Color. 3. Why are the color labels in the table above plural (i.e., Reds rather than Red )?

Size: px
Start display at page:

Download "Color. 3. Why are the color labels in the table above plural (i.e., Reds rather than Red )?"

Transcription

1 NS D3 Electron Energy and Light Name From fireworks to stars, the color of light is useful in finding out what s in matter. The emission of light by hydrogen and other atoms has played a key role in understanding the electronic structure of atoms. Trace materials, such as evidence from a crime scene, lead in paint or mercury in drinking water, can be identified by heating or burning the materials and examining the color(s) of light given off by an element when excited by the introduction of energy from an outside source, resulting in the emission of a bright-line spectra. Model 1 White Light Lightbulb (white light) Prism 1. Trace the arrows in the diagram above and shade in the table with the appropriate colored pencils. 2. What happens to white light when it passes through a prism? Color Photon Energy ( ) (J) Wavelength Range (nm) Speed (m/s) Reds Oranges Yellows Greens Blues Violets Why are the color labels in the table above plural (i.e., Reds rather than Red )? 4. Do all colors of light travel at the same speed? 5. Do all colors of light have the same energy? If no, which colors have the highest energy and the least energy, respectively? 6. Which color corresponds to the longest wavelengths? 7. Which color corresponds to the shortest wavelengths? 8. Write a sentence that describes the relationship between wavelength and energy of light. Slits Prism 9. Use the appropriate colored pencils to color the hydrogen emission spectral lines as shown in the diagram. 10. Which color of light has the most energy? Blueviolet Violet Bluegreen Red 11. Which color of light has the least energy? Hydrogen gas discharge tube en Wavelength (nm)

2 NS D3 Electron Energy and Light page 2 of The spectral lines shown below are for boron and were produced using the same method as the hydrogen shown on the previous page. Use the appropriate colored pencils to color the boron emission spectral lines Wavelength (nm) 13. A gas discharge tube filled with boron does not emit the same wavelengths of light as a tube filled with hydrogen? Why not? 14. The spectral lines for atoms are like fingerprints for humans. How do the spectral lines for hydrogen and boron support this statement? Circle the appropriate word to complete each statement in Questions Electrons and protons attract / repel each other. 16. As an electron gets closer to the nucleus the attraction / repulsion to the nucleus gets stronger / weaker. 17. For an electron to move from an energy level close to the nucleus to an energy level far from the nucleus it would need to gain / lose energy. 18. For an electron to move from an energy level far from the nucleus to an energy level close to the nucleus it would need to gain / lose energy. STOP and read this before proceeding.and check in with the teacher before moving on to #19 Niels Bohr modified Rutherford s Nuclear Atom model to explain how light interacted with the electrons in an atom to produce spectral lines. His model included electrons orbiting the nucleus at specific energy levels. Electrons absorb energy from various sources, for example heat or electricity, when they move from lower energy levels (ground state) to higher energy levels (excited states). Energy is released as electrons return to their lower energy levels. 19. Is energy absorbed or released for the electron transition shown by the solid black arrow in the diagram to the right? Explain how you know. 20. Sketch in a green arrow that would represent an electron transitioning in the same direction as the black arrow, but would be a transition of less of energy. 21. Sketch in a orange arrow that would represent an electron transitioning in the opposite direction as the black arrow, and would be a transition of less of energy. n =

3 NS D3 Electron Energy and Light page 3 of 4 Each of the diagrams below represents a transition in the hydrogen atom that causes one of the colored spectral lines as represented at the bottom of page Identify the drawing below that depicts a hydrogen atom with an electron moving from energy level 5 to energy level 2. Label the picture with n=3 to n=2 and color the wavy line with one of the four colors represented on page 1 to represent the appropriate corresponding color of light emitted. Complete each of the following statements by circling the appropriate word(s). (a) This 3 to 2 electron transition absorbs / releases energy. (b) This electron moves from a lower / higher energy state to a lower / higher energy state. (c) Light is absorbed / released in the 3 to 2 electron transition. A. B. n = n = C. D. n = n = Label the remaining drawings above with the electron transitions that are occurring (n=? to n=?), the wavelengths, and the considering the spectrum on page 1 color the the wavy line to represent the corresponding color of light emitted. 24. Consider the electron transitions in the diagram above. (a) Which of the electron transitions involves the most energy? (b) Explain why this transition involves the most energy based on your understanding of the attractive forces between the electrons and protons in the atom. (c) Explain why a single atom of hydrogen cannot produce all four hydrogen spectral lines simultaneously (d) If Question (c) is true, how is it that we can we see all four colors from our hydrogen gas discharge tube simultaneously?

4 NS D3 Electron Energy and Light page 4 of The hydrogen spectral emission lines shown on the previous pages are only the wavelengths of light that are in the visible range and therefore seen by the naked eye. However, many other wavelengths can be detected with special equipment. (a) Propose a hydrogen electron transition that involves light with a wavelength in the ultraviolet (UV) range ( nm). (b) Propose a hydrogen electron transition that involves light with a wavelength in the infrared (IR) range ( nm). 26. Below are diagrams for the bright line spectra of four elements and the spectrum of a mixture of gases. (a) Is the high-energy end of the emission spectra shown below at the left or right side? What do you notice about the way the emission spectra above were drawn on this page compared to the hydrogen and boron emission spectra shown on page 1 & 2? Li H He (b) Which element(s) are not present in the Unknown? Na Unknown (c) Which element(s) are in the Unknown? 27. We have been investigating and comparing emission spectra. The lines of light that emanate from a material that has been excited by the addition of an outside source of energy. Alternatively, scientists also look at absorption spectra. In an absorption spectra, visible light is sent through a sample, and the wavelengths of light corresponding to the energy of the electronic transitions are absorbed. This makes an absorption and emission spectrum opposite to each other. The spectra below show the emission spectra for hydrogen and boron as shown on page 1 and 2, although a slightly different size, the spectral lines are placed appropriately. Use a black Sharpie to blacken in what you think the absorption spectra of hydrogen and boron would look like in the empty spectrum below each of the two emission spectra. Hydrogen Emission Hydrogen Absorption Boron Emission Boron Absorption

5 NS D3 Electron Energy and Light ANSWERS page 5 of 8 From fireworks to stars, the color of light is useful in finding out what s in matter. The emission of light by hydrogen and other atoms has played a key role in understanding the electronic structure of atoms. Trace materials, such as evidence from a crime scene, lead in paint or mercury in drinking water, can be identified by heating or burning the materials and examining the color(s) of light given off in the form of bright-line spectra. Model 1 White Light Lightbulb (white light) Prism Color Photon Energy ( ) (J) Wavelength Range (nm) Speed (m/s) Reds Oranges Yellows Greens Blues Violets Trace the arrows in the diagram above and shade in the table with the appropriate colored pencils. 2. What happens to white light when it passes through a prism? splits into all the colored wavelengths 3. Why are the color labels in the table above plural (i.e., Reds rather than Red )? Red is a wide range of wavelengths 4. Do all colors of light travel at the same speed? Yes, at 300,000,000 meters per second 5. Do all colors of light have the same energy? If no, which colors have the highest energy and the least energy, respectively? No, purple has the highest energy, red has the lowest energy. 6. Which color corresponds to the longest wavelengths? red 7. Which color corresponds to the shortest wavelengths? purple 8. Write a sentence that describes the relationship between wavelength and energy of light. The energy and wavelength are inversely proportional. Slits Prism 9. Use the appropriate colored pencils to color the hydrogen emission spectral lines as shown in the diagram. 10. Which color of light has the most energy? purple Blueviolet Violet Bluegreen Red 11. Which color of light has the least energy? red Hydrogen gas discharge tube en Wavelength (nm)

6 NS D3 Electron Energy and Light ANSWERS page 6 of The spectral lines shown below are for boron and were produced using the same method as the hydrogen shown on the previous page. Use the appropriate colored pencils to color the boron emission spectral lines Wavelength (nm) 13. A gas discharge tube filled with boron does not emit the same wavelengths of light as a tube filled with hydrogen? Why not? Boron and hydrogen are different elements. Different elements will produce different spectra. 14. The spectral lines for atoms are like fingerprints for humans. How do the spectral lines for hydrogen and boron support this statement? Spectral lines are unique to each element. Circle the appropriate word to complete each statement in Questions Electrons and protons (attract/repel) each other. 16. As an electron gets closer to the nucleus the (attraction/repulsion) to the nucleus gets (stronger/ weaker). 17. For an electron to move from an energy level close to the nucleus to an energy level far from the nucleus it would need to (gain/lose) energy. 18. For an electron to move from an energy level far from the nucleus to an energy level close to the nucleus it would need to (gain/lose) energy. STOP and read this before proceeding.and check in with the teacher before moving on to #19 Niels Bohr modified Rutherford s Nuclear Atom model to explain how light interacted with the electrons in an atom to produce spectral lines. His model included electrons orbiting the nucleus at specific energy levels. Electrons absorb energy from various sources, for example heat or electricity, when they move from lower energy levels (ground state) to higher energy levels (excited states). Energy is released as electrons return to their lower energy levels. 19. Is energy absorbed or released for the electron transition shown by the solid black arrow in the diagram to the right? Explain. Energy is absorbed. 20. Use a red colored pencil to represent an electron transition that would release or absorb less energy than the solid black arrow shown. Absorb less release less n =

7 NS D3 Electron Energy and Light ANSWERS page 7 of 8 Each of the diagrams below represents a transition in the hydrogen atom that causes one of the colored spectral lines as represented at the bottom of page Identify the drawing below that depicts a hydrogen atom with an electron moving from energy level 5 to energy level 2. Label the picture with n=3 to n=2 and color the wavy line with one of the four colors represented on page 1 to represent the appropriate corresponding color of light emitted. Complete each of the following statements by circling the appropriate word(s). (a) This 3 to 2 electron transition absorbs / releases energy. (b) This electron moves from a lower / higher energy state to a lower / higher energy state. (c) Light is absorbed / released in the 3 to 2 electron transition. n6 to n2 n5 to n2 A. B. n = n = n4 to n2 n3 to n2 C. D. n = n = Label the remaining drawings above with the electron transitions that are occurring (n=? to n=?), the wavelengths, and the color the the wavy line to represent the corresponding color of light emitted. 23. Consider the electron transitions in the diagram above. (a) Which of the electron transitions involves the most energy? Diagram A, n6 to n2 (b) Explain why this transition involves the most energy based on your understanding of the attractive forces between the electrons and protons in the atom. The transition is the greatest movement. (c) Explain why a single atom of hydrogen cannot produce all four hydrogen spectral lines simultaneously A single atom of hydrogen has only one electron, thus could only do one transition at a time. (d) If Question (c) is true, how is it that we can we see all four colors from our hydrogen gas discharge tube simultaneously? There are LOTs of hydrogen atoms in the tube all making various transitions simultaneously.

8 NS D3 Electron Energy and Light ANSWERS page 8 of The hydrogen spectral emission lines shown on the previous pages are only the wavelengths of light that are in the visible range and therefore seen by the naked eye. However, many other wavelengths can be detected with special equipment. (a) Propose a hydrogen electron transition that involves light with a wavelength in the ultraviolet (UV) range ( nm). Any transition down to level 1 is in the UV range. (b) Propose a hydrogen electron transition that involves light with a wavelength in the infrared (IR) range ( nm). Transition 6 to 5, or 5 to 4, etc 25. Below are diagrams for the bright line spectra of four elements and the spectrum of a mixture of gases. (a) Is the high-energy end of the emission spectra shown below at the left or right side? What do you notice about the way the emission spectra above were drawn on this page compared to the hydrogen and boron emission spectra shown on page 1 & 2? The high energy is at the right side, the purple end. This spectrum is drawn left/right opposite to those on page 1 & 2. Let s google spectral images to see how spectra are usually drawn. (b) Which element(s) are NOT present in Lithe Unknown? No Na or Li present (c) Which element(s) ARE in the Unknown? He Na H and He are present Unknown H 26. We have been investigating and comparing emission spectra. The lines of light that emanate from a material that has been excited by the addition of an outside source of energy. Alternatively, scientists also look at absorption spectra. In an absorption spectra, visible light is sent through a sample, and the wavelengths of light corresponding to the energy of the electronic transitions is absorbed. This makes and absorption and emission spectrum opposite. The spectra below show the emission spectra for hydrogen and boron as shown on page 1 and 2, although a slightly different size, the spectral lines are placed appropriately. Use a black Sharpie to blacken in what you think the absorption spectra of hydrogen and boron would look like in the empty spectrum below each of the two emission spectra. Hydrogen Emission Hydrogen Absorption Boron Emission Boron Absorption

Electron Energy and Light

Electron Energy and Light Why? Electron Energy and Light How does light reveal the behavior of electrons in an atom? From fireworks to stars, the color of light is useful in finding out what s in matter. The emission of light by

More information

Electron Energy and Light

Electron Energy and Light Why? Electron Energy and Light How does light reveal the behavior of electrons in an atom? From fireworks to stars, the color of light is useful in finding out what s in matter. The emission of light by

More information

P O G I L E L E C T R O N E N E R G Y A N D L I G H T

P O G I L E L E C T R O N E N E R G Y A N D L I G H T South Pasadena Honors Chemistry Name 9 Atomic Structure Period Date Why? P O G I L E L E C T R O N E N E R G Y A N D L I G H T How does light reveal the behavior of electrons in an atom? From fireworks

More information

Physics Lab #2: Spectroscopy

Physics Lab #2: Spectroscopy Physics 10263 Lab #2: Spectroscopy Introduction This lab is meant to serve as an introduction to the science of spectroscopy. In this lab, we ll learn about how emission and absorption works, and we ll

More information

ACTIVITY 1. Exploring Light from Gases

ACTIVITY 1. Exploring Light from Gases Name: WAVES of matter Class: Visual Quantum Mechanics ACTIVITY 1 Exploring Light from Gases Goal We will view the colors of light which are emitted by different gases. From these patterns of light we gain

More information

Hot Sync. Materials Needed Today

Hot Sync. Materials Needed Today Chapter 4 Lesson 2 Materials Needed Today Please take these materials out of your backpack. Pencil Blank sheet of paper for notes. Hot Sync Friday 1/10/14 Answer the following questions in complete sentences

More information

Chapter 4 Lesson 2 Notes

Chapter 4 Lesson 2 Notes Chapter 4 Lesson 2 Notes How were electrons discovered? Scientists have put together a detailed model of atoms and their parts. Here is the journey of atom parts. How were electrons discovered? (cont.)

More information

Laboratory Atomic Emission Spectrum

Laboratory Atomic Emission Spectrum Laboratory Atomic Emission Spectrum Pre-Lab Questions: Answer the following questions in complete sentences by reading through the Overview and Background sections below. 1. What is the purpose of the

More information

hf = E 1 - E 2 hc = E 1 - E 2 λ FXA 2008 Candidates should be able to : EMISSION LINE SPECTRA

hf = E 1 - E 2 hc = E 1 - E 2 λ FXA 2008 Candidates should be able to : EMISSION LINE SPECTRA 1 Candidates should be able to : EMISSION LINE SPECTRA Explain how spectral lines are evidence for the existence of discrete energy levels in isolated atoms (i.e. in a gas discharge lamp). Describe the

More information

Atomic Spectra for Atoms and Ions. Light is made up of different wavelengths

Atomic Spectra for Atoms and Ions. Light is made up of different wavelengths Atomic Spectra for Atoms and Ions What will you be doing in lab next week? Recording the line spectra of several different substances in discharge tubes. Recording the line spectra of several ions from

More information

Wavelength (λ)- Frequency (ν)- Which of the following has a higher frequency?

Wavelength (λ)- Frequency (ν)- Which of the following has a higher frequency? Name: Unit 5- Light and Energy Electromagnetic Spectrum Notes Electromagnetic radiation is a form of energy that emits wave-like behavior as it travels through space. Amplitude (a)- Wavelength (λ)- Which

More information

Atomic Theory C &03

Atomic Theory C &03 Atomic Theory Part One: Flame Tests Part Two: Atomic Spectra Part Three: Applications of Spectra (optional) C12-2-02 &03 This activity will focus on the visible portion of the electromagnetic spectrum.

More information

high energy state for the electron in the atom low energy state for the electron in the atom

high energy state for the electron in the atom low energy state for the electron in the atom Atomic Spectra Objectives The objectives of this experiment are to: 1) Build and calibrate a simple spectroscope capable of measuring wavelengths of visible light. 2) Measure several wavelengths of light

More information

Fingerprinting the Stars Lab

Fingerprinting the Stars Lab Name: Block: Fingerprinting the Stars Lab Background: Every element produces a unique fingerprint of spectral lines. By identifying the spectral features in stellar spectra, we can determine the composition

More information

How many ml of M sodium hydroxide is required to completely react with 15.0 ml of 2.00 M sulfuric acid?

How many ml of M sodium hydroxide is required to completely react with 15.0 ml of 2.00 M sulfuric acid? 147 EXAMPLE PROBLEM: How many ml of 0.250 M sodium hydroxide is required to completely react with 15.0 ml of 2.00 M sulfuric acid? 1 - Convert 15.0 ml to moles using concentration (2.00 mol acid per liter).

More information

What is the current atomic model?

What is the current atomic model? 4.1 Atoms Basic Units of Matter What is the current atomic model? Matter is anything that has mass and takes up space, such as gases, solids, and liquids. Matter is not sound, heat, or light these are

More information

ASTRO Fall 2012 LAB #7: The Electromagnetic Spectrum

ASTRO Fall 2012 LAB #7: The Electromagnetic Spectrum ASTRO 1050 - Fall 2012 LAB #7: The Electromagnetic Spectrum ABSTRACT Astronomers rely on light to convey almost all of the information we have on distant astronomical objects. In addition to measuring

More information

Electrons, Energy, & the Electromagnetic Spectrum Notes Simplified, 2-D Bohr Model: Figure 2. Figure 3 UNIT 4 - ELECTRONS & ELECTRON ARRANGEMENT

Electrons, Energy, & the Electromagnetic Spectrum Notes Simplified, 2-D Bohr Model: Figure 2. Figure 3 UNIT 4 - ELECTRONS & ELECTRON ARRANGEMENT Electrons, Energy, & the Electromagnetic Spectrum Notes Simplified, 2-D Bohr Model: Figure 1 UNIT 4 - ELECTRONS & ELECTRON ARRANGEMENT Figure 2 Figure 3 The energy is released as electromagnetic radiation.

More information

Atomic Emission and Molecular Absorption Spectra

Atomic Emission and Molecular Absorption Spectra Atomic Emission and Molecular Absorption Spectra v062513_6pm Objective: The student will observe the atomic emission spectra of hydrogen using a spectroscope, determine the identity of an unknown metal

More information

Emission Spectroscopy

Emission Spectroscopy Objectives Emission Spectroscopy Observe spectral lines from a hydrogen gas discharge tube Determine the initial and final energy levels for the electronic transitions associated with the visible portion

More information

Chapter 9: Electrons and the Periodic Table

Chapter 9: Electrons and the Periodic Table C h e m i s t r y 1 2 C h 9 : E l e c t r o n s a n d P e r i o d i c T a b l e P a g e 1 Chapter 9: Electrons and the Periodic Table Work on MasteringChemistry assignments What we have learned: Dalton

More information

Contents. Atomic Structure. 2(a) The Periodic Table. 2(b) Amount of Substance. 2(c) 2(d) Bonding and Structure. Enthalpy Changes.

Contents. Atomic Structure. 2(a) The Periodic Table. 2(b) Amount of Substance. 2(c) 2(d) Bonding and Structure. Enthalpy Changes. 1 C h e m i s t r y Contents 2(a) 2(b) 2(c) 2(d) 2(e) Atomic Structure The Periodic Table Amount of Substance Bonding and Structure Enthalpy Changes 3 14 18 28 39 2 C h e m i s t r y 2(a) Atomic Structure

More information

Observation of Atomic Spectra

Observation of Atomic Spectra Observation of Atomic Spectra Introduction In this experiment you will observe and measure the wavelengths of different colors of light emitted by atoms. You will first observe light emitted from excited

More information

Spectroscopy of Various Light Sources: The Interactions between Light and Matter ASTR 170B1, Spring 2017, Lab #2. 1 Introduction.

Spectroscopy of Various Light Sources: The Interactions between Light and Matter ASTR 170B1, Spring 2017, Lab #2. 1 Introduction. Spectroscopy of Various Light Sources: The Interactions between Light and Matter ASTR 170B1, Spring 2017, Lab #2 DUE IN CLASS ON Thursday Sept 28! You CAN work in a group of 2, but you need only turn in

More information

Ex: N has 5 valence electrons, so it s Lewis structure would look like: N

Ex: N has 5 valence electrons, so it s Lewis structure would look like: N Chemistry Ms. Ye Review: Bohr Model of the Atom Name Date Block Electrons are shown in concentric shells or energy levels around the nucleus o The first shell can hold up to o The second shell can hold

More information

Atomic Emission Spectra

Atomic Emission Spectra Atomic Emission Spectra Objectives The objectives of this laboratory are as follows: To build and calibrate a simple meter-stick spectroscope that is capable of measuring wavelengths of visible light.

More information

THE UNIVERSITY OF QUEENSLAND DEPARTMENT OF PHYSICS PHYS2041 ATOMIC SPECTROSCOPY

THE UNIVERSITY OF QUEENSLAND DEPARTMENT OF PHYSICS PHYS2041 ATOMIC SPECTROSCOPY THE UNIVERSITY OF QUEENSLAND DEPARTMENT OF PHYSICS PHYS2041 ATOMIC SPECTROSCOPY Warning: The mercury spectral lamps emit UV radiation. Do not stare into the lamp. Avoid exposure where possible. Introduction

More information

Chapter 6 Electronic Structure of Atoms

Chapter 6 Electronic Structure of Atoms Chapter 6 Electronic Structure of Atoms What is the origin of color in matter? Demo: flame tests What does this have to do with the atom? Why are atomic properties periodic? 6.1 The Wave Nature of Light

More information

Bright line spectrum questions

Bright line spectrum questions Base your answers to questions 1 and 2 on the information below and on your knowledge of chemistry. The bright-line spectra for four elements and a mixture of elements are shown in the diagram below. 1.

More information

Chapter 8. Spectroscopy. 8.1 Purpose. 8.2 Introduction

Chapter 8. Spectroscopy. 8.1 Purpose. 8.2 Introduction Chapter 8 Spectroscopy 8.1 Purpose In the experiment atomic spectra will be investigated. The spectra of three know materials will be observed. The composition of an unknown material will be determined.

More information

Chapter 4 Spectroscopy

Chapter 4 Spectroscopy Chapter 4 Spectroscopy The beautiful visible spectrum of the star Procyon is shown here from red to blue, interrupted by hundreds of dark lines caused by the absorption of light in the hot star s cooler

More information

Atomic Structure. Part 3: Wave-Mechanical Model of the Atom. Key Question: How does the wave mechanical model explain the location of electrons?

Atomic Structure. Part 3: Wave-Mechanical Model of the Atom. Key Question: How does the wave mechanical model explain the location of electrons? Name Chemistry Atomic Structure Essential Question: How was the structure of the atom determined? Vocabulary: bright-line spectrum electron configuration excited state ground state orbital wave-mechanical

More information

BOHR CHADWICK S ATOMIC NUMBER

BOHR CHADWICK S ATOMIC NUMBER CH 11 T3 ATOMIC THEORY PART 2 1 You have mastered this topic when you can: 1) name and describe the atomic models developed by RUTHERFORD and BOHR. 2) describe CHADWICK S contribution to the structure

More information

Alchemy Unit Investigation III. Lesson 7: Life on the Edge

Alchemy Unit Investigation III. Lesson 7: Life on the Edge Alchemy Unit Investigation III Lesson 7: Life on the Edge The Big Question How does the atomic structure of atoms account for the trends in periodicity of the elements? You will be able to: Explain how

More information

Atomic Spectroscopy. Objectives

Atomic Spectroscopy. Objectives Atomic Spectroscopy Name Objectives explain the difference between emission and absorption spectra calculate the energy of orbits in the Bohr model of hydrogen calculate E for energy transitions in the

More information

Atomic Theory. Unit 3 Development of the Atomic Theory

Atomic Theory. Unit 3 Development of the Atomic Theory Atomic Theory Unit 3 Development of the Atomic Theory 1. Where is the mass of the atom concentrated? 2. What is located in the nucleus? 3. What is the negative particle that orbits the nucleus? 4. What

More information

Unit 3. The Atom & Modern Atomic Theory

Unit 3. The Atom & Modern Atomic Theory Unit 3 The Atom & Modern Atomic Theory Theories of the Atom Early Models & Thoughts: Democritus Matter is made up of tiny particles called atoms. Smallest unit that retains the identity of the element

More information

The Sine Wave. You commonly see waves in the environment. Light Sound Electricity Ocean waves

The Sine Wave. You commonly see waves in the environment. Light Sound Electricity Ocean waves The Sine Wave Mathematically, a function that represents a smooth oscillation For example, if we drew the motion of how the weight bobs on the spring to the weight we would draw out a sine wave. The Sine

More information

Chemistry 212 ATOMIC SPECTROSCOPY

Chemistry 212 ATOMIC SPECTROSCOPY Chemistry 212 ATOMIC SPECTROSCOPY The emission and absorption of light energy of particular wavelengths by atoms and molecules is a common phenomenon. The emissions/absorptions are characteristic for each

More information

I understand the relationship between energy and a quanta I understand the difference between an electron s ground state and an electron s excited

I understand the relationship between energy and a quanta I understand the difference between an electron s ground state and an electron s excited NCCS 1.1.2 & 1.1.3 I understand the relationship between energy and a quanta I understand the difference between an electron s ground state and an electron s excited state I will describe how an electron

More information

Name Date Class ELECTRONS IN ATOMS

Name Date Class ELECTRONS IN ATOMS Name _ Date Class 5 ELECTRONS IN ATOMS SECTION 5.1 MODELS OF THE ATOM (pages 127 132) This section summarizes the development of atomic theory. It also explains the significance of quantized energies of

More information

Earlier we learned that hot, opaque objects produce continuous spectra of radiation of different wavelengths.

Earlier we learned that hot, opaque objects produce continuous spectra of radiation of different wavelengths. Section7: The Bohr Atom Earlier we learned that hot, opaque objects produce continuous spectra of radiation of different wavelengths. Continuous Spectrum Everyone has seen the spectrum produced when white

More information

Atomic Theory: Spectroscopy and Flame Tests

Atomic Theory: Spectroscopy and Flame Tests Atomic Theory: Spectroscopy and Flame Tests Introduction Light energy is also known as electromagnetic (EM) radiation. The light that we observe with our eyes, visible light, is just a small portion of

More information

Arrangement of Electrons in the Atom

Arrangement of Electrons in the Atom Arrangement of Electrons in the Atom Bohr s Study of Atomic Spectra When white light is passed through a prism, the white light is broken up into an array of colours. This spread of colours is called a

More information

Unit 3 Atomics Repair Problems

Unit 3 Atomics Repair Problems 1. What is the charge of the nucleus in an atom of oxygen-17? A) 0 B) 2 C) +8 D) +17 2. A neutral atom contains 12 neutrons and 11 electrons. The number of protons in this atom is A) 1 B) 11 C) 12 D) 23

More information

Electromagnetic spectrum Electromagnetic radiation

Electromagnetic spectrum Electromagnetic radiation Chapter 4 Section 1 Electromagnetic spectrum includes all the different wave lengths of radiation. Electromagnetic radiation is a form of energy that exhibits wave like behavior as it travels through space.

More information

Multiple Choice Identify the letter of the choice that best completes the statement or answers the question.

Multiple Choice Identify the letter of the choice that best completes the statement or answers the question. The Bohr Atom Multiple Choice Identify the letter of the choice that best completes the statement or answers the question. 1. What is the energy of the emitted photon when an electron drops from the third

More information

EM SPECTRUM, WAVELENGTH, FREQUENCY, AND ENERGY WORKSHEET

EM SPECTRUM, WAVELENGTH, FREQUENCY, AND ENERGY WORKSHEET EM SPECTRUM, WAVELENGTH, FREQUENCY, AND ENERGY WORKSHEET 1.) Look at the EM spectrum below to answer this question. As you move across the visible light spectrum from red to violet (A) Does the wavelength

More information

Section 11: Electron Configuration and Periodic Trends

Section 11: Electron Configuration and Periodic Trends Section 11: Electron Configuration and Periodic Trends The following maps the videos in this section to the Texas Essential Knowledge and Skills for Science TAC 112.35(c). 11.01 The Bohr Model of the Atom

More information

Do Now: Bohr Diagram, Lewis Structures, Valence Electrons 1. What is the maximum number of electrons you can fit in each shell?

Do Now: Bohr Diagram, Lewis Structures, Valence Electrons 1. What is the maximum number of electrons you can fit in each shell? Chemistry Ms. Ye Name Date Block Do Now: Bohr Diagram, Lewis Structures, Valence Electrons 1. What is the maximum number of electrons you can fit in each shell? 1 st shell 2 nd shell 3 rd shell 4 th shell

More information

Pre-Lab Exercises Lab 2: Spectroscopy

Pre-Lab Exercises Lab 2: Spectroscopy Pre-Lab Exercises Lab 2: Spectroscopy 1. Which color of visible light has the longest wavelength? Name Date Section 2. List the colors of visible light from highest frequency to lowest frequency. 3. Does

More information

Review: Light and Spectra. Absorption and Emission Lines

Review: Light and Spectra. Absorption and Emission Lines 1 Review: Light and Spectra Light is a wave It undergoes diffraction and other wave phenomena. But light also is made of particles Energy is carried by photons 1 Wavelength energy of each photon Computer

More information

Name: Unit 3 Guide-Electrons In Atoms

Name: Unit 3 Guide-Electrons In Atoms Name: Unit 3 Guide-Electrons In Atoms Importance of Electrons Draw a complete Bohr model of the atom. Write an element s electron configuration. Know how the symbols used in ECs relate to electron properties

More information

Atomic Spectra Introduction

Atomic Spectra Introduction Atomic Spectra Introduction: Light and all other electromagnetic radiation is energy that is emitted in the form of waves. Thus light behaves like a wave, and the energy of light varies with the wavelength

More information

Chemistry Lecture #25: Emission Spectra

Chemistry Lecture #25: Emission Spectra Chemistry Lecture #25: Emission Spectra We ve learned that electrons orbit the nucleus. We ve also learned that photons are a form of electromagnetic energy that has a frequency and wavelength. In today

More information

Producing and Harnessing Light

Producing and Harnessing Light Chemical Dominoes Activity 5 Producing and Harnessing Light GOALS In this activity you will: Describe the relationship between energy, frequency, and wavelength of electromagnetic radiation. Explain how

More information

ASTRONOMY. Chapter 5 RADIATION AND SPECTRA PowerPoint Image Slideshow

ASTRONOMY. Chapter 5 RADIATION AND SPECTRA PowerPoint Image Slideshow ASTRONOMY Chapter 5 RADIATION AND SPECTRA PowerPoint Image Slideshow FIGURE 5.1 Our Sun in Ultraviolet Light. This photograph of the Sun was taken at several different wavelengths of ultraviolet, which

More information

Bohr Diagram, Lewis Structures, Valence Electrons Review 1. What is the maximum number of electrons you can fit in each energy level or shell?

Bohr Diagram, Lewis Structures, Valence Electrons Review 1. What is the maximum number of electrons you can fit in each energy level or shell? AP Chemistry Ms. Ye Name Date Block Bohr Diagram, Lewis Structures, Valence Electrons Review 1. What is the maximum number of electrons you can fit in each energy level or shell? 1 st shell 2 nd shell

More information

CHM The Structure of the Atom, Revisited (r14) Charles Taylor 1/5

CHM The Structure of the Atom, Revisited (r14) Charles Taylor 1/5 CHM 110 - The Structure of the Atom, Revisited (r14) - 2014 Charles Taylor 1/5 Introduction It is important that we know how substances are put together. The way things are put together influences their

More information

Unit 3. Chapter 4 Electrons in the Atom. Niels Bohr s Model. Recall the Evolution of the Atom. Bohr s planetary model

Unit 3. Chapter 4 Electrons in the Atom. Niels Bohr s Model. Recall the Evolution of the Atom. Bohr s planetary model Unit 3 Chapter 4 Electrons in the Atom Electrons in the Atom (Chapter 4) & The Periodic Table/Trends (Chapter 5) Niels Bohr s Model Recall the Evolution of the Atom He had a question: Why don t the electrons

More information

Modern Atomic Theory

Modern Atomic Theory Modern Atomic Theory In science, often times chemical or physical behavior can not be seen with the naked eye (nor with the use of some other device). Consequently, an understanding and explanation of

More information

SPECTROSCOPY PRELAB. 2) Name the 3 types of spectra and, in 1 sentence each, describe them.

SPECTROSCOPY PRELAB. 2) Name the 3 types of spectra and, in 1 sentence each, describe them. NAME: SPECTROSCOPY PRELAB 1) What is a spectrum? 2) Name the 3 types of spectra and, in 1 sentence each, describe them. a. b. c. 3) Use Wien s law to calculate the surface temperature of the star Alnilam

More information

CHM 111 Unit 7 Sample Questions

CHM 111 Unit 7 Sample Questions Name: Class: Date: As you work these problems, consider and explain: A. What type of question is it? B. How do you know what type of question it is? C. What information are you looking for? D. What information

More information

Modern Physics, Waves, Electricity

Modern Physics, Waves, Electricity Name: Date: 1. Metal sphere has a charge of +12 elementary charges and identical sphere has a charge of +16 elementary charges. fter the two spheres are brought into contact, the charge on sphere is 4.

More information

Light III The Atom & Spectra. February 12, 2012

Light III The Atom & Spectra. February 12, 2012 Light III The Atom & Spectra February 12, 2012 Average: 65 20 Test 1 15 10 5 0 0-50 50-60 60-70 70-80 80-90 90-100 Takeaway Message: YOU NEED TO STUDY MORE you need to come to class EVERY DAY (TPS questions

More information

Name Date Period Unit 3 Review: Electrons and the periodic table

Name Date Period Unit 3 Review: Electrons and the periodic table Name Date Period Unit 3 Review: Electrons and the periodic table G Chem; Coleman SHOW YOUR WORK ON ANY AND ALL CALCULATIONS. SIG FIGS MATTER. UNITS MATTER. General Questions: 1. Use the following terms

More information

Energy and the Electron: Atomic View and Argumentation. b. Draw what you think an atom looks like. Label the different parts of the atom.

Energy and the Electron: Atomic View and Argumentation. b. Draw what you think an atom looks like. Label the different parts of the atom. Name Energy and the Electron: Atomic View and Argumentation Part I: Warm Up 1. Consider the following questions individually: a. What do you know about the structure of the atom? b. Draw what you think

More information

: the smallest particle that has the properties of an element. In, this Greek philosopher suggested that the universe was made of.

: the smallest particle that has the properties of an element. In, this Greek philosopher suggested that the universe was made of. Notes: ATOMS AND THE PERIODIC TABLE Atomic Structure: : the smallest particle that has the properties of an element. From the early concept of the atom to the modern atomic theory, scientists have built

More information

Atoms and Spectroscopy

Atoms and Spectroscopy Atoms and Spectroscopy Lecture 3 1 ONE SMALL STEP FOR MAN ONE GIANT LEAP FOR MANKIND 2 FROM ATOMS TO STARS AND GALAXIES HOW DO WE KNOW? Observations The Scientific Method Hypothesis Verifications LAW 3

More information

SAM Teachers Guide Atoms, Excited States, and Photons

SAM Teachers Guide Atoms, Excited States, and Photons SAM Teachers Guide Atoms, Excited States, and Photons Overview This activity focuses on the ability of atoms to store energy and re emit it at a later time. Students explore atoms in an ʺexcitedʺ state

More information

Higher -o-o-o- Past Paper questions o-o-o- 3.4 Spectra

Higher -o-o-o- Past Paper questions o-o-o- 3.4 Spectra Higher -o-o-o- Past Paper questions 1991-2010 -o-o-o- 3.4 Spectra 1992 Q37 The diagram below shows the energy levels for the hydrogen atom. (a) Between which two energy levels would an electron transition

More information

Question: Can we use our simple shell model of the atom to make some predictions?

Question: Can we use our simple shell model of the atom to make some predictions? During Class Invention Question: Can we use our simple shell model of the atom to make some predictions? 1. Describe the nature of the interaction between protons and electrons in an atom? Consider using

More information

Models of the Atom. Spencer Clelland & Katelyn Mason

Models of the Atom. Spencer Clelland & Katelyn Mason Models of the Atom Spencer Clelland & Katelyn Mason First Things First Electrons were accepted to be part of the atom structure by scientists in the1900 s. The first model of the atom was visualized as

More information

CSUS Department of Chemistry Experiment 9 Chem. 1A

CSUS Department of Chemistry Experiment 9 Chem. 1A CSUS Department of Chemistry xperiment 9 Chem. 1A xp. 9 PR-Lab ASSIGNMNT Name: Lab Section (1) Use equation (2) [see the discussion on the next page] to calculate the energies of the ten lowest states

More information

Atomic Theory: Spectroscopy and Flame Tests

Atomic Theory: Spectroscopy and Flame Tests Atomic Theory: Spectroscopy and Flame Tests Introduction Light energy is also known as electromagnetic (EM) radiation. The light that we observe with our eyes, visible light, is just a small portion of

More information

Chemistry 111 Dr. Kevin Moore

Chemistry 111 Dr. Kevin Moore Chemistry 111 Dr. Kevin Moore Black Body Radiation Heated objects emit radiation based on its temperature Higher temperatures produce higher frequencies PhotoElectric Effect Light on a clean metal surface

More information

The Development of Atomic Theory

The Development of Atomic Theory The Development of Atomic Theory Democritus (400 BC) John Dalton (1803) J.J. Thomson (1897) Ernest Rutherford (1911) James Chadwick (1932) - suggested that matter is composed of indivisible particles called

More information

Atomic Theory: Spectroscopy and Flame Tests

Atomic Theory: Spectroscopy and Flame Tests Atomic Theory: Spectroscopy and Flame Tests Introduction Light energy is also known as electromagnetic (EM) radiation. The light that we observe with our eyes, visible light, is just a small portion of

More information

Ch4 and Ch5. Atomic History and the Atom

Ch4 and Ch5. Atomic History and the Atom Ch4 and Ch5 Atomic History and the Atom Ch4.2 What are atoms? Atoms are the smallest part of an element that still has the element s properties. Ch. 4.3 The Atom is Defined 400 B.C. the Greek philosopher

More information

The Theory of Electromagnetism

The Theory of Electromagnetism Notes: Light The Theory of Electromagnetism James Clerk Maxwell (1831-1879) Scottish physicist. Found that electricity and magnetism were interrelated. Moving electric charges created magnetism, changing

More information

Atomic Physics Worksheet. between 4000 and 5000 Angstroms ( nanometers): between 6500 and 7500 Angstroms ( nanometers):

Atomic Physics Worksheet. between 4000 and 5000 Angstroms ( nanometers): between 6500 and 7500 Angstroms ( nanometers): Atomic Physics Worksheet 1. Which of the gas samples shows an emission line with a wavelength between 4000 and 5000 Angstroms (400-500 nanometers): between 6500 and 7500 Angstroms (650-750 nanometers):

More information

ACTIVITY 2 Exploring Light Patterns

ACTIVITY 2 Exploring Light Patterns Name: Class: SOLIDS & Visual Quantum Mechanics LIGHT ACTIVITY 2 Exploring Light Patterns Goal We will continue to investigate the properties of LEDs and the incandescent lamp by observing and exploring

More information

HL Chemistry. Thursday August 20th Thursday, August 20, 15

HL Chemistry. Thursday August 20th Thursday, August 20, 15 HL Chemistry Thursday August 20th 2015 Agenda Warm Up: Electron Configuration Practice Review Topic 2.2 Electron Configuration and begin Topic 12.1 Atomic Structure Warm Up You have 10 minutes ONLY! GO!

More information

Activity: Cosmic Colors and Spectroscopy

Activity: Cosmic Colors and Spectroscopy 1 Activity: Cosmic Colors and Spectroscopy Background: The energy of a photon of light depends on the wavelength (frequency) of the light higher frequency f = higher energy E = shorter wavelength λ) red

More information

Democritus & Leucippus (~400 BC) Greek philosophers: first to propose that matter is made up of particles called atomos, the Greek word for atoms

Democritus & Leucippus (~400 BC) Greek philosophers: first to propose that matter is made up of particles called atomos, the Greek word for atoms Chemistry Ms. Ye Name Date Block The Evolution of the Atomic Model Since atoms are too small to see even with a very powerful microscope, scientists rely upon indirect evidence and models to help them

More information

Write the electron configuration for Chromium (Cr):

Write the electron configuration for Chromium (Cr): Write the electron configuration for Chromium (Cr): Energy level Aufbau Principle Atomic orbital Quantum Hund s Rule Atomic number Electron Configuration Whole number Pauli Exlcusion Principle Quantum

More information

Name Class Date ELECTRONS AND THE STRUCTURE OF ATOMS

Name Class Date ELECTRONS AND THE STRUCTURE OF ATOMS Electrons in Atoms ELECTRONS AND THE STRUCTURE OF ATOMS 5.1 Revising the Atomic Model Essential Understanding of an atom. An electron s energy depends on its location around the nucleus Reading Strategy

More information

LIGHT. Question. Until very recently, the study of ALL astronomical objects, outside of the Solar System, has been with telescopes observing light.

LIGHT. Question. Until very recently, the study of ALL astronomical objects, outside of the Solar System, has been with telescopes observing light. LIGHT Question Until very recently, the study of ALL astronomical objects, outside of the Solar System, has been with telescopes observing light. What kind of information can we get from light? 1 Light

More information

ATOMIC SPECTRA. To identify elements through their emission spectra. Apparatus: spectrometer, spectral tubes, power supply, incandescent lamp.

ATOMIC SPECTRA. To identify elements through their emission spectra. Apparatus: spectrometer, spectral tubes, power supply, incandescent lamp. ATOMIC SPECTRA Objective: To measure the wavelengths of visible light emitted by atomic hydrogen and verify the measured wavelengths against those predicted by quantum theory. To identify elements through

More information

Review 6: Modern Atomic Theory. Copyright Cengage Learning. All rights reserved. 11 1

Review 6: Modern Atomic Theory. Copyright Cengage Learning. All rights reserved. 11 1 Review 6: Modern Atomic Theory Copyright Cengage Learning. All rights reserved. 11 1 The concept of the nuclear atom left unanswered questions about 1. why the nucleus is so dense. 2. why the negative

More information

Unit 2 - Electrons and Periodic Behavior

Unit 2 - Electrons and Periodic Behavior Unit 2 - Electrons and Periodic Behavior Models of the Atom I. The Bohr Model of the Atom A. Electron Orbits, or Energy Levels 1. Electrons can circle the nucleus only in allowed paths or orbits 2. The

More information

NOTES: 5.3 Light and Atomic Spectra (more Quantum Mechanics!)

NOTES: 5.3 Light and Atomic Spectra (more Quantum Mechanics!) NOTES: 5.3 Light and Atomic Spectra (more Quantum Mechanics!) Light WAVE or PARTICLE? Electromagnetic Radiation Electromagnetic radiation includes: -radio waves -microwaves -infrared waves -visible light

More information

Bell-Ringer. Define the term isotope. [2 marks] Answer per IB Mark scheme:

Bell-Ringer. Define the term isotope. [2 marks] Answer per IB Mark scheme: Bell-Ringer Define the term isotope. [2 marks] Answer per IB Mark scheme: atoms of the same element/same number of protons/same atomic number that have different numbers of neutrons/different mass numbers

More information

Electrons, Energy, & the Electromagnetic Spectrum Notes

Electrons, Energy, & the Electromagnetic Spectrum Notes Electrons, Energy, & the Electromagnetic Spectrum Notes Bohr Model Diagram Interpretation What form of EM radiation is released when an electron in a hydrogen atom falls from the 5 th energy level to the

More information

Types of Spectra. How do spectrum lines form? 3/30/09. Electron cloud. Atom. Nucleus

Types of Spectra. How do spectrum lines form? 3/30/09. Electron cloud. Atom. Nucleus The electron should be thought of as a distribution or cloud of probability around the nucleus that on average behave like a point particle on a fixed circular path Types of Spectra How do spectrum lines

More information

APAS Laboratory { PAGE } Spectroscopy SPECTROSCOPY

APAS Laboratory { PAGE } Spectroscopy SPECTROSCOPY SPECTROSCOPY SYNOPSIS: In this lab you will eplore different types of emission spectra, calibrate a spectrometer using the spectrum of a known element, and use your calibration to identify an unknown element.

More information

Emission of Light: Discharge Lamps & Flame Tests 1

Emission of Light: Discharge Lamps & Flame Tests 1 Emission of Light: Discharge Lamps & Flame Tests 1 Objectives At the end of this activity you should be able to: o Describe how discharge lamps emit photons following electrical excitation of gaseous atoms.

More information

Why Patterns for Charges of Common Cations and Anions? Electrons in Atoms

Why Patterns for Charges of Common Cations and Anions? Electrons in Atoms Electrons in Atoms From Light to Energy of Electrons in Atom Quantum mechanical description of Atom 1. Principal quantum number: Shell 2. Orientation (shape) of : Subshell 3. Orbitals hold electrons with

More information

The Hydrogen Spectrum

The Hydrogen Spectrum 1 The Hydrogen Spectrum PHYS 1301 F98 Prof. T.E. Coan Last edit: 6 Aug 98 Introduction In last week's laboratory experiment on diffraction, you should have noticed that the light from the mercury discharge

More information

Duncan. Electrons, Energy, & the Electromagnetic Spectrum Notes Simplified, 2-D Bohr Model: Figure 1. Figure 2. Figure 3

Duncan. Electrons, Energy, & the Electromagnetic Spectrum Notes Simplified, 2-D Bohr Model: Figure 1. Figure 2. Figure 3 Electrons, Energy, & the Electromagnetic Spectrum Notes Simplified, 2-D Bohr Model: Figure 1 Figure 2 Figure 3 Light Calculation Notes Here s how the type/form of EM radiation can be determined The amount

More information