Electromagnetism  Lecture 10. Magnetic Materials


 Isabella Hodges
 1 years ago
 Views:
Transcription
1 Electromagnetism  Lecture 10 Magnetic Materials Magnetization Vector M Magnetic Field Vectors B and H Magnetic Susceptibility & Relative Permeability Diamagnetism Paramagnetism Effects of Magnetic Materials 1
2 Introduction to Magnetic Materials There are three main types of magnetic materials with different magnetic susceptibilities, χ M : Diamagnetic  magnetization is opposite to external B χ M is small and negative. Paramagnetic  magnetization is parallel to external B χ M is small and positive. Ferromagnetic  magnetization is very large and nonlinear. χ M is large and variable. Can form permanent magnets in absence of external B In this lecture Diamagnetism & Paramagnetism Ferromagnetism will be discussed in Lecture 12 2
3 Magnetization Vector The magnetic dipole moment of an atom can be expressed as an integral over the electron orbits in the Bohr model: m = IAẑ atom The current and magnetic moment of the ith electron are: I = ev i 2πr i m i = IAẑ = e 2m e L i The magnetic dipole density is the magnetization vector M: M = dm dτ = N e A < L i > atom 2m e This orbital angular momentum average is also valid in quantum mechanics 3
4 Notes: Diagrams: 4
5 Magnetization Currents The magnetization vector M has units of A/m The magnetization can be thought of as being produced by a magnetization current density J M : M.dl = J M.dS J M = M L A For a rod uniformly magnetized along its length the magnetization can be represented by a surface magnetization current flowing round the rod: J S = M ˆn The distributions J M and J S represent the effect of the atomic magnetization with equivalent macroscopic current distributions 5
6 Magnetic Field Vectors Ampère s Law is modified to include magnetization effects: B.dl = µ 0 (J C + J M ).ds B = µ 0 (J C + J M ) L A where J C are conduction currents (if any) Using M = J M this can be rewritten as: (B µ 0 M) = µ 0 J C H = J C H = B µ 0 M B is known as the magnetic flux density in Tesla H is known as the magnetic field strength in A/m Ampère s Law in terms of H is: H.dl = J C.dS L A H = J C 6
7 Notes: Diagrams: 7
8 Relative Permeability The magnetization vector is proportional to the external magnetic field strength H: M = χ M H where χ M is the magnetic susceptibility of the material Note  some books use χ B = µ 0 M/B instead of χ M = M/H The linear relationship between B, H and M: B = µ 0 (H + M) can be expressed in terms of a relative permeability µ r B = µ r µ 0 H µ r = 1 + χ M General advice  wherever µ 0 appears in electromagnetism, it should be replaced by µ r µ 0 for magnetic materials 8
9 Diamagnetism For atoms or molecules with even numbers of electrons the orbital angular momentum states +L z and L z are paired and there is no net magnetic moment in the absence of an external field An external magnetic field B z changes the angular velocities: ω = ω ω ω = eb z 2m e where ω is known as the Larmor precession frequency Can think of as effect of magnetic force, or as example of induction For an electron pair in an external B z, the electron with +L z has ω = ω ω, and the electron with L z has ω = ω + ω For both electrons magnetic dipole moment changes in z direction! 9
10 Diamagnetic Magnetization Change in orbital angular momentum of electron pair due to Larmor precession frequency: L z = 2m e r 2 ω = eb z r 2 and the induced magnetic moment of the pair: m = e 2m e L z ẑ = e2 2m e B z r 2 ẑ Averaging over all electron orbits introduces a geometric factor 1/3: M = N A α M B = N Ae 2 Z < r 2 > B 6m e where the atomic magnetic susceptibility is small and negative: α M = e2 Z < r 2 > 6m e Z 10
11 Notes: Diagrams: 11
12 Notes: Diagrams: 12
13 Paramagnetism Paramagnetic materials have atoms or molecules with a net magnetic moment which tends to align with an external field Atoms with odd numbers of electrons have the magnetic moment of the unpaired electron: m = e L 2m e Ions and some ionic molecules have magnetic moments associated with the valence electrons Metals have a magnetization associated with the spins of the conduction electrons near the Fermi surface: M = 3N eµ 2 B 2kT F B ɛ F = kt F 10eV where µ B = e h/2m e is the Bohr magneton 13
14 Susceptibility of Paramagnetic Materials The alignment of the magnetic dipoles with the external field is disrupted by thermal motion: N(θ)dθ e U/kT sin θdθ U = m.b = mb cos θ Expanding the exponent under the assumption that U kt : M = N A m 2 3kT Paramagnetic susceptibility χ M is small and positive. It decreases with increasing temperature: ( ) m 2 χ M = N A 3kT α M where the second term is the atomic susceptibility from the diamagnetism of the paired electrons. B 14
15 Energy Storage in Magnetic Materials The inductance of a solenoid increases if the solenoid is filled with a paramagnetic material: L = µ r µ 0 n 2 πa 2 l = µ r L 0 Hence the energy stored in the solenoid increases: U = 1 2 LI2 = µ r U 0 The energy density of the magnetic field becomes: du M dτ = 1 2 B 2 µ r µ 0 = 1 2 B.H These are HUGE effects for ferromagnetic materials 15
16 Notes: Diagrams: 16
Electromagnetism  Lecture 12. Ferromagnetism & Superconductivity
Electromagnetism  Lecture 12 Ferromagnetism & Superconductivity Ferromagnetism Hysteresis & Permanent Magnets Ferromagnetic Surfaces Toroid with Ferromagnetic Core Superconductivity The Meissner Effect
More informationPhysics of Magnetism. Chapter references are to Essentials of Paleomagnetism, UC Press, 2010
Physics of Magnetism Chapter references are to Essentials of Paleomagnetism, UC Press, 2010 http://magician.ucsd.edu/essentials 1 Magnetic units (sorry!) SI cgs Magnetic fields as the gradient of a scalar
More informationPHY331 Magnetism. Lecture 3
PHY331 Magnetism Lecture 3 Last week Derived magnetic dipole moment of a circulating electron. Discussed motion of a magnetic dipole in a constant magnetic field. Showed that it precesses with a frequency
More informationPHY331 Magnetism. Lecture 4
PHY331 Magnetism Lecture 4 Last week Discussed Langevin s theory of diamagnetism. Use angular momentum of precessing electron in magnetic field to derive the magnetization of a sample and thus diamagnetic
More informationMagnetic Field Lines for a Loop
Magnetic Field Lines for a Loop Figure (a) shows the magnetic field lines surrounding a current loop Figure (b) shows the field lines in the iron filings Figure (c) compares the field lines to that of
More informationLecture 5. Chapters 3 & 4. Induced magnetization: that which is induced in the presence of an applied magnetic field. diamagnetic.
Lecture 5 Induced magnetization: that which is induced in the presence of an applied magnetic field diamagnetic paramagnetic Remanent magnetization: that which remains in the absence of an external field
More informationPhysics 202, Lecture 14
Physics 202, Lecture 14 Today s Topics Sources of the Magnetic Field (Ch. 30) Review: iotsavart Law, Ampere s Law Displacement Current: AmpereMaxwell Law Magnetism in Matter Maxwell s Equations (prelude)
More informationMagnetism. March 10, 2014 Physics for Scientists & Engineers 2, Chapter 27 1
Magnetism March 10, 2014 Physics for Scientists & Engineers 2, Chapter 27 1 Notes! Homework is due on We night! Exam 4 next Tuesday Covers Chapters 27, 28, 29 in the book Magnetism, Magnetic Fields, Electromagnetic
More informationChapter 28 Sources of Magnetic Field
Chapter 28 Sources of Magnetic Field In this chapter we investigate the sources of magnetic of magnetic field, in particular, the magnetic field produced by moving charges (i.e., currents). Ampere s Law
More informationMagnetic Materials. 1. Magnetization 2. Potential and field of a magnetized object
Magnetic Materials 1. Magnetization 2. Potential and field of a magnetized object 3. Hfield 4. Susceptibility and permeability 5. Boundary conditions 6. Magnetic field energy and magnetic pressure 1 Magnetic
More informationCoaxial cable. Coaxial cable. Magnetic field inside a solenoid
Divergence and circulation Surface S Ampere s Law A vector field is generally characterized by 1) how field lines possibly diverge away from or converge upon (point) sources plus 2) how field lines circulate,
More informationμ (vector) = magnetic dipole moment (not to be confused with the permeability μ). Magnetism Electromagnetic Fields in a Solid
Magnetism Electromagnetic Fields in a Solid SI units cgs (Gaussian) units Total magnetic field: B = μ 0 (H + M) = μ μ 0 H B = H + 4π M = μ H Total electric field: E = 1/ε 0 (D P) = 1/εε 0 D E = D 4π P
More informationDisplacement Current. Ampere s law in the original form is valid only if any electric fields present are constant in time
Displacement Current Ampere s law in the original form is valid only if any electric fields present are constant in time Maxwell modified the law to include timesaving electric fields Maxwell added an
More informationElectromagnetism II. Instructor: Andrei Sirenko Spring 2013 Thursdays 1 pm 4 pm. Spring 2013, NJIT 1
Electromagnetism II Instructor: Andrei Sirenko sirenko@njit.edu Spring 013 Thursdays 1 pm 4 pm Spring 013, NJIT 1 PROBLEMS for CH. 6 http://web.njit.edu/~sirenko/phys433/phys433eandm013.htm Can obtain
More informationMagnetic Materials. The inductor Φ B = LI (Q = CV) = L I = N Φ. Power = VI = LI. Energy = Power dt = LIdI = 1 LI 2 = 1 NΦ B capacitor CV 2
Magnetic Materials The inductor Φ B = LI (Q = CV) Φ B 1 B = L I E = (CGS) t t c t EdS = 1 ( BdS )= 1 Φ V EMF = N Φ B = L I t t c t B c t I V Φ B magnetic flux density V = L (recall I = C for the capacitor)
More informationLinear and Nonlinear Magnetic Media (Griffiths Chapter 6: Sections 34) Auxiliary Field H We write the total current density flowing through matter as
Dr. Alain Brizard Electromagnetic Theory I (PY 02) Linear and Nonlinear Magnetic Media (Griffiths Chapter 6: Sections 4) Auxiliary Field H We write the total current density flowing through matter as
More informationChapter 16  Maxwell s Equations
David J. Starling Penn State Hazleton PHYS 214 Gauss s Law relates point charges to the value of the electric field. Φ E = E d A = q enc ɛ 0 Gauss s Law relates point charges to the value of the electric
More informationChapter 28 Magnetic Fields Sources
Chapter 28 Magnetic Fields Sources All known magnetic sources are due to magnetic dipoles and inherently macroscopic current sources or microscopic spins and magnetic moments Goals for Chapter 28 Study
More informationUNIT  IV SEMICONDUCTORS AND MAGNETIC MATERIALS
1. What is intrinsic If a semiconductor is sufficiently pure, then it is known as intrinsic semiconductor. ex:: pure Ge, pure Si 2. Mention the expression for intrinsic carrier concentration of intrinsic
More information1 CHAPTER 12 PROPERTIES OF MAGNETIC MATERIALS
1 CHAPTER 12 PROPERTIES OF MAGNETIC MATERIALS 12.1 Introduction This chapter is likely to be a short one, not least because it is a subject in which my own knowledge is, to put it charitably, a little
More informationMay 08, Magnetism.notebook. Unit 9 Magnetism. This end points to the North; call it "NORTH." This end points to the South; call it "SOUTH.
Unit 9 Magnetism This end points to the North; call it "NORTH." This end points to the South; call it "SOUTH." 1 The behavior of magnetic poles is similar to that of like and unlike electric charges. Law
More informationChapter 6. Magnetostatic Fields in Matter
Chapter 6. Magnetostatic Fields in Matter 6.1. Magnetization Any macroscopic object consists of many atoms or molecules, each having electric charges in motion. With each electron in an atom or molecule
More informationMagnetic Force on a Moving Charge
Magnetic Force on a Moving Charge Electric charges moving in a magnetic field experience a force due to the magnetic field. Given a charge Q moving with velocity u in a magnetic flux density B, the vector
More informationNMR, the vector model and the relaxation
NMR, the vector model and the relaxation Reading/Books: One and two dimensional NMR spectroscopy, VCH, Friebolin Spin Dynamics, Basics of NMR, Wiley, Levitt Molecular Quantum Mechanics, Oxford Univ. Press,
More informationPHY331 Magnetism. Lecture 6
PHY331 Magnetism Lecture 6 Last week Learned how to calculate the magnetic dipole moment of an atom. Introduced the Landé gfactor. Saw that it compensates for the different contributions from the orbital
More informationLecture 19: Magnetic properties and the Nephelauxetic effect
Lecture 19: Magnetic properties and the Nephelauxetic effect sample balance thermometer connection to balance left: the Gouy balance for Gouy Tube determining the magnetic susceptibility of materials north
More informationUNIVERSITY OF CALIFORNIA  SANTA CRUZ DEPARTMENT OF PHYSICS PHYS 110A. Homework #7. Benjamin Stahl. March 3, 2015
UNIVERSITY OF CALIFORNIA  SANTA CRUZ DEPARTMENT OF PHYSICS PHYS A Homework #7 Benjamin Stahl March 3, 5 GRIFFITHS, 5.34 It will be shown that the magnetic field of a dipole can written in the following
More informationDepartment of Physics and Astronomy 2 nd Year Laboratory. G4 Quinckes method
nd year laboratory script G4 Quincke s methods Department of Physics and Astronomy nd Year Laboratory G4 Quinckes method Scientific aims and objectives To determine the volume magnetic susceptibility of
More informationCurrent Loop as a Magnetic Dipole & Dipole Moment:
MAGNETISM 1. Bar Magnet and its properties 2. Current Loop as a Magnetic Dipole and Dipole Moment 3. Current Solenoid equivalent to Bar Magnet 4. Bar Magnet and it Dipole Moment 5. Coulomb s Law in Magnetism
More informationThe Basics of Magnetic Resonance Imaging
The Basics of Magnetic Resonance Imaging Nathalie JUST, PhD nathalie.just@epfl.ch CIBMAIT, EPFL Course 20132014Chemistry 1 Course 20132014Chemistry 2 MRI: Many different contrasts Proton density T1
More informationWelcome back to PHYS 3305
Welcome back to PHYS 3305 Otto Stern 18881969 Walther Gerlach 18891979 Today s Lecture: Angular Momentum Quantization SternGerlach Experiment Review: Orbital Dipole Moments The magnetic moment for an
More informationDef.: Magnetism the property of a material to be attracted to (paramagnetic response) or repelled by (diamagnetic response) a magnetic field
5.2 Magnetism: the basics Def.: Magnetism the property of a material to be attracted to (paramagnetic response) or repelled by (diamagnetic response) a magnetic field These effects arise mainly from electrons
More informationMn(acetylacetonate) 3. Synthesis & Characterization
Mn(acetylacetonate) 3 Synthesis & Characterization The acac Ligand Acetylacetonate (acac) is a bidentate anionic ligand ( 1 charge). We start with acetylacetone (or Hacac) which has the IUPAC name 2,4
More informationphysics 590 ruslan prozorov magnetic measurements Nov 9,
physics 590 ruslan prozorov magnetic measurements Nov 9, 2009  magnetic moment of free currents Magnetic moment of a closed loop carrying current I: Magnetic field on the axis of a loop of radius R at
More informationPHYSICS 4750 Physics of Modern Materials Chapter 8: Magnetic Materials
PHYSICS 475 Physics of Modern Materials Chapter 8: Magnetic Materials 1. Atomic Magnetic Dipole Moments A magnetic solid is one in which at least some of the atoms have a permanent magnetic dipole moment
More information2. When the current flowing through a wire loop is halved, its magnetic moment will become a. half. b. onefourth. c. double. d. quadruple.
13 1. When a magnetic needle is kept in a uniform magnetic field, it experiences a. neither a force nor a torque. b. a force and not a torque. c. a torque and a force. d. only a torque.. Magnetic lines
More informationLecture 6. Energy and Work
MIT 3.00 Fall 2002 c W.C Carter 47 Last Time Topic Lecture 6 Energy and Work Topic Topic Energy In physics, you are used to dividing energy into two (or more) parts: E total = Kinetic Energy + Potential
More informationMSE 7025 Magnetic Materials (and Spintronics)
MSE 7025 Magnetic Materials (and Spintronics) Lecture 4: Category of Magnetism ChiFeng Pai cfpai@ntu.edu.tw Course Outline Time Table Week Date Lecture 1 Feb 24 Introduction 2 March 2 Magnetic units and
More informationMAGNETIC MATERIALS. Fundamentals and device applications CAMBRIDGE UNIVERSITY PRESS NICOLA A. SPALDIN
MAGNETIC MATERIALS Fundamentals and device applications NICOLA A. SPALDIN CAMBRIDGE UNIVERSITY PRESS Acknowledgements 1 Review of basic magnetostatics 1.1 Magnetic field 1.1.1 Magnetic poles 1.1.2 Magnetic
More informationAn introduction to magnetism in three parts
An introduction to magnetism in three parts Wulf Wulfhekel Physikalisches Institut, Karlsruhe Institute of Technology (KIT) Wolfgang Gaede Str. 1, D76131 Karlsruhe 0. Overview Chapters of the three lectures
More informationThe Oxford Solid State Basics
The Oxford Solid State Basics Steven H. Simon University of Oxford OXFORD UNIVERSITY PRESS Contents 1 About Condensed Matter Physics 1 1.1 What Is Condensed Matter Physics 1 1.2 Why Do We Study Condensed
More informationPhysics 342 Lecture 27. Spin. Lecture 27. Physics 342 Quantum Mechanics I
Physics 342 Lecture 27 Spin Lecture 27 Physics 342 Quantum Mechanics I Monday, April 5th, 2010 There is an intrinsic characteristic of point particles that has an analogue in but no direct derivation from
More informationSources of Magnetic Field
Chapter 28 Sources of Magnetic Field PowerPoint Lectures for University Physics, Thirteenth Edition Hugh D. Young and Roger A. Freedman Lectures by Wayne Anderson Goals for Chapter 28 To determine the
More informationV27: RF Spectroscopy
MartinLutherUniversität HalleWittenberg FB Physik Advanced Lab Course V27: RF Spectroscopy ) Electron spin resonance (ESR) Investigate the resonance behaviour of two coupled LC circuits (an active rf
More informationLecture 24 Origins of Magnetization (A number of illustrations in this lecture were generously provided by Prof. Geoffrey Beach)
Lecture 4 Origins of Magnetization (A number of illustrations in this lecture were generously provided by Prof. Geoffrey Beach) Today 1. Magnetic dipoles.. Orbital and spin angular momenta. 3. Noninteracting
More informationMagnetic Moments and Spin
Magnetic Moments and Spin Still have several Homeworks to hand back Finish up comments about hydrogen atom and start on magnetic moment + spin. Eleventh Homework Set is due today and the last one has been
More informationFor more info visit
Magnetostatic: It is the study of magnetic fields in systems where the currents are steady (not changing with time). It is the magnetic analogue of electrostatics, where the charges are stationary. Magnitude
More informationSolid state physics. Lecture 9: Magnetism. Prof. Dr. U. Pietsch
Solid state physics Lecture 9: Magnetism Prof. Dr. U. Pietsch Diamagnetism and Paramagnetsim Materie in magnetic field m 0 0 H M H(1 H 0 0M m M magnetiszation magnetic susceptibility  magnetic permeability
More informationLecture Presentation. Chapter 10 Chemical Bonding II: Molecular Shapes, Valence Bond Theory, and Molecular Orbital Theory
Lecture Presentation Chapter 10 Chemical Bonding II: Molecular Shapes, Valence Bond Theory, and Molecular Orbital Theory Predicting Molecular Geometry 1. Draw the Lewis structure. 2. Determine the number
More informationThe Spin (continued). February 8, 2012
The Spin continued. Magnetic moment of an electron Particle wave functions including spin SternGerlach experiment February 8, 2012 1 Magnetic moment of an electron. The coordinates of a particle include
More informationChapter 29: Magnetic Fields Due to Currents. PHY2049: Chapter 29 1
Chapter 29: Magnetic Fields Due to Currents PHY2049: Chapter 29 1 Law of Magnetism Unlike the law of static electricity, comes in two pieces Piece 1: Effect of B field on moving charge r r F = qv B (Chapt.
More information10.3 NMR Fundamentals
10.3 NMR Fundamentals nuclear spin calculations and examples NMR properties of selected nuclei the nuclear magnetic moment and precession around a magnetic field the spin quantum number and the NMR transition
More informationFundamental MRI Principles Module 2 N. Nuclear Magnetic Resonance. Xray. MRI Hydrogen Protons. Page 1. Electrons
Fundamental MRI Principles Module 2 N S 1 Nuclear Magnetic Resonance There are three main subatomic particles: protons positively charged neutrons no significant charge electrons negatively charged Protons
More informationMagnetic Resonance Imaging in a Nutshell
Magnetic Resonance Imaging in a Nutshell Oliver Bieri, PhD Department of Radiology, Division of Radiological Physics, University Hospital Basel Department of Biomedical Engineering, University of Basel,
More informationLuigi Paolasini
Luigi Paolasini paolasini@esrf.fr LECTURE 2: LONELY ATOMS  Systems of electrons  Spinorbit interaction and LS coupling  Fine structure  Hund s rules  Magnetic susceptibilities Reference books: 
More informationPHY122 Physics for the Life Sciences II
PHY122 Physics for the Life Sciences II Lecture 12 Faraday s Law of Induction Clicker Channel 41 03/12/2015 Lecture 12 1 03/12/2015 Magnetic Materials Like dielectric materials in electric fields, materials
More informationModule16. Magnetic properties
Module16 Magnetic properties Contents 1) Dia, Para, and Ferromagnetism (Antiferromagnetism and ferrimagnetism) 2) Influence of temperature on magnetic behavior 3) Domains and Hysteresis Introduction
More informationChapter 22: Magnetism
Chapter 22: Magnetism Magnets Magnets are caused by moving charges. Permanent Magnets vs. Electromagnets Magnets always have two poles, north and south. Like poles repel, opposites attract. Brent Royuk
More informationProblems in Magnetic Properties of Materials
Problems in Magnetic Properties of Materials Notations used: H: Magnetic field stregth B: Magnetic flux density I: Intensity of Magentization (Please note that, in text book, notation, M, is used for Intensity
More informationAtoms, Molecules and Solids (selected topics)
Atoms, Molecules and Solids (selected topics) Part I: Electronic configurations and transitions Transitions between atomic states (Hydrogen atom) Transition probabilities are different depending on the
More informationCHARGED PARTICLE MOTION IN CONSTANT AND UNIFORM ELECTROMAGNETIC FIELDS
CHARGED PARTICLE MOTION IN CONSTANT AND UNIFORM ELECTROMAGNETIC FIELDS In this and in the following two chapters we investigate the motion of charged particles in the presence of electric and magnetic
More informationElectricity and Magnetism Current Loops and Magnetic Dipoles Magnetism in Matter
Electricity and Magnetism Current Loops and Magnetic Dipoles Magnetism in Matter Lana Sheridan De Anza College Mar 5, 2018 Last time magnetic field inside a solenoid forces between currentcarrying wires
More informationZeeman Effect  Lab exercises 24
Zeeman Effect  Lab exercises 24 Pieter Zeeman Franziska Beyer August 2010 1 Overview and Introduction The Zeeman effect consists of the splitting of energy levels of atoms if they are situated in a magnetic
More informationHowever, in matter, magnetic induction depends on magnetization M in the following way:
G1. Magnetic Hysteresis Cycle I. OBJECTIVE OF THE EXPERIMENT Magnetic materials are very important in technological fields, and have many different uses. The objective of the experiment is to study a few
More informationMAGNETIC DIPOLES, HYSTERESIS AND CORE LOSES
Power Quality For The Digital Age MAGNETIC DIPOLES, HYSTERESIS AND CORE LOSES A N E N V I R O N M E N T A L P O T E N T I A L S W H I T E P A P E R By Professor Edward Price Director of Research and Development
More informationMagnetic domain theory in dynamics
Chapter 3 Magnetic domain theory in dynamics Microscale magnetization reversal dynamics is one of the hot issues, because of a great demand for fast response and high density data storage devices, for
More informationTypes of Magnetism and Magnetic Domains
Types of Magnetism and Magnetic Domains Magnets or objects with a Magnetic Moment A magnet is an object or material that attracts certain metals, such as iron, nickel and cobalt. It can also attract or
More informationTopics. The concept of spin Precession of magnetic spin Relaxation Bloch Equation. Bioengineering 280A Principles of Biomedical Imaging
Bioengineering 280A Principles of Biomedical Imaging Fall Quarter 2006 MRI Lecture 1 Topics The concept of spin Precession of magnetic spin Relaxation Bloch Equation 1 Spin Intrinsic angular momentum of
More informationMagnetic Resonance Imaging (MRI)
Magnetic Resonance Imaging Introduction The Components The Technology (MRI) Physics behind MR Most slides taken from http:// www.slideworld.org/ viewslides.aspx/magnetic ResonanceImaging %28MRI%29MRImaging
More informationChapter 22 Magnetism
Chapter 22 Magnetism 1 Overview of Chapter 22 The Magnetic Field The Magnetic Force on Moving Charges The Motion of Charged Particles in a Magnetic Field The Magnetic Force Exerted on a CurrentCarrying
More informationThe initial magnetization curve shows the magnetic flux density that would result when an increasing magnetic field is applied to an initially
MAGNETIC CIRCUITS The study of magnetic circuits is important in the study of energy systems since the operation of key components such as transformers and rotating machines (DC machines, induction machines,
More informationMagnetic Resonance Spectroscopy EPR and NMR
Magnetic Resonance Spectroscopy EPR and NMR A brief review of the relevant bits of quantum mechanics 1. Electrons have spin,  rotation of the charge about its axis generates a magnetic field at each electron.
More informationPhysical Background Of Nuclear Magnetic Resonance Spectroscopy
Physical Background Of Nuclear Magnetic Resonance Spectroscopy Michael McClellan Spring 2009 Department of Physics and Physical Oceanography University of North Carolina Wilmington What is Spectroscopy?
More informationMetropolis Monte Carlo simulation of the Ising Model
Metropolis Monte Carlo simulation of the Ising Model Krishna Shrinivas (CH10B026) Swaroop Ramaswamy (CH10B068) May 10, 2013 Modelling and Simulation of Particulate Processes (CH5012) Introduction The Ising
More information15 Inductance solenoid, shorted coax
z 15 nductance solenoid, shorted coax 3 Given a current conducting path C, themagneticfluxψ linking C can be expressed as a function of current circulating around C. 2 1 Ψ f the function is linear, i.e.,
More informationPhysics 2020 Exam 2 Constants and Formulae
Physics 2020 Exam 2 Constants and Formulae Useful Constants k e = 8.99 10 9 N m 2 /C 2 c = 3.00 10 8 m/s ɛ = 8.85 10 12 C 2 /(N m 2 ) µ = 4π 10 7 T m/a e = 1.602 10 19 C h = 6.626 10 34 J s m p = 1.67
More informationTopics. The History of Spin. Spin. The concept of spin Precession of magnetic spin Relaxation
Topics Bioengineering 280A Principles of Biomedical Imaging Fall Quarter 2008 MRI Lecture 1 The concept of spin Precession of magnetic spin Relaation Spin The History of Spin Intrinsic angular momentum
More informationReport submitted to Prof. P. Shipman for Math 540, Fall 2009
Dynamics at the Horsetooth Volume 1, 009. ThreeWave Interactions of Spin Waves Aaron Hagerstrom Department of Physics Colorado State University aaronhag@rams.colostate.edu Report submitted to Prof. P.
More informationGeneral Physics (PHYS )
General Physics (PHYS ) Chapter 22 Magnetism Magnetic Force Exerted on a current Magnetic Torque Electric Currents, magnetic Fields, and Ampere s Law Current Loops and Solenoids Magnetism in Matter GOT
More informationCorrelations between spin accumulation and degree of timeinverse breaking for electron gas in solid
Correlations between spin accumulation and degree of timeinverse breaking for electron gas in solid V.Zayets * Spintronic Research Center, National Institute of Advanced Industrial Science and Technology
More informationWarsaw University of Technology Electrical Department. Laboratory of Materials Technology KWNiAE
Warsaw University of Technology Electrical Department Laboratory of Materials Technology KWNiAE Practice 6 Analysis of Ferromagnetic Materials 1. Introduction In each atom of every known material there
More informationExperiment 33 THE STERNGERLACH EXPERIMENT. Theory: A Quantum Magnetic Dipole in an External Field 2. The SternGerlach Apparatus 5
33i Experiment 33 THE STERNGERLACH EXPERIMENT Introduction 1 Theory: A Quantum Magnetic Dipole in an External Field 2 The SternGerlach Apparatus 5 Deflection of Atoms in the Beam 7 Procedure 9 Analysis
More informationPrinciples of Magnetic Resonance Imaging
Principles of Magnetic Resonance Imaging Hi Klaus Scheffler, PhD Radiological Physics University of 1 Biomedical Magnetic Resonance: 1 Introduction Magnetic Resonance Imaging Contents: Hi 1 Introduction
More informationPart 4: Electromagnetism. 4.1: Induction. A. Faraday's Law. The magnetic flux through a loop of wire is
1 Part 4: Electromagnetism 4.1: Induction A. Faraday's Law The magnetic flux through a loop of wire is Φ = BA cos θ B A B = magnetic field penetrating loop [T] A = area of loop [m 2 ] = angle between field
More informationPhysics 1308 Exam 2 Summer 2015
Physics 1308 Exam 2 Summer 2015 E201 2. The direction of the magnetic field in a certain region of space is determined by firing a test charge into the region with its velocity in various directions in
More informationFundamental MRI Principles Module Two
Fundamental MRI Principles Module Two 1 Nuclear Magnetic Resonance There are three main subatomic particles: protons neutrons electrons positively charged no significant charge negatively charged Protons
More informationElectromagnetic Induction & Inductors
Electromagnetic Induction & Inductors 1 Revision of Electromagnetic Induction and Inductors (Much of this material has come from Electrical & Electronic Principles & Technology by John Bird) Magnetic Field
More information1. ATOMIC STRUCTURE PREVIOUS EAMCET BITS. 1) 25 : 9 2) 5 : 3 3) 9 : 25 4) 3 : 5 Ans: 1 Sol: According to debroglie equation h
. ATOMIC STRUCTURE PREVIOUS EAMCET BITS. The wavelengths of electron waves in two orbits is 3 :. The ratio of kinetic energy of electron will be (E009) ) : 9 ) : 3 3) 9 : ) 3 : Sol: According to debroglie
More informationWith that first concept in mind, it is seen that a spinning nucleus creates a magnetic field, like a bar magnet
NMR SPECTROSCOPY This section will discuss the basics of NMR (nuclear magnetic resonance) spectroscopy. Most of the section will discuss mainly 1H or proton spectroscopy but the most popular nuclei in
More informationChapter 21 dblock metal chemistry: coordination complexes
Chapter 21 dblock metal chemistry: coordination complexes Bonding: valence bond, crystal field theory, MO Spectrochemical series Crystal field stabilization energy (CFSE) Electronic Spectra Magnetic Properties
More informationMIDSUMMER EXAMINATIONS 2001
No. of Pages: 7 No. of Questions: 10 MIDSUMMER EXAMINATIONS 2001 Subject PHYSICS, PHYSICS WITH ASTROPHYSICS, PHYSICS WITH SPACE SCIENCE & TECHNOLOGY, PHYSICS WITH MEDICAL PHYSICS Title of Paper MODULE
More informationUnit 8 Building Atoms with Quantum Leaps
Oh boy... Sam Beckett (from Quantum Leap) Unit 8 Building Atoms with Quantum Leaps Physicists Put Atom in Two Places at Once This was the headline in the science section of the New York Times on May 28,
More informationChapter 4. Electrostatic Fields in Matter
Chapter 4. Electrostatic Fields in Matter 4.1. Polarization 4.2. The Field of a Polarized Object 4.3. The Electric Displacement 4.4. Linear Dielectrics 4.5. Energy in dielectric systems 4.6. Forces on
More informationcharges q r p = q 2mc 2mc L (1.4) ptles µ e = g e
APAS 5110. Atomic and Molecular Processes. Fall 2013. 1. Magnetic Moment Classically, the magnetic moment µ of a system of charges q at positions r moving with velocities v is µ = 1 qr v. (1.1) 2c charges
More informationπ* orbitals do not Molecular Orbitals for Homonuclear Diatomics
Molecular Orbitals for Homonuclear Diatomics CHEM 2060 Lecture 26: MO theory contd L261 Molecular orbitals can be formed pictorially by looking at the way in which atomic orbitals overlap. Let s look
More informationInduced Electric Field
Lecture 18 Chapter 33 Physics II Induced Electric Field Course website: http://faculty.uml.edu/andriy_danylov/teaching/physicsii Applications of Faraday s Law (some leftovers from the previous class) Applications
More informationAngular momentum and spin
Luleå tekniska universitet Avdelningen för Fysik, 007 Hans Weber Angular momentum and spin Angular momentum is a measure of how much rotation there is in particle or in a rigid body. In quantum mechanics
More informationREVIEW SESSION. Midterm 2
REVIEW SESSION Midterm 2 Summary of Chapter 20 Magnets have north and south poles Like poles repel, unlike attract Unit of magnetic field: tesla Electric currents produce magnetic fields A magnetic field
More informationAngular Momentum Quantization: Physical Manifestations and Chemical Consequences
Angular Momentum Quantization: Physical Manifestations and Chemical Consequences Michael Fowler, University of Virginia 7/7/07 The SternGerlach Experiment We ve established that for the hydrogen atom,
More informationInduced Electric Field
Lecture 18 Chapter 30 Induced Electric Field Course website: http://faculty.uml.edu/andriy_danylov/teaching/physicsii Today we are going to discuss: Chapter 30: Section 30.5, 30.6 Section 30.7 (skip Transformers
More information