Chapter 20. Electrochemistry. Chapter 20 Problems. Electrochemistry 7/3/2012. Problems 15, 17, 19, 23, 27, 29, 33, 39, 59

Size: px
Start display at page:

Download "Chapter 20. Electrochemistry. Chapter 20 Problems. Electrochemistry 7/3/2012. Problems 15, 17, 19, 23, 27, 29, 33, 39, 59"

Transcription

1 Chemistry, The Central Science, 11th edition Theodore L. Brown; H. Eugene LeMay, Jr.; and Bruce E. Bursten Chapter 20 John D. Bookstaver St. Charles Community College Cottleville, MO Chapter 20 Problems Problems 15, 17, 19, 23, 27, 29, 33, 39, 59 In the broadest sense, electrochemistry is the study of chemical reactions that produce electrical effects and of the chemical phenomena that are caused by the action of currents or voltages. 1

2 Oxidation-Reduction Reactions Basic Terms Oxidation - loss of electrons Reduction - gain of electrons Redox reaction oxidizing agent - substance that causes oxidation by being reduced reducing agent - substance that causes reduction by being oxidized Electrochemical Reactions In electrochemical reactions, electrons are transferred from one species to another. Oxidation Numbers (State) In order to keep track of what loses electrons and what gains them, we assign oxidation numbers. 2

3 Oxidation and Reduction A species is oxidized when it loses electrons. Here, zinc loses two electrons to go from neutral zinc metal to the Zn 2+ ion. Oxidation and Reduction A species is reduced when it gains electrons. Here, each of the H + gains an electron, and they combine to form H 2. Oxidation and Reduction What is reduced is the oxidizing agent. H + oxidizes Zn by taking electrons from it. What is oxidized is the reducing agent. Zn reduces H + by giving it electrons. 3

4 Oxidation and Reduction Oxidation O.S. of some element increases in the reaction. Electrons are on the right of the equation Reduction O.S. of some element decreases in the reaction. Electrons are on the left of the equation. Assigning Oxidation Numbers 1. Elements in their elemental form have an oxidation number of The oxidation number of a monatomic ion is the same as its charge. Assigning Oxidation Numbers 3. Nonmetals tend to have negative oxidation numbers, although some are positive in certain compounds or ions. Oxygen has an oxidation number of 2, except in the peroxide ion, which has an oxidation number of 1. Hydrogen is 1 when bonded to a metal and +1 when bonded to a nonmetal. 4

5 Assigning Oxidation Numbers 3. Nonmetals tend to have negative oxidation numbers, although some are positive in certain compounds or ions. Fluorine always has an oxidation number of 1. The other halogens have an oxidation number of 1 when they are negative; they can have positive oxidation numbers, however, most notably in oxyanions. Assigning Oxidation Numbers 4. The sum of the oxidation numbers in a neutral compound is The sum of the oxidation numbers in a polyatomic ion is the charge on the ion. Oxidation State What is the oxidation state of S in H 2 SO 4? H => +1 O => -2 neutral compound, thus sum equals zero 4O => 4*-2 = -8 2H => 2*+1 = +2 0 = +2 + (x) + (-8) x = +6 5

6 Oxidation State What is the oxidation state of Cl in HClO 4? H => +1 O => -2 neutral compound, thus sum equals zero 4O => 4*-2 = -8 H => 1*+1 = +1 0 = +1 + (y) + (-8) y = +7 Oxidation and Reduction Half- Reactions A reaction represented by two halfreactions. Oxidation: Zn(s) Zn 2+ (aq) + 2 e - Reduction: Cu 2+ (aq) + 2 e- Cu(s) Overall: Cu 2+ (aq) + Zn(s) Cu(s) + Zn 2+ (aq) Balancing Oxidation-Reduction Equations Few can be balanced by inspection. Systematic approach required. The Half-Reaction (Ion-Electron) Method 6

7 Balancing Oxidation-Reduction Equations Perhaps the easiest way to balance the equation of an oxidation-reduction reaction is via the half-reaction method. Balancing Oxidation-Reduction Equations This involves treating (on paper only) the oxidation and reduction as two separate processes, balancing these half reactions, and then combining them to attain the balanced equation for the overall reaction. The Half-Reaction Method 1. Assign oxidation numbers to determine what is oxidized and what is reduced. 2. Write the oxidation and reduction halfreactions. 7

8 The Half-Reaction Method 3. Balance each half-reaction. a. Balance elements other than H and O. b. Balance O by adding H 2 O. c. Balance H by adding H +. d. Balance charge by adding electrons. 4. Multiply the half-reactions by integers so that the electrons gained and lost are the same. The Half-Reaction Method 5. Add the half-reactions, subtracting things that appear on both sides. 6. Make sure the equation is balanced according to mass. 7. Make sure the equation is balanced according to charge. The Half-Reaction Method Consider the reaction between MnO 4 and C 2 O 4 2 : MnO 4 (aq) + C 2 O 4 2 (aq) Mn 2+ (aq) + CO 2 (aq) 8

9 The Half-Reaction Method First, we assign oxidation numbers MnO 4 + C 2 O 4 2- Mn 2+ + CO 2 Since the manganese goes from +7 to +2, it is reduced. Since the carbon goes from +3 to +4, it is oxidized. Oxidation Half-Reaction C 2 O 4 2 CO 2 To balance the carbon, we add a coefficient of 2: C 2 O CO 2 Oxidation Half-Reaction C 2 O CO 2 The oxygen is now balanced as well. To balance the charge, we must add 2 electrons to the right side. C 2 O CO e 9

10 Reduction Half-Reaction MnO 4 Mn 2+ The manganese is balanced; to balance the oxygen, we must add 4 waters to the right side. MnO 4 Mn H 2 O Reduction Half-Reaction MnO 4 Mn H 2 O To balance the hydrogen, we add 8 H + to the left side. 8 H + + MnO 4 Mn H 2 O Reduction Half-Reaction 8 H + + MnO 4 Mn H 2 O To balance the charge, we add 5 e to the left side. 5 e + 8 H + + MnO 4 Mn H 2 O 10

11 Combining the Half-Reactions Now we evaluate the two half-reactions together: C 2 O CO e 5 e + 8 H + + MnO 4 Mn H 2 O To attain the same number of electrons on each side, we will multiply the first reaction by 5 and the second by 2. Combining the Half-Reactions 5 C 2 O CO e 10 e + 16 H MnO 4 2 Mn H 2 O When we add these together, we get: 10 e + 16 H MnO C 2 O Mn H 2 O + 10 CO e Combining the Half-Reactions 10 e + 16 H MnO C 2 O Mn H 2 O + 10 CO e The only thing that appears on both sides are the electrons. Subtracting them, we are left with: 16 H MnO C 2 O Mn H 2 O + 10 CO 2 11

12 Balancing in Basic Solution If a reaction occurs in basic solution, one can balance it as if it occurred in acid. Once the equation is balanced, add OH to each side to neutralize the H + in the equation and create water in its place. If this produces water on both sides, you might have to subtract water from each side. Important Electrochemical Terms An electrochemical cell is a device that combines two half-cells with the appropriate connections between electrodes and solutions A voltaic cell is an electrochemical cell in which electric current is generated from a spontaneous redox reaction The anode is the electrode at which oxidation occurs and the cathode is the electrode at which reduction occurs The cell potential (E cell ) is the potential difference that propels electrons from the anode to the cathode EOS Voltaic Cells In spontaneous oxidation-reduction (redox) reactions, electrons are transferred and energy is released. 12

13 Cell Diagrams Conventions Place the anode on the left side of the diagram Place the cathode on the right side of the diagram Use a single vertical line ( ) to represent the boundary between different phases, such as between an electrode and a solution Use a double vertical line ( ) to represent a salt bridge or porous barrier separating two halfcells EOS An Example Cell Diagram EOS Terminology Galvanic (Voltaic) cells. Produce electricity as a result of spontaneous reactions. Electrolytic cells. Non-spontaneous chemical change driven by electricity. Couple, M M n+ A pair of species related by a change in number of e -. 13

14 Voltaic Cells harnessed chemical reaction which produces an electric current Terminology Zn(s) Zn 2+ (aq) Cu 2+ (aq) Cu(s) E cell = V Voltaic Cells We can use that energy to do work if we make the electrons flow through an external device. We call such a setup a voltaic cell. 14

15 Voltaic Cells A typical cell looks like this. The oxidation occurs at the anode. The reduction occurs at the cathode. Voltaic Cells Once even one electron flows from the anode to the cathode, the charges in each beaker would not be balanced and the flow of electrons would stop. Voltaic Cells Therefore, we use a salt bridge, usually a U-shaped tube that contains a salt solution, to keep the charges balanced. Cations move toward the cathode. Anions move toward the anode. 15

16 Voltaic Cells In the cell, then, electrons leave the anode and flow through the wire to the cathode. As the electrons leave the anode, the cations formed dissolve into the solution in the anode compartment. Voltaic Cells As the electrons reach the cathode, cations in the cathode are attracted to the now negative cathode. The electrons are taken by the cation, and the neutral metal is deposited on the cathode. Electromotive Force (emf) Water only spontaneously flows one way in a waterfall. Likewise, electrons only spontaneously flow one way in a redox reaction from higher to lower potential energy. 16

17 Electromotive Force (emf) The potential difference between the anode and cathode in a cell is called the electromotive force (emf). It is also called the cell potential and is designated E cell. Cell Potential Cell potential is measured in volts (V). 1 V = 1 J C Cell Potential (Ecell) The cell potential (Ecell) is the potential difference that propels electrons from the anode to the cathode E cell = E o cathode - E o anode 17

18 Standard Electrode Potentials Cell voltages, the potential differences between electrodes, are among the most precise scientific measurements. The potential of an individual electrode is difficult to establish. Arbitrary zero is chosen for the Standard Hydrogen Electrode (SHE) Standard Hydrogen Electrode Half-cell values are referenced to a standard hydrogen electrode (SHE). By definition, the reduction potential for hydrogen is 0 V: 2 H + (aq, 1M) + 2 e H 2 (g, 1 atm) Standard Hydrogen Electrode In the standard hydrogen electrode, hydrogen gas at exactly 1 bar pressure is bubbled over an inert platinum electrode and into an aqueous solution with the concentration adjusted so that the activity of H 3 O + is exactly equal to one EOS 18

19 Standard Hydrogen Electrode 2 H + (a = 1) + 2 e - H 2 (g, 1 bar) E = 0 V Pt H 2 (g, 1 bar) H + (a = 1) Standard Electrode Potential, E E defined by international agreement. The tendency for a reduction process to occur at an electrode. All ionic species present at a=1 (approximately 1 M). All gases are at 1 bar (approximately 1 atm). Where no metallic substance is indicated, the potential is established on an inert metallic electrode (ex. Pt). Standard Electrode Potentials A standard electrode potential, E o, is based on the tendency for reduction to occur at the electrode The cell voltage, called the standard cell potential (E o cell), is the difference between the standard potential of the cathode and that of the anode Voltaic cells can produce electrical work w = n F E cell Two illustrations Cu and Zn VideoClip EOS 19

20 Standard Cell Potential Pt H 2 (g, 1 bar) H + (a = 1) Cu 2+ (1 M) Cu(s) E cell = V E cell = E cathode - E anode E cell = E Cu 2+ /Cu - E H + /H V = E Cu 2+ /Cu - 0 V E Cu 2+ /Cu = V H 2 (g, 1 atm) + Cu 2+ (1 M) H + (1 M) + Cu(s) E cell = V Measuring Standard Reduction Potential anode cathode cathode anode Cu 2+ /Cu Electrode EOS 20

21 Zn 2+ /Zn Electrode EOS Observed Voltages EOS Standard Reduction Potentials Reduction potentials for many electrodes have been measured and tabulated. 21

22 Important Points About Electrode and Cell Potentials Electrode potentials and cell voltages are intensive properties independent of the amount of matter Cell voltages can be ascribed to oxidation reduction reactions without regard to voltaic cells E cell = E cathode E anode EOS Cell Potentials For the oxidation in this cell, E red = 0.76 V For the reduction, E red = V Cell Potentials E cell = E red (cathode) E red (anode) = V ( 0.76 V) = V 22

23 Oxidizing and Reducing Agents The strongest oxidizers have the most positive reduction potentials. The strongest reducers have the most negative reduction potentials. Oxidizing and Reducing Agents The greater the difference between the two, the greater the voltage of the cell. Criteria for Spontaneous Change If E cell is positive, the reaction in the forward direction (from left to right) is spontaneous If E cell is negative, the reaction is nonspontaneous If E cell = 0, the system is at equilibrium When a cell reaction is reversed, E cell and DG change signs EOS 23

24 Free Energy DG for a redox reaction can be found by using the equation DG = nfe where n is the number of moles of electrons transferred, and F is a constant, the Faraday. 1 F = 96,485 C/mol = 96,485 J/V-mol Free Energy Under standard conditions, DG = nfe Nernst Equation Remember that DG = DG + RT ln Q This means nfe = nfe + RT ln Q 24

25 Nernst Equation Dividing both sides by nf, we get the Nernst equation: E = E RT ln Q nf or, using base-10 logarithms, E = E RT nf log Q Nernst Equation At room temperature (298 K), RT F = V Thus the equation becomes E = E n log Q Summary of Important Relationships EOS 25

26 Concentration and Cell Voltage If the discussion is limited to 25 o C, the equation is E o o cell E cell RT lnq Ecell lnq nf n The Nernst equation relates a cell voltage for nonstandard conditions (E cell ) to a standard cell voltage, E o cell, and the concentrations of reactants and products The Nernst equation is useful for determining the concentration of a species in a voltaic cell through a measurement of E cell EOS A Sample Problem E o cell E cell lnq n EOS EXAMPLE Applying the Nernst Equation for Determining E cell. What is the value of E cell for the voltaic cell pictured below and diagrammed as follows? Pt Fe 2+ (0.10 M),Fe 3+ (0.20 M) Ag + (1.0 M) Ag(s) 26

27 EXAMPLE V E cell = E cell - log Q n V [Fe E cell = E cell - log 3+ ] n [Fe 2+ ] [Ag + ] E cell = V V = V Pt Fe 2+ (0.10 M),Fe 3+ (0.20 M) Ag + (1.0 M) Ag(s) Fe 2+ (aq) + Ag + (aq) Fe 3+ (aq) + Ag (s) Concentration Cells If the cell potential is determined solely by a difference in the concentration of solutes in equilibrium with identical electrodes, that cell is called a concentration cell EOS Concentration Cells Notice that the Nernst equation implies that a cell could be created that has the same substance at both electrodes. For such a cell, E cell would be 0, but Q would not. Therefore, as long as the concentrations are different, E will not be 0. 27

28 ph Measurement One useful concentration cell is the hydrogen cell it is directly related to ph The Nernst equation can be rewritten in terms of concentration cells using hydrogen electrodes E cell = (0.0592)(pH) EOS Applications of Oxidation-Reduction Reactions Batteries 28

29 Alkaline Batteries Hydrogen Fuel Cells Corrosion and 29

30 Corrosion Prevention 30

Chapter 20. Electrochemistry

Chapter 20. Electrochemistry Chemistry, The Central Science, 10th edition Theodore L. Brown; H. Eugene LeMay, Jr.; and Bruce E. Bursten Chapter 20 John D. Bookstaver St. Charles Community College St. Peters, MO 2006, Prentice Hall,

More information

Ch 20 Electrochemistry: the study of the relationships between electricity and chemical reactions.

Ch 20 Electrochemistry: the study of the relationships between electricity and chemical reactions. Ch 20 Electrochemistry: the study of the relationships between electricity and chemical reactions. In electrochemical reactions, electrons are transferred from one species to another. Learning goals and

More information

Electrochemistry Pearson Education, Inc. Mr. Matthew Totaro Legacy High School AP Chemistry

Electrochemistry Pearson Education, Inc. Mr. Matthew Totaro Legacy High School AP Chemistry 2012 Pearson Education, Inc. Mr. Matthew Totaro Legacy High School AP Chemistry Electricity from Chemistry Many chemical reactions involve the transfer of electrons between atoms or ions electron transfer

More information

Chapter 20 Electrochemistry

Chapter 20 Electrochemistry Chapter 20 Electrochemistry Learning goals and key skills: Identify oxidation, reduction, oxidizing agent, and reducing agent in a chemical equation Complete and balance redox equations using the method

More information

Lecture Presentation. Chapter 20. Electrochemistry. James F. Kirby Quinnipiac University Hamden, CT Pearson Education, Inc.

Lecture Presentation. Chapter 20. Electrochemistry. James F. Kirby Quinnipiac University Hamden, CT Pearson Education, Inc. Lecture Presentation Chapter 20 James F. Kirby Quinnipiac University Hamden, CT is the study of the relationships between electricity and chemical reactions. It includes the study of both spontaneous and

More information

Lecture Presentation. Chapter 20. Electrochemistry. James F. Kirby Quinnipiac University Hamden, CT Pearson Education

Lecture Presentation. Chapter 20. Electrochemistry. James F. Kirby Quinnipiac University Hamden, CT Pearson Education Lecture Presentation Chapter 20 James F. Kirby Quinnipiac University Hamden, CT is the study of the relationships between electricity and chemical reactions. It includes the study of both spontaneous and

More information

17.1 Redox Chemistry Revisited

17.1 Redox Chemistry Revisited Chapter Outline 17.1 Redox Chemistry Revisited 17.2 Electrochemical Cells 17.3 Standard Potentials 17.4 Chemical Energy and Electrical Work 17.5 A Reference Point: The Standard Hydrogen Electrode 17.6

More information

Oxidation (oxidized): the loss of one or more electrons. Reduction (reduced): the gain of one or more electrons

Oxidation (oxidized): the loss of one or more electrons. Reduction (reduced): the gain of one or more electrons 1 of 13 interesting links: Battery Chemistry Tutorial at http://www.powerstream.com/batteryfaq.html Duracell Procell: Battery Chemistry at http://www.duracell.com/procell/chemistries /default.asp I. Oxidation

More information

Oxidation-Reduction Review. Electrochemistry. Oxidation-Reduction Reactions. Oxidation-Reduction Reactions. Sample Problem.

Oxidation-Reduction Review. Electrochemistry. Oxidation-Reduction Reactions. Oxidation-Reduction Reactions. Sample Problem. 1 Electrochemistry Oxidation-Reduction Review Topics Covered Oxidation-reduction reactions Balancing oxidationreduction equations Voltaic cells Cell EMF Spontaneity of redox reactions Batteries Electrolysis

More information

Ch 18 Electrochemistry OIL-RIG Reactions

Ch 18 Electrochemistry OIL-RIG Reactions Ch 18 Electrochemistry OIL-RIG Reactions Alessandro Volta s Invention Modified by Dr. Cheng-Yu Lai Daily Electrochemistry Appliactions Electrochemistry: The area of chemistry that examines the transformations

More information

Oxidation number. The charge the atom would have in a molecule (or an ionic compound) if electrons were completely transferred.

Oxidation number. The charge the atom would have in a molecule (or an ionic compound) if electrons were completely transferred. Oxidation number The charge the atom would have in a molecule (or an ionic compound) if electrons were completely transferred. 1. Free elements (uncombined state) have an oxidation number of zero. Na,

More information

Electrode Potentials and Their Measurement

Electrode Potentials and Their Measurement Electrochemistry Electrode Potentials and Their Measurement Cu(s) + 2Ag + (aq) Cu(s) + Zn 2+ (aq) Cu 2+ (aq) + 2 Ag(s) No reaction Zn(s) + Cu 2+ (aq) Cu(s) + Zn 2+ (aq) In this reaction: Zn (s) g Zn 2+

More information

Chapter 18 Electrochemistry. Electrochemical Cells

Chapter 18 Electrochemistry. Electrochemical Cells Chapter 18 Electrochemistry Chapter 18 1 Electrochemical Cells Electrochemical Cells are of two basic types: Galvanic Cells a spontaneous chemical reaction generates an electric current Electrolytic Cells

More information

Electrochemistry. Chapter 18. Copyright The McGraw-Hill Companies, Inc. Permission required for reproduction or display.

Electrochemistry. Chapter 18. Copyright The McGraw-Hill Companies, Inc. Permission required for reproduction or display. Electrochemistry Chapter 18 Copyright The McGraw-Hill Companies, Inc. Permission required for reproduction or display. 1 Electrochemical processes are oxidation-reduction reactions in which: the energy

More information

Unit 12 Redox and Electrochemistry

Unit 12 Redox and Electrochemistry Unit 12 Redox and Electrochemistry Review of Terminology for Redox Reactions OXIDATION loss of electron(s) by a species; increase in oxidation number. REDUCTION gain of electron(s); decrease in oxidation

More information

Electrochemistry. Slide 1 / 144. Slide 2 / 144. Slide 3 / 144. Electrochemistry. Electrochemical Reactions

Electrochemistry. Slide 1 / 144. Slide 2 / 144. Slide 3 / 144. Electrochemistry. Electrochemical Reactions Slide 1 / 144 Electrochemistry Electrochemistry Slide 2 / 144 Electrochemistry deals with relationships between reactions and electricity In electrochemical reactions, electrons are transferred from one

More information

Chemistry: The Central Science. Chapter 20: Electrochemistry

Chemistry: The Central Science. Chapter 20: Electrochemistry Chemistry: The Central Science Chapter 20: Electrochemistry Redox reaction power batteries Electrochemistry is the study of the relationships between electricity and chemical reactions o It includes the

More information

Electrochemistry. The study of the interchange of chemical and electrical energy.

Electrochemistry. The study of the interchange of chemical and electrical energy. Electrochemistry The study of the interchange of chemical and electrical energy. Oxidation-reduction (redox) reaction: involves a transfer of electrons from the reducing agent to the oxidizing agent. oxidation:

More information

Chemistry 102 Chapter 19 OXIDATION-REDUCTION REACTIONS

Chemistry 102 Chapter 19 OXIDATION-REDUCTION REACTIONS OXIDATION-REDUCTION REACTIONS Some of the most important reaction in chemistry are oxidation-reduction (redox) reactions. In these reactions, electrons transfer from one reactant to the other. The rusting

More information

Electrochemistry objectives

Electrochemistry objectives Electrochemistry objectives 1) Understand how a voltaic and electrolytic cell work 2) Be able to tell which substance is being oxidized and reduced and where it is occuring the anode or cathode 3) Students

More information

Chapter 20. Electrochemistry

Chapter 20. Electrochemistry Chapter 20. Electrochemistry 20.1 OxidationReduction Reactions Oxidationreduction reactions = chemical reactions in which the oxidation state of one or more substance changes (redox reactions). Recall:

More information

Chapter 19: Electrochemistry

Chapter 19: Electrochemistry Chapter 19: Electrochemistry Overview of the Chapter review oxidation-reduction chemistry basics galvanic cells spontaneous chemical reaction generates a voltage set-up of galvanic cell & identification

More information

ELECTROCHEMISTRY OXIDATION-REDUCTION

ELECTROCHEMISTRY OXIDATION-REDUCTION ELECTROCHEMISTRY Electrochemistry involves the relationship between electrical energy and chemical energy. OXIDATION-REDUCTION REACTIONS SPONTANEOUS REACTIONS Can extract electrical energy from these.

More information

Zn+2 (aq) + Cu (s) Oxidation: An atom, ion, or molecule releases electrons and is oxidized. The oxidation number of the atom oxidized increases.

Zn+2 (aq) + Cu (s) Oxidation: An atom, ion, or molecule releases electrons and is oxidized. The oxidation number of the atom oxidized increases. Oxidation-Reduction Page 1 The transfer of an electron from one compound to another results in the oxidation of the electron donor and the reduction of the electron acceptor. Loss of electrons (oxidation)

More information

Chapter 20. Electrochemistry

Chapter 20. Electrochemistry Chapter 20. Electrochemistry 20.1 Oxidation-Reduction Reactions Oxidation-reduction reactions = chemical reactions in which the oxidation state of one or more substance changes (redox reactions). Recall:

More information

Chapter 20 Electrochemistry

Chapter 20 Electrochemistry Chapter 20 Electrochemistry Electrochemical Cell Consists of electrodes which dip into an electrolyte & in which a chem. rxn. uses or generates an electric current Voltaic (Galvanic) Cell Spont. rxn. -

More information

Exercise 4 Oxidation-reduction (redox) reaction oxidimetry. Theoretical part

Exercise 4 Oxidation-reduction (redox) reaction oxidimetry. Theoretical part Exercise 4 Oxidation-reduction (redox) reaction oxidimetry. Theoretical part In oxidation-reduction (or redox) reactions, the key chemical event is the net movement of electrons from one reactant to the

More information

Chapter 20 Electrochemistry

Chapter 20 Electrochemistry Chapter 20 Electrochemistry 20.1 Oxidation States and Oxidation-Reduction Reactions An oxidation occurs when an atom or ion loses electrons. A reduction occurs when an atom or ion gains electrons. One

More information

Oxidation numbers are charges on each atom. Oxidation-Reduction. Oxidation Numbers. Electrochemical Reactions. Oxidation and Reduction

Oxidation numbers are charges on each atom. Oxidation-Reduction. Oxidation Numbers. Electrochemical Reactions. Oxidation and Reduction Oxidation-Reduction Oxidation numbers are charges on each atom. 1 2 Electrochemical Reactions Oxidation Numbers In electrochemical reactions, electrons are transferred from one species to another. In order

More information

Electrochemistry. Review oxidation reactions and how to assign oxidation numbers (Ch 4 Chemical Reactions).

Electrochemistry. Review oxidation reactions and how to assign oxidation numbers (Ch 4 Chemical Reactions). Electrochemistry Oxidation-Reduction: Review oxidation reactions and how to assign oxidation numbers (Ch 4 Chemical Reactions). Half Reactions Method for Balancing Redox Equations: Acidic solutions: 1.

More information

Chapter 17. Electrochemistry

Chapter 17. Electrochemistry Chapter 17 Electrochemistry Contents Galvanic cells Standard reduction potentials Cell potential, electrical work, and free energy Dependence of cell potential on concentration Batteries Corrosion Electrolysis

More information

Chapter 20. Electrochemistry Recommendation: Review Sec. 4.4 (oxidation-reduction reactions) in your textbook

Chapter 20. Electrochemistry Recommendation: Review Sec. 4.4 (oxidation-reduction reactions) in your textbook Chapter 20. Electrochemistry Recommendation: Review Sec. 4.4 (oxidation-reduction reactions) in your textbook 20.1 Oxidation-Reduction Reactions Oxidation-reduction reactions = chemical reactions in which

More information

Redox and Electrochemistry

Redox and Electrochemistry Redox and Electrochemistry 1 Electrochemistry in Action! 2 Rules for Assigning Oxidation Numbers The oxidation number of any uncombined element is 0. The oxidation number of a monatomic ion equals the

More information

Dr. Anand Gupta

Dr. Anand Gupta By Dr Anand Gupta Mr. Mahesh Kapil Dr. Anand Gupta 09356511518 09888711209 anandu71@yahoo.com mkapil_foru@yahoo.com Electrochemistry Electrolysis Electric energy Chemical energy Galvanic cell 2 Electrochemistry

More information

Oxidation-reduction (redox) reactions

Oxidation-reduction (redox) reactions Oxidation-reduction (redox) reactions Reactions in which there are changes in oxidation state (oxidation number) between reactants and products 2 MnO 4- + 10 Br - + 16 H + 2 Mn 2+ + 5 Br 2 + 8 H 2 O One

More information

Chapter 19: Redox & Electrochemistry

Chapter 19: Redox & Electrochemistry Chapter 19: Redox & Electrochemistry 1. Oxidation-Reduction Reactions Definitions Oxidation - refers to the of electrons by a molecule, atom or ion Reduction - refers to the of electrons by an molecule,

More information

Electrochemical Cells

Electrochemical Cells Electrochemistry Electrochemical Cells The Voltaic Cell Electrochemical Cell = device that generates electricity through redox rxns 1 Voltaic (Galvanic) Cell An electrochemical cell that produces an electrical

More information

Chapter Objectives. Chapter 13 Electrochemistry. Corrosion. Chapter Objectives. Corrosion. Corrosion

Chapter Objectives. Chapter 13 Electrochemistry. Corrosion. Chapter Objectives. Corrosion. Corrosion Chapter Objectives Larry Brown Tom Holme Describe at least three types of corrosion and identify chemical reactions responsible for corrosion. www.cengage.com/chemistry/brown Chapter 13 Electrochemistry

More information

Chapter 18 Electrochemistry

Chapter 18 Electrochemistry Chapter 18 Electrochemistry Definition The study of the interchange of chemical and electrical energy in oxidation-reduction (redox) reactions This interchange can occur in both directions: 1. Conversion

More information

Lecture Presentation. Chapter 18. Electrochemistry. Sherril Soman Grand Valley State University Pearson Education, Inc.

Lecture Presentation. Chapter 18. Electrochemistry. Sherril Soman Grand Valley State University Pearson Education, Inc. Lecture Presentation Chapter 18 Electrochemistry Sherril Soman Grand Valley State University Harnessing the Power in Nature The goal of scientific research is to understand nature. Once we understand the

More information

Lecture Presentation. Chapter 20. Electrochemistry. James F. Kirby Quinnipiac University Hamden, CT Pearson Education

Lecture Presentation. Chapter 20. Electrochemistry. James F. Kirby Quinnipiac University Hamden, CT Pearson Education Lecture Presentation Chapter 20 James F. Kirby Quinnipiac University Hamden, CT is the study of the relationships between electricity and chemical reactions. It includes the study of both spontaneous and

More information

Electrochem: It s Got Potential!

Electrochem: It s Got Potential! Electrochem: It s Got Potential! Presented by: Denise DeMartino Westlake High School, Eanes ISD Pre-AP, AP, and Advanced Placement are registered trademarks of the College Board, which was not involved

More information

Section Electrochemistry represents the interconversion of chemical energy and electrical energy.

Section Electrochemistry represents the interconversion of chemical energy and electrical energy. Chapter 21 Electrochemistry Section 21.1. Electrochemistry represents the interconversion of chemical energy and electrical energy. Electrochemistry involves redox (reduction-oxidation) reactions because

More information

OXIDATION-REDUCTIONS REACTIONS. Chapter 19 (From next years new book)

OXIDATION-REDUCTIONS REACTIONS. Chapter 19 (From next years new book) OXIDATION-REDUCTIONS REACTIONS Chapter 19 (From next years new book) ELECTROCHEMICAL REACTIONS: What are electrochemical reactions? Electrons are transferred from one species to another ACTIVATING PRIOR

More information

Oxidation-Reduction (Redox)

Oxidation-Reduction (Redox) Oxidation-Reduction (Redox) Electrochemistry involves the study of the conversions between chemical and electrical energy. Voltaic (galvanic) cells use chemical reactions to produce an electric current.

More information

Introduction. can be rewritten as follows: Oxidation reaction. H2 2H + +2e. Reduction reaction: F2+2e 2F. Overall Reaction H2+F2 2H + +2F

Introduction. can be rewritten as follows: Oxidation reaction. H2 2H + +2e. Reduction reaction: F2+2e 2F. Overall Reaction H2+F2 2H + +2F Electrochemistry is the study of chemical processes that cause electrons to move. This movement of electrons is called electricity, which can be generated by movements of electrons from one element to

More information

Electrochemistry Pulling the Plug on the Power Grid

Electrochemistry Pulling the Plug on the Power Grid Electrochemistry 18.1 Pulling the Plug on the Power Grid 18.3 Voltaic (or Galvanic) Cells: Generating Electricity from Spontaneous Chemical Reactions 18.4 Standard Electrode Potentials 18.7 Batteries:

More information

ELECTROCHEMISTRY. Oxidation/Reduction

ELECTROCHEMISTRY. Oxidation/Reduction ELECTROCHEMISTRY Electrochemistry involves the relationship between electrical energy and chemical energy. OXIDATION-REDUCTION REACTIONS SPONTANEOUS REACTIONS Examples: voltaic cells, batteries. NON-SPONTANEOUS

More information

Electrochemistry. Galvanic Cell. Page 1. Applications of Redox

Electrochemistry. Galvanic Cell. Page 1. Applications of Redox Electrochemistry Applications of Redox Review Oxidation reduction reactions involve a transfer of electrons. OIL- RIG Oxidation Involves Loss Reduction Involves Gain LEO-GER Lose Electrons Oxidation Gain

More information

Electrochemical System

Electrochemical System Electrochemical System Topic Outcomes Week Topic Topic Outcomes 8-10 Electrochemical systems It is expected that students are able to: Electrochemical system and its thermodynamics Chemical reactions in

More information

Electrochemistry. Remember from CHM151 G E R L E O 6/24/2014. A redox reaction in one in which electrons are transferred.

Electrochemistry. Remember from CHM151 G E R L E O 6/24/2014. A redox reaction in one in which electrons are transferred. Electrochemistry Remember from CHM151 A redox reaction in one in which electrons are transferred Reduction Oxidation For example: L E O ose lectrons xidation G E R ain lectrons eduction We can determine

More information

General Chemistry I. Dr. PHAN TẠI HUÂN Faculty of Food Science and Technology Nong Lam University

General Chemistry I. Dr. PHAN TẠI HUÂN Faculty of Food Science and Technology Nong Lam University General Chemistry I Dr. PHAN TẠI HUÂN Faculty of Food Science and Technology Nong Lam University Module 7: Oxidation-reduction reactions and transformation of chemical energy Oxidation-reduction reactions

More information

ELECTROCHEMICAL CELLS

ELECTROCHEMICAL CELLS ELECTROCHEMICAL CELLS Electrochemistry 1. Redox reactions involve the transfer of electrons from one reactant to another 2. Electric current is a flow of electrons in a circuit Many reduction-oxidation

More information

Electrochemistry. (Hebden Unit 5 ) Electrochemistry Hebden Unit 5

Electrochemistry. (Hebden Unit 5 ) Electrochemistry Hebden Unit 5 (Hebden Unit 5 ) is the study of the interchange of chemical energy and electrical energy. 2 1 We will cover the following topics: Review oxidation states and assigning oxidation numbers Redox Half-reactions

More information

Introduction to electrochemistry

Introduction to electrochemistry Introduction to electrochemistry Oxidation reduction reactions involve energy changes. Because these reactions involve electronic transfer, the net release or net absorption of energy can occur in the

More information

Galvanic Cells Spontaneous Electrochemistry. Electrolytic Cells Backwards Electrochemistry

Galvanic Cells Spontaneous Electrochemistry. Electrolytic Cells Backwards Electrochemistry Today Galvanic Cells Spontaneous Electrochemistry Electrolytic Cells Backwards Electrochemistry Balancing Redox Reactions There is a method (actually several) Learn one (4.10-4.12) Practice (worksheet)

More information

Announcements. Comprehensive Final Exam: March 24 7:30AM - 9:30 C114 2,9,10,11,13,17,22,29,31,38,40,44,46,50,53,58,62,64,65,70, 72,73,82,85,87

Announcements. Comprehensive Final Exam: March 24 7:30AM - 9:30 C114 2,9,10,11,13,17,22,29,31,38,40,44,46,50,53,58,62,64,65,70, 72,73,82,85,87 Announcements Exam 3 March 17 Comprehensive Final Exam: March 24 7:30AM - 9:30 C114 Problems Chapter 21: 2,9,10,11,13,17,22,29,31,38,40,44,46,50,53,58,62,64,65,70, 72,73,82,85,87 Up to but not including

More information

Electron Transfer Reactions

Electron Transfer Reactions ELECTROCHEMISTRY 1 Electron Transfer Reactions 2 Electron transfer reactions are oxidation- reduction or redox reactions. Results in the generation of an electric current (electricity) or be caused by

More information

AP CHEMISTRY NOTES 12-1 ELECTROCHEMISTRY: ELECTROCHEMICAL CELLS

AP CHEMISTRY NOTES 12-1 ELECTROCHEMISTRY: ELECTROCHEMICAL CELLS AP CHEMISTRY NOTES 12-1 ELECTROCHEMISTRY: ELECTROCHEMICAL CELLS Review: OXIDATION-REDUCTION REACTIONS the changes that occur when electrons are transferred between reactants (also known as a redox reaction)

More information

Oxidation-Reduction (Redox) Reactions (4.4) 2) The ox. state of an element in a simple ion is the charge of the ion. Ex:

Oxidation-Reduction (Redox) Reactions (4.4) 2) The ox. state of an element in a simple ion is the charge of the ion. Ex: Redox reactions: Oxidation-Reduction (Redox) Reactions (4.4) Oxidation & reduction always occur simultaneously We use OXIDATION NUMBERS to keep track of electron transfers Rules for Assigning Oxidation

More information

Part One: Introduction. a. Chemical reactions produced by electric current. (electrolysis)

Part One: Introduction. a. Chemical reactions produced by electric current. (electrolysis) CHAPTER 19: ELECTROCHEMISTRY Part One: Introduction A. Terminology. 1. Electrochemistry deals with: a. Chemical reactions produced by electric current. (electrolysis) b. Production of electric current

More information

Chemistry 132 NT. Electrochemistry. Oxidation-Reduction Reactions

Chemistry 132 NT. Electrochemistry. Oxidation-Reduction Reactions Chemistry 132 NT If you ever catch on fire, try to avoid seeing yourself in the mirror, because I bet that s what really throws you into a panic. Jack Handey 1 Chem 132 NT Electrochemistry Module 1 HalfReactions

More information

Chapter 18. Electrochemistry

Chapter 18. Electrochemistry Chapter 18 Electrochemistry Section 17.1 Spontaneous Processes and Entropy Section 17.1 http://www.bozemanscience.com/ap-chemistry/ Spontaneous Processes and Entropy Section 17.1 Spontaneous Processes

More information

How to Assign Oxidation Numbers. Chapter 18. Principles of Reactivity: Electron Transfer Reactions. What is oxidation? What is reduction?

How to Assign Oxidation Numbers. Chapter 18. Principles of Reactivity: Electron Transfer Reactions. What is oxidation? What is reduction? Chapter 18 Principles of Reactivity: Electron Transfer Reactions What is oxidation? When a molecule/ion loses electrons (becomes more positive) Whatever is oxidized is the reducing agent What is reduction?

More information

Chapter Nineteen. Electrochemistry

Chapter Nineteen. Electrochemistry Chapter Nineteen Electrochemistry 1 Electrochemistry The study of chemical reactions through electrical circuits. Monitor redox reactions by controlling electron transfer REDOX: Shorthand for REDuction-OXidation

More information

ELECTROCHEMISTRY Chapter 14

ELECTROCHEMISTRY Chapter 14 ELECTROCHEMISTRY Chapter 14 Basic Concepts: Overview of Electrochemical Process at Constant T, P (14-1) ΔG = ΔG o + RT ln Q = w elec (maximum) = qe = ItE (exp) (E intensive parameter, q extensive) = nfe

More information

Oxidation-Reduction Reactions and Introduction to Electrochemistry

Oxidation-Reduction Reactions and Introduction to Electrochemistry ADVANCED PLACEMENT CHEMISTRY Oxidation-Reduction Reactions and Introduction to Electrochemistry Students will be able to: identify oxidation and reduction of chemical species; identify oxidants and reductants

More information

Introduction Oxidation/reduction reactions involve the exchange of an electron between chemical species.

Introduction Oxidation/reduction reactions involve the exchange of an electron between chemical species. Introduction Oxidation/reduction reactions involve the exchange of an electron between chemical species. The species that loses the electron is oxidized. The species that gains the electron is reduced.

More information

SHOCK TO THE SYSTEM! ELECTROCHEMISTRY

SHOCK TO THE SYSTEM! ELECTROCHEMISTRY SHOCK TO THE SYSTEM! ELECTROCHEMISTRY REVIEW I. Re: Balancing Redox Reactions. A. Every redox reaction requires a substance to be... 1. oxidized (loses electrons). a.k.a. reducing agent 2. reduced (gains

More information

Electrochemistry 1 1

Electrochemistry 1 1 Electrochemistry 1 1 Half-Reactions 1. Balancing Oxidation Reduction Reactions in Acidic and Basic Solutions Voltaic Cells 2. Construction of Voltaic Cells 3. Notation for Voltaic Cells 4. Cell Potential

More information

Electrochemistry. 1. For example, the reduction of cerium(iv) by iron(ii): Ce 4+ + Fe 2+ Ce 3+ + Fe 3+ a. The reduction half-reaction is given by...

Electrochemistry. 1. For example, the reduction of cerium(iv) by iron(ii): Ce 4+ + Fe 2+ Ce 3+ + Fe 3+ a. The reduction half-reaction is given by... Review: Electrochemistry Reduction: the gaining of electrons Oxidation: the loss of electrons Reducing agent (reductant): species that donates electrons to reduce another reagent. Oxidizing agent (oxidant):

More information

Chapter 19: Oxidation - Reduction Reactions

Chapter 19: Oxidation - Reduction Reactions Chapter 19: Oxidation - Reduction Reactions 19-1 Oxidation and Reduction I. Oxidation States A. The oxidation rules (as summarized by Mr. Allan) 1. In compounds, hydrogen has an oxidation # of +1. In compounds,

More information

INTRODUCTORY CHEMISTRY Concepts and Critical Thinking

INTRODUCTORY CHEMISTRY Concepts and Critical Thinking INTRODUCTORY CHEMISTRY Concepts and Critical Thinking Sixth Edition by Charles H. Corwin Oxidation and Reduction by Christopher Hamaker 1 Oxidation Reduction Reactions Oxidation reduction reactions are

More information

Unit 15: Electrochemistry

Unit 15: Electrochemistry Unit 15: Electrochemistry Oxidation-Reduction reactions Unit 15.1 Oxidation and Reduction (Redox) Electrons are transferred Spontaneous redox rxns can transfer energy Electrons (electricity) Heat Non-spontaneous

More information

Oxidation & Reduction (Redox) Notes

Oxidation & Reduction (Redox) Notes Oxidation & Reduction (Redox) Notes Chemical Activity (or Chemical Reactivity) is the measure of the reactivity of elements. If an element has high activity, then it means that the element is willing to

More information

Chapter 19 - Electrochemistry. the branch of chemistry that examines the transformations between chemical and electrical energy

Chapter 19 - Electrochemistry. the branch of chemistry that examines the transformations between chemical and electrical energy Chapter 19 - Electrochemistry the branch of chemistry that examines the transformations between chemical and electrical energy 19.1 Redox Chemistry Revisited A Spontaneous Redox Reaction Znº(s) + Cu 2+

More information

A + B C +D ΔG = ΔG + RTlnKp. Me n+ + ne - Me. Me n n

A + B C +D ΔG = ΔG + RTlnKp. Me n+ + ne - Me. Me n n A + B C +D ΔG = ΔG + RTlnKp Me n+ + ne - Me K p a a Me Me n a n e 1 mol madde 6.2 x 1 23 atom elektron yükü 1.62 x 1-19 C FARADAY SABİTİ: 6.2 x 1 23 x 1.62 x 1-19 = 96485 A.sn (= coulomb) 1 Faraday 965

More information

Lecture 14. Thermodynamics of Galvanic (Voltaic) Cells.

Lecture 14. Thermodynamics of Galvanic (Voltaic) Cells. Lecture 14 Thermodynamics of Galvanic (Voltaic) Cells. 51 52 Ballard PEM Fuel Cell. 53 Electrochemistry Alessandro Volta, 1745-1827, Italian scientist and inventor. Luigi Galvani, 1737-1798, Italian scientist

More information

ELECTROCHEMISTRY Chapter 19, 4.9

ELECTROCHEMISTRY Chapter 19, 4.9 ELECTROCHEMISTRY Chapter 19, 4.9 Overview of an Electrochemical Process at Constant T and P ΔG = ΔG o + RT ln Q = welec (maximum) Note: I below stands for current measured in amperes = qecell = ItEcell

More information

Chapter 18. Electrochemistry

Chapter 18. Electrochemistry Chapter 18 Electrochemistry Oxidation-Reduction Reactions Review of Terms Oxidation-reduction (redox) reactions always involve a transfer of electrons from one species to another. Oxidation number - the

More information

CHEMISTRY 13 Electrochemistry Supplementary Problems

CHEMISTRY 13 Electrochemistry Supplementary Problems 1. When the redox equation CHEMISTRY 13 Electrochemistry Supplementary Problems MnO 4 (aq) + H + (aq) + H 3 AsO 3 (aq) Mn 2+ (aq) + H 3 AsO 4 (aq) + H 2 O(l) is properly balanced, the coefficients will

More information

CHAPTER 17: ELECTROCHEMISTRY. Big Idea 3

CHAPTER 17: ELECTROCHEMISTRY. Big Idea 3 CHAPTER 17: ELECTROCHEMISTRY Big Idea 3 Electrochemistry Conversion of chemical to electrical energy (discharge). And its reverse (electrolysis). Both subject to entropic caution: Convert reversibly to

More information

9.1 Introduction to Oxidation and Reduction

9.1 Introduction to Oxidation and Reduction 9.1 Introduction to Oxidation and Reduction 9.1.1 - Define oxidation and reduction in terms of electron loss and gain Oxidation The loss of electrons from a substance. This may happen through the gain

More information

Chapter 19 ElectroChemistry

Chapter 19 ElectroChemistry Chem 1046 General Chemistry by Ebbing and Gammon, 9th Edition George W.J. Kenney, Jr, Professor of Chemistry Last Update: 11July2009 Chapter 19 ElectroChemistry These Notes are to SUPPLIMENT the Text,

More information

Chapter 20. Electrochemistry

Chapter 20. Electrochemistry Chapter 20. Electrochemistry Sample Exercise 20.1 (p. 845) The nickelcadmium (nicad) battery, a rechargeable dry cell used in batteryoperated devices, uses the following redox reaction to generate electricity:

More information

Honors Chemistry Mrs. Agostine. Chapter 19: Oxidation- Reduction Reactions

Honors Chemistry Mrs. Agostine. Chapter 19: Oxidation- Reduction Reactions Honors Chemistry Mrs. Agostine Chapter 19: Oxidation- Reduction Reactions Let s Review In chapter 4, you learned how atoms rearrange to form new substances Now, you will look at how electrons rearrange

More information

20.1 Consider the Brønsted-Lowry acid-base reaction and the redox reaction below. + A

20.1 Consider the Brønsted-Lowry acid-base reaction and the redox reaction below. + A 20 Electrochemistry Visualizing Concepts 20.1 Consider the Brønsted-Lowry acid-base reaction and the redox reaction below. HA + B BH + + A HA H + + A B + H + BH + X(red) + Y + (ox) X + (ox) + Y(red) X(red)

More information

25. A typical galvanic cell diagram is:

25. A typical galvanic cell diagram is: Unit VI(6)-III: Electrochemistry Chapter 17 Assigned Problems Answers Exercises Galvanic Cells, Cell Potentials, Standard Reduction Potentials, and Free Energy 25. A typical galvanic cell diagram is: The

More information

Redox Reactions and Electrochemistry

Redox Reactions and Electrochemistry Redox Reactions and Electrochemistry Problem Set Chapter 5: 2126, Chapter 21: 1517, 32, 34, 43, 53, 72, 74 R Oxidation/Reduction & Electrochemistry Oxidation a reaction in which a substance gains oxygen

More information

CHM 213 (INORGANIC CHEMISTRY): Applications of Standard Reduction Potentials. Compiled by. Dr. A.O. Oladebeye

CHM 213 (INORGANIC CHEMISTRY): Applications of Standard Reduction Potentials. Compiled by. Dr. A.O. Oladebeye CHM 213 (INORGANIC CHEMISTRY): Applications of Standard Reduction Potentials Compiled by Dr. A.O. Oladebeye Department of Chemistry University of Medical Sciences, Ondo, Nigeria Electrochemical Cell Electrochemical

More information

Electrochemical Cells: Virtual Lab

Electrochemical Cells: Virtual Lab Electrochemical Cells: Virtual Lab Electrochemical cells involve the transfer of electrons from one species to another. In these chemical systems, the species that loses electrons is said to be oxidized

More information

Chem 321 Lecture 16 - Potentiometry 10/22/13

Chem 321 Lecture 16 - Potentiometry 10/22/13 Student Learning Objectives Chem 321 Lecture 16 - Potentiometry 10/22/13 In lab you will use an ion-selective electrode to determine the amount of fluoride in an unknown solution. In this approach, as

More information

Review. Chapter 17 Electrochemistry. Outline. Voltaic Cells. Electrochemistry. Mnemonic

Review. Chapter 17 Electrochemistry. Outline. Voltaic Cells. Electrochemistry. Mnemonic Review William L Masterton Cecile N. Hurley Edward J. Neth cengage.com/chemistry/masterton Chapter 17 Electrochemistry Oxidation Loss of electrons Occurs at electrode called the anode Reduction Gain of

More information

Redox reactions & electrochemistry

Redox reactions & electrochemistry Redox reactions & electrochemistry Electrochemistry Electrical energy ; Chemical energy oxidation/reduction = redox reactions Electrochemistry Zn + Cu 2+ º Zn 2+ + Cu Oxidation-reduction reactions always

More information

Chapter 18: Electrochemistry

Chapter 18: Electrochemistry Chapter 18: Electrochemistry Oxidation States An oxidation-reduction reaction, or redox reaction, is one in which electrons are transferred. 2Na + Cl 2 2NaCl Each sodium atom is losing one electron to

More information

Half-Cell Potentials

Half-Cell Potentials Half-Cell Potentials! SHE reduction potential is defined to be exactly 0 v! half-reactions with a stronger tendency toward reduction than the SHE have a + value for E red! half-reactions with a stronger

More information

Review: Balancing Redox Reactions. Review: Balancing Redox Reactions

Review: Balancing Redox Reactions. Review: Balancing Redox Reactions Review: Balancing Redox Reactions Determine which species is oxidized and which species is reduced Oxidation corresponds to an increase in the oxidation number of an element Reduction corresponds to a

More information

CHEMISTRY - CLUTCH CH.18 - ELECTROCHEMISTRY.

CHEMISTRY - CLUTCH CH.18 - ELECTROCHEMISTRY. !! www.clutchprep.com CONCEPT: OXIDATION-REDUCTION REACTIONS Chemists use some important terminology to describe the movement of electrons. In reactions we have the movement of electrons from one reactant

More information

Introduction to Electrochemical reactions. Schweitzer

Introduction to Electrochemical reactions. Schweitzer Introduction to Electrochemical reactions Schweitzer Electrochemistry Create and or store electricity chemically. Use electricity to drive a reaction that normally would not run. Plating metal onto a metal

More information

Chapter 17 Electrochemistry

Chapter 17 Electrochemistry Chapter 17 Electrochemistry 17.1 Galvanic Cells A. Oxidation-Reduction Reactions (Redox Rxns) 1. Oxidation = loss of electrons a. the substance oxidized is the reducing agent 2. Reduction = gain of electrons

More information