The Magnetic Mass Spectrometer

Size: px
Start display at page:

Download "The Magnetic Mass Spectrometer"

Transcription

1 Exp-9-Mass-Spectroeter.Doc (TJR) Physics Departent, University of Windsor Introduction 64-3 Laboratory Experient 9 The Magnetic Mass Spectroeter Without question, ass spectroeters have been one of the ost useful analytical tools of the twentieth century. Fro the discovery of isotopes to the first observation of fullerenes, these instruents nave enabled scientists to identify a olecule by a quantity that sees uniaginably sall on our scale: its ass. Today, the anufacturing of ass spectroeters is a big industry. They lend theselves to any useful tasks - fro edical analysis to pollution onitoring to bob detection. There are any different types of ass spectroeters. The one used here is based on the design of the earliest versions. It is a "hoeade" single focusing, 90 agnetic sector ass spectroeter. It will be used in this exercise to observe the constituents of air and other gas ixtures (such as car exhaust). In addition, the onset of dissociative ionization will be qualitatively studied. Description The apparatus has all of the coponents of the triode tube used in the ionization potential of N experient; a cathode, a grid (slit), and a collector. But the siilarity ends there. The ost obvious difference is the vacuu chaber, which is no longer a sall gas filled bulb, but a large piece of brass plubing to which is attached an oil diffusion pup. This device aintains a vacuu of about 3x0-6 torr inside the chaber. A needle valve will allow you to adit gas of any type for ass analysis. The chaber pressure is easured by a Bayard-Alpert ionization gauge, which itself is just a triode. Referring to Figure, the instruent is constructed as follows. To the extree left of Figure a 0- A AC power supply provides current to heat a tungsten filaent (a). The resulting therionic electrons are accelerated through a sall opening in the cathode housing (b) by a 0-00 DC supply and pass into a nearly field free region where they collide with gas olecules, creating positive ions. Electrode (b) is connected to a 0-0 k high voltage supply, and the filaent bias "floats" (i.e. its voltage is not referenced to ground) on top of that so that there is always a potential difference between (a) and (b) to accelerate the electrons. Ions created between electrodes (b) and (c) will be pulled through the aperture in (c) as its potential is about 80-90% of the high voltage as set by the resistor chain. For this reason the top hat shaped electrode (c) is also called the extraction electrode. The result is a bea of positive ions which are focused by electrodes (d), (e), and (f) onto slit as they accelerate towards the ground potential. Those last three electrodes together for an electrostatic lens. Deflection plates (g) are provided to direct the focused ion bea through slit should alignent be needed. Once the ions pass through slit they enter a region of unifor agnetic field directed out of the page, and are ade to travel through a path with a 0 c radius of curvature by the Lorentz force. They then pass through slit and into a collector known as a Faraday cup. A sensitive electroeter can be used to easure the resulting current. The repeller slit between slit and the Faraday cup is biased negatively by a DC power supply to prevent stray electrons fro interfering with the current. Electrons

2 are released when ions strike the edge of slit. Shielding of the electroeter cable is very iportant due the sall current easured. Figure. Scheatic diagra of agnetic ass spectroeter. Procedure Be very alert to the high voltage of the ion source which can deliver a lethal shock! Do not operate alone! Do not go near the power sources behind the plexiglass! Discuss safety concerns with the TA or Professor. Only adjust potentioeters and the needle valve via plexiglass rods. Discuss operating the copressed gas in the cylinder with the TA. Be sure the needle valve is closed (fully clockwise). Turn on the rotary vane pup and allow the chaber to evacuate until the pressure on the fore line falls below 00 illitorr (760 torr = atosphere). Turn on the cooling water to the diffusion pup and turn on the diffusion pup. It will take about 30 inutes to reach a working vacuu, then turn on the ionization gauge. Wait until the pressure reaches the 0-6 torr range. (This ay take a weekend, depending on when it was last used!) Check that the power supplies for the ion source have their controls turned down. Plug the in and turn on the ion supply and the high voltage supply. Turn on the agnet supply and set it at 0.50 aps. Turn on the deflection plate supply and set it to zero. Set the filaent bias (this controls the

3 electron ipact energy) to full scale (80 ) and slowly increase the current through the filaent until its eission current reaches 00 μa. Turn the ariac up slowly to ~ 40, as easured on the volteter attached to the resistor chain. The ariac indirectly alters the ion energy (0-0k). Treat this control with the respect it deserves and do not exceed 00 on the volteter! With the gas supply line open to the argon/heliu ixture in the cylinder (or air, or soe other gas source), slowly turn the needle valve. [The reading on the low pressure side of the gas regulator should not exceed.5 bar. Please also ensure the tap on the cylinder head is closed at the end of the lab session.] The pressure as easured by the ionization gauge will clib to soe value below x 0-4 torr. Do not exceed this value. You will probably have to adjust the eission current to at this point to return it to 00 μa. Finally, turn on the electroeter (at the pa scale) and slowly vary the high voltage (via the ariac) within the perissible, safe working, range. It ay take several trials and adjustents, but you should easily produce a ass spectru of argon/heliu, using an X-Y chart recorder. These atoic gases, having very different asses, are excellent for calibration purposes. Obtain ass spectra for several different settings of agnetic field and decide which works best. You ay find other ass peaks too (Why?), try and identify as any peaks as possible. Reeber the scale is non-linear, the ass is inversely proportional to the voltage. Since the agnetic field is unknown, you will have to use one peak (the largest) as a reference for the others. (What gas is that?) One proble when using electron ipact ionization is that olecules ay fragent into saller ions, leading to peaks in the ass spectra that are not directly fro the saple. This fragentation is known as dissociative ionization, and it can be partly avoided by using low electron ipact energies. Obtain ass spectra of air at several different settings of electron ipact energy (this requires patient adjustent of the electron eission current and acceleration voltage) and deterine (roughly) the onset of dissociative ionization of nitrogen and oxygen. It is ipossible to distinguish between a doubly charged diatoic olecule and a singly charged ato fro the sae. However, dissociative ionization will occur uch ore readily than double ionization at electron ipact energies below 00 e. Thus the onset observed in this experient will be for ostly for dissociation. The power supply for the electron ipact energy is not regulated, and you will notice its value drops as the electron bea current increases. This will take soe getting used to during operation, but it should be possible to see ass spectra all the way down to 30 e ipact energy. Using a spectru with the sharpest peaks, easure the full width at half axiu (FWHM) for each peak and calculate the resolution of the instruent for each peak Copare this with the theoretical value (see below). You ay want to agnify the horizontal scale of the chart recorder to be able to easure this well enough. Finally, for fun, why not get a sealed plastic bag of car exhaust and attach it to the gas inlet line and record its ass spectru. What do you observe? Can you identify any ass peaks? Electrostatic Focusing The three disk shaped electrodes with 5 holes cut in their centers (d, e and f) for an electrostatic lens designed to focus the ion bea onto slit, and thus axiize the signal intensity. This particular configuration is known as an Einzel lens. The outer electrodes are connected together, and the inner electrode is bias positively with respect to the others (negatively for focusing electrons), at about 60% of the high voltage. The action of an Einzel lens can be understood in a qualitative way as 3

4 follows. (Look at ray in Figure.) Figure. Ion trajectories in an Einzel lens. a b: The ion oves upwards by the radial coponent ( ) of the electric field, and is slowed down by the axial ( ) coponent of the field. b c: Here the ion spends a longer tie than in the a b region. It is pushed towards the center by the radial coponent ( ) of the field and is further decelerated by the axial coponent ( ).Thus the deflection towards the axis along b c is larger than the deflection away fro the axis in region a b. Siilar arguents hold for the regions c d and d e: The bea of ions is brought to focus at a distance that depends on the ratio of the voltages on the lens eleents. Magnetic Focusing Even though the ion bea passing through slit is diverging, it can still be returned to a focus at slit, as long as both slits and the center of curvature of the central path lie on a straight line (see Figure ). This is known as Barber's rule and you need not derive it. Questions Explain the operation of an oil diffusion pup and an ion gauge. Can this particular pup account for any unidentified peaks in your ass? If the collision cross section for an ion with the residual gas in the vacuu chaber is σ ~ 0-6 c, what is the ean free path between collisions for the operational pressure? 4

5 Derive equation () below, the focus condition for a agnetic ass spectroeter, q B R = () where is the ion ass, q its charge, the voltage it was accelerated by, B the agnitude of the agnetic field, and R the radius of the path the ion took to get fro slit to slit. For a fixed radius and agnetic field one obtains equation () for two different ions: / q / q = () Usually the source produces only singly charged ions (q = q = e) and the result is (3). = (3) Thus the lowest ass is found at the highest accelerating voltage. The ass resolution is liited by the finite slit widths s and s. Two adjacent asses M and M + ΔM occurring at voltages and + Δ are said to be resolved when their centers are separated by the FWHM of the peak at M. The quantity M/ΔM is called the resolution and is a figure of erit for ass spectroeters. Use Eqn (3) to show that: To calculate the resolution, let Δ = FWHM. M ΔM It can be shown fro ion optics that the resolution of a agnetic ass spectroeter is given by: M ΔM R = s + s In this apparatus, s = s =.0, and R = 0.0 c. Does the result fro (5) atch your calculation for several peaks in the ass spectra you obtained? Would this instruent be capable of resolving the isotopes of Xenon? Δ (5) (4) References Mark, T.O, J. Che. Phys. 63, 373 (975) Melissinos, A.C., Experients in Modern Physics Roboz, J., Mass Spectroetery White, F.A., Mass Spectroetry in Science and Technology Note: Inforation on ass spectroeters is exhaustive. Keep your researches to inforation specific to this instruent. Do not trouble yourself with derivations fro ion optics. 5

MAKE SURE TA & TI STAMPS EVERY PAGE BEFORE YOU START

MAKE SURE TA & TI STAMPS EVERY PAGE BEFORE YOU START Laboratory Section: Last Revised on Deceber 15, 2014 Partners Naes: Grade: EXPERIMENT 8 Electron Beas 0. Pre-Laboratory Work [2 pts] 1. Nae the 2 forces that are equated in order to derive the charge to

More information

Pearson Physics Level 30 Unit VI Forces and Fields: Chapter 12 Solutions

Pearson Physics Level 30 Unit VI Forces and Fields: Chapter 12 Solutions Concept Check (top) Pearson Physics Level 30 Unit VI Forces and Fields: Chapter 12 Solutions Student Book page 583 Concept Check (botto) The north-seeking needle of a copass is attracted to what is called

More information

Ch. 22 Mass Spectrometry (MS)

Ch. 22 Mass Spectrometry (MS) Ch. Mass Spectroetry (MS).1 MS easures ass of atos, olecules, or fragents of olecules -1. What is MS? Gaseous ato fro condensed phase ionized Accelerated & separated By ass to charge ratio /z M=00: 1 ion

More information

Time-of-flight Identification of Ions in CESR and ERL

Time-of-flight Identification of Ions in CESR and ERL Tie-of-flight Identification of Ions in CESR and ERL Eric Edwards Departent of Physics, University of Alabaa, Tuscaloosa, AL, 35486 (Dated: August 8, 2008) The accuulation of ion densities in the bea pipe

More information

UNIVERSITY OF SASKATCHEWAN Department of Physics and Engineering Physics

UNIVERSITY OF SASKATCHEWAN Department of Physics and Engineering Physics UNIVERSITY OF SASKATCHEWAN Departent of Physics and Engineering Physics 017 Saskatchewan High School Physics Scholarship Copetition Wednesday May 10, 017 Tie allowed: 90 inutes This copetition is based

More information

Hyperbolic Horn Helical Mass Spectrometer (3HMS) James G. Hagerman Hagerman Technology LLC & Pacific Environmental Technologies April 2005

Hyperbolic Horn Helical Mass Spectrometer (3HMS) James G. Hagerman Hagerman Technology LLC & Pacific Environmental Technologies April 2005 Hyperbolic Horn Helical Mass Spectroeter (3HMS) Jaes G Hageran Hageran Technology LLC & Pacific Environental Technologies April 5 ABSTRACT This paper describes a new type of ass filter based on the REFIMS

More information

Faraday's Law Warm Up

Faraday's Law Warm Up Faraday's Law-1 Faraday's Law War Up 1. Field lines of a peranent agnet For each peranent agnet in the diagra below draw several agnetic field lines (or a agnetic vector field if you prefer) corresponding

More information

PHY 171. Lecture 14. (February 16, 2012)

PHY 171. Lecture 14. (February 16, 2012) PHY 171 Lecture 14 (February 16, 212) In the last lecture, we looked at a quantitative connection between acroscopic and icroscopic quantities by deriving an expression for pressure based on the assuptions

More information

EXPERIMENT 2-6. e/m OF THE ELECTRON GENERAL DISCUSSION

EXPERIMENT 2-6. e/m OF THE ELECTRON GENERAL DISCUSSION Columbia Physics: Lab -6 (ver. 10) 1 EXPERMENT -6 e/m OF THE ELECTRON GENERAL DSCUSSON The "discovery" of the electron by J. J. Thomson in 1897 refers to the experiment in which it was shown that "cathode

More information

All Excuses must be taken to 233 Loomis before 4:15, Monday, April 30.

All Excuses must be taken to 233 Loomis before 4:15, Monday, April 30. Miscellaneous Notes he end is near don t get behind. All Excuses ust be taken to 233 Loois before 4:15, Monday, April 30. he PHYS 213 final exa ties are * 8-10 AM, Monday, May 7 * 8-10 AM, uesday, May

More information

ma x = -bv x + F rod.

ma x = -bv x + F rod. Notes on Dynaical Systes Dynaics is the study of change. The priary ingredients of a dynaical syste are its state and its rule of change (also soeties called the dynaic). Dynaical systes can be continuous

More information

( ) 1.5. Solution: r = mv qb ( 3.2!10 "19 C ) 2.4

( ) 1.5. Solution: r = mv qb ( 3.2!10 19 C ) 2.4 Section 8.4: Motion of Charged Particles in Magnetic Fields Tutorial 1 Practice, page 401 1. Given: q 3.2 10 19 C; 6.7 10 27 kg; B 2.4 T; v 1.5 10 7 /s Analysis: r v Solution: r v 6.7!10 "27 # kg ) 1.5!10

More information

Instruction Sheet Martin Henschke, Ballistic Pendulum art. no.:

Instruction Sheet Martin Henschke, Ballistic Pendulum art. no.: Physics Educational Tools Dr. Martin Henschke Gerätebau Dieselstr. 8, 5374 Erftstadt, Gerany www.henschke-geraetebau.de/english/ Instruction Sheet Martin Henschke, 4-6-1 Ballistic Pendulu art. no.: 6573

More information

q m of Electron Jeffrey Sharkey, Spring 2006

q m of Electron Jeffrey Sharkey, Spring 2006 of Electron Jeffrey Sharkey, Spring 2006 Phys. 2033: Quantu Lab 1 Purpose To observe and easure the eleentary ratio of electrons. 2 Methodology By controlling unifor agnetic field, we changed the orbital

More information

National 5 Summary Notes

National 5 Summary Notes North Berwick High School Departent of Physics National 5 Suary Notes Unit 3 Energy National 5 Physics: Electricity and Energy 1 Throughout the Course, appropriate attention should be given to units, prefixes

More information

Physics 140 D100 Midterm Exam 2 Solutions 2017 Nov 10

Physics 140 D100 Midterm Exam 2 Solutions 2017 Nov 10 There are 10 ultiple choice questions. Select the correct answer for each one and ark it on the bubble for on the cover sheet. Each question has only one correct answer. (2 arks each) 1. An inertial reference

More information

Announcement. Grader s name: Qian Qi. Office number: Phys Office hours: Thursday 4:00-5:00pm in Room 134

Announcement. Grader s name: Qian Qi. Office number: Phys Office hours: Thursday 4:00-5:00pm in Room 134 Lecture 3 1 Announceent Grader s nae: Qian Qi Office nuber: Phys. 134 -ail: qiang@purdue.edu Office hours: Thursday 4:00-5:00p in Roo 134 2 Millikan s oil Drop xperient Consider an air gap capacitor which

More information

Reading from Young & Freedman: For this topic, read the introduction to chapter 25 and sections 25.1 to 25.3 & 25.6.

Reading from Young & Freedman: For this topic, read the introduction to chapter 25 and sections 25.1 to 25.3 & 25.6. PHY10 Electricity Topic 6 (Lectures 9 & 10) Electric Current and Resistance n this topic, we will cover: 1) Current in a conductor ) Resistivity 3) Resistance 4) Oh s Law 5) The Drude Model of conduction

More information

External Transverse Direct Current Magnetic Field Effect On Optical Emission Of a Non-Thermal Atmospheric Pressure Argon Plasma Jet

External Transverse Direct Current Magnetic Field Effect On Optical Emission Of a Non-Thermal Atmospheric Pressure Argon Plasma Jet International Research Journal of Applied and Basic Sciences 014 Available online at www.irjabs.co ISSN 51-838X / Vol, 8 (7): 944-950 Science Explorer Publications External Transverse Direct Current Magnetic

More information

Problem Set 2. Chapter 1 Numerical:

Problem Set 2. Chapter 1 Numerical: Chapter 1 Nuerical: roble Set 16. The atoic radius of xenon is 18 p. Is that consistent with its b paraeter of 5.15 1 - L/ol? Hint: what is the volue of a ole of xenon atos and how does that copare to

More information

Chapter 10 Atmospheric Forces & Winds

Chapter 10 Atmospheric Forces & Winds Chapter 10 Atospheric Forces & Winds Chapter overview: Atospheric Pressure o Horizontal pressure variations o Station vs sea level pressure Winds and weather aps Newton s 2 nd Law Horizontal Forces o Pressure

More information

9 HOOKE S LAW AND SIMPLE HARMONIC MOTION

9 HOOKE S LAW AND SIMPLE HARMONIC MOTION Experient 9 HOOKE S LAW AND SIMPLE HARMONIC MOTION Objectives 1. Verify Hoo s law,. Measure the force constant of a spring, and 3. Measure the period of oscillation of a spring-ass syste and copare it

More information

Problem T1. Main sequence stars (11 points)

Problem T1. Main sequence stars (11 points) Proble T1. Main sequence stars 11 points Part. Lifetie of Sun points i..7 pts Since the Sun behaves as a perfectly black body it s total radiation power can be expressed fro the Stefan- Boltzann law as

More information

UNIVERSITY OF SASKATCHEWAN Department of Physics and Engineering Physics

UNIVERSITY OF SASKATCHEWAN Department of Physics and Engineering Physics UNIVERSITY OF SASKATCHEWAN Departent of Physics and Engineering Physics 05 Saskatchewan High School Physics Scholarship Copetition May, 05 Tie allowed: 90 inutes This copetition is based on the Saskatchewan

More information

EXPERIMENT 5. The Franck-Hertz Experiment (Critical Potentials) Introduction

EXPERIMENT 5. The Franck-Hertz Experiment (Critical Potentials) Introduction EXPERIMENT 5 The Franck-Hertz Experiment (Critical Potentials) Introduction In the early part of the twentieth century the structure of the atom was studied in depth. In the process of developing and refining

More information

SRI LANKAN PHYSICS OLYMPIAD MULTIPLE CHOICE TEST 30 QUESTIONS ONE HOUR AND 15 MINUTES

SRI LANKAN PHYSICS OLYMPIAD MULTIPLE CHOICE TEST 30 QUESTIONS ONE HOUR AND 15 MINUTES SRI LANKAN PHYSICS OLYMPIAD - 5 MULTIPLE CHOICE TEST QUESTIONS ONE HOUR AND 5 MINUTES INSTRUCTIONS This test contains ultiple choice questions. Your answer to each question ust be arked on the answer sheet

More information

Charge to Mass Ratio of Electron Lab 11 SAFETY

Charge to Mass Ratio of Electron Lab 11 SAFETY HB 10-20-08 Charge to Mass Ratio of Electron Lab 11 1 Charge to Mass Ratio of Electron Lab 11 Equipment ELWE e/m tube, ELWE Helmholtz coils, ELWE 4 voltage power supply, Safety Glasses, Fluke multimeter,

More information

This exam is formed of three exercises in three pages numbered from 1 to 3 The use of non-programmable calculators is recommended.

This exam is formed of three exercises in three pages numbered from 1 to 3 The use of non-programmable calculators is recommended. 009 وزارة التربية والتعلين العالي الوديرية العاهة للتربية دائرة االهتحانات اهتحانات الشهادة الثانىية العاهة الفرع : علىم الحياة مسابقة في مادة الفيزياء المدة ساعتان االسن: الرقن: الدورة العادية للعام This

More information

Lab 6 - Electron Charge-To-Mass Ratio

Lab 6 - Electron Charge-To-Mass Ratio Lab 6 Electron Charge-To-Mass Ratio L6-1 Name Date Partners Lab 6 - Electron Charge-To-Mass Ratio OBJECTIVES To understand how electric and magnetic fields impact an electron beam To experimentally determine

More information

Lecture #8-3 Oscillations, Simple Harmonic Motion

Lecture #8-3 Oscillations, Simple Harmonic Motion Lecture #8-3 Oscillations Siple Haronic Motion So far we have considered two basic types of otion: translation and rotation. But these are not the only two types of otion we can observe in every day life.

More information

Lab 6 - ELECTRON CHARGE-TO-MASS RATIO

Lab 6 - ELECTRON CHARGE-TO-MASS RATIO 101 Name Date Partners OBJECTIVES OVERVIEW Lab 6 - ELECTRON CHARGE-TO-MASS RATIO To understand how electric and magnetic fields impact an electron beam To experimentally determine the electron charge-to-mass

More information

Field Mass Generation and Control. Chapter 6. The famous two slit experiment proved that a particle can exist as a wave and yet

Field Mass Generation and Control. Chapter 6. The famous two slit experiment proved that a particle can exist as a wave and yet 111 Field Mass Generation and Control Chapter 6 The faous two slit experient proved that a particle can exist as a wave and yet still exhibit particle characteristics when the wavefunction is altered by

More information

Name Period. What force did your partner s exert on yours? Write your answer in the blank below:

Name Period. What force did your partner s exert on yours? Write your answer in the blank below: Nae Period Lesson 7: Newton s Third Law and Passive Forces 7.1 Experient: Newton s 3 rd Law Forces of Interaction (a) Tea up with a partner to hook two spring scales together to perfor the next experient:

More information

CHAPTER 7 TEST REVIEW -- MARKSCHEME

CHAPTER 7 TEST REVIEW -- MARKSCHEME AP PHYSICS Nae: Period: Date: Points: 53 Score: IB Curve: DEVIL PHYSICS BADDEST CLASS ON CAMPUS 50 Multiple Choice 45 Single Response 5 Multi-Response Free Response 3 Short Free Response 2 Long Free Response

More information

THE EFFECT OF SOLID PARTICLE SIZE UPON TIME AND SEDIMENTATION RATE

THE EFFECT OF SOLID PARTICLE SIZE UPON TIME AND SEDIMENTATION RATE Bulletin of the Transilvania University of Braşov Series II: Forestry Wood Industry Agricultural Food Engineering Vol. 5 (54) No. 1-1 THE EFFECT OF SOLID PARTICLE SIZE UPON TIME AND SEDIMENTATION RATE

More information

XI PHYSICS M. AFFAN KHAN LECTURER PHYSICS, AKHSS, K. https://promotephysics.wordpress.com

XI PHYSICS M. AFFAN KHAN LECTURER PHYSICS, AKHSS, K. https://promotephysics.wordpress.com XI PHYSICS M. AFFAN KHAN LECTURER PHYSICS, AKHSS, K affan_414@live.co https://prootephysics.wordpress.co [MOTION] CHAPTER NO. 3 In this chapter we are going to discuss otion in one diension in which we

More information

Successful Brushless A.C. Power Extraction From The Faraday Acyclic Generator

Successful Brushless A.C. Power Extraction From The Faraday Acyclic Generator Successful Brushless A.C. Power Extraction Fro The Faraday Acyclic Generator July 11, 21 Volt =.2551552 volt 1) If we now consider that the voltage is capable of producing current if the ri of the disk

More information

Momentum. February 15, Table of Contents. Momentum Defined. Momentum Defined. p =mv. SI Unit for Momentum. Momentum is a Vector Quantity.

Momentum. February 15, Table of Contents. Momentum Defined. Momentum Defined. p =mv. SI Unit for Momentum. Momentum is a Vector Quantity. Table of Contents Click on the topic to go to that section Moentu Ipulse-Moentu Equation The Moentu of a Syste of Objects Conservation of Moentu Types of Collisions Collisions in Two Diensions Moentu Return

More information

Q5 We know that a mass at the end of a spring when displaced will perform simple m harmonic oscillations with a period given by T = 2!

Q5 We know that a mass at the end of a spring when displaced will perform simple m harmonic oscillations with a period given by T = 2! Chapter 4.1 Q1 n oscillation is any otion in which the displaceent of a particle fro a fixed point keeps changing direction and there is a periodicity in the otion i.e. the otion repeats in soe way. In

More information

Chapter 2 General Properties of Radiation Detectors

Chapter 2 General Properties of Radiation Detectors Med Phys 4RA3, 4RB3/6R3 Radioisotopes and Radiation Methodology -1 Chapter General Properties of Radiation Detectors Ionizing radiation is ost coonly detected by the charge created when radiation interacts

More information

Lab 5 - ELECTRON CHARGE-TO-MASS RATIO

Lab 5 - ELECTRON CHARGE-TO-MASS RATIO 81 Name Date Partners Lab 5 - ELECTRON CHARGE-TO-MASS RATIO OBJECTIVES To understand how electric and magnetic fields impact an electron beam To experimentally determine the electron charge-to-mass ratio

More information

Measurement of Charge-to-Mass (e/m) Ratio for the Electron

Measurement of Charge-to-Mass (e/m) Ratio for the Electron Measurement of Charge-to-Mass (e/m) Ratio for the Electron Experiment objectives: measure the ratio of the electron charge-to-mass ratio e/m by studying the electron trajectories in a uniform magnetic

More information

Energy and Momentum: The Ballistic Pendulum

Energy and Momentum: The Ballistic Pendulum Physics Departent Handout -10 Energy and Moentu: The Ballistic Pendulu The ballistic pendulu, first described in the id-eighteenth century, applies principles of echanics to the proble of easuring the

More information

LAB MECH8.COMP From Physics with Computers, Vernier Software & Technology, 2003.

LAB MECH8.COMP From Physics with Computers, Vernier Software & Technology, 2003. LAB MECH8.COMP Fro Physics with Coputers, Vernier Software & Technology, 003. INTRODUCTION You have probably watched a ball roll off a table and strike the floor. What deterines where it will land? Could

More information

Stern-Gerlach Experiment

Stern-Gerlach Experiment Stern-Gerlach Experient HOE: The Physics of Bruce Harvey This is the experient that is said to prove that the electron has an intrinsic agnetic oent. Hydrogen like atos are projected in a bea through a

More information

USEFUL HINTS FOR SOLVING PHYSICS OLYMPIAD PROBLEMS. By: Ian Blokland, Augustana Campus, University of Alberta

USEFUL HINTS FOR SOLVING PHYSICS OLYMPIAD PROBLEMS. By: Ian Blokland, Augustana Campus, University of Alberta 1 USEFUL HINTS FOR SOLVING PHYSICS OLYMPIAD PROBLEMS By: Ian Bloland, Augustana Capus, University of Alberta For: Physics Olypiad Weeend, April 6, 008, UofA Introduction: Physicists often attept to solve

More information

Lab 5 - ELECTRON CHARGE-TO-MASS RATIO

Lab 5 - ELECTRON CHARGE-TO-MASS RATIO 79 Name Date Partners OBJECTIVES OVERVIEW Lab 5 - ELECTRON CHARGE-TO-MASS RATIO To understand how electric and magnetic fields impact an electron beam To experimentally determine the electron charge-to-mass

More information

OStudy of Real Gas Behavior: Ideality of CO 2 Gas

OStudy of Real Gas Behavior: Ideality of CO 2 Gas OStudy of Real Gas Behavior: Ideality of CO Gas Subitted: March, 014 CHEM 457, Section Departent of Cheistry, The Pennsylvania State University, University Park, PA 1680 Jessica Slavejkov Bashayer Aldakkan,

More information

CHARGED PARTICLES IN FIELDS

CHARGED PARTICLES IN FIELDS The electron beam used to study motion of charged particles in electric and/or magnetic fields. CHARGED PARTICLES IN FIELDS Physics 41/61 Fall 01 1 Introduction The precise control of charged particles

More information

Department of Physics Preliminary Exam January 3 6, 2006

Department of Physics Preliminary Exam January 3 6, 2006 Departent of Physics Preliinary Exa January 3 6, 2006 Day 1: Classical Mechanics Tuesday, January 3, 2006 9:00 a.. 12:00 p.. Instructions: 1. Write the answer to each question on a separate sheet of paper.

More information

AP Physics Thermodynamics Wrap-up

AP Physics Thermodynamics Wrap-up AP Physics herodynaics Wrap-up Here are your basic equations for therodynaics. here s a bunch of the. 3 his equation converts teperature fro Fahrenheit to Celsius. his is the rate of heat transfer for

More information

BALLISTIC PENDULUM. EXPERIMENT: Measuring the Projectile Speed Consider a steel ball of mass

BALLISTIC PENDULUM. EXPERIMENT: Measuring the Projectile Speed Consider a steel ball of mass BALLISTIC PENDULUM INTRODUCTION: In this experient you will use the principles of conservation of oentu and energy to deterine the speed of a horizontally projected ball and use this speed to predict the

More information

1. Answer the following questions.

1. Answer the following questions. (06) Physics Nationality No. (Please print full nae, underlining faily nae) Marks Nae Before you start, fill in the necessary details (nationality, exaination nuber, nae etc.) in the box at the top of

More information

Chapter 5, Conceptual Questions

Chapter 5, Conceptual Questions Chapter 5, Conceptual Questions 5.1. Two forces are present, tension T in the cable and gravitational force 5.. F G as seen in the figure. Four forces act on the block: the push of the spring F, sp gravitational

More information

PHYSICS - CLUTCH CH 05: FRICTION, INCLINES, SYSTEMS.

PHYSICS - CLUTCH CH 05: FRICTION, INCLINES, SYSTEMS. !! www.clutchprep.co INTRO TO FRICTION Friction happens when two surfaces are in contact f = μ =. KINETIC FRICTION (v 0 *): STATIC FRICTION (v 0 *): - Happens when ANY object slides/skids/slips. * = Point

More information

NAME NUMBER SEC. PHYCS 101 SUMMER 2001/2002 FINAL EXAME:24/8/2002. PART(I) 25% PART(II) 15% PART(III)/Lab 8% ( ) 2 Q2 Q3 Total 40%

NAME NUMBER SEC. PHYCS 101 SUMMER 2001/2002 FINAL EXAME:24/8/2002. PART(I) 25% PART(II) 15% PART(III)/Lab 8% ( ) 2 Q2 Q3 Total 40% NAME NUMER SEC. PHYCS 101 SUMMER 2001/2002 FINAL EXAME:24/8/2002 PART(I) 25% PART(II) 15% PART(III)/Lab 8% ( ) 2.5 Q1 ( ) 2 Q2 Q3 Total 40% Use the followings: Magnitude of acceleration due to gravity

More information

Physics 18 Spring 2011 Homework 3 - Solutions Wednesday February 2, 2011

Physics 18 Spring 2011 Homework 3 - Solutions Wednesday February 2, 2011 Phsics 18 Spring 2011 Hoework 3 - s Wednesda Februar 2, 2011 Make sure our nae is on our hoework, and please bo our final answer. Because we will be giving partial credit, be sure to attept all the probles,

More information

Part A Here, the velocity is at an angle of 45 degrees to the x-axis toward the z-axis. The velocity is then given in component form as.

Part A Here, the velocity is at an angle of 45 degrees to the x-axis toward the z-axis. The velocity is then given in component form as. Electrodynaics Chapter Andrew Robertson 32.30 Here we are given a proton oving in a agnetic eld ~ B 0:5^{ T at a speed of v :0 0 7 /s in the directions given in the gures. Part A Here, the velocity is

More information

8.1 Force Laws Hooke s Law

8.1 Force Laws Hooke s Law 8.1 Force Laws There are forces that don't change appreciably fro one instant to another, which we refer to as constant in tie, and forces that don't change appreciably fro one point to another, which

More information

Motion of Charges in Uniform E

Motion of Charges in Uniform E Motion of Charges in Unifor E and Fields Assue an ionized gas is acted upon by a unifor (but possibly tie-dependent) electric field E, and a unifor, steady agnetic field. These fields are assued to be

More information

2009 Academic Challenge

2009 Academic Challenge 009 Acadeic Challenge PHYSICS TEST - REGIONAL This Test Consists of 5 Questions Physics Test Production Tea Len Stor, Eastern Illinois University Author/Tea Leader Doug Brandt, Eastern Illinois University

More information

Momentum. Momentum. Momentum. January 25, momentum presentation Table of Contents. Momentum Defined. Grade:«grade»

Momentum. Momentum. Momentum. January 25, momentum presentation Table of Contents. Momentum Defined. Grade:«grade» oentu presentation 2016 New Jersey Center for Teaching and Learning Progressive Science Initiative This aterial is ade freely available at wwwnjctlorg and is intended for the non coercial use of students

More information

Year 12 Physics Holiday Work

Year 12 Physics Holiday Work Year 1 Physics Holiday Work 1. Coplete questions 1-8 in the Fields assessent booklet and questions 1-3 In the Further Mechanics assessent booklet (repeated below in case you have lost the booklet).. Revise

More information

The Q Machine. 60 cm 198 cm Oven. Plasma. 6 cm 30 cm. 50 cm. Axial. Probe. PUMP End Plate Magnet Coil. Filament Cathode. Radial. Hot Plate.

The Q Machine. 60 cm 198 cm Oven. Plasma. 6 cm 30 cm. 50 cm. Axial. Probe. PUMP End Plate Magnet Coil. Filament Cathode. Radial. Hot Plate. 1 The Q Machine 60 cm 198 cm Oven 50 cm Axial Probe Plasma 6 cm 30 cm PUMP End Plate Magnet Coil Radial Probe Hot Plate Filament Cathode 2 THE Q MACHINE 1. GENERAL CHARACTERISTICS OF A Q MACHINE A Q machine

More information

Chapter 4: Temperature

Chapter 4: Temperature Chapter 4: Teperature Objectives: 1. Define what teperature is. 2. Explain the difference between absolute and relative teperature. 3. Know the reference points for the teperature scales. 4. Convert a

More information

Ocean 420 Physical Processes in the Ocean Project 1: Hydrostatic Balance, Advection and Diffusion Answers

Ocean 420 Physical Processes in the Ocean Project 1: Hydrostatic Balance, Advection and Diffusion Answers Ocean 40 Physical Processes in the Ocean Project 1: Hydrostatic Balance, Advection and Diffusion Answers 1. Hydrostatic Balance a) Set all of the levels on one of the coluns to the lowest possible density.

More information

Tactics Box 2.1 Interpreting Position-versus-Time Graphs

Tactics Box 2.1 Interpreting Position-versus-Time Graphs 1D kineatic Retake Assignent Due: 4:32p on Friday, October 31, 2014 You will receive no credit for ites you coplete after the assignent is due. Grading Policy Tactics Box 2.1 Interpreting Position-versus-Tie

More information

Newton's Laws. Lecture 2 Key Concepts. Newtonian mechanics and relation to Kepler's laws The Virial Theorem Tidal forces Collision physics

Newton's Laws. Lecture 2 Key Concepts. Newtonian mechanics and relation to Kepler's laws The Virial Theorem Tidal forces Collision physics Lecture 2 Key Concepts Newtonian echanics and relation to Kepler's laws The Virial Theore Tidal forces Collision physics Newton's Laws 1) An object at rest will reain at rest and an object in otion will

More information

Charge to Mass Ratio of The Electron

Charge to Mass Ratio of The Electron Physics Topics Charge to Mass Ratio of The Electron If necessary, review the following topics and relevant textbook sections from Serway / Jewett Physics for Scientists and Engineers, 9th Ed. Electric

More information

Lecture 3 Vacuum Science and Technology

Lecture 3 Vacuum Science and Technology Lecture 3 Vacuum Science and Technology Chapter 3 - Wolf and Tauber 1/56 Announcements Homework will be online from noon today. This is homework 1 of 4. 25 available marks (distributed as shown). This

More information

Lesson 24: Newton's Second Law (Motion)

Lesson 24: Newton's Second Law (Motion) Lesson 24: Newton's Second Law (Motion) To really appreciate Newton s Laws, it soeties helps to see how they build on each other. The First Law describes what will happen if there is no net force. The

More information

In the session you will be divided into groups and perform four separate experiments:

In the session you will be divided into groups and perform four separate experiments: Mechanics Lab (Civil Engineers) Nae (please print): Tutor (please print): Lab group: Date of lab: Experients In the session you will be divided into groups and perfor four separate experients: (1) air-track

More information

Physics 2107 Oscillations using Springs Experiment 2

Physics 2107 Oscillations using Springs Experiment 2 PY07 Oscillations using Springs Experient Physics 07 Oscillations using Springs Experient Prelab Read the following bacground/setup and ensure you are failiar with the concepts and theory required for

More information

PhysicsAndMathsTutor.com

PhysicsAndMathsTutor.com . A raindrop falls vertically under gravity through a cloud. In a odel of the otion the raindrop is assued to be spherical at all ties and the cloud is assued to consist of stationary water particles.

More information

26 Impulse and Momentum

26 Impulse and Momentum 6 Ipulse and Moentu First, a Few More Words on Work and Energy, for Coparison Purposes Iagine a gigantic air hockey table with a whole bunch of pucks of various asses, none of which experiences any friction

More information

U V. r In Uniform Field the Potential Difference is V Ed

U V. r In Uniform Field the Potential Difference is V Ed SPHI/W nit 7.8 Electric Potential Page of 5 Notes Physics Tool box Electric Potential Energy the electric potential energy stored in a syste k of two charges and is E r k Coulobs Constant is N C 9 9. E

More information

PHYSICS 2210 Fall Exam 4 Review 12/02/2015

PHYSICS 2210 Fall Exam 4 Review 12/02/2015 PHYSICS 10 Fall 015 Exa 4 Review 1/0/015 (yf09-049) A thin, light wire is wrapped around the ri of a unifor disk of radius R=0.80, as shown. The disk rotates without friction about a stationary horizontal

More information

Franck-Hertz Experiment

Franck-Hertz Experiment Franck-Hertz Experiment Introduction: In 1914, James Franck and Gustav Hertz discovered in the course of their investigations an energy loss in distinct steps for electrons passing through mercury vapor,

More information

Axis. Axis. Axis. Solid cylinder (or disk) about. Hoop about. Annular cylinder (or ring) about central axis. central axis.

Axis. Axis. Axis. Solid cylinder (or disk) about. Hoop about. Annular cylinder (or ring) about central axis. central axis. Instructor(s): Acosta, inzler PHYSICS DEPATMENT PHY 048, Spring 04 Final Exa March 4, 04 Nae (print, last first): Signature: On y honor, I have neither given nor received unauthorized aid on this exaination.

More information

Earlier Lecture. In the earlier lecture, we have seen non metallic sensors like Silicon diode, Cernox and Ruthenium Oxide.

Earlier Lecture. In the earlier lecture, we have seen non metallic sensors like Silicon diode, Cernox and Ruthenium Oxide. 41 1 Earlier Lecture In the earlier lecture, we have seen non metallic sensors like Silicon diode, Cernox and Ruthenium Oxide. Silicon diodes have negligible i 2 R losses. Cernox RTDs offer high response

More information

Molecular interactions in beams

Molecular interactions in beams Molecular interactions in beas notable advanceent in the experiental study of interolecular forces has coe fro the developent of olecular beas, which consist of a narrow bea of particles, all having the

More information

In this chapter we will start the discussion on wave phenomena. We will study the following topics:

In this chapter we will start the discussion on wave phenomena. We will study the following topics: Chapter 16 Waves I In this chapter we will start the discussion on wave phenoena. We will study the following topics: Types of waves Aplitude, phase, frequency, period, propagation speed of a wave Mechanical

More information

TAP 413-2: Measuring the charge to mass ratio for an electron

TAP 413-2: Measuring the charge to mass ratio for an electron TAP 413-: Measuring the charge to ass ratio for an electron Using circular otion Using a agnetic field to drive an electron round in a circle can give inforation about the acceleration. The agnetic force

More information

Kinetic Molecular Theory of Ideal Gases

Kinetic Molecular Theory of Ideal Gases Lecture -3. Kinetic Molecular Theory of Ideal Gases Last Lecture. IGL is a purely epirical law - solely the consequence of experiental obserations Explains the behaior of gases oer a liited range of conditions.

More information

Chapter 29 Solutions

Chapter 29 Solutions Chapter 29 Solutions 29.1 (a) up out of the page, since the charge is negative. (c) no deflection (d) into the page 29.2 At the equator, the Earth's agnetic field is horizontally north. Because an electron

More information

L 2. AP Physics Free Response Practice Oscillations ANSWERS 1975B7. (a) F T2. (b) F NET(Y) = 0

L 2. AP Physics Free Response Practice Oscillations ANSWERS 1975B7. (a) F T2. (b) F NET(Y) = 0 AP Physics Free Response Practice Oscillations ANSWERS 1975B7. (a) 60 F 1 F g (b) F NE(Y) = 0 F1 F1 = g / cos(60) = g (c) When the string is cut it swings fro top to botto, siilar to the diagra for 1974B1

More information

~1 V ~20-40 V. Electron collector PLASMA. Ion extraction optics. Ionization zone. Mass Resolving section Ion detector. e - ~20 V Filament Heater

~1 V ~20-40 V. Electron collector PLASMA. Ion extraction optics. Ionization zone. Mass Resolving section Ion detector. e - ~20 V Filament Heater RGAs and Leak detectors [Note that standard Ion Implanters are just overgrown RGAs!] RGAs or Residual Gas Analyzers are also known as Mass Spectrum Analyzers. These can sometimes be upgraded to also include

More information

A 200 kev Electrostatic Accelerator

A 200 kev Electrostatic Accelerator A 200 kev Electrostatic Accelerator P.Brady, B. Winey, and M.Yuly Department of Physics Houghton College Houghton, NY 14744 I. Abstract A small 200 kev electrostatic electron accelerator is being constructed.

More information

Ratio of Charge to Mass (e/m) for the Electron

Ratio of Charge to Mass (e/m) for the Electron Objective: In this experiment you will determine the ratio of charge to mass (e/m) of the electron, by measuring the deflecting of electrons as they move through a magnetic field. Apparatus: e/m apparatus

More information

TAP 222-4: Momentum questions

TAP 222-4: Momentum questions TAP -4: Moentu questions These questions change in difficulty and ask you to relate ipulse to change of oentu. 1. Thrust SSC is a supersonic car powered by jet engines giving a total thrust of 180 kn.

More information

1 (40) Gravitational Systems Two heavy spherical (radius 0.05R) objects are located at fixed positions along

1 (40) Gravitational Systems Two heavy spherical (radius 0.05R) objects are located at fixed positions along (40) Gravitational Systes Two heavy spherical (radius 0.05) objects are located at fixed positions along 2M 2M 0 an axis in space. The first ass is centered at r = 0 and has a ass of 2M. The second ass

More information

The major technical challenge in liquid chromatography mass spectrometry (LC- Mass Analyzers for LC-MS LC-MS. Filip Lemière

The major technical challenge in liquid chromatography mass spectrometry (LC- Mass Analyzers for LC-MS LC-MS. Filip Lemière Mass Analyzers for LC-MS Filip Leière The ajor technical challenge in liquid chroatography ass spectroetry (LC- MS) is interfacing the chroatographic and spectroetric coponents. This observation iplies

More information

Today s s topics are: Collisions and Momentum Conservation. Momentum Conservation

Today s s topics are: Collisions and Momentum Conservation. Momentum Conservation Today s s topics are: Collisions and P (&E) Conservation Ipulsive Force Energy Conservation How can we treat such an ipulsive force? Energy Conservation Ipulsive Force and Ipulse [Exaple] an ipulsive force

More information

Experiment 2: Hooke s Law

Experiment 2: Hooke s Law COMSATS Institute of Inforation Technology, Islaabad Capus PHYS-108 Experient 2: Hooke s Law Hooke s Law is a physical principle that states that a spring stretched (extended) or copressed by soe distance

More information

Exam 3 Solutions. 1. Which of the following statements is true about the LR circuit shown?

Exam 3 Solutions. 1. Which of the following statements is true about the LR circuit shown? PHY49 Spring 5 Prof. Darin Acosta Prof. Paul Avery April 4, 5 PHY49, Spring 5 Exa Solutions. Which of the following stateents is true about the LR circuit shown? It is (): () Just after the switch is closed

More information

MEASURING INSTRUMENTS

MEASURING INSTRUMENTS CLASS NOTES ON ELECTRICAL MEASUREMENTS & INSTRUMENTATION 05 MEASURING INSTRUMENTS. Definition of instruents An instruent is a device in which we can deterine the agnitude or value of the quantity to be

More information

Lab 7 - ELECTRON CHARGE-TO-MASS RATIO

Lab 7 - ELECTRON CHARGE-TO-MASS RATIO 107 Name Date Partners Lab 7 - ELECTRON CHARGE-TO-MASS RATIO OBJECTIVES To understand how electric and magnetic fields impact an electron beam To experimentally determine the electron charge-to-mass ratio

More information

Electromagnetic Waves

Electromagnetic Waves Electroagnetic Waves Physics 4 Maxwell s Equations Maxwell s equations suarize the relationships between electric and agnetic fields. A ajor consequence of these equations is that an accelerating charge

More information

Lecture notes by Prof. Andrea Di Cicco. Di Cicco UniCam Italy 2009, rev. 2010

Lecture notes by Prof. Andrea Di Cicco. Di Cicco UniCam Italy 2009, rev. 2010 Modern Physics constituents of atter Lecture notes by Prof. Andrea Di Cicco Di Cicco UniCa Italy 009, rev. 010 1 Background The idea of atter as constituted by individual particles (called atos, indivisibles)

More information

Work, Energy and Momentum

Work, Energy and Momentum Work, Energy and Moentu Work: When a body oves a distance d along straight line, while acted on by a constant force of agnitude F in the sae direction as the otion, the work done by the force is tered

More information