Biosorption for water treatment: Green technology for environment sustainability

Size: px
Start display at page:

Download "Biosorption for water treatment: Green technology for environment sustainability"

Transcription

1 1er Congreso Internacional de Agua y Sostenibilidad Terrassa, Junio 2017 Biosorption for water treatment: Green technology for environment sustainability Prof. Isabel Villaescusa Chemical Engineering Department Metals and Environmental Research Group

2 Electroplating Mining and metal processing Electronic Tanneries Devices HEAVY METALS Natural pollution (arsenic in Bangladesh) Power Plants

3 Precipitation Ion Exchange Reverse osmosis METAL REMOVAL TECHNOLOGIES Adsorption Biosorption

4 Basic concepts and terminology Biosorption passive sequestration by non-metabolizing non-living biomass Bioaccumulation Metabolically mediated transport and deposition of chemical species in living cells Adsorption Involves the interface accumulation or concentration of substances at a surface or interface Sorption + Absorption Molecules or atoms of one phase interpenetrate among other of another phase to form a «solution» Davis TA, Volesky B, Mucci A. Water Research. 2003

5 Biosorption processes Non-living biomass thioethers amines carboxylates thiols Adsorption phosphates hydroxyls amides Cellular membrane binding Transport through the membrane Living biomass Biological + Processes Adsorption Reduction, oxidation, methylation

6 Abundant in nature Sub-products LOW COST SORBENT Waste Little or no pretreatment No need of regeneration

7 Agricultural biomass Shells: Green coconut Hazelnut Brazil nut Peels: Peas Broad bean Medlar Orange Citrus Mango Wood: Pinus sylvestris sawdust Yohimbe bark P.ruscifolia Juniper Cork bark Papaya Grape stalk Leaves: Tea Plants Saltbush Fig Nurchi & Villaescusa,Coord.Chem.Rev. 2008

8 Studies on heavy metals biosorption by agriculture biomass around the world Nurchi & Villaescusa, Coord.Chem.Rev., 2008)

9 Biosorption processes Solid phase Sorbent, biosorbent, adsorbent, biological material Sorbate sorbed on Solid Phase Interactions Equilibrium Liquid Phase Solvent (normally water) with Dissolved species to be sorbed (adsorbate, metal) Unsorbed sorbate in liquid phase

10 Incidence of binding groups on biomass surface Spectroscopic techniques Nurchi et al., Coord. Chem. Rev. 2010

11 Factors affecting biosorption processes CONTACT TIME between sorbent and sorbate (equilibrium achievement) ph (sorbent (biomass) ionisation and sorbate (metal) speciation) SORBENT PARTICLE SIZE (the least size the highest adsorption yield) SORBENT CONCENTRATION (concentration of active sites) SORBATE CONCENTRATION SOLUTION IONIC STRENGTH (other ions compete with metal ions) SORBENT PRETREATMENT (increase or blockage of active sites)) TEMPERATURE (no influence of temperature in the range o C)

12 Vegetable wastes and sub-products investigated Olive oil extraction Wine production Cork taps manufacturing Soluble coffee production Alcaloid extraction Olive stones Grape stalks Cork bark Exhausted coffee Yohimbe bark Preparation process: Washing, drying, grinding and sieving

13 Grape stalks Summative chemical composition (% dry mass) of grape stalks and exhausted coffee Polyphenolic compounds 20.6% GAE,w/w Source of antioxidants Biosorption Pujol et al. Ind Crops & Products, 2013 Exhausted coffee 0,25 Ø 0,50 mm Lipids 88% of dichloromethane extract Biosorption Biodiesel 0,25 Ø 0,50 mm Pujol et al. Ind Crops & Products, 2013

14 Wastes characterization Porosity Grape stalks % Exhausted coffee 57.05% ph of point zero charge Determination of acidic groups phpzc 3.9 Elemental analysis Ashes

15 FTIR Wastes characterization Grape stalks Exhausted coffee Transmittance (%) Transmittance (%) Wavenumbers (cm -1 ) GS Raw GS Raw with 300 ppm Cr(VI) Wavenumbers (cm -1 ) EC Raw EC Raw with 300 ppm Cr(VI) cm -1 O-H lignin, phenolic groups, celluloses 2856 cm -1 γs C-H aliphatic groups 1735 cm -1 C=O aliphatic esters 1523 cm -1 C=C lignin cm -1 O-H lignin, phenolic groups, celluloses 2856 cm -1 γs C-H aliphatic groups 1742 cm -1 C=O aliphatic esters 1523 cm -1 C=C lignin 1065 cm -1 C=o lignin, phenolic groups

16 Biosorption of divalent metals

17 Vegetable wastes as sorbents of divalent metals Equilibrium studies (< 2 hours contact time, ph>4)) Grape stalks Olive stones Exhausted coffee 0,08 0,06 0,04 0,02 0,00 0,0 Cork bark 0,5 1,0 Ceq ( mmol/l) 1,5 Q eq ( mmol/g) 0,20 0,15 0,10 0,05 0,00 0,0 Yohimbe bark 0,5 1,0 Ceq ( mmol/l) 1,5 Q eq ( mmol/g) Sorption mechanisms: ion exchange, complexation and microprecipitation

18 Influence of ph and salts content in divalent metals sorption Ex. Grape stalks ph > 4 Presence of salts Decrease metal sorption Villaescusa et al. Water Research, 2004

19 Vegetable wastes as ion exchangers for divalent metals. Kinetics study Grape stalks Grape stalks Purolite-100 resin Olive stones metal ions metal sorbed (meq g -1 ) light metals released (meq g -1 ) metal sorbed (meq g -1 ) light metals released (meq g -1 ) metal sorbed (meq g -1 ) light metals released (meq g -1 ) Purolite-100 Cu Ni Pb Cd Olive stones Grape stalks: Ca and K Purolite-100 resin: Na Olive stones: Ca Fiol et al., IEX 2008, Ed. M. Cox

20 Vegetable wastes as ion exchangers for divalent metals Ex. Yohimbe bark Element Atomic % Mg 0.14 Ca 0.76 Na ND K 3.46 Cu ND Magnification 500 X Element Atomic % Mg 0.09 Ca 0.53 Na ND K 2.72 Cu 1.73 Ca, Mg i K Cu (a) deionized water (b) 100 mg/l Cu Villaescusa et al. J.ChemTech Biotech, 2000

21 Biosorption of Cr(VI)

22 EXPERIMENTAL PROCEDURE BATCH FTIR Metal solution SORBENT SEM-EDX Sorbent Fixed ph i FAAS Particle size: mm Sorbent mass: 0.1 g Metal solution: 15 ml Agitation speed: 30 r.p.m. FILTRATE ICP DFC (Cr(VI)) ph f

23 Vegetable wastes as sorbents of Cr(VI) Equilibrium studies (> 24 hours) Sorption mechanisms: Cr(VI) reduction to Cr(III), Cr(VI) and Cr(III) sorption

24 Vegetable wastes reducing capacity for Cr(VI) Grape stalks Yohimbe bark ph 3.0 ph 6.6 ph 2.0 ph 5.6 Fiol et al. Biores.Tech, 2008

25 Electron Spin Ressonance (ESR) of Grape stalks chromium laden surface g=1.989 Cr(III) (3 unpaired e - ) g=1.998 Cr(V) (1 unpaired e - )

26 SEM/EDX analysis of exhausted coffee surface Cr laden

27 FTIR analysis of exhausted coffee Transmitance (%) C 1376 L L C L 500 Wavenumber (cm -1 ) EC-Cr(VI) EC Cellulose and lignin moieties are involved in chromium sorption

28 Sorbents maximum capacity for divalent metals and Cr(VI) Langmuir isotherm qmax Cu(II) Pb(II) Cd(II) Ni(II Cr(VI) Sorbent (mmol/g) (mmol/g) (mmol/g) (mmol/g) (mmol/g) Grape stalks 0,16 0,22 0,24 0,18 1,13 Exhausted coffee 0,021 0,019 0,44 Yohimbe bark 0,15 0,15 0,82 Olive stones 0,037 0,052 0,072 0,04 0,18 Cork bark 0,047 0,07 0,33 Qmax range (Bibliography ) 0,18-0,50 0,04-0,36 0,03-0,53 0,13-0,34 0,33-2,44

29 Biosorption of metals in binary mixtures

30 Divalent metal sorption by grape stalks waste from binary mixtures Cu-Ni Cu-Pb Cu-Cd Ni-Pb Ni-Cd Pb-Cd Concentration in solid phase with time Escudero et al. Chem. Eng. J, 2013

31 Modeling of divalent metal sorption by grape stalks waste from binary mixtures Homogeneous Surface Diffusion Model (HSDM) Equilibrium model Bed model: Transport across liquid film Diffusion across sorbent particle

32 Simultaneous metal sorption onto Exhausted Coffee from binary mixtures (Cr(VI)-Cu(II) and Cr(VI)-Ni(II)) Cr(VI) in the presence of Cu(II) Cr(VI) in the presence of Ni(II) ph 3.0 Competition between cations and protons Increase of protons in solution Cu(II) in the presence Cr(VI) Ni(II) in the presence Cr(VI) Reduction of Cr(VI) Formation of new sites Less competition

33 Biosorption of metals in quaternary mixtures

34 Continuous sorption/desorption cycles of divalent metals in a grape stalks packed column

35 Divalent metals sorption after desorption with HCl acid Sorption: 0.2 mm Equimolar solutions of the four metals Desorption: 0.05 M HCl Sorbent: Grape stalks ph i: 5.2 Flow rate: 30 ml/min

36 DIVALENT METALS SORPTION PERCENTAGE AFTER DIFFERENT SORPTION/DESORPTION CYCLES

37 Biosorption of metals in a batch reactor

38 Kinetic study of Cr(VI) sorption onto grape stalks in a stirred batch reactor du du du d t Variables: ph and Temperature Cr ( VI ) d t Cr ( III ) d t qt = k = k u 1 = k u u 1 Cr ( VI ) Cr ( VI ) k k 4 2 u u Cr ( VI ) ( 1 Q u ) + k R qt 3 Q R u Cr ( III )( 1 (1 QR ) uqt ) + k5 qt (1 Q R ) u ( 1 QRuqt ) k3qruqt + k4( ucr ( III )(1 (1 QR ) uqt ) k5(1 QRu 2 Cr ( VI ) qt qt ) ph Constant ph 3 Initial ph 3 and free evolution Temperature: 5 60 o C

39 Kinetics of Cr(VI) sorption onto grape stalks in a stirred batch reactor. Modeling Free ph ph 3.0 Sorption is faster when ph was maintained at ph 3.0 Sorption is faster when temperature increases ph has no effect at high temperatures Escudero et al., J Haz Mat, 2009

40 Simultaneous Cr(VI) and Cu(II) sorption by exhausted coffee from binary mixtures Cr(VI) totally reduced. Cr(III) accounted for 15% of initial Cr(VI) The presence of Cu(II) exerced a synergistic effect on Cr sorption Metal mixtures concentration ranges: mm and mm Liu et al. Sci of Total Env.,2016

41 Biosorption process for electroplating wastewater treatment

42 Electroplating wastewaters from rinsing baths

43 Scheme of a electroplating wastewaters treatment plant 1st step: Reducing agents + electrolysis : Cr(VI) reduction 2nd step: Flocculation/Precipitation: Addition of NaOH (ph 9.0) and flocculant 3er step: Filtration

44 Proposed Scheme of a electroplating wastewaters treatment plant 1st step: Biosorption (exhausted coffee) : Cr(VI) and Cr(III) reduction/sorption 2nd step: Flocculation/Precipitation: Addition of NaOH (ph 9.0) and flocculant 3er step: Filtration

45 1st Step Biosorption (Cr(VI) reduction Wastewaters electroplating industry ph conductivity Properties E1 E2 E3 Metal (mg L -1 ) Cr(VI) Cr(III) Cu Ni Fe Al Anions (mg L -1 ) 2- SO PO 4 n.d. a n.d. a n.d. a Conductivity (ms cm -1 ) ph ST b (mg L -1 ) SS c (mg L -1 ) Experimental set-up Operation conditions: 8L electroplating wastewater Sorbent dose: 6.7 g/l ph 2.0 Temperature: 20 o C

46 120 (a) E1 Cr total 6 (b) E1 Cu Fe Al Ni Biosorption Results Samples E1-E3 Cr (mg L -1 ) Cr(VI) 90 Cr(III) Time (h) Metal (mg L -1 ) Time (h) Cr(VI) totally removed Cr(III) in solution 30% initial Cr(VI) Cr (mg L -1 ) (c) E2 Cr total Cr(VI) Cr(III) Metal (mg L -1 ) (d) E2 Cu Fe Al Ni Fe(III) partially sorbed Time (h) Time (h) Poor Cu, Ni and Al sorption (e) E3 Cr total Cr(VI) Cr(III) Metal (mg L -1 ) (f) E3 Cu Fe Al Ni Time (h) Time (h)

47 Monitoring of Cr(VI) reduction through conductivity and ph probes (a) 100,0 Cr total Cr(VI) 3,2 (a) (b) Cr (mg L -1 ) 80,0 60,0 40,0 Cr(III) Conductivity 3,0 2,8 2,6 Conductivity (ms cm-1) 20,0 2,4 (c) (d) 0, Time (h) 2,2 Cr (mg L -1 ) 100,0 80,0 60,0 40,0 20,0 0,0 (b) Cr total Cr(VI) Cr(III) ph Time (h) 3,0 2,9 2,8 2,7 2,6 2,5 2,4 2,3 2,2 2,1 2,0 ph Constant ph Biosorption finished 2nd step Flocculation/Precipitation

48 2nd Step flocculation/precipitation Effluents from biosorption Coagulation/flocculation Jar test

49 Metal concentration of treated water Samples 1st step 2nd step Metal E1 (mg L -1 ) E2 (mg L -1 ) E3 (mg L -1 ) Industrial effluents Cr(VI) Cr(III) n.d. a n.d. a n.d. a Cu Ni Fe Al After biosorption Cr(VI) Cr(III) 1st Cu Ni Fe Al After precipitation Cr(VI) Cr(III) n.d. a n.d. a n.d. a Cu < LOD b < LOD b < LOD b Ni < LOD b < LOD b < LOD b Fe < LOD b < LOD b < LOD b Al < LOD b < LOD b < LOD b

50 Proposed Scheme of a electroplating wastewaters treatment plant

51 Biosorption of metals by sorbents entrapped in calcium alginate

52 Sorbent encapsulation in calcium alginate beads micropipette tip 1% sodium alginate solution 0,1 M CaCl 2 magnetic stirrer peristaltic pump magnetic stirrer column Cr(VI) solution Peristaltic pump Fractions collector

53 Simultaneous Cr(VI) and Cu(II) sorption by exhausted coffee from binary mixtures k 2 K 4 K 3 K 5 Metal mixtures concentration ranges: mm and mm binary mixtures Liu et al. Sci of Total Env., 541 (2016)

54 Simulaneous sorption of Cr(VI) and Cu(II) from Cr(VI)-Cu(II) binary mixtures Cr(VI) Bench scale Pilot scale Cu(II) Cu(II) 0 0,2 0,4 0,6 0,2 0,4 0,6 0,2 x x 0,4 x x x x x x x 0,6 x x x x x x 0,8 x x x x

55 CA beads EC-CA beads 600 x 0,001 cps/ev 700 x 0,001 cps/ev O Fe Na K Ca a 200 Fe K Cr 300 S C O S Ca K Ca Cr Cr(VI) sorption kev kev x 0,001 cps/ev cps/ev O a Cu Ca Cu S C O Cu Si S 1.0 Ca Ca Cu Cu(II) sorption kev kev cps/ev 4.0 cps/ev Cr C O Cu Ca Ca Cr Cu 1.5 S Cr C O Cu Al Si S Ca Ca Cr Cu Cr(VI) and Cu(II) sorption kev kev

56 Electron Spin Ressonance (ESR) of Exhausted coffee chromium laden surface Filename: F:\EPR\caec100l.spc g-factor Cr(III) and Cr(V) presence evidenced Cr(vI) reduction by exhausted coffee

57 Sorption mechanism

58 Acknowledgements Prof. J-C. Bollinger Prof.N. Fiol Prof.F. Torre PhD MA.Olivella Prof. J. Poch PhD C. Escudero PhD D. Pujol PhD C. Liu Prof. M.V. Nurchi Prof. G. Crisponii Prof. A. Bianchi Prof. C. Bazzicalupi Prof A. Florido Prof. M. Martínez Prof. H.Pereira PhD. A. Sen

59 Universitat de Girona location Departament d Enginyeria Química, Agrària i Tecnologia Agroalimentària Metals and Environment Laboratory

PREFACE About the Author

PREFACE About the Author Contents / vii CONTENTS PREFACE About the Author CONTENTS v vi vii INTRODUCTION Sorption and Biosorption Share the Methodology 1 1. POTENTIAL OF BIOSORPTION 5 1.1 METALS: ENVIRONMENTAL THREAT 5 1.2 BIOSORPTION

More information

Sorption of metals on biological waste material

Sorption of metals on biological waste material Research Centre Rez Sorption of metals on biological waste material Lucia Rozumová SWWS 2016, September 14-16, 2016, Athens, Greece Goals Low-cost biological material orange peel; Possible replacement

More information

Screening of Algae Material as a Filter for Heavy Metals in Drinking Water

Screening of Algae Material as a Filter for Heavy Metals in Drinking Water 1 Screening of Algae Material as a Filter for Heavy Metals in Drinking Water 2 ABSTRACT Calcium alginate beads generated from alginic acid sodium salt from brown algae were 3 used to explore the adsorption

More information

Application of Fe 2 O 3 nanoparticles in Heavy Metal Removal

Application of Fe 2 O 3 nanoparticles in Heavy Metal Removal Application of Fe 2 O 3 nanoparticles in Heavy Metal Removal 5.1 Introduction Different contaminants are released to water bodies due to the rapid industrialization of human society, including heavy metal

More information

IMPROVED REMOVAL OF COPPER IONS FROM AQUEOUS SOLUTION USING NaOH-PRETREATED COCO PEAT

IMPROVED REMOVAL OF COPPER IONS FROM AQUEOUS SOLUTION USING NaOH-PRETREATED COCO PEAT IMPROVED REMOVAL OF COPPER IONS FROM AQUEOUS SOLUTION USING NaOH-PRETREATED COCO PEAT Ma. Brida Lea D. Diola 1, Christian R. Orozco 1 1 Institute of Civil Engineering, University of the Philippines, Diliman,

More information

Efficient removal of heavy metal ions with EDTA. functionalized chitosan/polyacrylamide double network

Efficient removal of heavy metal ions with EDTA. functionalized chitosan/polyacrylamide double network Supporting Information Efficient removal of heavy metal ions with EDTA functionalized chitosan/polyacrylamide double network hydrogel Jianhong Ma a,b, Guiyin Zhou c, Lin Chu c, Yutang Liu a,b, *, Chengbin

More information

Environment Protection Engineering REMOVAL OF HEAVY METAL IONS: COPPER, ZINC AND CHROMIUM FROM WATER ON CHITOSAN BEADS

Environment Protection Engineering REMOVAL OF HEAVY METAL IONS: COPPER, ZINC AND CHROMIUM FROM WATER ON CHITOSAN BEADS Environment Protection Engineering Vol. 3 No. 3 4 KATARZYNA JAROS*, WŁADYSŁAW KAMIŃSKI*, JADWIGA ALBIŃSKA**, URSZULA NOWAK* REMOVAL OF HEAVY METAL IONS: COPPER, ZINC AND CHROMIUM FROM WATER ON CHITOSAN

More information

Novel polymer-based nanocomposites for application in heavy metal pollution remediation. Emerging Researcher Symposium

Novel polymer-based nanocomposites for application in heavy metal pollution remediation. Emerging Researcher Symposium Novel polymer-based nanocomposites for application in heavy metal pollution remediation Emerging Researcher Symposium Lara Kotzé-Jacobs 10 October 2012 Introduction: SA s water problem SA is a water scarce

More information

Interference of Aluminum in Heavy Metal Biosorption by a Seaweed Biosorbent

Interference of Aluminum in Heavy Metal Biosorption by a Seaweed Biosorbent Korean J. Chem. Eng., 18(5), 692-697 (2001) Interference of Aluminum in Heavy Metal Biosorption by a Seaweed Biosorbent Hak Sung Lee and Jung Ho Suh* Department of Chemical Engineering, *Department of

More information

Removal Of Copper From Waste Water Using Low Cost Adsorbent

Removal Of Copper From Waste Water Using Low Cost Adsorbent IOSR Journal of Applied Chemistry (IOSR-JAC) e-issn: 2278-5736. Volume 3, Issue 6 (Jan. Feb. 2013), PP 51-55 Removal Of Copper From Waste Water Using Low Cost Adsorbent Jubraj Khamari* Sanjeet Kumar Tiwari**

More information

Katarzyna Zielińska, Alexandre G. Chostenko, Stanisław Truszkowski

Katarzyna Zielińska, Alexandre G. Chostenko, Stanisław Truszkowski ADSORPTION OF CADMIUM IONS ON CHITOSAN MEMBRANES: KINETICS AND EQUILIBRIUM STUDIES Katarzyna Zielińska, Alexandre G. Chostenko, Stanisław Truszkowski Chair of Nuclear and Radiation Chemistry Faculty of

More information

Sorption of Cr(III) from aqueous solutions by spent brewery grain

Sorption of Cr(III) from aqueous solutions by spent brewery grain Sorption of Cr(III) from aqueous solutions by spent brewery grain Ana I. Ferraz 1, Maria T. Tavares 1, José A. Teixeira 1 1 Centro de Engenharia Biológica, IBQF, University of Minho, Campus de Gualtar,

More information

Removal of Heavy Metals Fe 3+, Cu 2+, Zn 2+, Pb 2+, Cr 3+ and Cd 2+ from Aqueous Solutions by Using Eichhornia Crassipes

Removal of Heavy Metals Fe 3+, Cu 2+, Zn 2+, Pb 2+, Cr 3+ and Cd 2+ from Aqueous Solutions by Using Eichhornia Crassipes Portugaliae Electrochimica Acta 2010, 28(2), 125-133 DOI: 10.4152/pea.201002125 PORTUGALIAE ELECTROCHIMICA ACTA ISSN 1647-1571 Removal of Heavy Metals Fe 3+, Cu 2+, Zn 2+, Pb 2+, Cr 3+ and Cd 2+ from Aqueous

More information

Removal of Nickel ions from Aqueous Solutions on Packed bed of Zeolite NaX

Removal of Nickel ions from Aqueous Solutions on Packed bed of Zeolite NaX Removal of Nickel ions from Aqueous Solutions on Packed bed of Zeolite NaX Dinesh Kumar a, Sambi S. S. a, Sharma S. K. a, Kumar, V. b a University School of Chemical Technology, GGS IPU, Delhi - 110006,

More information

Developing a Low Cost Activated Carbon from Agricultural Waste for the Removal of Heavy Metal from Contaminated Water

Developing a Low Cost Activated Carbon from Agricultural Waste for the Removal of Heavy Metal from Contaminated Water International Journal of Applied Chemistry. ISSN 0973-1792 Volume 13, Number 3 (2017) pp. 453-460 Research India Publications http://www.ripublication.com Developing a Low Cost Activated Carbon from Agricultural

More information

Comparision of Langmuir and Freundlich Equilibriums in Cr, Cu and Ni Adsorption by Sargassum

Comparision of Langmuir and Freundlich Equilibriums in Cr, Cu and Ni Adsorption by Sargassum Iranian J Env Health Sci Eng, 24, Vol.1, Barkhordar No.2, pp.58-64 B and Ghiasseddin M: Comparing of Comparision of Langmuir and Freundlich Equilibriums in Cr, Cu and Ni Adsorption by Sargassum * B Barkhordar

More information

Modification of Pineapple Leaf Cellulose with Citric Acid for Fe 2+ Adsorption

Modification of Pineapple Leaf Cellulose with Citric Acid for Fe 2+ Adsorption International Journal of ChemTech Research CODEN (USA): IJCRGG, ISSN: 0974-4290, ISSN(Online):2455-9555 Vol.10 No.4, pp 674-680, 2017 Modification of Pineapple Leaf Cellulose with Citric Acid for Fe 2+

More information

Int.J.Curr.Res.Aca.Rev.2016; 4(6): Biosorption of Lead (II), Nickel (II) Iron (II) and Zinc (II) on Flyash from Dilute Aqueous Solution

Int.J.Curr.Res.Aca.Rev.2016; 4(6): Biosorption of Lead (II), Nickel (II) Iron (II) and Zinc (II) on Flyash from Dilute Aqueous Solution Biosorption of Lead (II), Nickel (II) Iron (II) and Zinc (II) on Flyash from Dilute Aqueous Solution Ahmad Ashfaq* and Mohd Kaifiyan Civil Engineering Section, Faculty of Engineering & Technology, Aligarh

More information

Research Article. Removal of toxic metal chromium(vi) from industrial wastewater using activated carbon as adsorbent

Research Article. Removal of toxic metal chromium(vi) from industrial wastewater using activated carbon as adsorbent Available online www.jocpr.com Journal of Chemical and Pharmaceutical Research, 2015, 7(12):78-83 Research Article ISSN : 0975-7384 CODEN(USA) : JCPRC5 Removal of toxic metal chromium(vi) from industrial

More information

Uranium biosorption by Spatoglossum asperum J. Agardh:

Uranium biosorption by Spatoglossum asperum J. Agardh: Chapter 6 Uranium biosorption by Spatoglossum asperum J. Agardh: 76 Chapter 6. Uranium biosorption by Spatoglossum asperum J. Agardh: Characterization and equilibrium studies. 6.1. Materials 6.1.1. Collection

More information

Biosorption of aqueous chromium VI by living mycelium of phanerochaete chrysosporium

Biosorption of aqueous chromium VI by living mycelium of phanerochaete chrysosporium Biosorption of aqueous chromium VI by living mycelium of phanerochaete chrysosporium Nikazar, M.*, Davarpanah, L., Vahabzadeh, F. * Professor of Department of Chemical Engineering, Amirkabir University

More information

Supporting Information. Adsorption of Cu(II), Zn(II), and Pb(II) from aqueous single. and binary metal solutions by regenerated cellulose and

Supporting Information. Adsorption of Cu(II), Zn(II), and Pb(II) from aqueous single. and binary metal solutions by regenerated cellulose and Electronic Supplementary Material (ESI) for RSC Advances. This journal is The Royal Society of Chemistry 2018 Supporting Information Adsorption of Cu(II), Zn(II), and Pb(II) from aqueous single and binary

More information

Application of a Pulp Mill Waste for Wastewater Treatment. H. Yu, G.H. Covey and A.J. O Connor

Application of a Pulp Mill Waste for Wastewater Treatment. H. Yu, G.H. Covey and A.J. O Connor Application of a Pulp Mill Waste for Wastewater Treatment H. Yu, G.H. Covey and A.J. O Connor Department of Chemical Engineering University of Melbourne Melbourne, Victoria 3010 Australia Wastes containing

More information

Adsorption of Cd(II) ions by synthesize chitosan from fish shells

Adsorption of Cd(II) ions by synthesize chitosan from fish shells British Journal of Science 33 Adsorption of Cd(II) ions by synthesize chitosan from fish shells Angham G. Hadi Babylon University, College of Science, Chemistry Department. Abstract One of the major applications

More information

Kenji Narimura, *Katsutoshi Inoue, Keisuke Ohto, Hiroyuki Harada, Hidetaka Kawakita

Kenji Narimura, *Katsutoshi Inoue, Keisuke Ohto, Hiroyuki Harada, Hidetaka Kawakita 544 J. ION EXCHANGE Article Adsorption and Separation of Hexavalent Chromium by Using Adsorption Gel Prepared from Grape Residue Kenji Narimura, *Katsutoshi Inoue, Keisuke Ohto, Hiroyuki Harada, Hidetaka

More information

Letter to Editor Removal of Cadmium from Wastewater Using Ion Exchange Resin Amberjet 1200H Columns

Letter to Editor Removal of Cadmium from Wastewater Using Ion Exchange Resin Amberjet 1200H Columns Polish J. of Environ. Stud. Vol. 8, No. 6 (29), 9-95 Letter to Editor Removal of Cadmium from Wastewater Using Ion Exchange Resin Amberjet 2H Columns Y. Bai*, B. Bartkiewicz Department of Environmental

More information

Removal of Some Toxic Heavy Metals by means of Adsorption onto Biosorbent Composite (Coconut Shell Charcoal - Calcium Alginate) Beads

Removal of Some Toxic Heavy Metals by means of Adsorption onto Biosorbent Composite (Coconut Shell Charcoal - Calcium Alginate) Beads Universities Research Journal 2011, Vol. 4, No. 3 Removal of Some Toxic Heavy Metals by means of Adsorption onto Biosorbent Composite (Coconut Shell Charcoal - Calcium Alginate) Beads Chaw Su Hlaing, 1

More information

Advances in Environmental Technology 3 (2016) Advances in Environmental Technology. journal homepage:

Advances in Environmental Technology 3 (2016) Advances in Environmental Technology. journal homepage: Advances in Environmental Technology 3 (216) 137-141 Advances in Environmental Technology journal homepage: http://aet.irost.ir Desorption of reactive red 198 from activated Carbon prepared from walnut

More information

Removal of copper (II), iron (III) and lead (II) ions from Mono-component Simulated Waste Effluent by Adsorption on Coconut Husk

Removal of copper (II), iron (III) and lead (II) ions from Mono-component Simulated Waste Effluent by Adsorption on Coconut Husk African Journal of Environmental Science and Technology Vol. 4(6), pp. 382-387, June, 2010 Available online at http://www.academicjournals.org/ajest DOI: 10.5897/AJEST09.224 ISSN 1991-637X 2010 Academic

More information

Kinetic studies on the effect of Pb(II), Ni(II) and Cd(II) ions on biosorption of Cr(III) ion from aqueous solutions by Luffa cylindrica fibre

Kinetic studies on the effect of Pb(II), Ni(II) and Cd(II) ions on biosorption of Cr(III) ion from aqueous solutions by Luffa cylindrica fibre Available online at wwwpelagiaresearchlibrarycom Advances in Applied Science Research, 5, 6(8):8-88 ISSN: 976-86 CODEN (USA): AASRFC Kinetic studies on the effect of Pb(II), Ni(II) and Cd(II) ions on biosorption

More information

ADSORPTION STUDIES OF SOME DYES ON ACACIA CONCINNA POWDER

ADSORPTION STUDIES OF SOME DYES ON ACACIA CONCINNA POWDER ADSORPTION STUDIES OF SOME DYES ON ACACIA CONCINNA POWDER Geetha K.S 1, Belagali S.L 2 1 Department of Environmental science, University of Mysore, Mysuru, Karnataka, India-570006 2 Department of Environmental

More information

Influence of pre-treatment methods on the adsorption of cadmium ions by chestnut shell

Influence of pre-treatment methods on the adsorption of cadmium ions by chestnut shell Waste Management and the Environment V 179 Influence of pre-treatment methods on the adsorption of cadmium ions by chestnut shell G. Vázquez, O. Mosquera, M. S. Freire, G. Antorrena & J. González-Álvarez

More information

Removal of Chromium from Synthetic Tannery Effluent by Using Bioadsorbents

Removal of Chromium from Synthetic Tannery Effluent by Using Bioadsorbents IOSR Journal Of Environmental Science, Toxicology And Food Technology (IOSR-JESTFT) e-issn: 239-242,p- ISSN: 239-2399. Volume 3, Issue (Jan. - Feb. 23), PP 72-76 www.iosrjournals.org Removal of Chromium

More information

Journal of Chemical and Pharmaceutical Research, 2015, 7(4): Research Article

Journal of Chemical and Pharmaceutical Research, 2015, 7(4): Research Article Available online www.jocpr.com Journal of Chemical and Pharmaceutical Research, 2015, 7(4):397-404 Research Article ISSN : 0975-7384 CODEN(USA) : JCPRC5 Chromatographic separation of Pb(II), Cr(II), Cd(II),

More information

APPLICATION OF METAKAOLIN GEOPOLYMER FOR AMMONIUM REMOVAL IN SMALL-SCALE WASTEWATER TREATMENT SYSTEMS

APPLICATION OF METAKAOLIN GEOPOLYMER FOR AMMONIUM REMOVAL IN SMALL-SCALE WASTEWATER TREATMENT SYSTEMS APPLICATION OF METAKAOLIN GEOPOLYMER FOR AMMONIUM REMOVAL IN SMALL-SCALE WASTEWATER TREATMENT SYSTEMS Tero Luukkonen, Kateřina VĕžnÍková, Emma-Tuulia Tolonen, Hanna Runtti, Juho Yliniemi, Tao Hu, Kimmo

More information

Technical Note Modelling of equilibrium heavy metal biosorption data at different ph: a possible methodological approach

Technical Note Modelling of equilibrium heavy metal biosorption data at different ph: a possible methodological approach The European Journal of Mineral Processing and Environmental Protection Technical Note Modelling of uilibrium heavy metal biosorption data at different ph: a possible methodological approach F. Vegliò*

More information

Removal of Copper (II) from Aqueous Solutions using Chalk Powder

Removal of Copper (II) from Aqueous Solutions using Chalk Powder Est. 1984 ORIENTAL JOURNAL OF CHEMISTRY An International Open Free Access, Peer Reviewed Research Journal www.orientjchem.org ISSN: 0970-020 X CODEN: OJCHEG 2013, Vol. 29, No. (2): Pg. 713-717 Removal

More information

Novel dendrimer-like magnetic bio-sorbent based on modified orange peel. waste: adsorption-reduction behavior of arsenic

Novel dendrimer-like magnetic bio-sorbent based on modified orange peel. waste: adsorption-reduction behavior of arsenic Supplementary Information: Novel dendrimer-like magnetic bio-sorbent based on modified orange peel waste: adsorption-reduction behavior of arsenic Fanqing Meng1, Bowen Yang1, Baodong Wang 2, Shibo Duan1,

More information

Abstract. Introduction

Abstract. Introduction REMOVAL OF Pb +2 IONS FROM AQUEOUS SOLUTIONS BY ACTIVATED CARBONS PRODUCED FROM PEANUT SHELLS Ayşe Eren Pütün, Dept. of Chemical Engineering, Anadolu University, Eskisehir, Turkey Esin Apaydın Varol, Dept.

More information

pechischeva@gmail.ru germanium from the poor raw materials and for the arsenic removal from the technological solutions ties studies were performed. The mechanical activation in the high-energy planetary

More information

Study of some Effecting Factors on the Removal of Phenol from Aqueous Solutions by Adsorption onto Activated Carbon

Study of some Effecting Factors on the Removal of Phenol from Aqueous Solutions by Adsorption onto Activated Carbon J. Int. Environmental Application & Science, Vol. 11(2): 148-153 (2016) Study of some Effecting Factors on the Removal of Phenol from Aqueous Solutions by Adsorption onto Activated Carbon M. R. Mohammad

More information

Removal of lead from aqueous solutions by spent tea leaves

Removal of lead from aqueous solutions by spent tea leaves Removal of lead from aqueous solutions by spent tea leaves Roberto Lavecchia, Alessio Pugliese and Antonio Zuorro Department of Chemical Engineering, Materials & Environment Sapienza University Via Eudossiana,

More information

Supplementary Information

Supplementary Information Electronic Supplementary Material (ESI) for RSC Advances. This journal is The Royal Society of Chemistry 2016 Supplementary Information Enhanced Adsorption of Cu(II) Ions on the Chitosan Microspheres Functionalized

More information

INTERNATIONAL JOURNAL OF ENVIRONMENTAL SCIENCES Volume 6, No 5, Copyright by the authors - Licensee IPA- Under Creative Commons license 3.

INTERNATIONAL JOURNAL OF ENVIRONMENTAL SCIENCES Volume 6, No 5, Copyright by the authors - Licensee IPA- Under Creative Commons license 3. INTERNATIONAL JOURNAL OF ENVIRONMENTAL SCIENCES Volume 6, No 5, 2016 Copyright by the authors - Licensee IPA- Under Creative Commons license 3.0 Research article ISSN 0976 4402 Effect of ph on Cu (II)

More information

Equilibrium and Kinetics studies for the biosorption of aqueous Cd (II) ions onto Eichhornia crasippes biomass

Equilibrium and Kinetics studies for the biosorption of aqueous Cd (II) ions onto Eichhornia crasippes biomass IOSR Journal of Applied Chemistry (IOSR-JAC) e-issn: 2278-5736. Volume 7, Issue 1 Ver. II. (Feb. 14), PP 29-37 Equilibrium and Kinetics studies for the biosorption of aqueous Cd (II) ions onto Eichhornia

More information

Biosorption of binary mixtures of heavy metals by green macro alga, Caulerpa lentillifera

Biosorption of binary mixtures of heavy metals by green macro alga, Caulerpa lentillifera ORIGINAL ARTICLE Biosorption of binary mixtures of heavy metals by green macro alga, Caulerpa lentillifera Ronbanchob Apiratikul 1, Taha F. Marhaba 2, Suraphong Wattanachira 1,3, and Prasert Pavasant 1,4

More information

MOF-76: From Luminescent Probe to Highly Efficient U VI Sorption Material

MOF-76: From Luminescent Probe to Highly Efficient U VI Sorption Material MOF-76: From Luminescent Probe to Highly Efficient U VI Sorption Material Weiting Yang, a Zhi-Qiang Bai, b Wei-Qun Shi*, b Li-Yong Yuan, b Tao Tian, a Zhi-Fang Chai*, c Hao Wang, a and Zhong-Ming Sun*

More information

Metal Recovery Using Polyphenols Prepared by Enzymatic Reactions of Horseradish Peroxidase

Metal Recovery Using Polyphenols Prepared by Enzymatic Reactions of Horseradish Peroxidase Science and Technology 2012, 2(1): 25-29 DOI: 10.5923/j.scit.20120201.05 Metal Recovery Using Polyphenols Prepared by Enzymatic Reactions of Horseradish Peroxidase Hidetaka Kawakita Department of Applied

More information

Adsorption of chromium from aqueous solution by activated alumina and activated charcoal

Adsorption of chromium from aqueous solution by activated alumina and activated charcoal Adsorption of chromium from aqueous solution by activated alumina and activated charcoal Suman Mor a,b*, Khaiwal Ravindra c and N. R. Bishnoi b a Department of Energy and Environmental Science, Chaudhary

More information

Print version. Sorption of PPCPs. Organic compounds in water and wastewater. Soonmi Kim. CEE 697z - Lecture #24

Print version. Sorption of PPCPs. Organic compounds in water and wastewater. Soonmi Kim. CEE 697z - Lecture #24 Print version Sorption of PPCPs Organic compounds in water and wastewater Soonmi Kim Outline Introduction Studies; sorption of PPCPs Introduction Sorption? Sorption is a physical and chemical process by

More information

Introduction Studies; sorption of PPCPs

Introduction Studies; sorption of PPCPs Print version Sorption of PPCPs Organic compounds in water and wastewater Soonmi Kim Outline Introduction Studies; sorption of PPCPs 1 Introduction Sorption? Sorption is a physical and chemical process

More information

CHAPTER-7. Adsorption characteristics of phosphate-treated Ashok bark (Saraca indica): Removal of Ni(II) from Electroplating wastewater

CHAPTER-7. Adsorption characteristics of phosphate-treated Ashok bark (Saraca indica): Removal of Ni(II) from Electroplating wastewater 199 CHAPTER-7 Adsorption characteristics of phosphate-treated Ashok bark (Saraca indica): Removal of Ni(II) from Electroplating wastewater 200 7.1 Introduction Because of heavy metal toxicity and non-biodegradable

More information

Pyrolytic Temperature Dependent and Ash Catalyzed Formation of Sludge Char. Xiao-Qing Liu, Hong-Sheng Ding, Yuan-Ying Wang, Wu-Jun Liu, Hong Jiang*

Pyrolytic Temperature Dependent and Ash Catalyzed Formation of Sludge Char. Xiao-Qing Liu, Hong-Sheng Ding, Yuan-Ying Wang, Wu-Jun Liu, Hong Jiang* Pyrolytic Temperature Dependent and Ash Catalyzed Formation of Sludge Char with Ultra-High Adsorption to 1-Naphthol Xiao-Qing Liu, Hong-Sheng Ding, Yuan-Ying Wang, Wu-Jun Liu, Hong Jiang* CAS Key Laboratory

More information

Research Article. Calcium alginate immobilized sugar palm fruit (Arenga pinnata Merr) Shell for the removal of Pb(II) and Cd(II) ions

Research Article. Calcium alginate immobilized sugar palm fruit (Arenga pinnata Merr) Shell for the removal of Pb(II) and Cd(II) ions Available online www.jocpr.com Journal of Chemical and Pharmaceutical Research, 215, 7(5):965-972 Research Article ISSN : 975-7384 CODEN(USA) : JCPRC5 Calcium alginate immobilized sugar palm fruit (Arenga

More information

REMOVAL OF HEAVY METALS USING COMBINATION OF ADSORBENTS - A CASE STUDY USING INDUSTRIAL WASTE WATER

REMOVAL OF HEAVY METALS USING COMBINATION OF ADSORBENTS - A CASE STUDY USING INDUSTRIAL WASTE WATER REMOVAL OF HEAVY METALS USING COMBINATION OF ADSORBENTS - A CASE STUDY USING INDUSTRIAL WASTE WATER PROJECT REFERENCE NO. : 37S1399 COLLEGE : DAYANANDA SAGAR COLLEGE OF ENGINEERING, BANGALORE BRANCH :

More information

Water and Wastewater Engineering Dr. Ligy Philip Department of Civil Engineering Indian Institute of Technology, Madras. Adsorption Lecture # 34

Water and Wastewater Engineering Dr. Ligy Philip Department of Civil Engineering Indian Institute of Technology, Madras. Adsorption Lecture # 34 Water and Wastewater Engineering Dr. Ligy Philip Department of Civil Engineering Indian Institute of Technology, Madras Adsorption Lecture # 34 Last class we were discussing about advanced wastewater treatment

More information

Potential Alternative Utilization of Manganese Nodules

Potential Alternative Utilization of Manganese Nodules UNIVERSITY OF CHEMISTRY AND TECHNOLOGY PRAGUE Potential Alternative Utilization of Manganese Nodules Ng. Hong VU Utilization of leaching residues as sorbents Reductive leaching: - 90 o C, l/s= 10:1, ~

More information

Supporting Information

Supporting Information Supporting Information Mop up the Oil, Metal and Fluoride Ions from Water Tanmay Das a and Debasish Haldar a * a Department of Chemical Sciences, Indian Institute of Science Education and Research Kolkata,

More information

ABSTRACT. Keywords: Cadmium Removal, sawdust, adsorption. Corresponding Author: P. Akhila Swathanthra 1. INTRODUCTION:

ABSTRACT. Keywords: Cadmium Removal, sawdust, adsorption. Corresponding Author: P. Akhila Swathanthra 1. INTRODUCTION: International Journal of Emerging Trends in Engineering and Development Issue 4, Vol.5 (Aug.- Sep. 214) Removal of Cadmium Ions by adsorption onto Sawdust as adsorbent from aqueous solutions P.AKHILA SWATHANTHRA

More information

Adsorption study on pomegranate peel: Removal of Ni 2+ and Co 2+ from aqueous solution

Adsorption study on pomegranate peel: Removal of Ni 2+ and Co 2+ from aqueous solution ISSN : 0974-746X Adsorption study on pomegranate peel: Removal of Ni 2+ and Co 2+ from aqueous solution Zahra Abbasi 1 *, Mohammad Alikarami 2, Ali Homafar 1 1 Department of Chemistry, Eyvan-e-Gharb Branch,

More information

Sriperumbudur , INDIA

Sriperumbudur , INDIA The International Journal Of Engineering And Science (Ijes) Volume 2 Issue 1 Pages 287-292 2013 Issn: 2319 1813 Isbn: 2319 1805 Adsorption Studies On Reactive Blue 4 By Varying The Concentration Of Mgo

More information

REMOVAL OF CHROMIUM (III) FROM WASTE WATER USING Gossypium herbacium AS A BIOSORBENT

REMOVAL OF CHROMIUM (III) FROM WASTE WATER USING Gossypium herbacium AS A BIOSORBENT REMOVAL OF CHROMIUM (III) FROM WASTE WATER USING Gossypium herbacium AS A BIOSORBENT Rupal Sharma, Prabha Mehta 1 and Gajanan Pandey* 2 1. Department of Chemistry, Govt. Kamala Raja Girls College, Gwalior

More information

Magnetic Particles for Phosphorus Adsorption in Simulated Phosphate Solution

Magnetic Particles for Phosphorus Adsorption in Simulated Phosphate Solution 215 4th International Conference on Informatics, Environment, Energy and Applications Volume 82 of IPCBEE (215) DOI: 1.7763/IPCBEE. 215.V82.28 Magnetic Particles for Phosphorus Adsorption in Simulated

More information

Removal of Cd (II) and Cr (VI) from Electroplating Wastewater by Coconut Shell

Removal of Cd (II) and Cr (VI) from Electroplating Wastewater by Coconut Shell International Journal of Environmental Engineering and Management ISSN 2231-1319, Volume 4, Number 4 (213), pp. 273-28 Research India Publications http://www.ripublication.com/ ijeem.htm Removal of Cd

More information

Batch and column studies for Cadmium (II) removal using sawdust from Triplochiton Scleroxylon.

Batch and column studies for Cadmium (II) removal using sawdust from Triplochiton Scleroxylon. Batch and column studies for Cadmium (II) removal using sawdust from Triplochiton Scleroxylon. L.C. Koffi Akissi 1, K. Adouby 1*, B.Yao 1 and D. Boa 2 1 Laboratory of Industrial Process, Synthesis, Environment

More information

Acid Orange 7 Dye Biosorption by Salvinia natans Biomass

Acid Orange 7 Dye Biosorption by Salvinia natans Biomass A publication of 151 CHEMICAL ENGINEERING TRANSACTIONS VOL. 32, 213 Chief Editors: Sauro Pierucci, Jiří J. Klemeš Copyright 213, AIDIC Servizi S.r.l., ISBN 978-88-9568-23-5; ISSN 1974-9791 The Italian

More information

International Journal of ChemTech Research CODEN (USA): IJCRGG ISSN: Vol.7, No.7, pp , 2015

International Journal of ChemTech Research CODEN (USA): IJCRGG ISSN: Vol.7, No.7, pp , 2015 International Journal of ChemTech Research CODEN (USA): IJCRGG ISSN: 0974-4290 Vol.7, No.7, pp 3095-3099, 2015 ICEWEST-2015 [05 th - 06 th Feb 2015] International Conference on Energy, Water and Environmental

More information

A FEW WORDS ABOUT OULU

A FEW WORDS ABOUT OULU 1 NITRATE REMOVAL BY MODIFIED LIGNOCELLULOSE M.Sc. (Tech.) Anni Keränen, Dr. Tiina Leiviskä, Prof. Osmo Hormi, Prof. Juha Tanskanen University of Oulu, FINLAND 2 A FEW WORDS ABOUT OULU located 500 km (310

More information

Effect of Process Parameters on Adsorption of Methylene Blue from Synthetic Effluent Using Jack Fruit Seed Powder

Effect of Process Parameters on Adsorption of Methylene Blue from Synthetic Effluent Using Jack Fruit Seed Powder Effect of Process Parameters on Adsorption of Methylene Blue from Synthetic Effluent Using Jack Fruit Seed Powder Anoop Raj J R Anil K Das Aishwarya B S Sruthi Suresh Abstract- Batch sorption experiments

More information

Removal of Cadmium from Wastewater using low cost Natural Adsorbents

Removal of Cadmium from Wastewater using low cost Natural Adsorbents Abstract International Research Journal of Environment Sciences ISSN 2319 1414 Removal of Cadmium from Wastewater using low cost Natural Adsorbents Ali F.*, Mussa T., Abdulla A., Alwan A. and Salih D.

More information

Adsorption of Methylene Blue on Mesoporous SBA 15 in Ethanol water Solution with Different Proportions

Adsorption of Methylene Blue on Mesoporous SBA 15 in Ethanol water Solution with Different Proportions 2015 2 nd International Conference on Material Engineering and Application (ICMEA 2015) ISBN: 978-1-60595-323-6 Adsorption of Methylene Blue on Mesoporous SBA 15 in Ethanol water Solution with Different

More information

Removal of Cu 2+, Cd 2+, Hg 2+, and Ag + from Industrial Wastewater by Using Thiol-Loaded Silica Gel

Removal of Cu 2+, Cd 2+, Hg 2+, and Ag + from Industrial Wastewater by Using Thiol-Loaded Silica Gel Universities Research Journal 2011, Vol. 4, No. 3 Removal of Cu 2+, Cd 2+, Hg 2+, and Ag + from Industrial Wastewater by Using Thiol-Loaded Silica Gel Aye Aye Myat 1, Kyaw Naing 2 and San San Myint 1 Abstract

More information

Performance evaluation of industrial by-product phosphogypsum in the sorptive removal of nickel(ii) from aqueous environment

Performance evaluation of industrial by-product phosphogypsum in the sorptive removal of nickel(ii) from aqueous environment Performance evaluation of industrial by-product phosphog in the sorptive removal of nickel(ii) from aqueous environment M.M. EL-Tyeb & S.R.Zeedan Sanitary and Environmental Engineering Department, Housing&

More information

REMOVAL OF CADMIUM IONS FROM AQUEOUS SOLUTIONS BY TWO LOW-COST MATERIALS

REMOVAL OF CADMIUM IONS FROM AQUEOUS SOLUTIONS BY TWO LOW-COST MATERIALS Seventh International Water Technology Conference Egypt 1-3 April 23 879 REMOVAL OF CADMIUM IONS FROM AQUEOUS SOLUTIONS BY TWO LOW-COST MATERIALS H. BENAISSA* and M.A. ELOUCHDI * Laboratory of Sorbent

More information

Extraction Behaviour of Cu 2+ Ions with Used Cooking Oil-Based Organic Solvent

Extraction Behaviour of Cu 2+ Ions with Used Cooking Oil-Based Organic Solvent International Proceedings of Chemical, Biological and Environmental Engineering, V0l. 96 (2016) DOI: 10.7763/IPCBEE. 2016. V96. 4 Extraction Behaviour of Cu 2+ Ions with Used Cooking Oil-Based Organic

More information

ADSORPTION AND DESORPTION OF Cd 2+ IONS ON ION-EXCHANGE RESIN USING SUB-CRITICAL WATER AND CARBON DIOXIDE

ADSORPTION AND DESORPTION OF Cd 2+ IONS ON ION-EXCHANGE RESIN USING SUB-CRITICAL WATER AND CARBON DIOXIDE ADSORPTION AND DESORPTION O Cd 2+ IONS ON ION-EXCHANGE RESIN USING SUB-CRITICAL WATER AND CARBON DIOXIDE Denilson Luz da Silva*, Gerd Brunner Technische Universität Hamburg-Harburg, Verfahrenstechnik II,

More information

Removal efficiency on magnetite (Fe 3 O 4 ) of some multicomponent systems present in synthetic aqueous solutions

Removal efficiency on magnetite (Fe 3 O 4 ) of some multicomponent systems present in synthetic aqueous solutions Removal efficiency on magnetite (Fe 3 O 4 ) of some multicomponent systems present in synthetic aqueous solutions Andra Predescu, Ecaterina Matei, Andrei Predescu, Andrei Berbecaru Faculty of Materials

More information

Functional nanocellulose filters for water purification Sehaqui H., de Larraya U., Liu P., Pfenninger N., Mathew A., Mautner A., Michen B., Marty E.

Functional nanocellulose filters for water purification Sehaqui H., de Larraya U., Liu P., Pfenninger N., Mathew A., Mautner A., Michen B., Marty E. Functional nanocellulose filters for water purification Sehaqui H., de Larraya U., Liu P., Pfenninger N., Mathew A., Mautner A., Michen B., Marty E., Schaufelberger L., Tingaut P., and Zimmermann T Introduction

More information

ADSORPTION STUDIES OF CHROMIUM (VI) ON ACTIVATED CARBON DERIVED FROM CASURINA FRUIT

ADSORPTION STUDIES OF CHROMIUM (VI) ON ACTIVATED CARBON DERIVED FROM CASURINA FRUIT ADSORPTION STUDIES OF CHROMIUM (VI) ON ACTIVATED CARBON DERIVED FROM CASURINA FRUIT Shashikant.R.Mise 1, Ravindra P. Amale 2, Rejendra K.Lamkhade 3 1 Professor, Department of Civil Engineering, PDA College

More information

Batch Sorption Study of Chromium (VI) On Dye Contaminated Soil

Batch Sorption Study of Chromium (VI) On Dye Contaminated Soil Batch Sorption Study of Chromium (VI) On Dye Contaminated Soil Priya Vijayvergiya 1, Shweta Saxena 2 Research scholar, Department of Chemistry, Maa Bharti P.G. College, Kota, Rajasthan, India 1 Assistant

More information

NOM Present in Biosorbent Peat for Decontamination of Water Containing Metallic Specie. Ana Paula dos S. Batista

NOM Present in Biosorbent Peat for Decontamination of Water Containing Metallic Specie. Ana Paula dos S. Batista NOM Present in Biosorbent Peat for Decontamination of Water Containing Metallic Specie Ana Paula dos S. Batista CHROMIUM 2 Cr(III) is a metal commonly found in wastewaters, and although thought to be an

More information

Heavy Metal Desorption From Cement Hydrates Caused by Chloride Solutions

Heavy Metal Desorption From Cement Hydrates Caused by Chloride Solutions 4 th International Conference on the Durability of Concrete Structures 24 26 July 2014 Purdue University, West Lafayette, IN, USA Heavy Metal Desorption From Cement Hydrates Caused by Chloride Solutions

More information

Removal of Fluoride from Synthetic Water Using Chitosan as an Adsorbent

Removal of Fluoride from Synthetic Water Using Chitosan as an Adsorbent IOSR Journal of Environmental Science, Toxicology and Food Technology (IOSR-JESTFT) e-issn: 2319-2402,p- ISSN: 2319-2399.Volume 12, Issue 4 Ver. II (April. 2018), PP 43-48 www.iosrjournals.org Removal

More information

Chromatographic Methods of Analysis Section - 4 : Ion Exchange Chrom. Prof. Tarek A. Fayed

Chromatographic Methods of Analysis Section - 4 : Ion Exchange Chrom. Prof. Tarek A. Fayed Chromatographic Methods of Analysis Section - 4 : Ion Exchange Chrom. Prof. Tarek A. Fayed Ion Exchange Chromatography (IEC) In this type of chromatography, the solid stationary phase )organic resin) is

More information

Synthesis and Application of Manganese Dioxide Coated Magnetite for Removal of Trace Contaminants from Water. Carla Calderon, Wolfgang H.

Synthesis and Application of Manganese Dioxide Coated Magnetite for Removal of Trace Contaminants from Water. Carla Calderon, Wolfgang H. X 2008 Synthesis and Application of Manganese Dioxide Coated Magnetite for Removal of Trace Contaminants from Water Carla Calderon, Wolfgang H. Höll Institute for Technical Chemistry, Water and Geotechnology

More information

CEE 371 Water and Wastewater Systems

CEE 371 Water and Wastewater Systems Updated: 22 November 2009 CEE 371 Water and Wastewater Systems Print version Lecture #23 Drinking Water Treatment: Ion Exchange, Adsorption & Arsenic Reading: Chapter 7, pp.262-266 David Reckhow CEE 371

More information

STUDIES ON REMOVAL OF TOXIC METALS FROM WASTEWATER USING PSEUDOMONAS SPECIES

STUDIES ON REMOVAL OF TOXIC METALS FROM WASTEWATER USING PSEUDOMONAS SPECIES STUDIES ON REMOVAL OF TOXIC METALS FROM WASTEWATER USING PSEUDOMONAS SPECIES Korrapati Narasimhulu and Parcha Sreenivasa Rao Department of Biotechnology, National Institute of Technology, Warangal, India

More information

Effect of Ionic Strength on Adsorption of Corncob Xylitol Residue on. Cr(VI)

Effect of Ionic Strength on Adsorption of Corncob Xylitol Residue on. Cr(VI) 3rd International Conference on Material, Mechanical and Manufacturing Engineering (IC3ME 5) Effect of Ionic Strength on Adsorption of Corncob Xylitol Residue on Cr(VI) Jingwen Xue a,*, Fandeng Meng b,

More information

GREEN ENGINEERING PRINCIPLE

GREEN ENGINEERING PRINCIPLE GREEN ENGINEERING INNOVATIVE ION EXCHANGE TECHNOLOGY FOR TREATMENT OF AQUEOUS EFFLUENT STREAMS & DEVELOPING GREENER PROCESSES THROUGH RECOVERY & REUSE OF VALUABLE PRODUCTS. C. NANDI NOCIL LTD. GREEN ENGINEERING

More information

BIOSORPTION OF HEAVY METALS BY PSEUDOMONAS BACTERIA

BIOSORPTION OF HEAVY METALS BY PSEUDOMONAS BACTERIA BIOSORPTION OF HEAVY METALS BY PSEUDOMONAS BACTERIA ABBAS ALI A 1, MOHAMED SIHABUDEEN M 2 AND ZAHIR HUSSAIN A 3 1 Professor, M.I.E.T Engineering College, Tiruchirappalli. 2 Associate Professor and Head,

More information

Application Note. An Optimum Solution for the Automatic Control of Cutting Oils

Application Note. An Optimum Solution for the Automatic Control of Cutting Oils An Optimum Solution for the Automatic Control of Cutting Oils Cutting oils are widely used in many mechanical machining processes such as cutting and grinding. The chemical and physical parameters of the

More information

EXPERIMENTAL PROCEDURE

EXPERIMENTAL PROCEDURE EXPERIMENTAL PROCEDURE The present experimentation is carried out on biosorption of chromium and lead from aqueous solutions by biosorbents Ageratum conyzoides leaf and Anacardium occidentale testa powder.

More information

Removal of phenol from Industrial Effluents using Activated Carbon and Iraqi Porcelanite Rocks A Comparative Study Dr. Adnan H.

Removal of phenol from Industrial Effluents using Activated Carbon and Iraqi Porcelanite Rocks A Comparative Study Dr. Adnan H. Removal of phenol from Industrial Effluents using Activated Carbon and Iraqi Porcelanite Rocks A Comparative Study Dr. Adnan H. Afaj Ministry of Science and Technology Dr. Mohammad R. Mohammad Marwa Nazeh

More information

Copper removal from aqueous systems with coffee wastes as low-cost materials

Copper removal from aqueous systems with coffee wastes as low-cost materials Copper removal from aqueous systems with coffee wastes as low-cost materials G. Z. Kyzas 1, D. N. Bikiaris 2, M. Kostoglou 2 and N. K. Lazaridis 2 1 Department of Oenology and Beverage Technology, Technological

More information

Sorptive treatment of explosives and heavy metals in water using biochar

Sorptive treatment of explosives and heavy metals in water using biochar 2013 US Biochar Conference U. Mass, Amherst, MA, USA October 14, 2013 Sorptive treatment of explosives and heavy metals in water using biochar Seok-Young Oh 1*, Yong-Deuk Seo 1, Hyun-Su Yoon 1, Myong-Keun

More information

Research and Reviews: Journal of Chemistry

Research and Reviews: Journal of Chemistry Research and Reviews: Journal of Chemistry Removal of Nickel from Aqueous Solution Using Azaridachta Indica Seed Shell Powder as Adsorbent G Gohulavani *, and N Muthulakshmi Andal Department of Chemistry,

More information

Removal of suspended and dissolved organic solids

Removal of suspended and dissolved organic solids Removal of suspended and dissolved organic solids Types of dissolved solids The dissolved solids are of both organic and inorganic types. A number of methods have been investigated for the removal of inorganic

More information

» no organic solvent required» no phase separation problems» simple equipment similar to conventional bead type ion exchange resins

» no organic solvent required» no phase separation problems» simple equipment similar to conventional bead type ion exchange resins Lewatit VP OC 1026 is a crosslinked polystyrene based macroporous resin which contains Di-2-ethylhexylphosphat (D2EHPA). This active ingredient is directly incorporated during the formation of the copolymer

More information

Utilization of Diatoms to Collect Metallic Ions

Utilization of Diatoms to Collect Metallic Ions Proc. Schl. Eng. Tokai Tokai Univ., Univ., Ser. ESer. E 39 (2014) 13-18 by Masanao KUNUGI, *1 Takahiro SEKIGUCHI, *2 Hiroaki ONIZAWA *1 and Itaru JIMBO *3 (Received on March 31, 2014 and accepted on July

More information

a variety of living species. Therefore, elimination of heavy metals/dyes from water and

a variety of living species. Therefore, elimination of heavy metals/dyes from water and Chapter IV Studies on the adsorption of metal ions and dyes The presence of heavy metals/dyes in the aquatic environment can be detrimental to a variety of living species. Therefore, elimination of heavy

More information