Mechanism of the acidic hydrolysis of epichlorohydrin

Size: px
Start display at page:

Download "Mechanism of the acidic hydrolysis of epichlorohydrin"

Transcription

1 Research Article Received: 29 March 2010, Revised: 1 October 2010, Accepted: 11 October 2010, Published online in Wiley Online Library: 12 January 2011 (wileyonlinelibrary.com) DOI /poc.1825 Mechanism of the acidic hydrolysis of epichlorohydrin Jerzy Gaca a *,Grażyna Wejnerowska a and Piotr Cysewski a The present studies show that the currently accepted scheme for the hydrolysis of epichlorohydrin (ECH) needs to be extended by an additional path which makes allowance for the formation and decomposition of glycidol (GL). It was shown experimentally and through UB3LYP/6-11 RRG(3D,P) calculations that the formation of 3-chloro-1,2-propanediol (MCPD) from ECH should also take into account GL formation as an intermediate product. A modified mechanism for the course of ECH hydrolysis in acidic and neutral medium is proposed. It was shown that ECH hydrolysis in acidic medium in the presence of chloride ions also results in the formation of 1,3-dichloro-2-propanol (DCPD) in addition to GL and MCPD. The possibility of a parallel pathway for water molecule addition to epichlorohydrin was shown which as a consequence led to the parallel appearance of GL and MCPD. It was confirmed by kinetic calculations that the state of equilibrium, reached in the process of ECH chlorination, did not result in GL formation. However, its appearance in the reaction mechanism has been ignored in the literature thus far. Copyright ß 2011 John Wiley & Sons, Ltd. Keywords: 3-chloro-1,2-propanediol; 1,3-dichloro-2-propanol; epichlorohydrin; glycerol; hydrolysis INTRODUCTION Our previous studies on the determination of epichlorohydrin (ECH) [1] and the products of its hydrolysis in acidic (HNO 3 ) and neutral medium showed that 3-chloro-1,2-propanediol (MCPD) was formed in parallel with ECH loss which was expected. However, the concentration of MCPD formed, especially in the initial stage of the reaction, did not make up for the loss of ECH. This fact cannot be explained by the generally accepted scheme, according to which the hydrolysis of epichlorohydrin leads to the formation of MCPD through protonation of the epoxide ring [2 8] (Fig. 1). Such a description of the reaction does not explain the lack of a dependence between the change in the ECH concentration and the amount of MCPD formed, which was observed in our studies. Moreover, it does not explain the pathway for the formation of glycerol (GLC) identified among the reaction products. Due to the discrepancies observed in the description of the course of the reaction, studies were undertaken in order to explain the mechanism of ECH hydrolysis in acidic and neutral medium. These studies take into consideration the formation and decay of GL and account for obtaining only trace amounts of GLC. Preparation of solutions Model water solutions of ECH at the concentration of g L 1 and the following ph values: 2.5, 3.5, 4.5 and 7.7 were prepared for testing. The ph of the solutions was adjusted using aqueous solution introducing HNO 3. Then, samples were placed into graduated 25 ml flasks and filled to the top. These samples were kept at temperatures of 10, 20, 30 and 40 8C. Analogous solutions, containing and g L 1 of NaCl, were used in this study to check the effect of chlorides on the course of ECH hydrolysis. GC analysis Gas chromatograph HP 6890 (Hewlett Packard, CA, USA) fitted with a detector, flame ionization detector (FID), and an on-column injector were applied in our studies. HP-FFAP columns (Crosslinked Polyethylene Glycol) 30 m 0.53 mm, 1.0 mm were used. The volume of the injected solutions was 2 ml. The oven temperature program for water solutions was 100 8C (2min),108Cmin 1 to 240 8C (4 min). Helium was the carrier gas at a constant flow rate of 1.3 ml min 1. Temperatures of the FID detector and the on-column injector were 250 and 103 8C, respectively. EXPERIMENTAL Chemicals Epichlorohydrin (>99%) and glycerol (>96%) were purchased from Sigma-Aldrich (Steinheim, Germany). 3- chloro-1,2- propanediol (98%) and 1,3-dichloro-2-propanol were purchased from Fluka (Chemie, GmbH, Germany). Glycerol (>99%) and water (analytical-reagent grade) were used as solvents purchased from Merck (Darmstadt, Germany). Sodium chloride and nitric (V) acid (analytical-reagent grade) were purchased from POCH S.A. (Gliwice, Poland). Calculation method J. Phys. Org. Chem. 2011, Copyright ß 2011 John Wiley & Sons, Ltd. Calculations were made using a microhydrated environment model. [9,10] It contained two water molecules complexing the * Correspondence to: J. Gaca, Department of Chemistry and Environmental Protection, Faculty of Chemical Technology and Engineering, University of Technology and Life Sciences, Seminaryjna 3 St., Bydgoszcz, Poland. gaca@utp.edu.pl a J. Gaca, G. Wejnerowska, P. Cysewski Department of Chemistry and Environmental Protection, Faculty of Chemical Technology and Engineering, University of Technology and Life Sciences, Bydgoszcz, Poland 1045

2 J. GACA, G. WEJNEROWSKA AND P. CYSEWSKI Figure 1. Hydrolysis of ECH 1046 molecule of epichlorohydrin. The calculations were performed by the unrestricted B3LYP method. The size of the functional base was selected on the basis of a series of calculations of Gibbs free energy changes for the reactions ECH! GL and ECH! MCPD. [11] Both polarization and diffusion functions for heavy and hydrogen atoms were used in the calculations. The expansion of the valence basis sets was increased systematically. It was observed that from the basis set þ G(3D,P) a further increase in the number of base functions did not have any significant impact on values of DE and DG. This permitted us to assume the þþg(3d,p) basis set was already saturated. Thus, the UB3LYP/6-311 þþg(3d,p) method was used for seeking points on the potential energy hypersurface corresponding to the global minimum and the saddle points. All calculations take into consideration zero point energy corrections and the thermal energy. The location of saddle points was confirmed by calculating the reaction paths by the IRC method. The CPCM method was used for taking into account the Gibbs free energies of solvation. All calculations were performed using Gaussian03 program. [12] RESULTS AND DISCUSSION While conducting a preliminary studies on the course of ECH hydrolysis, it was found that especially at the initial stage of reaction, the amount of MCPD formed was considerably smaller that it would result from the loss of ECH. This means that the hydrolysis process described in Fig. 1 does not take into account all the possible paths of conversion. Our study showed that after a long time, amount of the formed MCPD was consistent with the reaction stoichiometry presented in Fig. 1. It means that the substance formed during hydrolysis process is in a later stage converted to MCPD and simultaneously it shows that MCPD is stable under reaction conditions and it does not undergo further conversions. The studies on identification of the reaction products during hydrolysis showed that in parallel with MCPD glicydol was formed, which at a later stage was converted to MCPD. These studies were carried out in acidic and neutral media (ph: ) within the temperature range of C. The course of the reaction was analogous in all cases. Temperature rise and ph reduction resulted only in faster ECH loss and caused changes in the MCPD:GCL ratio and the reaction rate. Examples of the curves obtained for the reaction occurring at a temperature of 40 8C and ph 3.5 are presented in Fig. 2. It was found that GL was formed in the beginning of the reaction and decayed in time. An important fact is that GL was still identified even after the time that ECH had totally reacted. The decrease in the GL content and its presence after time that ECH had disappeared, allowed us to state that the rate of glycidol decay was slower than the rate of its formation. Figure 2. Hydrolysis of ECH at ph 3.5 and T¼40 8C The facts that GL (whose content decreases in time) was identified among the products of the epichlorohydrin hydrolysis at ph < 7 and that the final product of the reaction was MCPD allowed us to propose a scheme in which the formation of MCPD proceeded or supplemented the formation of GL. The decay of GL during the course of the process can be explained by its reaction with chloride ions (liberated from ECH) resulting in the formation of MCPD (Fig. 3). A similar mechanism can be proposed for the ECH hydrolysis occurring in neutral medium. However, the reaction occurs considerably slower under the conditions used in the current study. In order to confirm the possibility of MCPD formation from GL in acidic medium, further studies on the GL reaction with chlorides or hydrochloric acid in water solutions were carried out. Their results are summarized in Fig. 4. It was shown that the rate of MCDP formation depended significantly on the temperature and the concentration of chloride ions. In order to elimination the less probable alternative of glycerol formation from MCPD, studies on the possibility of glycerol formation from MCPD were performed. It was found that in various Cl concentration and different ph values we did not detected GLC or 1,3-dichloro-propanol (DCP). To explain the absence of GLC among the products of the ECH hydrolysis in acidic medium, studies on MCPD hydrolysis in the absence of chloride ions were carried out. It was found that MCPD was stable under the conditions used, whereas GL in acidic medium was transformed into GLC (Fig. 5). The assumption that GL is one of the products of ECH hydrolysis still did not explain the reason why only a minimal amount of GLC can be identified. Taking into consideration the fact that HCl is released in the process of GL formation, the successive studies on ECH, GL and MCPD hydrolysis in acidic medium in the presence of chloride ions were carried out. Results of such studies for ECH hydrolysis in the presence of chloride ions in acidic medium are presented in Fig. 6. wileyonlinelibrary.com/journal/poc Copyright ß 2011 John Wiley & Sons, Ltd. J. Phys. Org. Chem. 2011,

3 MECHANISM OF THE ACIDIC HYDROLYSIS Figure 3. Proposed scheme of ECH hydrolysis in acidic medium Figure 4. Course of GL reaction with chloride ions Figure 6. Hydrolysis of ECH at ph 3.5 and T ¼ 40 8C in presence of chloride ions Figure 5. Hydrolysis of MCPD and GL in acidic medium Three products, GL, MCPD and DCPD, were simultaneously identified during ECH hydrolysis in the presence of chloride ions. However, after time, the GL formed was converted into MCPD (Fig. 7). It is understandable since GL reacts easily with Cl ions giving MCPD. Apart from temperature and ph, the propanol chloroderivatives (MCPD and DCPD) do not undergo further conversions. Taking into account the fact that in the final product of ECH hydrolysis in acidic medium, the main product of the reaction was MCPD, and that at the beginning of the reaction a subsidiary compound, i.e. glycidol, was identified, it can be concluded that Cl competes with water molecules in the reaction studied (Fig. 3). In order to confirm the experimental observations, both kinetics and thermodynamics modelling were performed. The obtained values (Table 1) show that the equilibrium constant for the reaction of MCPD formation from ECH is by about six orders of magnitude higher than that for GL formation. This confirms our observations that MCPD, but not GL, is the final product of the reaction. On the other hand, our experiments unequivocally suggest that GL appears as an intermediate product at the beginning of the reaction and decays with the progress of ECH chlorination. To clarify our observations, kinetic calculations were made to reveal the actual mechanism on the molecular level. The structures of the transition states and the corresponding values of the activation energies were estimated for processes both in neutral and acidic media. It was found that in both environments, two water molecules played an active role in the mechanism of hydrolysis acting as catalysts forming hydrogen bonds with the oxygen atom of epichlorohydrin. The paths of the reactions occurring in neutral medium are presented in Figs. 8 and 9. As shown in Figs. 8 and 9, the presence of two water molecules is important since one of them plays an active role in the addition reaction, whereas the second one forms strong hydrogen bonds and has an indirect effect on the reaction mechanism reducing by several kcal mol 1 the value of the activation energy. In case of epoxy ring hydrolysis, an accompanying water molecule forms a strong hydrogen bond with the oxygen atom of ECH by the addition of a water molecule to the C 1 or C 2 carbon atom. The substrate is an ECH complex stabilized by two strong hydrogen bonds formed by both water molecules present on opposite sides of the epoxy ring. The product of the reactions is MCPD stabilized by a hydrogen bond formed between a water molecule J. Phys. Org. Chem. 2011, Copyright ß 2011 John Wiley & Sons, Ltd. wileyonlinelibrary.com/journal/poc 1047

4 J. GACA, G. WEJNEROWSKA AND P. CYSEWSKI Figure 7. Scheme of ECH hydrolysis in acidic medium in the presence of chloride ions Table 1. Results of the theoretical estimation of equilibrium constants based on the thermodynamic cycle presented on Fig. 9 Reaction DE (g) DG (g) DG (s) pk ECH þ H 2 O ¼ MCPD MCPD ¼ GL ¼ HCl ECH þ HCl ¼ DCPD ECH þ H 2 O ¼ GL þ HCl and one of the hydroxyl groups. The lattice of hydrogen bonds formed by both water molecules and the oxygen atom of ECH is created in the saddle point. The selected geometrical characteristics of the complexes analysed are presented in Fig. 8. The activation energies of the saddle points TS1 and TS2 are very close which suggests the parallel courses involving both processes. In both cases, the second molecule of water actively supports the process of addition. The value of the Gibbs free energy for the process ECH! MCPD is equal to DG aq ¼ 2.08 kcal mol 1 at room temperature. It is worth emphasizing that an alternative path of ECH hydrolysis exists. The possibility of a direct attack of one water molecule on the C 3 atom with the simultaneous dissociation of hydrogen chloride is shown in Fig. 9. It was found that in the saddle point, two water molecules form hydrogen bonds with the chlorine ion of ECH and with each other. The products of this reaction are glycidol and hydrogen chloride. The value of the Gibbs free energy of the ECH! GL process is higher than for the process of MCPD formation and it is equal to DG aq ¼ 5.59 kcal mol 1 at room temperature. Since the energy value corresponding to the saddle point for this path is almost identical to that leading to MCPD, both products should be formed with similar reaction rates which 1048 Figure 8. Scheme of water molecule addition to the epoxy ring in neutral medium. Energy values are given in kcal mol 1 wileyonlinelibrary.com/journal/poc Copyright ß 2011 John Wiley & Sons, Ltd. J. Phys. Org. Chem. 2011,

5 MECHANISM OF THE ACIDIC HYDROLYSIS Figure 9. Scheme of water molecule addition to the C3 atom of Cl in neutral medium. Energy values are given in kcal mol 1 Figure 10. Scheme of the hydronium ion addition to the epoxy ring in acid medium. Energy values are given in kcal mol 1 was experimentally observed. The decay of GL can be explained by its reaction with HCl formed as a result of ECH hydrolysis. Moreover, calculations including the effect of acidic medium on the mechanism of epichlorohydrin hydrolysis were also performed. The fundamental difference with respect to the above described mechanism in neutral medium is the appearance of spontaneous protonation of the substrate by the hydronium ion. Structural and energetic characteristics are presented in Figs. 10 and 11. The substrate for the first path is the protonated epichlorohydrin ECH þ formed as a result of protonation at the oxygen atom of epichlorohydrin by a hydronium ion. Such a structure corresponds to the global minimum. Addition of one water molecule to the C 1 or C 2 atoms is accompanied by a strong binding effect of the second water molecule. In this case, the reaction path leading to MCPD þ by addition of a water molecule to the C 2 atom is more probable since this pathway is characterized by a lower transition state energy by about Figure 11. Scheme of the hydronium ion addition to the C3 atom in acidic medium. Energy values are given in kcal mol 1 J. Phys. Org. Chem. 2011, Copyright ß 2011 John Wiley & Sons, Ltd. wileyonlinelibrary.com/journal/poc 1049

6 J. GACA, G. WEJNEROWSKA AND P. CYSEWSKI 6 kcal mol 1. Furthermore, according to our expectations, the process occurs faster in acidic medium because the energies of the corresponding transition states are almost half of the values determined for neutral medium. An alternative pathway of ECH hydrolysis in acidic medium with the addition of a chlorine atom is presented in Fig. 11. There is the possibility of protonated glycidol formation as the result of the epoxy bridge opening by hydrated hydrogen chloride. The value of the activation energy is close to that for the reactions of MCPD þ formation. Thus, GL and MCPD are formed in parallel in acidic medium. Summarizing the considerations described above, it should be emphasized that the equilibrium state achieved in the process of ECH chlorination does not lead to a stable product, i.e. GL. However, its appearance in the reaction mixture is kinetically reasonable, which has not been taken into consideration in literature thus far. CONCLUSIONS As a result of experimental studies on the hydrolysis of epichlorohydrin in acidic medium, we observed the reaction course which has not been described in the literature. The final product of the reaction is 3-chloro-1,2-propanediol and the intermediate products are glycidol and protonated epichlorohydrin ECH þ. The presence of chloride ions in the reaction medium during the hydrolysis of epichlorohydrin in acidic medium results in the formation of the additional product of hydrolysis, i.e. 1,3-dichloro-2-propanediol. The results of experimental studies of the reaction pathway were consistent with calculations. REFERENCES [1] J. Gaca, G. Wejnerowska, Talanta 2006, 70, [2] M. Moghadam, S. Tangestaninejad, V. Mirkhami, R. Shaibani, Tetrahedron 2004, 60, [3] V. Mirkhami, S. Tangestaninejad, B. Yadollahi, L. Alipanah, Tetrahedron 2003, 59, [4] O. Von Piringer, Dtsch. Lebensmittel. Rundsch. 1980, 1, 11. [5] W. S. Shvets, L. W. Aleksanjan, Zh. Prikl. Kvhim. 1994, 70, 2027, [6] N. Iranpoor, H. Adibi, Bull. Chem. Soc. Jpn. 2000, 73, 675. [7] D. L. Whalen, Tetrahedron Lett. 1978, 50, [8] G. N. Merrill, J. Phys. Org. Chem. 2004, 17, 241. [9] C. Lee, W. Yang, R. G. Parr, Phys. Rev. B 1988, 37, 785. [10] A. D. Becke, Phys. Rev. A 1988, 38, [11] T. H. Lowry, K. S. Richardson, Mechanism and Theory in Organic Chemistry, Harper Collins Publishers Inc., New York, [12] M. J. Frisch, G. W. Trucks, H. B. Schlegel, G. E. Scuseria, M. A. Robb, J. R. Cheeseman, Jr J. A. Montgomery, Jr T. Vreven, K. N. Kudin,.J. C. Burant, J. M. Millam, S. S. Iyengar, J. Tomasi, V. Barone, B. Mennucci, M. Cossi, G. Scalmani, N. Rega, G. A. Petersson, H. Nakatsuji, M. Hada, M. Ehara, K. Toyota, R Fukuda, J. Hasegawa, M. Ishida, T. Nakajima, Y. Honda, O. Kitao, H. Nakai, M. Klene, X. Li, J. E. Knox, H. P. Hratchian, J. B. Cross, V. Bakken, C. Adamo, J. Jaramillo, R. Gomperts, R. E. Stratmann, O. Yazyev, A. J. Austin, R. Cammi, C. Pomelli, J. W. Ochterski, P. Y. Ayala, K. Morokuma, G.A. Voth, P. Salvador, J. J. Dannenberg, V. G. Zakrzewski, S. Dapprich, A. D. Daniels, M. C. Strain, O. Farkas, D. K. Malick, A. D. Rabuck, K. Raghavachari, J. B. Foresman, J. V. Ortiz, Q. Cui, A. G. Baboul, S. Clifford, J. Cioslowski, B. B. Stefanov, G. Liu, A. Liashenko, P. Piskorz, I. Komaromi, R. L. Martin, D. J. Fox, T. Keith, M. A. Al-Laham C. Y. Peng, A. Nanayakkara, M. Challacombe, P. M. W. Gill, B. Johnson, W. Chen, M. W. Wong, C. Gonzalez, J.A. Pople, Gaussian 03, Revision C.02, Gaussian, Inc., Wallingford, CT, 2004, 1050 wileyonlinelibrary.com/journal/poc Copyright ß 2011 John Wiley & Sons, Ltd. J. Phys. Org. Chem. 2011,

Supplementary information

Supplementary information Supplementary information doi: 10.1038/nchem.287 A Potential Energy Surface Bifurcation in Terpene Biosynthesis Young J. Hong and Dean J. Tantillo* Department of Chemistry, University of California, Davis,

More information

A dominant homolytic O-Cl bond cleavage with low-spin triplet-state Fe(IV)=O formed is revealed in the mechanism of heme-dependent chlorite dismutase

A dominant homolytic O-Cl bond cleavage with low-spin triplet-state Fe(IV)=O formed is revealed in the mechanism of heme-dependent chlorite dismutase Supplementary Information to: A dominant homolytic O-Cl bond cleavage with low-spin triplet-state Fe(IV)=O formed is revealed in the mechanism of heme-dependent chlorite dismutase Shuo Sun, Ze-Sheng Li,

More information

3,4-Ethylenedioxythiophene (EDOT) and 3,4- Ethylenedioxyselenophene (EDOS): Synthesis and Reactivity of

3,4-Ethylenedioxythiophene (EDOT) and 3,4- Ethylenedioxyselenophene (EDOS): Synthesis and Reactivity of Supporting Information 3,4-Ethylenedioxythiophene (EDOT) and 3,4- Ethylenedioxyselenophene (EDOS): Synthesis and Reactivity of C α -Si Bond Soumyajit Das, Pradip Kumar Dutta, Snigdha Panda, Sanjio S. Zade*

More information

Methionine Ligand selectively promotes monofunctional adducts between Trans-EE platinum anticancer drug and Guanine DNA base

Methionine Ligand selectively promotes monofunctional adducts between Trans-EE platinum anticancer drug and Guanine DNA base Supplementary Material (ESI) for Chemical Communications This journal is The Royal Society of Chemistry 2010 Supplementary Information Methionine Ligand selectively promotes monofunctional adducts between

More information

Decomposition!of!Malonic!Anhydrides. Charles L. Perrin,* Agnes Flach, and Marlon N. Manalo SUPPORTING INFORMATION

Decomposition!of!Malonic!Anhydrides. Charles L. Perrin,* Agnes Flach, and Marlon N. Manalo SUPPORTING INFORMATION S1 Decomposition!of!Malonic!Anhydrides Charles L. Perrin,* Agnes Flach, and Marlon N. Manalo SUPPORTING INFORMATION Complete Reference 26: M. J. Frisch, G. W. Trucks, H. B. Schlegel, G. E. Scuseria, M.

More information

Planar Pentacoordinate Carbon in CAl 5 + : A Global Minimum

Planar Pentacoordinate Carbon in CAl 5 + : A Global Minimum Supporting Information: Planar Pentacoordinate Carbon in CAl 5 + : A Global Minimum Yong Pei, Wei An, Keigo Ito, Paul von Ragué Schleyer, Xiao Cheng Zeng * Department of Chemistry and Nebraska Center for

More information

Synergistic Effects of Water and SO 2 on Degradation of MIL-125 in the Presence of Acid Gases

Synergistic Effects of Water and SO 2 on Degradation of MIL-125 in the Presence of Acid Gases Supporting Information Synergistic Effects of Water and SO 2 on Degradation of MIL-125 in the Presence of Acid Gases William P. Mounfield, III, Chu Han,, Simon H. Pang, Uma Tumuluri, Yang Jiao, Souryadeep

More information

Spin contamination as a major problem in the calculation of spin-spin coupling in triplet biradicals

Spin contamination as a major problem in the calculation of spin-spin coupling in triplet biradicals Supporting Information to the manuscript Spin contamination as a major problem in the calculation of spin-spin coupling in triplet biradicals P. Jost and C. van Wüllen Contents Computational Details...

More information

Aluminum Siting in the ZSM-5 Framework by Combination of

Aluminum Siting in the ZSM-5 Framework by Combination of Supplementary Information Aluminum Siting in the ZSM-5 Framework by Combination of High Resolution 27 Al NMR and DFT/MM calculations Stepan Sklenak,* a Jiří Dědeček, a Chengbin Li, a Blanka Wichterlová,

More information

SUPPORTING INFORMATION

SUPPORTING INFORMATION SUPPORTING INFORMATION Highly Luminescent Tetradentate Bis-Cyclometalated Platinum Complexes: Design, Synthesis, Structure, Photophysics, and Electroluminescence Application Dileep A. K. Vezzu, Joseph

More information

Supplemental Material

Supplemental Material Supplemental Material Sensitivity of Hydrogen Bonds of DNA and RNA to Hydration, as Gauged by 1 JNH Measurements in Ethanol Water Mixtures Marlon N. Manalo, Xiangming Kong, and Andy LiWang* Texas A&M University

More information

Truong Ba Tai, Long Van Duong, Hung Tan Pham, Dang Thi Tuyet Mai and Minh Tho Nguyen*

Truong Ba Tai, Long Van Duong, Hung Tan Pham, Dang Thi Tuyet Mai and Minh Tho Nguyen* Supplementary Information: A Disk-Aromatic Bowl Cluster B 30 : Towards Formation of Boron Buckyballs Truong Ba Tai, Long Van Duong, Hung Tan Pham, Dang Thi Tuyet Mai and Minh Tho Nguyen* The file contains

More information

Supporting Information

Supporting Information Electronic Supplementary Material (ESI) for Energy & Environmental Science. This journal is The Royal Society of Chemistry 2014 Supporting Information Perylene Diimides: a Thickness-Insensitive Cathode

More information

Supporting Information

Supporting Information Supporting Information Wiley-VCH 2007 69451 Weinheim, Germany From the alkyllithium aggregate [(nbuli) 2 PMDTA] 2 to lithiated PMDTA Carsten Strohmann*, Viktoria H. Gessner Institut für Anorganische Chemie,

More information

Electronic Supplementary information

Electronic Supplementary information Electronic Supplementary information SERS observation of soft C H vibrational mode of bifunctional alkanethiol molecules adsorbed at Au and Ag electrodes Inga Razmute-Razmė, Zenonas Kuodis, Olegas Eicher-Lorka

More information

Supporting Information. for. Silylation of Iron-Bound Carbon Monoxide. Affords a Terminal Fe Carbyne

Supporting Information. for. Silylation of Iron-Bound Carbon Monoxide. Affords a Terminal Fe Carbyne Supporting Information for Silylation of Iron-Bound Carbon Monoxide Affords a Terminal Fe Carbyne Yunho Lee and Jonas C. Peters* Division of Chemistry and Chemical Engineering, California Institute of

More information

Group 13 BN dehydrocoupling reagents, similar to transition metal catalysts but with unique reactivity. Part A: NMR Studies

Group 13 BN dehydrocoupling reagents, similar to transition metal catalysts but with unique reactivity. Part A: NMR Studies Part A: NMR Studies ESI 1 11 B NMR spectrum of the 2:1 reaction of i Pr 2 NHBH 3 with Al(NMe 2 ) 3 in d 6 -benzene 24 h later 11 B NMR ESI 2 11 B NMR spectrum of the reaction of t BuNH 2 BH 3 with Al(NMe

More information

Supporting Information

Supporting Information Supporting Information Wiley-VCH 2007 69451 Weinheim, Germany Aluminum Siting in Silicon-rich Zeolite Frameworks. A Combined High Resolution 27 Al NMR and QM/MM Study of ZSM-5 Stepan Sklenak,* Jiří Dědeček,

More information

Supporting Information. spectroscopy and ab initio calculations of a large. amplitude intramolecular motion

Supporting Information. spectroscopy and ab initio calculations of a large. amplitude intramolecular motion Supporting Information Pseudorotation in pyrrolidine: rotational coherence spectroscopy and ab initio calculations of a large amplitude intramolecular motion Maksim Kunitski, Christoph Riehn, Victor V.

More information

University of Groningen

University of Groningen University of Groningen Tuning the Temperature Dependence for Switching in Dithienylethene Photochromic Switches Kudernac, Tibor; Kobayashi, Takao; Uyama, Ayaka; Uchida, Kingo; Nakamura, Shinichiro; Feringa,

More information

Electronic supplementary information (ESI) Infrared spectroscopy of nucleotides in the gas phase 2. The protonated cyclic 3,5 -adenosine monophosphate

Electronic supplementary information (ESI) Infrared spectroscopy of nucleotides in the gas phase 2. The protonated cyclic 3,5 -adenosine monophosphate Electronic supplementary information (ESI) Infrared spectroscopy of nucleotides in the gas phase 2. The protonated cyclic 3,5 -adenosine monophosphate Francesco Lanucara, a,b Maria Elisa Crestoni,* a Barbara

More information

Metal Enhanced Interactions of Graphene with Monosaccharides. A Manuscript Submitted for publication to. Chemical Physics Letters.

Metal Enhanced Interactions of Graphene with Monosaccharides. A Manuscript Submitted for publication to. Chemical Physics Letters. Metal Enhanced Interactions of Graphene with Monosaccharides A Manuscript Submitted for publication to Chemical Physics Letters February 15, 2016 Carlos Pereyda-Pierre a and Abraham F. Jalbout b* a DIFUS,

More information

Electronic Supplementary Information (ESI) for Chem. Commun.

Electronic Supplementary Information (ESI) for Chem. Commun. page S1 Electronic Supplementary Information (ESI) for Chem. Commun. Nitric oxide coupling mediated by iron porphyrins: the N-N bond formation step is facilitated by electrons and a proton Jun Yi, Brian

More information

Photoinduced intramolecular charge transfer in trans-2-[4 -(N,Ndimethylamino)styryl]imidazo[4,5-b]pyridine:

Photoinduced intramolecular charge transfer in trans-2-[4 -(N,Ndimethylamino)styryl]imidazo[4,5-b]pyridine: Electronic Supplementary Material (ESI) for Photochemical & Photobiological Sciences. This journal is The Royal Society of Chemistry and Owner Societies 2014 Photoinduced intramolecular charge transfer

More information

Supporting Information For. metal-free methods for preparation of 2-acylbenzothiazoles and. dialkyl benzothiazole-2-yl phosphonates

Supporting Information For. metal-free methods for preparation of 2-acylbenzothiazoles and. dialkyl benzothiazole-2-yl phosphonates Supporting Information For Peroxide as switch of dialkyl H-phosphonate: two mild and metal-free methods for preparation of 2-acylbenzothiazoles and dialkyl benzothiazole-2-yl phosphonates Xiao-Lan Chen,*,

More information

A theoretical study on the thermodynamic parameters for some imidazolium crystals

A theoretical study on the thermodynamic parameters for some imidazolium crystals Available online www.jocpr.com Journal of Chemical and Pharmaceutical Research, 2015, 7(2):550-554 Research Article ISSN : 0975-7384 CODEN(USA) : JCPRC5 A theoretical study on the thermodynamic parameters

More information

Two-Dimensional Carbon Compounds Derived from Graphyne with Chemical Properties Superior to Those of Graphene

Two-Dimensional Carbon Compounds Derived from Graphyne with Chemical Properties Superior to Those of Graphene Supplementary Information Two-Dimensional Carbon Compounds Derived from Graphyne with Chemical Properties Superior to Those of Graphene Jia-Jia Zheng, 1,2 Xiang Zhao, 1* Yuliang Zhao, 2 and Xingfa Gao

More information

Effect of Ionic Size on Solvate Stability of Glyme- Based Solvate Ionic Liquids

Effect of Ionic Size on Solvate Stability of Glyme- Based Solvate Ionic Liquids Supporting Information for: Effect of Ionic Size on Solvate Stability of Glyme- Based Solvate Ionic Liquids Toshihiko Mandai,,ǁ Kazuki Yoshida, Seiji Tsuzuki, Risa Nozawa, Hyuma Masu, Kazuhide Ueno, Kaoru

More information

Supporting Information

Supporting Information Theoretical examination of competitive -radical-induced cleavages of N-C and C -C bonds of peptides Wai-Kit Tang, Chun-Ping Leong, Qiang Hao, Chi-Kit Siu* Department of Biology and Chemistry, City University

More information

A Computational Model for the Dimerization of Allene: Supporting Information

A Computational Model for the Dimerization of Allene: Supporting Information A Computational Model for the Dimerization of Allene: Supporting Information Sarah L. Skraba and Richard P. Johnson* Department of Chemistry University of New Hampshire Durham, NH 03824 Corresponding Author:

More information

China; University of Science and Technology, Nanjing , P R China.

China;   University of Science and Technology, Nanjing , P R China. Electronic Supplementary Information Lithium-doped MOF impregnated with lithium-coated fullerenes: A hydrogen storage route for high gravimetric and volumetric uptakes at ambient temperatures Dewei Rao,

More information

Supporting Information. Copyright Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim, 2008

Supporting Information. Copyright Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim, 2008 Supporting Information Copyright Wiley-VCH Verlag GmbH & Co. KGaA, 69451 Weinheim, 2008 Pyridine Catalyzed Stereoselective Addition of Acyclic 1,2-Diones to Acetylenic Ester: Synthetic and Theoretical

More information

Ali Rostami, Alexis Colin, Xiao Yu Li, Michael G. Chudzinski, Alan J. Lough and Mark S. Taylor*

Ali Rostami, Alexis Colin, Xiao Yu Li, Michael G. Chudzinski, Alan J. Lough and Mark S. Taylor* N,N -Diaryl Squaramides: General, High-yielding Synthesis and Applications in Colorimetric Anion Sensing Ali Rostami, Alexis Colin, Xiao Yu Li, Michael G. Chudzinski, Alan J. Lough and Mark S. Taylor*

More information

Supporting Information

Supporting Information Electronic Supplementary Material (ESI) for RSC Advances. This journal is The Royal Society of Chemistry 2015 Supporting Information Prenylated Benzoylphloroglucinols and from the Leaves of Garcinia multiflora

More information

The Activation of Carboxylic Acids via Self Assembly Asymmetric Organocatalysis: A Combined Experimental and Computational Investigation

The Activation of Carboxylic Acids via Self Assembly Asymmetric Organocatalysis: A Combined Experimental and Computational Investigation The Activation of Carboxylic Acids via Self Assembly Asymmetric Organocatalysis: A Combined Experimental and Computational Investigation Mattia Riccardo Monaco, Daniele Fazzi, Nobuya Tsuji, Markus Leutzsch,

More information

Supporting Information. 4-Pyridylnitrene and 2-pyrazinylcarbene

Supporting Information. 4-Pyridylnitrene and 2-pyrazinylcarbene Supporting Information for 4-Pyridylnitrene and 2-pyrazinylcarbene Curt Wentrup*, Ales Reisinger and David Kvaskoff Address: School of Chemistry and Molecular Biosciences, The University of Queensland,

More information

Supporting Information

Supporting Information Supporting Information Oxygen Atom Transfer Reactions of Iridium and Osmium Complexes: Theoretical Study of Characteristic Features and Significantly Large Differences Between These Two Complexes Atsushi

More information

Supporting Information For

Supporting Information For Supporting Information For Chemo-, Regio- and Stereoselective Synthesis of Polysusbtituted xazolo[3,2-d][1,4]oxazepin-5(3h)ones via a Domino oxa- Michael/aza-Michael/Williamson Cycloetherification Sequence

More information

CICECO, Departamento de Química, Universidade de Aveiro, Aveiro, Portugal

CICECO, Departamento de Química, Universidade de Aveiro, Aveiro, Portugal Evidence for the Interactions Occurring between Ionic Liquids and Tetraethylene Glycol in Binary Mixtures and Aqueous Biphasic Systems Luciana I. N. Tomé, Jorge F. B. Pereira,, Robin D. Rogers, Mara G.

More information

Computational Material Science Part II

Computational Material Science Part II Computational Material Science Part II Ito Chao ( ) Institute of Chemistry Academia Sinica Aim of Part II Get familiar with the computational methodologies often used and properties often predicted in

More information

SUPPORTING INFORMATION. Ammonia-Borane Dehydrogenation Promoted by a Pincer-Square- Planar Rhodium(I)-Monohydride: A Stepwise Hydrogen Transfer

SUPPORTING INFORMATION. Ammonia-Borane Dehydrogenation Promoted by a Pincer-Square- Planar Rhodium(I)-Monohydride: A Stepwise Hydrogen Transfer S 1 SUPPORTING INFORMATION Ammonia-Borane Dehydrogenation Promoted by a Pincer-Square- Planar Rhodium(I)-Monohydride: A Stepwise Hydrogen Transfer from the Substrate to the Catalyst Miguel A. Esteruelas,*

More information

BINOPtimal: A Web Tool for Optimal Chiral Phosphoric Acid Catalyst Selection

BINOPtimal: A Web Tool for Optimal Chiral Phosphoric Acid Catalyst Selection Electronic Supplementary Material (ESI) for ChemComm. This journal is The Royal Society of Chemistry 2019 BINOPtimal: A Web Tool for Optimal Chiral Phosphoric Acid Catalyst Selection Jolene P. Reid, Kristaps

More information

Supporting information on. Singlet Diradical Character from Experiment

Supporting information on. Singlet Diradical Character from Experiment Supporting information on Singlet Diradical Character from Experiment Kenji Kamada,,* Koji Ohta, Akihiro Shimizu, Takashi Kubo,,* Ryohei Kishi, Hideaki Takahashi, Edith Botek, Benoît Champagne,,* and Masayoshi

More information

Supporting Information

Supporting Information Supporting Information Z-Selective Ethenolysis With a Ruthenium Metathesis Catalyst: Experiment and Theory Hiroshi Miyazaki,, Myles B. Herbert,, Peng Liu, Xiaofei Dong, Xiufang Xu,,# Benjamin K. Keitz,

More information

STRUCTURAL DETERMINATION OF A SYNTHETIC POLYMER BY GAUSSIAN COMPUTATIONAL MODELING SOFTWARE

STRUCTURAL DETERMINATION OF A SYNTHETIC POLYMER BY GAUSSIAN COMPUTATIONAL MODELING SOFTWARE STRUCTURAL DETERMINATIN F A SYNTHETIC PLYMER BY GAUSSIAN CMPUTATINAL MDELING SFTWARE AND NUCLEAR MAGNETIC RESNANCE SPECTRSCPY Kristen Entwistle*, Dwight Tshudy*, Terrence Collins** *Department of Chemistry,

More information

Supporting Information. Synthesis, Molecular Structure, and Facile Ring Flipping of a Bicyclo[1.1.0]tetrasilane

Supporting Information. Synthesis, Molecular Structure, and Facile Ring Flipping of a Bicyclo[1.1.0]tetrasilane Supporting Information Synthesis, Molecular Structure, and Facile Ring Flipping of a Bicyclo[1.1.0]tetrasilane Kiyomi Ueba-Ohshima, Takeaki Iwamoto,*,# Mitsuo Kira*, #Research and Analytical Center for

More information

SUPPLEMENTARY INFORMATION

SUPPLEMENTARY INFORMATION DOI: 10.1038/NCHEM.1754 Caesium in high oxidation states and as a p-block element Mao-sheng Miao Materials Research Laboratory, University of California, Santa Barbara, CA 93106-5050, USA and Beijing Computational

More information

Electronic Supplementary Information for:

Electronic Supplementary Information for: Electronic Supplementary Information for: The Potential of a cyclo-as 5 Ligand Complex in Coordination Chemistry H. Krauss, a G. Balazs, a M. Bodensteiner, a and M. Scheer* a a Institute of Inorganic Chemistry,

More information

Calculating Accurate Proton Chemical Shifts of Organic Molecules with Density Functional Methods and Modest Basis Sets

Calculating Accurate Proton Chemical Shifts of Organic Molecules with Density Functional Methods and Modest Basis Sets Calculating Accurate Proton Chemical hifts of rganic Molecules with Density Functional Methods and Modest Basis ets Rupal Jain,, # Thomas Bally,, * and Paul Rablen $, * Department of Chemistry, University

More information

Experimental Evidence for Non-Canonical Thymine Cation Radicals in the Gas Phase

Experimental Evidence for Non-Canonical Thymine Cation Radicals in the Gas Phase Supporting Information for Experimental Evidence for Non-Canonical Thymine Cation Radicals in the Gas Phase Andy Dang, Huong T. H. Nguyen, Heather Ruiz, Elettra Piacentino,Victor Ryzhov *, František Tureček

More information

Concerted Attack of Frustrated Lewis Acid Base Pairs on Olefinic Double Bonds: A Theoretical Study

Concerted Attack of Frustrated Lewis Acid Base Pairs on Olefinic Double Bonds: A Theoretical Study Supporting Information Concerted Attack of Frustrated Lewis Acid Base Pairs on Olefinic Double Bonds: A Theoretical Study András Stirling, Andrea Hamza, Tibor András Rokob and Imre Pápai* Chemical Research

More information

Ferromagnetic Coupling of [Ni(dmit) 2 ] - Anions in. (m-fluoroanilinium)(dicyclohexano[18]crown-6)[ni(dmit) 2 ]

Ferromagnetic Coupling of [Ni(dmit) 2 ] - Anions in. (m-fluoroanilinium)(dicyclohexano[18]crown-6)[ni(dmit) 2 ] Supporting Information Ferromagnetic Coupling of [Ni(dmit) 2 ] - Anions in (m-fluoroanilinium)(dicyclohexano[18]crown-6)[ni(dmit) 2 ] Tomoyuki Akutagawa, *,, Daisuke Sato, Qiong Ye, Shin-ichiro Noro,,

More information

Supporting Information

Supporting Information Supporting Information Hydrogen-bonding Interactions Between [BMIM][BF 4 ] and Acetonitrile Yan-Zhen Zheng, a Nan-Nan Wang, a,b Jun-Jie Luo, a Yu Zhou a and Zhi-Wu Yu*,a a Key Laboratory of Bioorganic

More information

A mechanistic study supports a two-step mechanism for peptide bond formation on the ribosome

A mechanistic study supports a two-step mechanism for peptide bond formation on the ribosome s1 Electronic Supplementary Information A mechanistic study supports a two-step mechanism for peptide bond formation on the ribosome Byung Jin Byun and Young Kee Kang* Department of Chemistry, Chungbuk

More information

Superacid promoted reactions of N-acyliminium salts and evidence for the involvement of superelectrophiles

Superacid promoted reactions of N-acyliminium salts and evidence for the involvement of superelectrophiles Superacid promoted reactions of N-acyliminium salts and evidence for the involvement of superelectrophiles Yiliang Zhang, Daniel J. DeSchepper, Thomas M. Gilbert, and Douglas A. Klumpp Department of Chemistry

More information

Mechanism of Hydrogen Evolution in Cu(bztpen)-Catalysed Water Reduction: A DFT Study

Mechanism of Hydrogen Evolution in Cu(bztpen)-Catalysed Water Reduction: A DFT Study Electronic Supplementary Material (ESI) for Dalton Transactions. This journal is The Royal Society of Chemistry 2015 Supporting Information to Mechanism of Hydrogen Evolution in Cu(bztpen)-Catalysed Water

More information

Supporting Information. A rare three-coordinated zinc cluster-organic framework

Supporting Information. A rare three-coordinated zinc cluster-organic framework Electronic Supplementary Material (ESI) for ChemComm. This journal is The Royal Society of Chemistry 0 Supporting Information A rare three-coordinated zinc cluster-organic framework with two types of second

More information

Supporting Information

Supporting Information Mechanical Control of ATP Synthase Function: Activation Energy Difference between Tight and Loose Binding Sites Supporting Information Tamás Beke-Somfai* 1,2, Per Lincoln 1, Bengt Nordén* 1 1 Department

More information

Phosphine Oxide Jointed Electron Transporters for Reducing Interfacial

Phosphine Oxide Jointed Electron Transporters for Reducing Interfacial Electronic Supplementary Material (ESI) for Journal of Materials Chemistry C. This journal is The Royal Society of Chemistry 2015 Supporting Information Phosphine Oxide Jointed Electron Transporters for

More information

Theoretical studies of the mechanism of catalytic hydrogen production by a cobaloxime

Theoretical studies of the mechanism of catalytic hydrogen production by a cobaloxime Theoretical studies of the mechanism of catalytic hydrogen production by a cobaloxime James T. Muckerman,* and Etsuko Fujita Electronic Supplementary Information Table of Contents Fig. S1. Calculated structures

More information

(1) 2. Thermochemical calculations [2,3]

(1) 2. Thermochemical calculations [2,3] 1. Introduction The exploration of reaction mechanisms and reaction paths that cannot be measured directly during an experiment has nowadays become a daily routine for chemists to support their laboratory

More information

Supplementary Material

Supplementary Material The Electronic Spectrum of the C s -C 11 H 3 Radical Dongfeng Zhao, 1 Harold Linnartz,,1 and Wim Ubachs 1 1 Institute for Lasers, Life, and Biophotonics, VU University Amsterdam, De Boelelaan 1081, NL

More information

DFT STUDY OF THE ADDITION CYCLIZATION ISOMERIZATION REACTION BETWEEN PROPARGYL CYANAMIDES AND THIOL OR ALCOHOL: THE ROLE OF CATALYST

DFT STUDY OF THE ADDITION CYCLIZATION ISOMERIZATION REACTION BETWEEN PROPARGYL CYANAMIDES AND THIOL OR ALCOHOL: THE ROLE OF CATALYST ХИМИЯ ГЕТЕРОЦИКЛИЧЕСКИХ СОЕДИНЕНИЙ. 2013. 2. С. 284 296 X. Ren 1, Y. Yuan 1, Y. Ju 2, H. Wang 1 * DFT STUDY OF THE ADDITION CYCLIZATION ISOMERIZATION REACTION BETWEEN PROPARGYL CYANAMIDES AND THIOL OR

More information

Concerted halogen and hydrogen bonding in RuI 2 (H 2 dcbpy)(co) 2 ] I 2 (CH 3 OH) I 2 [RuI 2 (H 2 dcbpy)(co) 2 ]

Concerted halogen and hydrogen bonding in RuI 2 (H 2 dcbpy)(co) 2 ] I 2 (CH 3 OH) I 2 [RuI 2 (H 2 dcbpy)(co) 2 ] Concerted halogen and hydrogen bonding in RuI 2 (H 2 dcbpy)(co) 2 ] I 2 (CH 3 OH) I 2 [RuI 2 (H 2 dcbpy)(co) 2 ] Matti Tuikka a, Mika Niskanen a, Pipsa Hirva a, Kari Rissanen b, Arto Valkonen b, and Matti

More information

Ligand-to-Metal Ratio Controlled Assembly of Nanoporous Metal-Organic Frameworks

Ligand-to-Metal Ratio Controlled Assembly of Nanoporous Metal-Organic Frameworks Electronic Supplementary Information for Ligand-to-Metal Ratio Controlled Assembly of Nanoporous Metal-Organic Frameworks Jian-Guo Lin, a Yan-Yan Xu, a Ling Qiu, b Shuang-Quan Zang, a Chang-Sheng Lu, a

More information

Supporting Information. {RuNO} 6 vs. Co-Ligand Oxidation: Two Non-Innocent Groups in One Ruthenium Nitrosyl Complex

Supporting Information. {RuNO} 6 vs. Co-Ligand Oxidation: Two Non-Innocent Groups in One Ruthenium Nitrosyl Complex Electronic Supplementary Material (ESI) for Dalton Transactions. This journal is The Royal Society of Chemistry 2014 Supporting Information {RuNO} 6 vs. Co-Ligand Oxidation: Two Non-Innocent Groups in

More information

Quantum Chemical DFT study of the fulvene halides molecules (Fluoro, Chloro, Bromo, Iodo, and stato fulvenes)

Quantum Chemical DFT study of the fulvene halides molecules (Fluoro, Chloro, Bromo, Iodo, and stato fulvenes) - - Quantum Chemical DFT study of the fulvene halides molecules (Fluoro, Chloro, Bromo, Iodo, and stato fulvenes) Jaafar.. Ali* Shaymaa Ibrahim Saeed Zuafurni Khulood Obaid Kzar Dept. of Chemistry, College

More information

Supporting Information. O-Acetyl Side-chains in Saccharides: NMR J-Couplings and Statistical Models for Acetate Ester Conformational Analysis

Supporting Information. O-Acetyl Side-chains in Saccharides: NMR J-Couplings and Statistical Models for Acetate Ester Conformational Analysis Supporting Information -Acetyl Side-chains in Saccharides: NMR J-Couplings and Statistical Models for Acetate Ester Conformational Analysis Toby Turney, Qingfeng Pan, Luke Sernau, Ian Carmichael, Wenhui

More information

Analysis of Permanent Electric Dipole Moments of Aliphatic Amines.

Analysis of Permanent Electric Dipole Moments of Aliphatic Amines. Analysis of Permanent Electric Dipole Moments of Aliphatic Amines. Boris Lakard* LPUB, UMR CNRS 5027, University of Bourgogne, F-21078, Dijon, France Internet Electronic Conference of Molecular Design

More information

The Chemist Journal of the American Institute of Chemists

The Chemist Journal of the American Institute of Chemists The Chemist Journal of the American Institute of Chemists Computational Studies on the IR and NMR Spectra of 2-Aminophenol Abraham George 1 *, P, V, Thomas 2, and David Devraj Kumar 3 1. Department of

More information

Supporting information

Supporting information Supporting information A Computational Study of the CO Dissociation in Cyclopentadienyl Ruthenium Complexes Relevant to the Racemization of Alcohols Beverly Stewart 1,2, Jonas Nyhlen 1, Belén Martín-Matute

More information

Supporting Information

Supporting Information Quantum Chemistry Study of U(VI), Np(V) and Pu(IV,VI) Complexes with Preorganized Tetradentate Phenanthroline Amide Ligands Cheng-Liang Xiao, Qun-Yan Wu, Cong-Zhi Wang, Yu-Liang Zhao, Zhi-Fang Chai, *

More information

1,5,2,4,6,8-dithiatetrazocine. Synthesis, computation, crystallography and voltammetry of the parent heterocycle. Supplemental Information

1,5,2,4,6,8-dithiatetrazocine. Synthesis, computation, crystallography and voltammetry of the parent heterocycle. Supplemental Information 1,5,2,4,6,8-dithiatetrazocine. Synthesis, computation, crystallography and voltammetry of the parent heterocycle. Klaus H. Moock 1, Ken M. Wong 2 and René T. Boeré* 2 Moock Environmental Solutions Ltd.,

More information

Supporting Information

Supporting Information Supporting Information Wiley-VCH 2008 69451 Weinheim, Germany Dipositively Charged Protonated a 3 and a 2 Ions: Generation by Fragmentation of [La(GGG)(CH 3 CN) 2 ] 3+ Tujin Shi a, Chi-Kit Siu, K. W. Michael

More information

Supporting Information. Copyright Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim, 2006

Supporting Information. Copyright Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim, 2006 Supporting Information Copyright Wiley-VCH Verlag GmbH & Co. KGaA, 69451 Weinheim, 2006 Formation and stability of G-quadruplex self-assembled from guanine-rich strands Jiang Zhou, Gu Yuan*, Junjun Liu,

More information

Dynamics of H-atom loss in adenine: Supplementary information

Dynamics of H-atom loss in adenine: Supplementary information Dynamics of H-atom loss in adenine: Supplementary information M. Zierhut, W. Roth, and I. Fischer Institute of Physical Chemistry, University of Würzburg, Am Hubland, D-97074 Würzburg; Email: ingo@phys-chemie.uni-wuerzburg.de

More information

Molecular Engineering towards Safer Lithium-Ion Batteries: A. Highly Stable and Compatible Redox Shuttle for Overcharge.

Molecular Engineering towards Safer Lithium-Ion Batteries: A. Highly Stable and Compatible Redox Shuttle for Overcharge. Supporting Information Molecular Engineering towards Safer Lithium-Ion Batteries: A Highly Stable and Compatible Redox Shuttle for vercharge Protection Lu Zhang, Zhengcheng Zhang,*, Paul C. Redfern, Larry

More information

ELECTRONIC SUPPLEMENTARY INFORMATION

ELECTRONIC SUPPLEMENTARY INFORMATION Electronic Supplementary Material (ESI) for Physical Chemistry Chemical Physics. This journal is the Owner Societies 2017 S-1 ELECTRONIC SUPPLEMENTARY INFORMATION OCT. 1, 2017 Combined Quantum Mechanical

More information

Preprint. This is the submitted version of a paper published in Journal of Computational Chemistry.

Preprint.   This is the submitted version of a paper published in Journal of Computational Chemistry. http://www.diva-portal.org Preprint This is the submitted version of a paper published in Journal of Computational Chemistry. Citation for the original published paper (version of record): Roca-Sanjuan,

More information

SUPPLEMENTARY INFORMATION

SUPPLEMENTARY INFORMATION Electronic Supplementary Material (ESI) for Dalton Transactions. This journal is The Royal Society of Chemistry 2015 Novel B(Ar') 2 (Ar'') hetero-tri(aryl)boranes: a systematic study of Lewis acidity Robin

More information

Supplementary Information:

Supplementary Information: Electronic Supplementary Material (ESI) for Dalton Transactions. This journal is The Royal Society of Chemistry 2016 Supplementary Information: Coordination and Insertion of Alkenes and Alkynes in Au III

More information

Ab Initio Molecular Orbital Study of the Reactivity of Active Alkyl Groups. V. Nitrosation Mechanism of Acetone with syn-form of Methyl Nitrite

Ab Initio Molecular Orbital Study of the Reactivity of Active Alkyl Groups. V. Nitrosation Mechanism of Acetone with syn-form of Methyl Nitrite 1502 Notes Chem. Pharm. Bull. 50(11) 1502 1506 (2002) Vol. 50, No. 11 Ab Initio Molecular Orbital Study of the Reactivity of Active Alkyl Groups. V. Nitrosation Mechanism of Acetone with syn-form of Methyl

More information

Molecular Modeling of Photoluminescent Copper(I) Cyanide Materials. Jasprina L Ming Advisor: Craig A Bayse

Molecular Modeling of Photoluminescent Copper(I) Cyanide Materials. Jasprina L Ming Advisor: Craig A Bayse Molecular Modeling of Photoluminescent Copper(I) Cyanide Materials Jasprina L Advisor: Craig A Bayse Department of Chemistry and Biochemistry, Old Dominion University, Hampton Boulevard, Norfolk, Virginia

More information

Non-Radiative Decay Paths in Rhodamines: New. Theoretical Insights

Non-Radiative Decay Paths in Rhodamines: New. Theoretical Insights Electronic Supplementary Material (ESI) for Physical Chemistry Chemical Physics. This journal is the Owner Societies 2014 Non-Radiative Decay Paths in Rhodamines: New Theoretical Insights Marika Savarese,

More information

Cationic Polycyclization of Ynamides: Building up Molecular Complexity

Cationic Polycyclization of Ynamides: Building up Molecular Complexity Electronic Supplementary Material (ESI) for Organic & Biomolecular Chemistry. This journal is The Royal Society of Chemistry 2017 Supporting Information Cationic Polycyclization of Ynamides: Building up

More information

Supporting Information Computational Part

Supporting Information Computational Part Supporting Information Computational Part The Cinchona Primary Amine-Catalyzed Asymmetric Epoxidation and Hydroperoxidation of, -Unsaturated Carbonyl Compounds with Hydrogen Peroxide Olga Lifchits, Manuel

More information

Electrophilicity and Nucleophilicity of Commonly Used. Aldehydes

Electrophilicity and Nucleophilicity of Commonly Used. Aldehydes Electronic Supplementary Material (ESI) for Organic & Biomolecular Chemistry. This journal is The Royal Society of Chemistry 2014 ESI-1 Supporting Information (ESI-1) Electrophilicity and Nucleophilicity

More information

Nucleophilicity Evaluation for Primary and Secondary Amines

Nucleophilicity Evaluation for Primary and Secondary Amines Nucleophilicity Evaluation for Primary and Secondary Amines MADIAN RAFAILA, MIHAI MEDELEANU*, CORNELIU MIRCEA DAVIDESCU Politehnica University of Timiºoara, Faculty of Industrial Chemistry and Environmental

More information

Supporting Information

Supporting Information Supporting nformation Chromism Based on Supramolecular H-bonds Xiaowei Yu,, Chuanlang Zhan, *, Xunlei Ding, Shanlin Zhang, Xin Zhang, Huiying Liu, Lili Chen, Yishi Wu, Hongbing Fu, Shenggui He, *, Yan

More information

INTERNATIONAL JOURNAL OF RESEARCH IN COMPUTER APPLICATIONS AND ROBOTICS ISSN

INTERNATIONAL JOURNAL OF RESEARCH IN COMPUTER APPLICATIONS AND ROBOTICS ISSN INTERNATIONAL JOURNAL OF RESEARCH IN COMPUTER APPLICATIONS AND ROBOTICS ISSN 2320-7345 THEORETICAL APPROACH TO THE EVALUATION OF ACTIVATION ENERGIES I. Hammoudan 1, D. Riffi Temsamani 2, 1 Imad_2005_05@hotmail.com

More information

Supplementary Information

Supplementary Information Supplementary Information Enhancing the Double Exchange Interaction in Mixed Valence {V III -V II } Pair: A Theoretical Perspective Soumen Ghosh, Saurabh Kumar Singh and Gopalan Rajaraman* a Computational

More information

SUPPORTING INFORMATION

SUPPORTING INFORMATION SUPPORTING INFORMATION Revisiting the long-range Perlin effect in a conformationally constrained Oxocane Kahlil S. Salome and Cláudio F. Tormena* Institute of Chemistry, University of Campinas - UNICAMP

More information

A Redox-Fluorescent Molecular Switch Based on a. Heterobimetallic Ir(III) Complex with a Ferrocenyl. Azaheterocycle as Ancillary Ligand.

A Redox-Fluorescent Molecular Switch Based on a. Heterobimetallic Ir(III) Complex with a Ferrocenyl. Azaheterocycle as Ancillary Ligand. Supporting Information (SI) A Redox-Fluorescent Molecular Switch Based on a Heterobimetallic Ir(III) Complex with a Ferrocenyl Azaheterocycle as Ancillary Ligand. Fabiola Zapata, Antonio Caballero, Arturo

More information

Supporting Information

Supporting Information Missing Monometallofullerene with C 80 Cage Hidefumi Nikawa, Tomoya Yamada, Baopeng Cao, Naomi Mizorogi, Slanina Zdenek, Takahiro Tsuchiya, Takeshi Akasaka,* Kenji Yoza, Shigeru Nagase* Center for Tsukuba

More information

Supporting Information

Supporting Information Rich coordination chemistry of π-acceptor dibenzoarsole ligands Arvind Kumar Gupta, 1 Sunisa Akkarasamiyo, 2 Andreas Orthaber*,1 1 Molecular Inorganic Chemistry, Department of Chemistry, Ångström Laboratories,

More information

Supporting Information

Supporting Information Supporting Information ucleophile-catalyzed Additions to Activated Triple Bonds. Protection of Lactams, Imides, and ucleosides with MocVinyl and Related Groups Laura Mola, Joan Font, Lluís Bosch, Joaquim

More information

A phenylbenzoxazole-amide-azacrown linkage as a selective fluorescent receptor for ratiometric sening of Pb(II) in aqueous media

A phenylbenzoxazole-amide-azacrown linkage as a selective fluorescent receptor for ratiometric sening of Pb(II) in aqueous media This journal is The Royal Society of Chemistry 213 A phenylbenzoxazole-amide-azacrown linkage as a selective fluorescent receptor for ratiometric sening of Pb(II) in aqueous media Yasuhiro Shiraishi,*

More information

» ß π«õß 1 H-NMR 13 C-NMR ª ªï Õß

» ß π«õß 1 H-NMR 13 C-NMR ª ªï Õß « ß π«õß 1 H-NMR 13 C-NMR ª ªï Õß α-mangostin, γ-mangostin Garcinone D æ æ ª ß åæ π å* àõ ß π«π È ªìπ» ß π«à chemical shift Õß 1 H and 13 C NMR ÕßÕπÿæ π åÿ Õß ß µ π â à Õ ø - ß µ π - ß µ π å ππ â««wp04,

More information

Reversible intercyclobutadiene haptotropism in cyclopentadienylcobalt linear [4]phenylene

Reversible intercyclobutadiene haptotropism in cyclopentadienylcobalt linear [4]phenylene Reversible intercyclobutadiene haptotropism in cyclopentadienylcobalt linear [4]phenylene Thomas A. Albright, Sander Oldenhof, Oluwakemi A. Oloba, Robin Padilla and K. Peter C. Vollhardt * Experimental

More information

Supporting Information

Supporting Information Supporting Information Probing the Electronic and Structural Properties of Chromium Oxide Clusters (CrO ) n and (CrO ) n (n = 1 5): Photoelectron Spectroscopy and Density Functional Calculations Hua-Jin

More information