CORNER LAYER PROPERTIES AND INTERMEDIATE ASYMPTOTICS OF WAITING TIME SOLUTIONS OF NONLINEAR DIFFUSION EQUATIONS ABSTRACT

Size: px
Start display at page:

Download "CORNER LAYER PROPERTIES AND INTERMEDIATE ASYMPTOTICS OF WAITING TIME SOLUTIONS OF NONLINEAR DIFFUSION EQUATIONS ABSTRACT"

Transcription

1 CORNER LAYER PROPERTIES AND INTERMEDIATE ASYMPTOTICS OF WAITING TIME SOLUTIONS OF NONLINEAR DIFFUSION EQUATIONS Crlos A. Przzo, Cluio L. M. Vigo 2 n Julio Grtton 2* Univrsi Fvloro, Solís 453, 78, Bunos Airs, Argntin. 2 INFIP-CONICET. L. Físi l Plsm F. Cs. Ets y Nturls,UBA. Ciu Univ.. P I. 428 Bunos Airs, Argntin * Mmr o CONICET, Argntin ABSTRACT Mny phnomn suh s lows in porous mi, visous-grvity urrnts, t. r sri y nonlinr iusion qutions o th typ h t = (h m h ). Th solutions n show vry intrsting proprtis, lik witing tim, prio o tim in whih th ront is t rst whil th proil hin it is moii, n ornr lyrs (smll rgions whr th irst sptil rivtivs vris strongly). Prviously w solv numrilly th nonlinr iusion qution or initil onitions with powr lw hvior n invstigt th pnn o th witing tim on th initils onitions n th nonlinrity prmtr m. Hr w nlyz in tils th ormtion, volution n motion o th ornr lyr, n its pnn on m. W show tht i m inrss, th ornr lyr orms nrr to th witing ront, n losr to th strt-up. Its vloity s it pprohs th ront tns to oini with th vloity o ront t strt-up. W lso invstigt th intrmit symptotis los to th ront n nr strt-up. W tt two sl-similr rgims: th irst on pprs in omin los to th ornr lyr tht is rriving t th ront n th othr ours in omin hin th ornr lyr ut littl rthr rom it thn th irst on. Th irst rgim pprohs onstnt vloity trvling wv, whil th son on longs to irnt typ o sl-similrity. Ky Wors: nonlinr iusion, witing tim, intrmit symptotis. I. INTRODUCTION Thr r mny prosss sri y th nonlinr iusion qution (lso ll th porous mi qution y som uthors), tht in on imnsion n writtn s h t m = ( h h ) () Som mpls r givn in Tl ; usully imnsionl onstnt pprs in Eq. (), tht n sor y mns o suitl rinition o h. Hr w shll onsir only m >. Eq. () is lso prtiulr s o nonlinr gnrliztion o th Fokkr-Plnk qution [4]. Th solutions o Eq. () my hv moving ronts (ll intrs in th mthmtil litrtur) tht mov with init vloity. Mor prisly, i h(, t ) hs init support t tim t, thn or ll t > t, h(, t) will lso hv init support. Th position (t) o ront is ontinuous monotoni untion o tim. Unr rtin onitions th ront my initilly rmin motionlss or rtin tim intrvl, tr whih it strts to mov n nvr stops. This hvior is ll th witing-tim phnomnon n is

2 losly onnt with th ourrn o ornr lyrs (smll intrvls in whih h vris rpily) in th solutions o Eq. (). To unrstn how ths turs vlop, it is usul to introu th vrils η = h m, τ = t/m, thn Eq. () tks th orm 2 ητ = η + mηη (2) This qution shows tht th volution o η is th rsult o th omin ts o nonlinr wv propgtion n nonlinr iusion. Th ormr tns to prou isontinuitis o η (ornr shoks), n th lttr smoothns thm, giving s rsult ornr lyr [5]. W shll not th quntitis rlt to ornr lyr with th sui. Tl. Dirnt nonlinr iusion phnomn. m Phnomnon Mning o h Rrns Unonin grounwtr low Hyruli h [-3] Disprsion o popultions Conntrtion [4] γ Gs low in porous mium Dnsity [5] 3 Visous grvity urrnts on horizontl sur Hyruli h [6-8] 5/2 Thrml onution in plsms Tmprtur [9] Thrml onution in multiply ioniz gss Tmprtur [9-2] 3/2 Thrml onution in ully ioniz gss Tmprtur [9-2] 6 6 Pntrtion o ltromgnti ils in mgntilly nonlinr mi Pntrtion o ltromgnti ils in typ-ii supronutors Mgnti il [3] Currnt nsity [3] Svrl uthors hv invstigt th witing-tim solutions o Eq. (). Most o this rsrh is thortil [5-2]. Som primntl rsults [22-24] r known on witing-tim visous grvity urrnts (m = 3). Numril stuis or m = 3 n m = r givn in [25,26]. In prvious work w invstigt in til th rltionship twn th initil onitions n th witing-tim hvior n th inlun o th nonlinrity prmtr m [27]. Hr w shll show how th ornr lyrs pprs n movs, n how ths turs pn on th initil onitions n m. In wht ollows w shll ssum tht th pross gins t t = t i, n th initil onition h(, t i ) = g() suh tht g() = or < ; thn or qut g() th ront rmins t rst uring init tim intrvl t w whil h( >, t) hngs. In othr wors, (t) = (t i ) or t i t t i + t w. Without loss o gnrlity w n st t i = t w so tht th witing stg ns t t =. W shll onsir initil onitions o th orm ( < ) g ( ) = gα ( ) = K q α α ( ) (3) with

3 q 2 m = Kα > α > (4) Our hoi o initil onitions rprsnts ll possil rgulr hvior o g nr witing ront, n th ssumption α > gurnts witing-tim solutions [5,28]. W shll onrn with th symptoti hvior o th solutions nr th ront n los to th strt-up. In this omin thr r no hrtristi sls o, t n h. Thn th solution my slsimilr o th son kin [29], pning on singl vril o th orm ζ = /t δ ( n δ r onstnts). In sl-similritis o th son kin δ is not known in vn, n must trmin ithr thortilly or y ollowing (primntlly or numrilly) th volution o th solution. On th othr hn, n only trmin primntlly or numrilly. Noti, howvr, tht thory os not gurnt tht th initil vlu prolm (), (3) will tully vlop sl-similr symptotis. A mily o witing-tim sl-similr solutions with δ > (ll th LOT solutions) tht my sri this symptotis (s Stion II) hs n oun y Ly, Oknon & Tylr [9]. In ition w must onsir lso th trvling wv solution [3] or whih δ = (s Stion II). Thror w hv ininitly mny solutions vill, n th sptrum o δ is ontinuous. Thn w n not know in vn whih prtiulr δ will otin or givn (m, α). In this onntion, it hs n onjtur (ut not prov) tht whn th sptrum o δ is ontinuous, th initil onitions trmin whih vlu shll slt [3]. Sin thory os not provi th vlu o δ nor it nsurs tht th symptotis los to th ront n nr strt-up is sl-similr, ths issus n rss only y primntl or numril mthos. To lriy ths mttrs is on o th min gols o this work. W solv numrilly th Eqs. () n (3) or 7 vlus o m in th intrvl _ m 9 n vrious vlus o α > or h m. Sin w shll l with numril solutions o (), must init. W thn ssum, thror t = (w shll ll this point th wll ) w must impos ounry onition tht w shll hos s h (,t) = (no low, or rigi wll onition). Thn our initil vlu prolm involvs th hrtristi sls, h n t 2 / h m so tht th solution is not sl-similr (h is som typil vlu o g(), to spii in th ollowing w shll tk h = g( )). Th nlysis o th intrmit symptotis rvls tht thr r two omins whr th numril solutions isply sl-similr hvior. First, s th n o th witing tim stg is pproh, trvling wv symptotis vlops vry los to th ornr lyr. Son, littl rthr hin th ornr lyr, ut still r rom, th numril solution pprohs LOT solution with δ tht pns on th initil onitions, thus proving tht th onjtur o Brnltt n Zl'ovih [3] is tru in th prsnt s. In th nt Stion w rviw som prvious rsults out witing-tim solutions n sl-similrity tht w n to isuss th rsults. Th numril o, n th mthos w mploy to stuy th solutions r plin in Stion III. Th rsults r prsnt in Stion IV n urthr isussions n onlusions r givn in Stion V. II. PREVIOUS RESULTS Th Formtion o Cornr Lyr n th Strt-up Vloity in Witing Tim Solutions Whn < m << th nonlinr propgtion trm η 2 omints n s irst pproimtion th iusion trm m η η n nglt in (2) whih thn rus to irst orr qution tht n solv y th mtho o hrtristis; thn th iusion trm n trt s prturtion. In this wy it n shown [5], or initil onitions o th typ g αq, tht: ) i α < th ront movs immitly, ) i α = thr is nonzro t w n th ront gins to mov whn ornr shok ( isontinuity o η ) pprs t th ront, ) i α > thr is t w >, n uring th witing stg ornr lyr vlops n movs towrs th ront; th strt-up ours whn th ront is ovrtkn y th ornr lyr. Ltr Vázquz [28] prov tht th prvious rsults hol or ll m. Thn th initil onitions (3) will l to t w > whn α >.

4 A istintion must m twn thos witing tims tht pn on th lol hvior o g() nr = n thos tht pn on th glol hvior o g() (wy rom = ). It ws shown y Aronson, Crlli n Kmin [3] tht t w pns on th lol t only whn g() = K q nr = n g() K - q vrywhr; in ll th othr ss it pns on th glol t. Th pprn uring th witing stg o ornr lyr t init istn rom th ront is th hrtristi tur tht inits tht t w pns on th glol t [2]. I th support o g() is ompt, Aronson t l. [2,3] oun tht whn th initil motion o th ront pns on th lol t th ront vloity v is ontinuous untion o t so tht th strt-up vloity = v (t = +) =; on th othr hn whn th initil motion o th ront pns on th glol t (s hppns or th initil onitions (3)) v is isontinuous t strt-up n t ( m) ( m) 9( m + ) 2 (5) Th onition (5) only sts lowr oun on so tht its t vlu n only trmin numrilly. Rlvnt Sl-similr Solutions or th Asymptotis nr Strt-up Whn th initil n ounry onitions introu singl onstnt imnsionl prmtr with inpnnt imnsions [] = []/[t] δ, Eq. () mits sl-similr solutions tht pn on th imnsionlss vril ζ = /t δ (vrious mpls o sl-similr solutions o () r givn in [7,8,,32,33,34-37]). Sin th initil vlu prolm (), (3) involvs th hrtristi sls, h n t, our solutions r not sl-similr. But in omin los to th ront n nr th strt-up (i.. or <<, h << h, t << t ) ths sls nnot rlvnt n th solutions my sl-similr. In this s thr is no onstnt imnsionl govrning prmtr, thn th δ is not known in vn n th sl-similr symptotis (i it ists) is o th son kin. W shll s tht suh sl-similr solutions ist or ny δ so tht th ignvlu sptrum is ontinuous n w n not know in vn whih prtiulr vlu o δ will otin or givn (m, α). In this onntion, it hs n onjtur (ut not prov) tht whn th sptrum o δ is ontinuous, th initil onitions trmin whih vlu shll slt [3]. Lt us rily isuss th sl-similr solutions o () tht my sri our symptotis. Th tils o th onstrution o ths solutions n oun in th litrtur (s [8,9,25]). It suis to mntion hr tht thy n sri in trms o th vrils Z(ζ) = h m t/ 2 n V(ζ) = h m h t/ s trjtoris V(Z) in th phs pln (Z,V). Th sl-similr solutions o intrst to us r th LOT solutions η * (, t), tht wr isovr y Ly, Oknon & Tylr [9]; thir proprtis r isuss in til in [25]. Thy r mily o slsimilr witing-tim solutions tht n tn to t >. Thy ist or ny δ > n n o thr typs tht w ll L, S n N oring to thir hvior or t <. Whn < δ < δ = 4 + 3m 2m + 4 (6) th solution is o typ L n or t < its trjtory mnts rom limiting yl tht rprsnts th ront or strt-up. Eh turn roun th limiting yl prous ornr lyr. As rsult h * (, t < ) isplys n ininit sris o ornr lyrs tht umults t th witing ront. I δ < δ < δ+ = 4 + 3m + 2m + 4 2m m + 2 (7) th solution is o typ S, n its trjtory spirls out rom th singulr point B = ( m/2(m+2), /(m+2)) tht rprsnts th ront or strt-up. Th N solutions our whn δ > δ +, n th trjtory lso mnts rom B, tht now is no. Th N solutions o not hv ornr lyrs. Th trvling wv solution, or whih δ = (s R. [8,3]), must lso onsir. It is givn y:

5 [ m( + t)] m t wt (, ) = = < = onst. (8) It sris proil without istortion with moving ront with onstnt vloity in th ngtiv irtion, n th rr my wonr why w onsir it is rlvnt in th prsnt ontt. Th rson is tht it sris th hvior o strong ornr lyr in th limit whn h(, t) is vnishingly smll in ront o it (noti tht th iusion trm mηη o (2) is vnishingly smll in this limit). In t, th irn twn vry strong ornr lyr n n vning ront is ngligily smll, n or ll prtil purposs thy n onsir th sm thing [2]. Th vloity o th ront o sl-similr solution is givn or t y v = ζ t δ (ζ is th vlu o ζ t th ront). Th vloity o th ront o th LOT solutions vnishs t th strt-up, so tht thy nnot sri th symptotis o th solutions o (), (3) up to = ; howvr thy might still sri this symptotis in omin tht lus th ront (i.. or < ε << <<, < ε << h << h, t << t, with ε, ε smll quntitis). On th othr hn th trvling wv solution (8) stisis (5) sin n tk ny init vlu; thn it n sri th symptotis in th nighorhoo o t = inluing th ront itsl (i.. or < << ε, < h ε, t << t ) [2]. As si or, th trvling wv solution sris or t strong ornr lyr moving with onstnt sp towrs th ront, n or t + it sris th ront tht hs gun to mov with th sm onstnt sp. O ours this mns tht th vloitis o th ornr lyr n o th ront r th sm on tim sl t << t. Grtton & Vigo [25] n Przzo t l. [26] invstigt th symptotis o th numril solutions o (), (3) or m = 3 n m =. For m = 3 thy oun tht th LOT solutions o typ L sri th symptotis o h(, t) in omin tht lus th immit nighorhoo o th ornr lyr n o th ront. Thy lso oun tht in this omin singl ornr lyr vlops n tht th orrsponing δ pns on th initil onition through th prmtr α. In th s m = thy otin similr rsults, ut in ition oun lso LOT sl-similrity o typ S, or α los to unity. In oth instns th motion o th ornr lyr n o th ront immitly tr strt-up, n thir proils vry los to =, orrspon to th trvling wv solution s pt rom th thory. III. METHODS W hily mploy th numril mtho n th thniqus o t nlysis us y Grtton & Vigo [25]. Sin in tht ppr ths mttrs r isuss in til w shll giv hr short summry in orr to hlp th rr, n shll only giv tils whn nssry. Numril Mtho To solv th prolm (), (3) w us th imnsionlss vrils /, h h/h, t t/t. W st h = (αq + ) so tht h (, t i ) is normliz to in th intrvl (, ); in th ollowing w rop th prims s no onusion will ris. Th Eq. () is th sm s or n th initil onition (3) is now: ( < ) g ( ) = ( q+ ) q α α ( ) (9) Th ounry onition is h (, t) =. Th o mploys tim vril whos initil vlu is t = ; tr th intgrtion w trmin t w n rin th tim sutrting t w so tht th strt-up ours t t =. To omput th solutions with n ury suiint to rvl th tils w r looking or is not trivil mttr, s th prolm is multisl on n th witing-tim solutions hv vry strong vritions in th rivtivs. To hiv goo rsolution nr = (th most intrsting omin or our purpos) with mngl numr o gri points w r or to mploy gri with sping tht pns qurtilly on [38], with 2N+ points twn n +. Th isvntg o this is tht th vition o th nu-

6 mril solution rom th tru solution pns on th sping o th gri points. I ths vitions r not rogniz thy my l to rronous intrprttions. For mpl th numril solution rprsnting th trvling wv (8) isplys hng o th vloity n o th shp o th proil s it propgts through th non uniorm gri. To rogniz n isr ths ts w ompr th solutions otin with irnt N up to N = 4 in w ss (using or h N th pproprit tim stp), ut pt whn pliitly stt othrwis th lultions wr m with N =. Mthos o Anlysis W isply th rsults in trms o η = h m sin or givn α th initil η proils (unlik thos o h) hv th sm shp inpnntly o m n th trvling wv symptotis orrspons to η. Crtin lortions o th numril t provi y th o r nssry to nlyz th solutions n trt rom thm th inormtion w sir. W now isuss ths lortions so tht th rr n ssss th rliility o our rsults. 2.5 η m = /2 α =.5 4 η m = α = η m = 4 α = η m = 9 α = Figur. Proils o η uring th witing stg or α =.5 n irnt m: () t = t w, () t =.8 t w, () t =.6 t w, () t =.4 t w, () t =.2 t w, () t =. Position n Evolution o th Cornr Lyr. Th ornr lyr is sily rogniz s pk in th η grphs or i t. It vlops grully until t rtin momnt it oms notil, n or ltr tims it oms highr n nrrowr s th ornr lyr movs towrs th ront. To sri quntittivly th motion n volution o th ornr lyr it is usul to introu som (ritrry) initions. W in its position (t) s th point whr η is mimum, its with (t) s th with o

7 th η pk t hl mimum, n its strngth s Ψ(t) = η ( )/ (t). To ompr th volution o th ornr lyr or irnt m n α w in its normliz strngth s Π(t) = Ψ(t)/Ψ( t w ). Although th vlopmnt o ornr lyr is grul pross, w in th tim o ormtion o th ornr lyr s th tim t whn Π s thrshol tht y onvntion w tk s, n th pl o ormtion s (t ). Noti tht Ψ(t) t (δ+) or sl-similr solution, so tht on might hop tht y stuying th volution o Ψ on oul srtin i th ornr lyr is sl-similr n trmin th orrsponing δ. Unortuntly this is not possil sin or ny sl-similr symptotis is ttin th with o th (numril) ornr lyr oms qul to th gri sping so tht th tru nnot trmin m = /2 α =.5 η m = α =.5 η η m = 4 α = m = 9 α =.5 η Figur 2. Grphs o η or α =.5 n irnt m: () t = t w, () t =.8 t w, () t =.6 t w, () t =.4 t w, () t =.2 t w, () t =. Dtrmintion o th Asymptotis. Svrl mthos n us to ignos th ourrn o slsimilr symptotis (s R. [25]). On o thm is s on th t tht t t = th sl-similr solutions o () tk th simpl orm η 2 /δ, thn sl-similr symptotis pprs s stright lin in grph o log(η(, )/) vs. log(). From ths grphs w thn in th omins whr ths symptotis our t strt-up. A LOT symptotis yils non horizontl stright lin with slop s = /δ. W trmin s y mns o lst squr it s on th 5 onsutiv gri points with th lrgr orrltion oiint, n rom this w otin δ (δ is not vry snsitiv to th numr o points: using 25, 75 n points w oun irns o.25% or lss). From Eq. (8) it is lr tht horizontl stright lin in th grph inits trvling wv symptotis.

8 Any sl-similr solution h(, t) = η /m o () stisis th rltionship h m t/ 2 = ηt/ 2 = Z( / tδ) = Z* ( / t) δ () in whih th untion Z * pns on δ n on th typ o sl-similrity. Thn grph o ηt/ 2 vs /t δ yils th sm urv or ny t i th solution is sl-similr,. W tk vntg o this t to in th omin in whih th numril solution pprohs th LOT solutions n to invstigt how this omin vris with tim. To this purpos w ompr grphs o th numril vlus o log(η/t 2δ ) vs. log(/t δ ) or irnt t with th grph o log(η * /t 2δ ) vs. log(/t δ ). By hoosing suitl δ it is possil to hiv n urt ovrlp o th grphs in th omin whr th numril solution is sl-similr. Gnrl Proprtis o th Numril Solutions IV. RESULTS In Figs., 2 n 3 w show proils o η, η n η or vrious m n α =.5 t irnt tims o th witing stg. For othr vlus o α w otin similr proils. Th volution o η or th vrious m looks similr, ut rul osrvtion rvls irns. Noti tht th r low th η proils vris with t (pt or m = ), inrsing or m < n rsing i m >, sin η is not onsrv. W intiy thr omins in whih th proils isply irnt hviors. From lt to right, on ins irst omin nr th ront n inluing it, whos siz rss with tim, in whih th initil proil rmins lmost unhng. Nt thr is nrrow trnsition omin whr strong hngs o th irst n son rivtivs tk pl (s Figs. 2 n 3). Lst thr is thir omin up to =, whos siz inrss with tim, in whih th proil is strongly moii with rspt to th initil on. In th irst omin th hvior o th solution is trmin y th lol proprtis o th initil proil, n in th thir omin y th glol proprtis o th initil proil. Th trnsition omin is th lotion o th η pk, i.. o th ornr lyr, n movs towrs to th ront s its with rss n vnishs t strt-up. As it vns, th η pk tns to Dir lt, pross tht ulmints t t = whn th pk ovrtks th ront (Fig. 3). In ll th ss just on ornr lyr vlops. W shll s tht th slsimilr symptotis vlop in th ornr lyr omin, n in th prt o th thir omin los to it. In Fig. 4 w show th proils or α =.5 n ll m t t =.2 t w n t =. It n noti tht t t =.2 t w th ornr lyr is losr to th ront th lrgr is m. Thn th ornr lyr movs str whn m is smll, us it must trvl longr istn in shortr tim (t w inrss with m or i α). Th Evolution o th Cornr Lyr In Fig. 5 () w plot th tim o ormtion o th ornr lyr (s Stion III, w only pt t s vli i Π = is otin with with o t lst gri points). It n sn tht or i m, t inrss rpily with α (i.. or lrgr α th ornr lyr vlops losr to th ginning o th pross). For α th tim o ormtion pprohs t =. On th othr hn t inrss with m or i α. In Fig. 5 () w rprsnt t /t w s untion o α, n it n sn tht this rtio pns wkly on m.

9 η / m = /2 α = η / m = α = η / m = 4 α =.5 η / m = 9 α = Figur 3. Proils o η uring th witing stg or α =.5 n irnt m: () t = t w, () t =.8 t w, () t =.6 t w, () t =.4 t w, () t =.2 t w, () t =. 2. () η 2. η () m = 9 m = 6 m = 4 m = 3 m = 2 m = /2..5 m = 9 6 m = 4 3 m = 2 m = / Figur 4. Proils o η or vrious m n α =.5 t: () t =.2 t w, () t =. Th pl o ormtion (t ) is shown in Fig. 5 (). It n sn tht or givn m, (t ) is n inrsing untion o α: s α pprohs unity, (t ) pprohs th ront, n s α it pprohs th

10 wll. Th pl o ormtion pns quit strongly on m: or i α it is losr to th ront or m lrg. Finlly in Fig. 5 () w plot (t ) vs. t to ttr pprit th rltionship twn ths quntitis. Th motion o th ornr lyr is isply in Fig. 6, in whih w rprsnt (t) n th vloity o th ornr lyr v (t) or α =.,.5 n 3 n m =, 4 n 9. W s tht (pt or m lrg) v (t) tns to onstnt vlu s t n tht th strt-up vloity tns to oini with v (t ). Th Dvlopmnt o Sl-similr Rgims Only or or som m n α w r l to intiy unmiguously in th numril solutions two sl-similr rgims, orrsponing to th trvling wv n LOT sl-similrity whos ponnt δ = δ (m, α) pns on th initil onition. Th trvling wv omin lis roun th ornr lyr n th LOT omin is oun littl hin; in twn thr is non sl-similr intrmit omin. In th rst o th ss w osrv only on sl-similr rgim, tht usully n intii s LOT slsimilrity. Howvr w nnot onlu tht th othr rgim is snt: it my ist, ut w il to s it u to th limittions o our numril lultions. It is not sy to tt sl-similr symptotis nor to intiy unmiguously its typ, prtiulrly whn α is los to n lso whn it is lrg. Lt us rily isuss ths prolms.. () () t m=/2 m= m=2 m=3 m=4 m=6 m=9.2.6 α t /t w α.3 () m=/ ().2 (t ). m= m=2 m=3 m=4 m=6 m=9.2 (t ).5..5 m α α t Figur 5. Formtion o th ornr lyr: () tim o ormtion, () rtio t /t w, () pl o ormtion, () pl o ormtion vs. tim o ormtion.

11 Whn α is los to th trvling wv rgim is only ttin nr th n o th witing-tim stg, n in n trmly smll omin. Thn low rtin α min w o not tt th trvling wv n s only th LOT symptotis. This prolm is mor svr or lrg m. Using lrgr N on n push α min losr to unity (s [25]), ut lrly w nnot us ritrrily lrg N. Howvr w know tht th LOT symptotis nnot sri th solution up to th ront (s Stion II) so tht it is rsonl to ssum tht th trvling wv symptotis is lso prsnt, vn i w o not s it. On th othr hn whn α is lrg th numril solution isplys LOT symptotis with δ vry los to ; this prolm is wors or smll m. In ths ss it is impossil to isrimint unmiguously twn th LOT n th trvling wv symptotis so tht w n rogniz only on kin o sl-similrity. Agin, it is rsonl to ssum tht oth kins o symptotis ist, ut w il to istinguish on rom th othr. In summry, th trvling wv n th LOT omins pn on α, m, n t. To osrv th trvling wv symptotis, prtiulrly or lrg m n α los to w n vry in gri, n th omputtion is trmly tim onsuming. For mpl, with α =. n N = 4 it n only tt or m 4 (s Fig. 7). As α, th trvling wv omin oms progrssivly smllr n vnishs in th limit, whil th LOT omin nlrgs. On th othr hn or lrg α th LOT rgim hs δ (s Fig. 8) so tht th LOT n th trvling wv symptotis tn to oini. Som o th turs just isuss n plin y mns o simpl rgumnt. Th solution hin n los to th ornr lyr pprohs trvling wv whn th vlu o η (, t) h is vry smll, i.. whn η( < (t), t) ε whr ε is smll quntity. For som ε = ε th irn will so smll tht w n sy tht th solution hs ttin th trvling wv symptotis. Sin th proil h o th ornr lyr hngs vry slowly, or < (t) w n sly ssum tht η(, t) η(, t w ). To lult how los to th ront th ornr lyr must rriv in orr to isply th trvling wv hvior w st η(, t w ) ε n thn us (9) to in th onition < = 2α ε + m m 2α () It is sy to s tht th mimum istn or whih th ornr lyr n isply th trvling wv hvior inrss with α n rss with m. This plins why it is iiult to osrv th trvling wv hvior or smll α n/or or lrg m. In Fig. 8 () w show th vlus o δ orrsponing to th LOT sl-similr rgim (s Stion III). It n osrv tht δ is rsing untion o α n tns vry rpily to, th mor rpily th smllr is m. Not tht i δ < δ < δ + th symptotis is o typ S. Thn or h m, thr is ritil vlu α, suh tht or α < α w otin typ S, n or α >α w otin typ L sl-similrity. Most o th LOT sl-similritis osrv in th numril solutions r o typ L, pt or α los to whn thy r o typ S (Grtton & Vigo [25] il to tt th lttr us thy i not omput solutions or suiintly smll α). W hv nvr osrv typ N sl-similrity. To pprit ttr how δ pns on m n α it is onvnint to mploy nonlinr sls in y (α ) /3 n (δ ) /3 (s Fig. 8 ()); in this wy th urvs or irnt m tn to prlll n stright. In Fig. 9 w plot log (η/t 2δ ) vs. log (/t δ ) or th numril solution t irnt tims, n or th orrsponing LOT solution, to show how th LOT symptotis is pproh with th pssing o tim. It n osrv tht th omin in whih th numril solution is los to th LOT solution nlrgs (in th logritmi sl) s tim progrsss, ut simultnously th numril n LOT solutions om inrsingly irnt nr th ornr lyr n this irn is lrgr or lrg m. For ll th tims onsir th LOT omin ovrs roughly two s.

12 - α =. 4 3 α = t / t w α =.5 2 -v t / t w α = v t / t w α = t / t w α = v t / t w -t / t w Figur 6. Position n vloity v o th ornr lyr. Lls o th urvs not () m =, () m = 4, () m = 9. Th momnt o ormtion is shown y ot on th urv. Th horizontl lins in th grphs o v init th orrsponing vlu o.

13 () m = α =. () m = 2 α =. N=4 N=4 η/ η/ N= N= () m = 4 α =. () m = 9 α =. η/ N=4 η/ N=4 N= N= Figur 7. Domins o th trvling wv n LOT symptotis t strt-up or α =.. () m =, () m = 2, () m = 4, () m = 9. Noti tht th trvling wv symptotis nnot osrv with N =, n or N = 4 only i m is smll. δ α m = /2 m = m = 2 m = 3 m = 4 m = 6 m = δ.2.. m = /2 m = m = 2 m = 3 m = 4 m = 6 m = 9 α Figur 8. Sl-similrity ponnts or th LOT symptotis: () α LOT s untion o α or irnt m, () sm s () ut with nonlinr sls or oth s (s tt).

14 8 4 log(η/t (2δ-) ) 8 4 log(η/t (2δ-) ) -4 m =.5 α =. δ =.353 log(/t δ ) -4 m = α =. δ =.7 log(/t δ ) log(η/t (2δ-) ) log(η/t (2δ-) ) -4 m = 4 α =. δ =.634 log(/tδ) -4 m = 9 α =. δ =.274 log(/tδ) Figur 9. Comprison o th numril solution t irnt tims () t =.6 t w, () t =.4 t w, () t =.2 t w with () th LOT solution. Th mpls orrspon to α =. n m = /2,, 4, 9. V. DISCUSSIONS AND CONCLUSIONS Th prsnt rsults gr with th thory n tn th prvious inings [25,26] or m = 3 n. During th witing stg ornr lyr vlops n oms progrssivly strongr s it movs towrs th witing ront. Th ront strts moving whn it is ovrtkn y th ornr lyr n its initil vloity oinis with tht o th ornr lyr. Th initil onitions (3) lwys yil solutions with singl ornr lyr. Th ornr lyr is th most intrsting tur o th solution uring th witing stg n its hvior trmins th witing-tim n th strt-up vloity. For i α, th ornr lyr vlops rlir in tim (ut losr to th ront) whn m is lrg. Thn its vloity is smllr or lrg m. Th symptotis o th solutions los to th ront n nr strt-up is sl-similr n onsists o two omins whos tnt pns on m, α n t. Bhin th ornr lyr thr is omin in whih th solution isplys LOT sl-similrity with δ tht pns on m n α; in logritmi sl th tnt o this omin inrss s th strt-up is pproh. This LOT sl-similrity is o typ L, pt or α los to whn it is o typ S. In ition, in th vry lst momnts o th witing stg (whn η is vry smll h o th ornr lyr) smll omin pprs roun th ornr lyr in whih th solution ss to sri y th LOT sl-similrity n isplys th trvling wv symptotis. As strt-up is pproh th trvling wv omin inrss t th pns o th LOT omin. For i α th LOT rgim hs lrgr δ or lrgr m, n th trvling wv omin is smllr. Th prsn o th trvling wv symptotis in th nighorhoo o th ront n nr strt-up ws pt rom thortil rsons, n n unrstoo y mns o th simpl rgumnt o Stion IV. On th othr hn th numril vin inits tht in ition to this, th LOT

15 symptotis is lso prsnt in ll our solutions, thus suggsting tht th sl-similr LOT solutions r ttrtors. This rsult ws not gurnt priori n still wits thortil plntion. ACKNOWLEDGMENTS W knowlg grnts rom CONICET (PIP 452/96) n th Univrsity o Bunos Airs (Projt TW6). REFERENCES [] Polurinov-Kohin, P.Y. Thory o Groun Wtr Movmnt. Printon Univ. Prss; 962. [2] Eglson, P.S. Dynmi Hyrology. MGrw-Hill; 97. [3] Pltir, L.A. Applitions o Nonlinr Anlysis in th Physil Sins, Chp.. Th Porous Mi Eqution. Pitmn Av. Pu. Prog., Boston; 98. [4] Gurtin, M.E. n MCmy, R.C. On th iusion o iologil popultions. Mth. Bios. 33, 35-49: 977. [5] Muskt, M. Th Flow o Homognous Fluis through Porous Mi. MGrw-Hill; 937. [6] Bukmstr, J. Visous shts vning ovr ry s. J. Flui Mh. 8, : 977. [7] Hupprt, H.E. Th propgtion o two-imnsionl visous grvity urrnts ovr rigi horizontl sur.j. Flui Mh. 2, 43-58: 982. [8] Grtton, J. n Minotti, F. Sl-similr visous grvity urrnts: phs pln ormlism. J. Flui Mh. 2, 55-82: 99. [9] Zl'ovih, Y.B. n Rizr, Yu. P Physis o Shok Wvs n High Tmprtur Hyroynmi Phnomn. Ami Prss, Nw York; 966. [] Mrshk, R.E. Et o rition on shok wv hvior. Phys. Fluis, 24-29: 958. [] Prt, G.J. A lss o similr solutions o th non-linr iusion qution. J. Phys. A (4), : 977. [2] Lrsn, E.W. n Pomrning, G.C. Asymptoti nlysis o nonlinr Mrshk wvs. SIAM J. Appl. Mth. 39, 2-22: 98. [3] Myrgoyz, I.D. Nonlinr Diusion o Eltromgnti Fils. Ami Prss; 998. [4] Drzr, G.; Wio, H.S. n Tsllis, C. Anomlous iusion with sorption: Et tim-pnnt solutions. Phys. Rv. E 6, : 2. [5] Kth, W.L. n Cohn, D.S. Witing-tim hvior in nonlinr iusion qution. Stu. Appl. Mth. 67, 79-5: 982. [6] Aronson, D.G. Rgulrity proprtis o lows through porous mi: A ountrmpl. SIAM J. Appl. Mth. 9, : 97.

16 [7] Knrr, B.F. Th porous mium qution in on imnsion. Trns. Am. Mth. So. 234, 38-45: 977. [8] Kmin, S. Continuous groups o trnsormtions o irntil qutions; pplitions to r ounry prolms in Fr Bounry Prolms it y E. Mgns. Tnoprint, Rom; 98. [9] Ly, A.A.; Oknon, J.R. n Tylr, A.B. ''Witing-tim '' solutions o nonlinr iusion qution.j. Appl. Mth. 42, : 982. [2] Ly, A.A. Initil motion o th r ounry or nonlinr iusion qution. IMA J. Appl. Mth. 3, 3-9: 983. [2] Aronson, D.G.; Crlli, L.A. n Vázquz, J.L. Intrs with ornr point in on-imnsionl porous mium low. Comm. Pur Appl. Mth. 38, : 985. [22] Thoms, L.P. t l. Corrints visogrvittoris on rnts qu sprn. Anls AFA 3, 23-26: 99. [23] Grtton, J.; Rossllo, E. n Diz, J. Physil moling o r low: witing-tim hvior. Mon. A. N. Cinis Ets Fís. y Nt 8, 5-63: 992. [24] Mrino, B.M. t l. Witing tim solutions o nonlinr iusion qution: primntl stuy o rping low nr witing ront. Phys. Rv. E 54, : 996. [25] Grtton, J. n Vigo, C.L.M. Evolution o sl-similrity, n othr proprtis o witing-tim solutions o th porous mium qution: th s o visous grvity urrnts. Europn J. Appl. Mth. 9, : 998. [26] Przzo, C.A.; Vigo, C.L.M. n Grtton, J. Soluions on timpo spr pr lujos gsosos isotrmos n un mio poroso: II Asintóti r l rrnqu. Anls AFA 9, 7-: 997. [27] Przzo, C.A.; Vigo, C.L.M. n Grtton, J. Estuio numério soluions on timpo spr uions no linls iusión. Anls AFA 9, 99-3: 997. [28] Vázquz, J.L. Th intr o on-imnsionl lows in porous mi. Trns. Amr. Mth. So. 285, : 984. [29] Brnltt, G.I. Similrity, Sl-Similrity n Intr-mit Asymptotis. Consultnt Buru, Nw York n Lonon; 979. [3] Aronson, D.G.; Crlli, L.A. n Kmin, S. How n initilly sttionry intr gins to mov in porous mium low. SIAM J. Mth. Anl. 4, : 983. [3] Brnltt, G.I. n Zl'ovih, Y.B. Sl-similr solutions s intrmit symptotis. Ann. Rv. Flui Mh. 4, : 972. [32] Brnltt, G.I. On som unsty motions o luis n gss in porous mium. Prikl. Mt. Mkh. 6(), 67-78: 952. [33] Pttl, R.E. Diusion rom n instntnous point sour with onntrtion-pnnt oiint. Qurt. J. Mh. Appl. Mth. 2, 47-49: 959. [34] Brnltt, G.I. n Zl'ovih, Y.B. On th ipol-typ solution in prolms o unsty gs iltrtion in th polytropi rgim. Prikl. Mt. i Mkh. 2, 78-72: 957.

17 [35] Giling, B.H. n Pltir, L.A. On lss o similrity solutions o th porous mi qutions. J. Mth. Anl. Appl. 55, : 977. [36] Giling, B.H. n Pltir, L.A. On lss o similrity solutions o th porous mi qutions II. J. Mth. Anl. Appl.57, : 977. [37] Gruny, R.E. Similrity solutions o th nonlinr iusion qution. Qurt. Appl. Mth. 37, : 979. [38] Kálny Rivs, E. On th us o nonuniorm gris in init-irn qutions. J. Comput. Phys., 2-23: 972.

(2) If we multiplied a row of B by λ, then the value is also multiplied by λ(here lambda could be 0). namely

(2) If we multiplied a row of B by λ, then the value is also multiplied by λ(here lambda could be 0). namely . DETERMINANT.. Dtrminnt. Introution:I you think row vtor o mtrix s oorint o vtors in sp, thn th gomtri mning o th rnk o th mtrix is th imnsion o th prlllppi spnn y thm. But w r not only r out th imnsion,

More information

1 Introduction to Modulo 7 Arithmetic

1 Introduction to Modulo 7 Arithmetic 1 Introution to Moulo 7 Arithmti Bor w try our hn t solvin som hr Moulr KnKns, lt s tk los look t on moulr rithmti, mo 7 rithmti. You ll s in this sminr tht rithmti moulo prim is quit irnt rom th ons w

More information

COMPLEXITY OF COUNTING PLANAR TILINGS BY TWO BARS

COMPLEXITY OF COUNTING PLANAR TILINGS BY TWO BARS OMPLXITY O OUNTING PLNR TILINGS Y TWO RS KYL MYR strt. W show tht th prolm o trmining th numr o wys o tiling plnr igur with horizontl n vrtil r is #P-omplt. W uil o o th rsults o uquir, Nivt, Rmil, n Roson

More information

ECE COMBINATIONAL BUILDING BLOCKS - INVEST 13 DECODERS AND ENCODERS

ECE COMBINATIONAL BUILDING BLOCKS - INVEST 13 DECODERS AND ENCODERS C 24 - COMBINATIONAL BUILDING BLOCKS - INVST 3 DCODS AND NCODS FALL 23 AP FLZ To o "wll" on this invstition you must not only t th riht nswrs ut must lso o nt, omplt n onis writups tht mk ovious wht h

More information

Constructive Geometric Constraint Solving

Constructive Geometric Constraint Solving Construtiv Gomtri Constrint Solving Antoni Soto i Rir Dprtmnt Llngutgs i Sistms Inormàtis Univrsitt Politèni Ctluny Brlon, Sptmr 2002 CGCS p.1/37 Prliminris CGCS p.2/37 Gomtri onstrint prolm C 2 D L BC

More information

Module 2 Motion Instructions

Module 2 Motion Instructions Moul 2 Motion Instrutions CAUTION: Bor you strt this xprimnt, unrstn tht you r xpt to ollow irtions EXPLICITLY! Tk your tim n r th irtions or h stp n or h prt o th xprimnt. You will rquir to ntr t in prtiulr

More information

Why the Junction Tree Algorithm? The Junction Tree Algorithm. Clique Potential Representation. Overview. Chris Williams 1.

Why the Junction Tree Algorithm? The Junction Tree Algorithm. Clique Potential Representation. Overview. Chris Williams 1. Why th Juntion Tr lgorithm? Th Juntion Tr lgorithm hris Willims 1 Shool of Informtis, Univrsity of Einurgh Otor 2009 Th JT is gnrl-purpos lgorithm for omputing (onitionl) mrginls on grphs. It os this y

More information

, each of which is a tree, and whose roots r 1. , respectively, are children of r. Data Structures & File Management

, each of which is a tree, and whose roots r 1. , respectively, are children of r. Data Structures & File Management nrl tr T is init st o on or mor nos suh tht thr is on sint no r, ll th root o T, n th rminin nos r prtition into n isjoint susts T, T,, T n, h o whih is tr, n whos roots r, r,, r n, rsptivly, r hilrn o

More information

Using the Printable Sticker Function. Using the Edit Screen. Computer. Tablet. ScanNCutCanvas

Using the Printable Sticker Function. Using the Edit Screen. Computer. Tablet. ScanNCutCanvas SnNCutCnvs Using th Printl Stikr Funtion On-o--kin stikrs n sily rt y using your inkjt printr n th Dirt Cut untion o th SnNCut mhin. For inormtion on si oprtions o th SnNCutCnvs, rr to th Hlp. To viw th

More information

EE1000 Project 4 Digital Volt Meter

EE1000 Project 4 Digital Volt Meter Ovrviw EE1000 Projt 4 Diitl Volt Mtr In this projt, w mk vi tht n msur volts in th rn o 0 to 4 Volts with on iit o ury. Th input is n nlo volt n th output is sinl 7-smnt iit tht tlls us wht tht input s

More information

0.1. Exercise 1: the distances between four points in a graph

0.1. Exercise 1: the distances between four points in a graph Mth 707 Spring 2017 (Drij Grinrg): mitrm 3 pg 1 Mth 707 Spring 2017 (Drij Grinrg): mitrm 3 u: W, 3 My 2017, in lss or y mil (grinr@umn.u) or lss S th wsit or rlvnt mtril. Rsults provn in th nots, or in

More information

Module graph.py. 1 Introduction. 2 Graph basics. 3 Module graph.py. 3.1 Objects. CS 231 Naomi Nishimura

Module graph.py. 1 Introduction. 2 Graph basics. 3 Module graph.py. 3.1 Objects. CS 231 Naomi Nishimura Moul grph.py CS 231 Nomi Nishimur 1 Introution Just lik th Python list n th Python itionry provi wys of storing, ssing, n moifying t, grph n viw s wy of storing, ssing, n moifying t. Bus Python os not

More information

# 1 ' 10 ' 100. Decimal point = 4 hundred. = 6 tens (or sixty) = 5 ones (or five) = 2 tenths. = 7 hundredths.

# 1 ' 10 ' 100. Decimal point = 4 hundred. = 6 tens (or sixty) = 5 ones (or five) = 2 tenths. = 7 hundredths. How os it work? Pl vlu o imls rprsnt prts o whol numr or ojt # 0 000 Tns o thousns # 000 # 00 Thousns Hunrs Tns Ons # 0 Diml point st iml pl: ' 0 # 0 on tnth n iml pl: ' 0 # 00 on hunrth r iml pl: ' 0

More information

Cycles and Simple Cycles. Paths and Simple Paths. Trees. Problem: There is No Completely Standard Terminology!

Cycles and Simple Cycles. Paths and Simple Paths. Trees. Problem: There is No Completely Standard Terminology! Outlin Computr Sin 331, Spnnin, n Surphs Mik Joson Dprtmnt o Computr Sin Univrsity o Clry Ltur #30 1 Introution 2 3 Dinition 4 Spnnin 5 6 Mik Joson (Univrsity o Clry) Computr Sin 331 Ltur #30 1 / 20 Mik

More information

b. How many ternary words of length 23 with eight 0 s, nine 1 s and six 2 s?

b. How many ternary words of length 23 with eight 0 s, nine 1 s and six 2 s? MATH 3012 Finl Exm, My 4, 2006, WTT Stunt Nm n ID Numr 1. All our prts o this prolm r onrn with trnry strings o lngth n, i.., wors o lngth n with lttrs rom th lpht {0, 1, 2}.. How mny trnry wors o lngth

More information

CS September 2018

CS September 2018 Loil los Distriut Systms 06. Loil los Assin squn numrs to msss All ooprtin prosss n r on orr o vnts vs. physil los: rport tim o y Assum no ntrl tim sour Eh systm mintins its own lol lo No totl orrin o

More information

Outline. 1 Introduction. 2 Min-Cost Spanning Trees. 4 Example

Outline. 1 Introduction. 2 Min-Cost Spanning Trees. 4 Example Outlin Computr Sin 33 Computtion o Minimum-Cost Spnnin Trs Prim's Alorithm Introution Mik Joson Dprtmnt o Computr Sin Univrsity o Clry Ltur #33 3 Alorithm Gnrl Constrution Mik Joson (Univrsity o Clry)

More information

An undirected graph G = (V, E) V a set of vertices E a set of unordered edges (v,w) where v, w in V

An undirected graph G = (V, E) V a set of vertices E a set of unordered edges (v,w) where v, w in V Unirt Grphs An unirt grph G = (V, E) V st o vrtis E st o unorr gs (v,w) whr v, w in V USE: to mol symmtri rltionships twn ntitis vrtis v n w r jnt i thr is n g (v,w) [or (w,v)] th g (v,w) is inint upon

More information

Designing A Concrete Arch Bridge

Designing A Concrete Arch Bridge This is th mous Shwnh ri in Switzrln, sin y Rort Millrt in 1933. It spns 37.4 mtrs (122 t) n ws sin usin th sm rphil mths tht will monstrt in this lsson. To pro with this lsson, lik on th Nxt utton hr

More information

The University of Sydney MATH2969/2069. Graph Theory Tutorial 5 (Week 12) Solutions 2008

The University of Sydney MATH2969/2069. Graph Theory Tutorial 5 (Week 12) Solutions 2008 Th Univrsity o Syny MATH2969/2069 Grph Thory Tutoril 5 (Wk 12) Solutions 2008 1. (i) Lt G th isonnt plnr grph shown. Drw its ul G, n th ul o th ul (G ). (ii) Show tht i G is isonnt plnr grph, thn G is

More information

Paths. Connectivity. Euler and Hamilton Paths. Planar graphs.

Paths. Connectivity. Euler and Hamilton Paths. Planar graphs. Pths.. Eulr n Hmilton Pths.. Pth D. A pth rom s to t is squn o gs {x 0, x 1 }, {x 1, x 2 },... {x n 1, x n }, whr x 0 = s, n x n = t. D. Th lngth o pth is th numr o gs in it. {, } {, } {, } {, } {, } {,

More information

Exam 1 Solution. CS 542 Advanced Data Structures and Algorithms 2/14/2013

Exam 1 Solution. CS 542 Advanced Data Structures and Algorithms 2/14/2013 CS Avn Dt Struturs n Algorithms Exm Solution Jon Turnr //. ( points) Suppos you r givn grph G=(V,E) with g wights w() n minimum spnning tr T o G. Now, suppos nw g {u,v} is to G. Dsri (in wors) mtho or

More information

12. Traffic engineering

12. Traffic engineering lt2.ppt S-38. Introution to Tltrffi Thory Spring 200 2 Topology Pths A tlommunition ntwork onsists of nos n links Lt N not th st of nos in with n Lt J not th st of nos in with j N = {,,,,} J = {,2,3,,2}

More information

Garnir Polynomial and their Properties

Garnir Polynomial and their Properties Univrsity of Cliforni, Dvis Dprtmnt of Mthmtis Grnir Polynomil n thir Proprtis Author: Yu Wng Suprvisor: Prof. Gorsky Eugny My 8, 07 Grnir Polynomil n thir Proprtis Yu Wng mil: uywng@uvis.u. In this ppr,

More information

Present state Next state Q + M N

Present state Next state Q + M N Qustion 1. An M-N lip-lop works s ollows: I MN=00, th nxt stt o th lip lop is 0. I MN=01, th nxt stt o th lip-lop is th sm s th prsnt stt I MN=10, th nxt stt o th lip-lop is th omplmnt o th prsnt stt I

More information

Outline. Computer Science 331. Computation of Min-Cost Spanning Trees. Costs of Spanning Trees in Weighted Graphs

Outline. Computer Science 331. Computation of Min-Cost Spanning Trees. Costs of Spanning Trees in Weighted Graphs Outlin Computr Sin 33 Computtion o Minimum-Cost Spnnin Trs Prim s Mik Joson Dprtmnt o Computr Sin Univrsity o Clry Ltur #34 Introution Min-Cost Spnnin Trs 3 Gnrl Constrution 4 5 Trmintion n Eiiny 6 Aitionl

More information

S i m p l i f y i n g A l g e b r a SIMPLIFYING ALGEBRA.

S i m p l i f y i n g A l g e b r a SIMPLIFYING ALGEBRA. S i m p l i y i n g A l g r SIMPLIFYING ALGEBRA www.mthltis.o.nz Simpliying SIMPLIFYING Algr ALGEBRA Algr is mthmtis with mor thn just numrs. Numrs hv ix vlu, ut lgr introus vrils whos vlus n hng. Ths

More information

Planar Upward Drawings

Planar Upward Drawings C.S. 252 Pro. Rorto Tmssi Computtionl Gomtry Sm. II, 1992 1993 Dt: My 3, 1993 Sri: Shmsi Moussvi Plnr Upwr Drwings 1 Thorm: G is yli i n only i it hs upwr rwing. Proo: 1. An upwr rwing is yli. Follow th

More information

CSC Design and Analysis of Algorithms. Example: Change-Making Problem

CSC Design and Analysis of Algorithms. Example: Change-Making Problem CSC 801- Dsign n Anlysis of Algorithms Ltur 11 Gry Thniqu Exmpl: Chng-Mking Prolm Givn unlimit mounts of oins of nomintions 1 > > m, giv hng for mount n with th lst numr of oins Exmpl: 1 = 25, 2 =10, =

More information

CSE 373: More on graphs; DFS and BFS. Michael Lee Wednesday, Feb 14, 2018

CSE 373: More on graphs; DFS and BFS. Michael Lee Wednesday, Feb 14, 2018 CSE 373: Mor on grphs; DFS n BFS Mihl L Wnsy, F 14, 2018 1 Wrmup Wrmup: Disuss with your nighor: Rmin your nighor: wht is simpl grph? Suppos w hv simpl, irt grph with x nos. Wht is th mximum numr of gs

More information

Algorithmic and NP-Completeness Aspects of a Total Lict Domination Number of a Graph

Algorithmic and NP-Completeness Aspects of a Total Lict Domination Number of a Graph Intrntionl J.Mth. Comin. Vol.1(2014), 80-86 Algorithmi n NP-Compltnss Aspts of Totl Lit Domintion Numr of Grph Girish.V.R. (PES Institut of Thnology(South Cmpus), Bnglor, Krntk Stt, Ini) P.Ush (Dprtmnt

More information

Solutions for HW11. Exercise 34. (a) Use the recurrence relation t(g) = t(g e) + t(g/e) to count the number of spanning trees of v 1

Solutions for HW11. Exercise 34. (a) Use the recurrence relation t(g) = t(g e) + t(g/e) to count the number of spanning trees of v 1 Solutions for HW Exris. () Us th rurrn rltion t(g) = t(g ) + t(g/) to ount th numr of spnning trs of v v v u u u Rmmr to kp multipl gs!! First rrw G so tht non of th gs ross: v u v Rursing on = (v, u ):

More information

12/3/12. Outline. Part 10. Graphs. Circuits. Euler paths/circuits. Euler s bridge problem (Bridges of Konigsberg Problem)

12/3/12. Outline. Part 10. Graphs. Circuits. Euler paths/circuits. Euler s bridge problem (Bridges of Konigsberg Problem) 12/3/12 Outlin Prt 10. Grphs CS 200 Algorithms n Dt Struturs Introution Trminology Implmnting Grphs Grph Trvrsls Topologil Sorting Shortst Pths Spnning Trs Minimum Spnning Trs Ciruits 1 Ciruits Cyl 2 Eulr

More information

Journal of Solid Mechanics and Materials Engineering

Journal of Solid Mechanics and Materials Engineering n Mtrils Enginring Strss ntnsit tor of n ntrf Crk in Bon Plt unr Uni-Axil Tnsion No-Aki NODA, Yu ZHANG, Xin LAN, Ysushi TAKASE n Kzuhiro ODA Dprtmnt of Mhnil n Control Enginring, Kushu nstitut of Thnolog,

More information

5/9/13. Part 10. Graphs. Outline. Circuits. Introduction Terminology Implementing Graphs

5/9/13. Part 10. Graphs. Outline. Circuits. Introduction Terminology Implementing Graphs Prt 10. Grphs CS 200 Algorithms n Dt Struturs 1 Introution Trminology Implmnting Grphs Outlin Grph Trvrsls Topologil Sorting Shortst Pths Spnning Trs Minimum Spnning Trs Ciruits 2 Ciruits Cyl A spil yl

More information

A PROPOSAL OF FE MODELING OF UNIDIRECTIONAL COMPOSITE CONSIDERING UNCERTAIN MICRO STRUCTURE

A PROPOSAL OF FE MODELING OF UNIDIRECTIONAL COMPOSITE CONSIDERING UNCERTAIN MICRO STRUCTURE 18 TH INTERNATIONAL CONFERENCE ON COMPOSITE MATERIALS A PROPOSAL OF FE MODELING OF UNIDIRECTIONAL COMPOSITE CONSIDERING UNCERTAIN MICRO STRUCTURE Y.Fujit 1*, T. Kurshii 1, H.Ymtsu 1, M. Zo 2 1 Dpt. o Mngmnt

More information

Integration Continued. Integration by Parts Solving Definite Integrals: Area Under a Curve Improper Integrals

Integration Continued. Integration by Parts Solving Definite Integrals: Area Under a Curve Improper Integrals Intgrtion Continud Intgrtion y Prts Solving Dinit Intgrls: Ar Undr Curv Impropr Intgrls Intgrtion y Prts Prticulrly usul whn you r trying to tk th intgrl o som unction tht is th product o n lgric prssion

More information

CSE 373: AVL trees. Warmup: Warmup. Interlude: Exploring the balance invariant. AVL Trees: Invariants. AVL tree invariants review

CSE 373: AVL trees. Warmup: Warmup. Interlude: Exploring the balance invariant. AVL Trees: Invariants. AVL tree invariants review rmup CSE 7: AVL trs rmup: ht is n invrint? Mihl L Friy, Jn 9, 0 ht r th AVL tr invrints, xtly? Disuss with your nighor. AVL Trs: Invrints Intrlu: Exploring th ln invrint Cor i: xtr invrint to BSTs tht

More information

Numbering Boundary Nodes

Numbering Boundary Nodes Numring Bounry Nos Lh MBri Empori Stt Univrsity August 10, 2001 1 Introution Th purpos of this ppr is to xplor how numring ltril rsistor ntworks ffts thir rspons mtrix, Λ. Morovr, wht n lrn from Λ out

More information

DUET WITH DIAMONDS COLOR SHIFTING BRACELET By Leslie Rogalski

DUET WITH DIAMONDS COLOR SHIFTING BRACELET By Leslie Rogalski Dut with Dimons Brlt DUET WITH DIAMONDS COLOR SHIFTING BRACELET By Lsli Roglski Photo y Anrw Wirth Supruo DUETS TM from BSmith rt olor shifting fft tht mks your work tk on lif of its own s you mov! This

More information

Page 1. Question 19.1b Electric Charge II Question 19.2a Conductors I. ConcepTest Clicker Questions Chapter 19. Physics, 4 th Edition James S.

Page 1. Question 19.1b Electric Charge II Question 19.2a Conductors I. ConcepTest Clicker Questions Chapter 19. Physics, 4 th Edition James S. ConTst Clikr ustions Chtr 19 Physis, 4 th Eition Jms S. Wlkr ustion 19.1 Two hrg blls r rlling h othr s thy hng from th iling. Wht n you sy bout thir hrgs? Eltri Chrg I on is ositiv, th othr is ngtiv both

More information

A 4-state solution to the Firing Squad Synchronization Problem based on hybrid rule 60 and 102 cellular automata

A 4-state solution to the Firing Squad Synchronization Problem based on hybrid rule 60 and 102 cellular automata A 4-stt solution to th Firing Squ Synhroniztion Prolm s on hyri rul 60 n 102 llulr utomt LI Ning 1, LIANG Shi-li 1*, CUI Shung 1, XU Mi-ling 1, ZHANG Ling 2 (1. Dprtmnt o Physis, Northst Norml Univrsity,

More information

Seven-Segment Display Driver

Seven-Segment Display Driver 7-Smnt Disply Drivr, Ron s in 7-Smnt Disply Drivr, Ron s in Prolm 62. 00 0 0 00 0000 000 00 000 0 000 00 0 00 00 0 0 0 000 00 0 00 BCD Diits in inry Dsin Drivr Loi 4 inputs, 7 outputs 7 mps, h with 6 on

More information

COMP108 Algorithmic Foundations

COMP108 Algorithmic Foundations Grdy mthods Prudn Wong http://www.s.liv..uk/~pwong/thing/omp108/01617 Coin Chng Prolm Suppos w hv 3 typs of oins 10p 0p 50p Minimum numr of oins to mk 0.8, 1.0, 1.? Grdy mthod Lrning outoms Undrstnd wht

More information

Decimals DECIMALS.

Decimals DECIMALS. Dimls DECIMALS www.mthltis.o.uk ow os it work? Solutions Dimls P qustions Pl vlu o imls 0 000 00 000 0 000 00 0 000 00 0 000 00 0 000 tnths or 0 thousnths or 000 hunrths or 00 hunrths or 00 0 tn thousnths

More information

CS 461, Lecture 17. Today s Outline. Example Run

CS 461, Lecture 17. Today s Outline. Example Run Prim s Algorithm CS 461, Ltur 17 Jr Si Univrsity o Nw Mxio In Prim s lgorithm, th st A mintin y th lgorithm orms singl tr. Th tr strts rom n ritrry root vrtx n grows until it spns ll th vrtis in V At h

More information

Math 61 : Discrete Structures Final Exam Instructor: Ciprian Manolescu. You have 180 minutes.

Math 61 : Discrete Structures Final Exam Instructor: Ciprian Manolescu. You have 180 minutes. Nm: UCA ID Numr: Stion lttr: th 61 : Disrt Struturs Finl Exm Instrutor: Ciprin nolsu You hv 180 minuts. No ooks, nots or lultors r llow. Do not us your own srth ppr. 1. (2 points h) Tru/Fls: Cirl th right

More information

Properties of Hexagonal Tile local and XYZ-local Series

Properties of Hexagonal Tile local and XYZ-local Series 1 Proprtis o Hxgonl Til lol n XYZ-lol Sris Jy Arhm 1, Anith P. 2, Drsnmik K. S. 3 1 Dprtmnt o Bsi Sin n Humnitis, Rjgiri Shool o Enginring n, Thnology, Kkkn, Ernkulm, Krl, Ini. jyjos1977@gmil.om 2 Dprtmnt

More information

Multipoint Alternate Marking method for passive and hybrid performance monitoring

Multipoint Alternate Marking method for passive and hybrid performance monitoring Multipoint Altrnt Mrkin mtho or pssiv n hyri prormn monitorin rt-iool-ippm-multipoint-lt-mrk-00 Pru, Jul 2017, IETF 99 Giuspp Fiool (Tlom Itli) Muro Coilio (Tlom Itli) Amo Spio (Politnio i Torino) Riro

More information

Section 3: Antiderivatives of Formulas

Section 3: Antiderivatives of Formulas Chptr Th Intgrl Appli Clculus 96 Sction : Antirivtivs of Formuls Now w cn put th is of rs n ntirivtivs togthr to gt wy of vluting finit intgrls tht is ct n oftn sy. To vlut finit intgrl f(t) t, w cn fin

More information

CS 241 Analysis of Algorithms

CS 241 Analysis of Algorithms CS 241 Anlysis o Algorithms Prossor Eri Aron Ltur T Th 9:00m Ltur Mting Lotion: OLB 205 Businss HW6 u lry HW7 out tr Thnksgiving Ring: Ch. 22.1-22.3 1 Grphs (S S. B.4) Grphs ommonly rprsnt onntions mong

More information

CSE 373. Graphs 1: Concepts, Depth/Breadth-First Search reading: Weiss Ch. 9. slides created by Marty Stepp

CSE 373. Graphs 1: Concepts, Depth/Breadth-First Search reading: Weiss Ch. 9. slides created by Marty Stepp CSE 373 Grphs 1: Conpts, Dpth/Brth-First Srh ring: Wiss Ch. 9 slis rt y Mrty Stpp http://www.s.wshington.u/373/ Univrsity o Wshington, ll rights rsrv. 1 Wht is grph? 56 Tokyo Sttl Soul 128 16 30 181 140

More information

QUESTIONS BEGIN HERE!

QUESTIONS BEGIN HERE! Points miss: Stunt's Nm: Totl sor: /100 points Est Tnnss Stt Univrsity Dprtmnt o Computr n Inormtion Sins CSCI 2710 (Trno) Disrt Struturs TEST or Sprin Smstr, 2005 R this or strtin! This tst is los ook

More information

C-201 Sheet Bar Measures 1 inch

C-201 Sheet Bar Measures 1 inch Janine M. lexander, P.. P.. No. 9, L 0 N. PRK RO, SUIT 0 HOLLYWOO, LORI 0 PHON: (9) - X: (9) 08- No.: 9 I ST SRIPTION Y GT VLVS SHLL RSILINT ST, MNUTUR TO MT OR X TH RQUIRMNTS O WW 09 (LTST RVISION) N

More information

Trees as operads. Lecture A formalism of trees

Trees as operads. Lecture A formalism of trees Ltur 2 rs s oprs In this ltur, w introu onvnint tgoris o trs tht will us or th inition o nroil sts. hs tgoris r gnrliztions o th simpliil tgory us to in simpliil sts. First w onsir th s o plnr trs n thn

More information

Register Allocation. Register Allocation. Principle Phases. Principle Phases. Example: Build. Spills 11/14/2012

Register Allocation. Register Allocation. Principle Phases. Principle Phases. Example: Build. Spills 11/14/2012 Rgistr Allotion W now r l to o rgistr llotion on our intrfrn grph. W wnt to l with two typs of onstrints: 1. Two vlus r liv t ovrlpping points (intrfrn grph) 2. A vlu must or must not in prtiulr rhitturl

More information

5/1/2018. Huffman Coding Trees. Huffman Coding Trees. Huffman Coding Trees. Huffman Coding Trees. Huffman Coding Trees. Huffman Coding Trees

5/1/2018. Huffman Coding Trees. Huffman Coding Trees. Huffman Coding Trees. Huffman Coding Trees. Huffman Coding Trees. Huffman Coding Trees /1/018 W usully no strns y ssnn -lnt os to ll rtrs n t lpt (or mpl, 8-t on n ASCII). Howvr, rnt rtrs our wt rnt rquns, w n sv mmory n ru trnsmttl tm y usn vrl-lnt non. T s to ssn sortr os to rtrs tt our

More information

Nefertiti. Echoes of. Regal components evoke visions of the past MULTIPLE STITCHES. designed by Helena Tang-Lim

Nefertiti. Echoes of. Regal components evoke visions of the past MULTIPLE STITCHES. designed by Helena Tang-Lim MULTIPLE STITCHES Nrtiti Ehos o Rgl omponnts vok visions o th pst sign y Hln Tng-Lim Us vrity o stiths to rt this rgl yt wrl sign. Prt sping llows squr s to mk roun omponnts tht rp utiully. FCT-SC-030617-07

More information

V={A,B,C,D,E} E={ (A,D),(A,E),(B,D), (B,E),(C,D),(C,E)}

V={A,B,C,D,E} E={ (A,D),(A,E),(B,D), (B,E),(C,D),(C,E)} s s of s Computr Sin & Enginring 423/823 Dsign n Anlysis of Ltur 03 (Chptr 22) Stphn Sott (Apt from Vinohnrn N. Vriym) s of s s r strt t typs tht r pplil to numrous prolms Cn ptur ntitis, rltionships twn

More information

Graphs. Graphs. Graphs: Basic Terminology. Directed Graphs. Dr Papalaskari 1

Graphs. Graphs. Graphs: Basic Terminology. Directed Graphs. Dr Papalaskari 1 CSC 00 Disrt Struturs : Introuon to Grph Thory Grphs Grphs CSC 00 Disrt Struturs Villnov Univrsity Grphs r isrt struturs onsisng o vrs n gs tht onnt ths vrs. Grphs n us to mol: omputr systms/ntworks mthml

More information

V={A,B,C,D,E} E={ (A,D),(A,E),(B,D), (B,E),(C,D),(C,E)}

V={A,B,C,D,E} E={ (A,D),(A,E),(B,D), (B,E),(C,D),(C,E)} Introution Computr Sin & Enginring 423/823 Dsign n Anlysis of Algorithms Ltur 03 Elmntry Grph Algorithms (Chptr 22) Stphn Sott (Apt from Vinohnrn N. Vriym) I Grphs r strt t typs tht r pplil to numrous

More information

DEVELOPING COMPUTER PROGRAM FOR COMPUTING EIGENPAIRS OF 2 2 MATRICES AND 3 3 UPPER TRIANGULAR MATRICES USING THE SIMPLE ALGORITHM

DEVELOPING COMPUTER PROGRAM FOR COMPUTING EIGENPAIRS OF 2 2 MATRICES AND 3 3 UPPER TRIANGULAR MATRICES USING THE SIMPLE ALGORITHM Fr Est Journl o Mthtil Sins (FJMS) Volu 6 Nur Pgs 8- Pulish Onlin: Sptr This ppr is vill onlin t http://pphjo/journls/jsht Pushp Pulishing Hous DEVELOPING COMPUTER PROGRAM FOR COMPUTING EIGENPAIRS OF MATRICES

More information

Outline. Circuits. Euler paths/circuits 4/25/12. Part 10. Graphs. Euler s bridge problem (Bridges of Konigsberg Problem)

Outline. Circuits. Euler paths/circuits 4/25/12. Part 10. Graphs. Euler s bridge problem (Bridges of Konigsberg Problem) 4/25/12 Outlin Prt 10. Grphs CS 200 Algorithms n Dt Struturs Introution Trminology Implmnting Grphs Grph Trvrsls Topologil Sorting Shortst Pths Spnning Trs Minimum Spnning Trs Ciruits 1 2 Eulr s rig prolm

More information

Problem solving by search

Problem solving by search Prolm solving y srh Tomáš voo Dprtmnt o Cyrntis, Vision or Roots n Autonomous ystms Mrh 5, 208 / 3 Outlin rh prolm. tt sp grphs. rh trs. trtgis, whih tr rnhs to hoos? trtgy/algorithm proprtis? Progrmming

More information

SAMPLE PAGES. Primary. Primary Maths Basics Series THE SUBTRACTION BOOK. A progression of subtraction skills. written by Jillian Cockings

SAMPLE PAGES. Primary. Primary Maths Basics Series THE SUBTRACTION BOOK. A progression of subtraction skills. written by Jillian Cockings PAGES Primry Primry Mths Bsis Sris THE SUBTRACTION BOOK A prorssion o sutrtion skills writtn y Jillin Cokins INTRODUCTION This ook is intn to hlp sur th mthmtil onpt o sutrtion in hilrn o ll s. Th mstry

More information

Graph Isomorphism. Graphs - II. Cayley s Formula. Planar Graphs. Outline. Is K 5 planar? The number of labeled trees on n nodes is n n-2

Graph Isomorphism. Graphs - II. Cayley s Formula. Planar Graphs. Outline. Is K 5 planar? The number of labeled trees on n nodes is n n-2 Grt Thortil Is In Computr Sin Vitor Amhik CS 15-251 Ltur 9 Grphs - II Crngi Mllon Univrsity Grph Isomorphism finition. Two simpl grphs G n H r isomorphi G H if thr is vrtx ijtion V H ->V G tht prsrvs jny

More information

SOLVED EXAMPLES. be the foci of an ellipse with eccentricity e. For any point P on the ellipse, prove that. tan

SOLVED EXAMPLES. be the foci of an ellipse with eccentricity e. For any point P on the ellipse, prove that. tan LOCUS 58 SOLVED EXAMPLES Empl Lt F n F th foci of n llips with ccntricit. For n point P on th llips, prov tht tn PF F tn PF F Assum th llips to, n lt P th point (, sin ). P(, sin ) F F F = (-, 0) F = (,

More information

Mode switching in modal domain models of overhead lines and underground cables

Mode switching in modal domain models of overhead lines and underground cables Mo swithing in mol omin mols o ovrh lins n unrgroun ls I. Zltunić, S. Voopij, R. Goić Astrt- This ppr prsnts ri rviw o irnt mthos or lultion o ignvlus n ignvtors or pplition in th mol trnsmission lin thory.

More information

Chem 104A, Fall 2016, Midterm 1 Key

Chem 104A, Fall 2016, Midterm 1 Key hm 104A, ll 2016, Mitrm 1 Ky 1) onstruct microstt tl for p 4 configurtion. Pls numrt th ms n ml for ch lctron in ch microstt in th tl. (Us th formt ml m s. Tht is spin -½ lctron in n s oritl woul writtn

More information

Construction 11: Book I, Proposition 42

Construction 11: Book I, Proposition 42 Th Visul Construtions of Euli Constrution #11 73 Constrution 11: Book I, Proposition 42 To onstrut, in givn rtilinl ngl, prlllogrm qul to givn tringl. Not: Equl hr mns qul in r. 74 Constrution # 11 Th

More information

OpenMx Matrices and Operators

OpenMx Matrices and Operators OpnMx Mtris n Oprtors Sr Mln Mtris: t uilin loks Mny typs? Dnots r lmnt mxmtrix( typ= Zro", nrow=, nol=, nm="" ) mxmtrix( typ= Unit", nrow=, nol=, nm="" ) mxmtrix( typ= Int", nrow=, nol=, nm="" ) mxmtrix(

More information

Tangram Fractions Overview: Students will analyze standard and nonstandard

Tangram Fractions Overview: Students will analyze standard and nonstandard ACTIVITY 1 Mtrils: Stunt opis o tnrm mstrs trnsprnis o tnrm mstrs sissors PROCEDURE Skills: Dsriin n nmin polyons Stuyin onrun Comprin rtions Tnrm Frtions Ovrviw: Stunts will nlyz stnr n nonstnr tnrms

More information

MAT3707. Tutorial letter 201/1/2017 DISCRETE MATHEMATICS: COMBINATORICS. Semester 1. Department of Mathematical Sciences MAT3707/201/1/2017

MAT3707. Tutorial letter 201/1/2017 DISCRETE MATHEMATICS: COMBINATORICS. Semester 1. Department of Mathematical Sciences MAT3707/201/1/2017 MAT3707/201/1/2017 Tutoril lttr 201/1/2017 DISCRETE MATHEMATICS: COMBINATORICS MAT3707 Smstr 1 Dprtmnt o Mtmtil Sins SOLUTIONS TO ASSIGNMENT 01 BARCODE Din tomorrow. univrsity o sout ri SOLUTIONS TO ASSIGNMENT

More information

period (time)? frequency?

period (time)? frequency? AQA Trilogy Unit 6.6: Wvs n Eltromgnti Wvs - Fountion 1 Complt th gp ill: All wvs trnsr rom on pl to nothr, ut th m os not mov. Th prtils osillt (v ) roun ix point n pss onto th nxt prtil n in turn thy

More information

Aquauno Video 6 Plus Page 1

Aquauno Video 6 Plus Page 1 Connt th timr to th tp. Aquuno Vio 6 Plus Pg 1 Usr mnul 3 lik! For Aquuno Vio 6 (p/n): 8456 For Aquuno Vio 6 Plus (p/n): 8413 Opn th timr unit y prssing th two uttons on th sis, n fit 9V lklin ttry. Whn

More information

CS61B Lecture #33. Administrivia: Autograder will run this evening. Today s Readings: Graph Structures: DSIJ, Chapter 12

CS61B Lecture #33. Administrivia: Autograder will run this evening. Today s Readings: Graph Structures: DSIJ, Chapter 12 Aministrivi: CS61B Ltur #33 Autogrr will run this vning. Toy s Rings: Grph Struturs: DSIJ, Chptr 12 Lst moifi: W Nov 8 00:39:28 2017 CS61B: Ltur #33 1 Why Grphs? For xprssing non-hirrhilly rlt itms Exmpls:

More information

DETAIL B DETAIL A 7 8 APPLY PRODUCT ID LABEL SB838XXXX ADJ FOUR POST RACK SQUARE HOLE RAIL B REVISION

DETAIL B DETAIL A 7 8 APPLY PRODUCT ID LABEL SB838XXXX ADJ FOUR POST RACK SQUARE HOLE RAIL B REVISION RVISION RV SRIPTION Y T HNG NO NOT OR PROUT LL JJH // LR TIL PPLY PROUT I LL TIL INSI UPPR ROSS MMR ON PR RK IS J OUR POST RK SQUR HOL RIL IS MN MS G NUT, PNL RNG 99 PPLY PROUT I LL INSI UPPR ROSS MMR

More information

Register Allocation. How to assign variables to finitely many registers? What to do when it can t be done? How to do so efficiently?

Register Allocation. How to assign variables to finitely many registers? What to do when it can t be done? How to do so efficiently? Rgistr Allotion Rgistr Allotion How to ssign vrils to initly mny rgistrs? Wht to o whn it n t on? How to o so iintly? Mony, Jun 3, 13 Mmory Wll Disprity twn CPU sp n mmory ss sp improvmnt Mony, Jun 3,

More information

In which direction do compass needles always align? Why?

In which direction do compass needles always align? Why? AQA Trloy Unt 6.7 Mntsm n Eltromntsm - Hr 1 Complt t p ll: Mnt or s typ o or n t s stronst t t o t mnt. Tr r two typs o mnt pol: n. Wrt wt woul ppn twn t pols n o t mnt ntrtons low: Drw t mnt l lns on

More information

Chapter 16. 1) is a particular point on the graph of the function. 1. y, where x y 1

Chapter 16. 1) is a particular point on the graph of the function. 1. y, where x y 1 Prctic qustions W now tht th prmtr p is dirctl rltd to th mplitud; thrfor, w cn find tht p. cos d [ sin ] sin sin Not: Evn though ou might not now how to find th prmtr in prt, it is lws dvisl to procd

More information

Math 166 Week in Review 2 Sections 1.1b, 1.2, 1.3, & 1.4

Math 166 Week in Review 2 Sections 1.1b, 1.2, 1.3, & 1.4 Mt 166 WIR, Sprin 2012, Bnjmin urisp Mt 166 Wk in Rviw 2 Stions 1.1, 1.2, 1.3, & 1.4 1. S t pproprit rions in Vnn irm tt orrspon to o t ollowin sts. () (B ) B () ( ) B B () (B ) B 1 Mt 166 WIR, Sprin 2012,

More information

TOPIC 5: INTEGRATION

TOPIC 5: INTEGRATION TOPIC 5: INTEGRATION. Th indfinit intgrl In mny rspcts, th oprtion of intgrtion tht w r studying hr is th invrs oprtion of drivtion. Dfinition.. Th function F is n ntidrivtiv (or primitiv) of th function

More information

Steinberg s Conjecture is false

Steinberg s Conjecture is false Stinrg s Conjtur is als arxiv:1604.05108v2 [math.co] 19 Apr 2016 Vinnt Cohn-Aa Mihal Hig Danil Král Zhntao Li Estan Salgao Astrat Stinrg onjtur in 1976 that vry planar graph with no yls o lngth our or

More information

EXAMPLE 87.5" APPROVAL SHEET APPROVED BY /150HP DUAL VFD CONTROL ASSEMBLY CUSTOMER NAME: CAL POLY SLO FINISH: F 20

EXAMPLE 87.5 APPROVAL SHEET APPROVED BY /150HP DUAL VFD CONTROL ASSEMBLY CUSTOMER NAME: CAL POLY SLO FINISH: F 20 XMPL XMPL RVISIONS ZON RV. SRIPTION T PPROV 0.00 THIS IS N PPROVL RWING OR YOUR ORR. OR MNUTURING N GIN, THIS RWING MUST SIGN N RTURN TO MOTION INUSTRIS. NY HNGS M TO THIS RWING, TR MNUTURING HS GUN WILL

More information

QUESTIONS BEGIN HERE!

QUESTIONS BEGIN HERE! Points miss: Stunt's Nm: Totl sor: /100 points Est Tnnss Stt Univrsity Dprtmnt of Computr n Informtion Sins CSCI 710 (Trnoff) Disrt Struturs TEST for Fll Smstr, 00 R this for strtin! This tst is los ook

More information

Instructions for Section 1

Instructions for Section 1 Instructions for Sction 1 Choos th rspons tht is corrct for th qustion. A corrct nswr scors 1, n incorrct nswr scors 0. Mrks will not b dductd for incorrct nswrs. You should ttmpt vry qustion. No mrks

More information

1. Determine whether or not the following binary relations are equivalence relations. Be sure to justify your answers.

1. Determine whether or not the following binary relations are equivalence relations. Be sure to justify your answers. Mth 0 Exm - Prti Prolm Solutions. Dtrmin whthr or not th ollowing inry rltions r quivln rltions. B sur to justiy your nswrs. () {(0,0),(0,),(0,),(,),(,),(,),(,),(,0),(,),(,),(,0),(,),(.)} on th st A =

More information

Weighted graphs -- reminder. Data Structures LECTURE 15. Shortest paths algorithms. Example: weighted graph. Two basic properties of shortest paths

Weighted graphs -- reminder. Data Structures LECTURE 15. Shortest paths algorithms. Example: weighted graph. Two basic properties of shortest paths Dt Strutur LECTURE Shortt pth lgorithm Proprti of hortt pth Bllmn-For lgorithm Dijktr lgorithm Chptr in th txtook (pp ). Wight grph -- rminr A wight grph i grph in whih g hv wight (ot) w(v i, v j ) >.

More information

CS553 Lecture Register Allocation 1

CS553 Lecture Register Allocation 1 Low-Lvl Issus Lst ltur Livnss nlysis Rgistr llotion Toy Mor rgistr llotion Wnsy Common suxprssion limintion or PA2 Logistis PA1 is u PA2 hs n post Mony th 15 th, no lss u to LCPC in Orgon CS553 Ltur Rgistr

More information

CIVL 8/ D Boundary Value Problems - Rectangular Elements 1/7

CIVL 8/ D Boundary Value Problems - Rectangular Elements 1/7 CIVL / -D Boundr Vlu Prolms - Rctngulr Elmnts / RECANGULAR ELEMENS - In som pplictions, it m mor dsirl to us n lmntl rprsnttion of th domin tht hs four sids, ithr rctngulr or qudriltrl in shp. Considr

More information

The University of Sydney MATH 2009

The University of Sydney MATH 2009 T Unvrsty o Syny MATH 2009 APH THEOY Tutorl 7 Solutons 2004 1. Lt t sonnt plnr rp sown. Drw ts ul, n t ul o t ul ( ). Sow tt s sonnt plnr rp, tn s onnt. Du tt ( ) s not somorp to. ( ) A onnt rp s on n

More information

Jonathan Turner Exam 2-10/28/03

Jonathan Turner Exam 2-10/28/03 CS Algorihm n Progrm Prolm Exm Soluion S Soluion Jonhn Turnr Exm //. ( poin) In h Fioni hp ruur, u wn vrx u n i prn v u ing u v i v h lry lo hil in i l m hil o om ohr vrx. Suppo w hng hi, o h ing u i prorm

More information

Solutions to Homework 5

Solutions to Homework 5 Solutions to Homwork 5 Pro. Silvia Frnánz Disrt Mathmatis Math 53A, Fall 2008. [3.4 #] (a) Thr ar x olor hois or vrtx an x or ah o th othr thr vrtis. So th hromati polynomial is P (G, x) =x (x ) 3. ()

More information

Greedy Algorithms, Activity Selection, Minimum Spanning Trees Scribes: Logan Short (2015), Virginia Date: May 18, 2016

Greedy Algorithms, Activity Selection, Minimum Spanning Trees Scribes: Logan Short (2015), Virginia Date: May 18, 2016 Ltur 4 Gry Algorithms, Ativity Sltion, Minimum Spnning Trs Sris: Logn Short (5), Virgini Dt: My, Gry Algorithms Suppos w wnt to solv prolm, n w r l to om up with som rursiv ormultion o th prolm tht woul

More information

More Foundations. Undirected Graphs. Degree. A Theorem. Graphs, Products, & Relations

More Foundations. Undirected Graphs. Degree. A Theorem. Graphs, Products, & Relations Mr Funtins Grphs, Pruts, & Rltins Unirt Grphs An unirt grph is pir f 1. A st f ns 2. A st f gs (whr n g is st f tw ns*) Friy, Sptmr 2, 2011 Ring: Sipsr 0.2 ginning f 0.4; Stughtn 1.1.5 ({,,,,}, {{,}, {,},

More information

WORKSHOP 6 BRIDGE TRUSS

WORKSHOP 6 BRIDGE TRUSS WORKSHOP 6 BRIDGE TRUSS WS6-2 Workshop Ojtivs Lrn to msh lin gomtry to gnrt CBAR lmnts Bom fmilir with stting up th CBAR orinttion vtor n stion proprtis Lrn to st up multipl lo ss Lrn to viw th iffrnt

More information

Polygons POLYGONS.

Polygons POLYGONS. Polgons PLYGNS www.mthltis.o.uk ow os it work? Solutions Polgons Pg qustions Polgons Polgon Not polgon Polgon Not polgon Polgon Not polgon Polgon Not polgon f g h Polgon Not polgon Polgon Not polgon Polgon

More information

Section 10.4 Connectivity (up to paths and isomorphism, not including)

Section 10.4 Connectivity (up to paths and isomorphism, not including) Toy w will isuss two stions: Stion 10.3 Rprsnting Grphs n Grph Isomorphism Stion 10.4 Conntivity (up to pths n isomorphism, not inluing) 1 10.3 Rprsnting Grphs n Grph Isomorphism Whn w r working on n lgorithm

More information

Physics 222 Midterm, Form: A

Physics 222 Midterm, Form: A Pysis 222 Mitrm, Form: A Nm: Dt: Hr r som usul onstnts. 1 4πɛ 0 = 9 10 9 Nm 2 /C 2 µ0 4π = 1 10 7 tsl s/c = 1.6 10 19 C Qustions 1 5: A ipol onsistin o two r point-lik prtils wit q = 1 µc, sprt y istn

More information

CSE303 - Introduction to the Theory of Computing Sample Solutions for Exercises on Finite Automata

CSE303 - Introduction to the Theory of Computing Sample Solutions for Exercises on Finite Automata CSE303 - Introduction to th Thory of Computing Smpl Solutions for Exrciss on Finit Automt Exrcis 2.1.1 A dtrministic finit utomton M ccpts th mpty string (i.., L(M)) if nd only if its initil stt is finl

More information