVERY SYSTEMS Ali Zarrabi a, Manouchehr Vossoughi b a Institute for Nanscience & Nanotechnology,

More information

Improving the dielectric and piezoelectric properties of screen-printed Low temperature PZT/polymer composite using cold isostatic pressing

Improving the dielectric and piezoelectric properties of screen-printed Low temperature PZT/polymer composite using cold isostatic pressing Improving the dielectric and piezoelectric properties of screen-printed Low temperature PZT/polymer composite using cold isostatic pressing A Almusallam, K Yang, Z Cao, D Zhu, J Tudor, S P Beeby Electronics

More information

An Ideal Electrode Material, 3D Surface-Microporous Graphene for Supercapacitors with Ultrahigh Areal Capacitance

An Ideal Electrode Material, 3D Surface-Microporous Graphene for Supercapacitors with Ultrahigh Areal Capacitance Supporting Information An Ideal Electrode Material, 3D Surface-Microporous Graphene for Supercapacitors with Ultrahigh Areal Capacitance Liang Chang, 1 Dario J. Stacchiola 2 and Yun Hang Hu 1, * 1. Department

More information

Supplementary Figures

Supplementary Figures Supplementary Figures Supplementary Figure 1: Microstructure, morphology and chemical composition of the carbon microspheres: (a) A SEM image of the CM-NFs; and EDS spectra of CM-NFs (b), CM-Ns (d) and

More information

KOH ACTIVATED CARBONS FOR SUPERCAPACITORS

KOH ACTIVATED CARBONS FOR SUPERCAPACITORS KOH ACTIVATED CARBONS FOR SUPERCAPACITORS Elzbieta Frackowiak 1, Grzegorz Lota 1, Krzysztof Kierzek 2, Grazyna Gryglewicz 2, Jacek Machnikowski 2 1 Poznan University of Technology, Piotrowo 3, 6-965 Poznan,

More information

A stable inkjet ink containing ZnS:Mn nanoparticles as pigment

A stable inkjet ink containing ZnS:Mn nanoparticles as pigment A stable inkjet ink containing ZnS:Mn nanoparticles as pigment Peter D. Angelo & Ramin R. Farnood University of Toronto Department of Chemical Engineering & Applied Chemistry Thursday, June 25 th, 2009,

More information

Recent Technological Advances in Flexible Electronics

Recent Technological Advances in Flexible Electronics Advance in Electronic and Electric Engineering. ISSN 2231-1297, Volume 3, Number 5 (2013), pp. 613-620 Research India Publications http://www.ripublication.com/aeee.htm Recent Technological Advances in

More information

Supplementary Materials for

Supplementary Materials for advances.sciencemag.org/cgi/content/full/3/12/eaao7233/dc1 Supplementary Materials for Ultrafast all-climate aluminum-graphene battery with quarter-million cycle life Hao Chen, Hanyan Xu, Siyao Wang, Tieqi

More information

ETRI. IG Kim, JH Sul, BN Kim, SH Kang, YS Yang, IK You

ETRI. IG Kim, JH Sul, BN Kim, SH Kang, YS Yang, IK You ETRI IG Kim, JH Sul, BN Kim, SH Kang, YS Yang, IK You Seoul Daejeon Contents Introduction to supercapacitors Graphene oxide and reduction process ETRI IPL system Sample preparation and characterization

More information

Supplementary Information

Supplementary Information Supplementary Information Supplementary Figures Supplementary Figure 1 Scanning electron microscopy image of a lithium dendrite. Dendrite formation in lithium ion batteries pose significant safety issues

More information

There's Plenty of Room at the Bottom

There's Plenty of Room at the Bottom There's Plenty of Room at the Bottom 12/29/1959 Feynman asked why not put the entire Encyclopedia Britannica (24 volumes) on a pin head (requires atomic scale recording). He proposed to use electron microscope

More information

Lighter, Faster and Smaller Dense Graphene Assemblies: Remedy for Compact Energy Storage. Outline

Lighter, Faster and Smaller Dense Graphene Assemblies: Remedy for Compact Energy Storage. Outline The 8 th GO Symposium, Kumamoto Univ., 30 June 2017 Nanocarbon realizes Low carbon! Lighter, Faster and Smaller Dense Graphene Assemblies: Remedy for Compact Energy Storage Quan-Hong Yang ( 楊全红 ) Tianjin

More information

Carbon Nanomaterials for Flexible Energy Storage

Carbon Nanomaterials for Flexible Energy Storage Materials Research Letters ISSN: (Print) 2166-3831 (Online) Journal homepage: https://www.tandfonline.com/loi/tmrl20 Carbon Nanomaterials for Flexible Energy Storage Yingwen Cheng & Jie Liu To cite this

More information

Variable capacitor energy harvesting based on polymer dielectric and composite electrode

Variable capacitor energy harvesting based on polymer dielectric and composite electrode 2.8.215 Variable capacitor energy harvesting based on polymer dielectric and composite electrode Robert Hahn 1*, Yuja Yang 1, Uwe Maaß 1, Leopold Georgi 2, Jörg Bauer 1, and K.- D. Lang 2 1 Fraunhofer

More information

ARMAN DASTPAK DEVELOPMENT AND CHARACTERIZATION OF CARBON-BASED ELECTRODE MATERIALS AND THEIR IMPLEMENTATION IN SUPERCAPACITORS

ARMAN DASTPAK DEVELOPMENT AND CHARACTERIZATION OF CARBON-BASED ELECTRODE MATERIALS AND THEIR IMPLEMENTATION IN SUPERCAPACITORS ARMAN DASTPAK DEVELOPMENT AND CHARACTERIZATION OF CARBON-BASED ELECTRODE MATERIALS AND THEIR IMPLEMENTATION IN SUPERCAPACITORS Master of Science thesis Examiners: Prof. Donald Lupo Prof. Jyrki Vuorinen

More information

Electrophoretic Deposition. - process in which particles, suspended in a liquid medium, migrate in an electric field and deposit on an electrode

Electrophoretic Deposition. - process in which particles, suspended in a liquid medium, migrate in an electric field and deposit on an electrode Electrophoretic Deposition - process in which particles, suspended in a liquid medium, migrate in an electric field and deposit on an electrode no redox differs from electrolytic in several ways deposit

More information

Graphene oxide hydrogel at solid/liquid interface

Graphene oxide hydrogel at solid/liquid interface Electronic Supplementary Information Graphene oxide hydrogel at solid/liquid interface Jiao-Jing Shao, Si-Da Wu, Shao-Bo Zhang, Wei Lv, Fang-Yuan Su and Quan-Hong Yang * Key Laboratory for Green Chemical

More information

Supporting Information. Fast Synthesis of High-Performance Graphene by Rapid Thermal Chemical Vapor Deposition

Supporting Information. Fast Synthesis of High-Performance Graphene by Rapid Thermal Chemical Vapor Deposition 1 Supporting Information Fast Synthesis of High-Performance Graphene by Rapid Thermal Chemical Vapor Deposition Jaechul Ryu, 1,2, Youngsoo Kim, 4, Dongkwan Won, 1 Nayoung Kim, 1 Jin Sung Park, 1 Eun-Kyu

More information

Additive technologies for the patterning of fine metal tracks onto flexible substrates

Additive technologies for the patterning of fine metal tracks onto flexible substrates Additive technologies for the patterning of fine metal tracks onto flexible substrates Marc P.Y. Desmulliez m.desmulliez@hw.ac.uk MIcroSystems Engineering Centre (MISEC) Institute of Integrated Systems

More information

Nanoscale Issues in Materials & Manufacturing

Nanoscale Issues in Materials & Manufacturing Nanoscale Issues in Materials & Manufacturing ENGR 213 Principles of Materials Engineering Module 2: Introduction to Nanoscale Issues Top-down and Bottom-up Approaches for Fabrication Winfried Teizer,

More information

Electronic Supplementary Information

Electronic Supplementary Information Electronic Supplementary Material (ESI) for Journal of Materials Chemistry A. This journal is The Royal Society of Chemistry 214 Electronic Supplementary Information Ultrathin and High-Ordered CoO Nanosheet

More information

Supplementary Figure 1. Theoretical calculation results to optimize the FEP layer thickness

Supplementary Figure 1. Theoretical calculation results to optimize the FEP layer thickness Supplementary Figures: Supplementary Figure 1. Theoretical calculation results to optimize the FEP layer thickness Supplementary Figure 2. SEM picture of the surface of (a) FEP (b) Al foil Supplementary

More information

Bulk graphdiyne powder applied for highly efficient lithium storage

Bulk graphdiyne powder applied for highly efficient lithium storage Electronic Supplementary Material (ESI) for ChemComm. This journal is The Royal Society of Chemistry 2014 Bulk graphdiyne powder applied for highly efficient lithium storage Shengliang Zhang, ab Huibiao

More information

Nano-mechatronics. Presented by: György BudaváriSzabó (X0LY4M)

Nano-mechatronics. Presented by: György BudaváriSzabó (X0LY4M) Nano-mechatronics Presented by: György BudaváriSzabó (X0LY4M) Nano-mechatronics Nano-mechatronics is currently used in broader spectra, ranging from basic applications in robotics, actuators, sensors,

More information

arxiv: v3 [cond-mat.mtrl-sci] 19 Apr 2016

arxiv: v3 [cond-mat.mtrl-sci] 19 Apr 2016 New Electrochemical Characterization Methods for Nanocomposite Supercapacitor Electrodes Jason Ma Department of Physics and Astronomy, University of California, Los Angeles, CA 90024 arxiv:1406.0470v3

More information

Germanium Anode with Excellent Lithium Storage Performance in a Ge/Lithium-

Germanium Anode with Excellent Lithium Storage Performance in a Ge/Lithium- Supporting Information Germanium Anode with Excellent Lithium Storage Performance in a Ge/Lithium- Cobalt-Oxide Lithium-Ion Battery Xiuwan Li, Zhibo Yang, Yujun Fu, Li Qiao, Dan Li, Hongwei Yue, and Deyan

More information

Electronic Supplementary Information. High-performance Flexible Asymmetric Supercapacitors Based on A New Graphene

Electronic Supplementary Information. High-performance Flexible Asymmetric Supercapacitors Based on A New Graphene Electronic Supplementary Material (ESI) for Energy & Environmental Science. This journal is The Royal Society of Chemistry 2014 Electronic Supplementary Information High-performance Flexible Asymmetric

More information

Conversion and Storage, School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin , PR China

Conversion and Storage, School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin , PR China Supporting information for Assembly of flexible CoMoO 4 @NiMoO 4 xh 2 O and Fe 2 O 3 electrodes for solid-state asymmetric supercapacitors Jing Wang a, Leipeng Zhang b, Xusong Liu a, Xiang Zhang b, Yanlong

More information

CoMn-layered double hydroxide nanowalls supported on carbon fibers. for high-performance flexible energy storage devices

CoMn-layered double hydroxide nanowalls supported on carbon fibers. for high-performance flexible energy storage devices Supporting Information CoMn-layered double hydroxide nanowalls supported on carbon fibers for high-performance flexible energy storage devices Jingwen Zhao, Jiale Chen, Simin Xu, Mingfei Shao, Dongpeng

More information

Engineering Carbon Nanostructures and Architectures for High Performance and Multifunctional Electrodes

Engineering Carbon Nanostructures and Architectures for High Performance and Multifunctional Electrodes Engineering Carbon Nanostructures and Architectures for High Performance and Multifunctional Electrodes Yung Joon Jung Department of Mechanical & Industrial Engineering Northeastern University, Boston,

More information

A New Dielectrophoretic Coating Process for Depositing Thin Uniform Coatings on Films and Fibrous Surfaces

A New Dielectrophoretic Coating Process for Depositing Thin Uniform Coatings on Films and Fibrous Surfaces A New Dielectrophoretic Coating Process for Depositing Thin Uniform Coatings on Films and Fibrous Surfaces by Angelo Yializis Ph.D., Xin Dai Ph.D. Sigma Technologies International Tucson, AZ USA SIGMA

More information

Printing nanotube-based p-type thin film transistors with high current density

Printing nanotube-based p-type thin film transistors with high current density Printing nanotube-based p-type thin film transistors with high current density Single-wall carbon nanotubes (SWCNT), with their outstanding mechanical and electrical properties, offer a solution to coat

More information

GRAPHENE NANORIBBONS AND THEIR POLYMERIC NANOCOMPOSITES: CONTROLLED SYNTHESIS, CHARACTERIZATION AND APPLICATIONS

GRAPHENE NANORIBBONS AND THEIR POLYMERIC NANOCOMPOSITES: CONTROLLED SYNTHESIS, CHARACTERIZATION AND APPLICATIONS Pittsburg State University Pittsburg State University Digital Commons Electronic Thesis Collection Spring 5-12-2017 GRAPHENE NANORIBBONS AND THEIR POLYMERIC NANOCOMPOSITES: CONTROLLED SYNTHESIS, CHARACTERIZATION

More information

Nitrogen-doped Activated Carbon for High Energy Hybridtype Supercapacitor

Nitrogen-doped Activated Carbon for High Energy Hybridtype Supercapacitor Electronic Supplementary Material (ESI) for Energy & Environmental Science. This journal is The Royal Society of Chemistry 2015 SUPPORTING INFORMATION Nitrogen-doped Activated Carbon for High Energy Hybridtype

More information

XIV International PhD Workshop OWD 2012, October 2012

XIV International PhD Workshop OWD 2012, October 2012 XIV International PhD Workshop OWD 2012, 20 23 October 2012 Screen printed resistive pressure sensors fabricated from polymer composites with graphene nanoplatelets. Daniel Janczak, Warsaw University of

More information

Reactive Inkjet Printing. Patrick J. Smith University of Sheffield

Reactive Inkjet Printing. Patrick J. Smith University of Sheffield Reactive Inkjet Printing Patrick J. Smith University of Sheffield 15 th November 2017 Sheffield Applied Inkjet Research Lab Here we are! Main Research themes Tissue engineering Reactive Inkjet Printing

More information

Inorganic Nanoparticles & Inks

Inorganic Nanoparticles & Inks Inorganic Nanoparticles & Inks About Us nanograde AG possesses the most powerful nanomaterials platform and offers the customized development and production of nanoparticles and ink formulations. nanograde

More information

Supporting Information

Supporting Information Platinum-Gold Nanoparticles: A Highly Active Bifunctional Electrocatalyst for Rechargeable Lithium-Air Batteries Yi-Chun Lu, Zhichuan Xu, Hubert A. Gasteiger, Shuo Chen, Kimberly Hamad- Schifferli and

More information

High-resolution gravure printing of graphene for biomedical applications

High-resolution gravure printing of graphene for biomedical applications High-resolution gravure printing of graphene for biomedical applications Thorsten Knoll Fraunhofer-Institut für Biomedizinische Technik IBMT Main Department of Biomedical Engineering Düsseldorf, 3 rd March

More information

Lithium-ion Batteries Based on Vertically-Aligned Carbon Nanotubes and Ionic Liquid

Lithium-ion Batteries Based on Vertically-Aligned Carbon Nanotubes and Ionic Liquid Electronic Supplementary Information Lithium-ion Batteries Based on Vertically-Aligned Carbon Nanotubes and Ionic Liquid Electrolytes Wen Lu, * Adam Goering, Liangti Qu, and Liming Dai * 1. Synthesis of

More information

High Power Aqueous Zinc-Ion Batteries for Customized Electronic Devices

High Power Aqueous Zinc-Ion Batteries for Customized Electronic Devices Supporting Information for High Power Aqueous Zinc-Ion Batteries for Customized Electronic Devices Chanhoon Kim,#, Bok Yeop Ahn,,#, Teng-Sing Wei, Yejin Jo, Sunho Jeong, Youngmin Choi, Il-Doo Kim*, and

More information

NANOCOMPOSITE CATION EXCHANGE MEMBRANE WITH FOULING RESISTANCE AND ENHANCED SALINITY GRADIENT POWER GENERATION FOR REVERSE ELECTRODIALYSIS

NANOCOMPOSITE CATION EXCHANGE MEMBRANE WITH FOULING RESISTANCE AND ENHANCED SALINITY GRADIENT POWER GENERATION FOR REVERSE ELECTRODIALYSIS NANOCOMPOSITE CATION EXCHANGE MEMBRANE WITH FOULING RESISTANCE AND ENHANCED SALINITY GRADIENT POWER GENERATION FOR REVERSE ELECTRODIALYSIS X I N T O N G, B O P E N G Z H A N G, A N D Y O N G S H E N G

More information

High-performance Supercapacitors Based on Electrochemicalinduced. Vertical-aligned Carbon Nanotubes and Polyaniline

High-performance Supercapacitors Based on Electrochemicalinduced. Vertical-aligned Carbon Nanotubes and Polyaniline High-performance Supercapacitors Based on Electrochemicalinduced Vertical-aligned Carbon Nanotubes and Polyaniline Nanocomposite Electrodes Guan Wu 1, Pengfeng Tan 1, Dongxing Wang 2, Zhe Li 2, Lu Peng

More information

Influence of the Position of Electrodes on Capacitance of Interdigitated Capacitor Fabricated on Flexible Foil

Influence of the Position of Electrodes on Capacitance of Interdigitated Capacitor Fabricated on Flexible Foil IX Symposium Industrial Electronics INDEL 2012, Banja Luka, November 0103, 2012 Influence of the Position of Electrodes on Capacitance of Interdigitated Capacitor Fabricated on Flexible Foil Sanja Kojić,

More information

Supporting Infromation

Supporting Infromation Supporting Infromation Transparent and Flexible Self-Charging Power Film and Its Application in Sliding-Unlock System in Touchpad Technology Jianjun Luo 1,#, Wei Tang 1,#, Feng Ru Fan 1, Chaofeng Liu 1,

More information

HIGH ENERGY DENSITY CAPACITOR CHARACTERIZATION

HIGH ENERGY DENSITY CAPACITOR CHARACTERIZATION GENERAL ATOMICS ENERGY PRODUCTS Engineering Bulletin HIGH ENERGY DENSITY CAPACITOR CHARACTERIZATION Joel Ennis, Xiao Hui Yang, Fred MacDougall, Ken Seal General Atomics Energy Products General Atomics

More information

The Effects of Operating Parameters on Micro-Droplet Formation in a Piezoelectric Inkjet Printhead Using a Double Pulse Voltage Pattern

The Effects of Operating Parameters on Micro-Droplet Formation in a Piezoelectric Inkjet Printhead Using a Double Pulse Voltage Pattern Materials Transactions, Vol. 47, No. 2 (2006) pp. 375 to 382 #2006 The Japan Institute of Metals The Effects of Operating Parameters on Micro-Droplet Formation in a Piezoelectric Inkjet Printhead Using

More information

The Effect of Surface Functionalization of Graphene on the Electrical Conductivity of Epoxy-based Conductive Nanocomposites

The Effect of Surface Functionalization of Graphene on the Electrical Conductivity of Epoxy-based Conductive Nanocomposites The Effect of Surface Functionalization of Graphene on the Electrical Conductivity of Epoxy-based Conductive Nanocomposites Behnam Meschi Amoli 1,2,3,4, Josh Trinidad 1,2,3,4, Norman Y. Zhou 1,3,5, Boxin

More information