Experimental studies of THGEM in different Ar/CO 2 mixtures

Size: px
Start display at page:

Download "Experimental studies of THGEM in different Ar/CO 2 mixtures"

Transcription

1 Experimental studies of THGEM in different Ar/CO 2 mixtures He Zhan-ying( 何占营 ) 1;2) Zhou Jian-rong( 周健荣 ) 2;3*) Sun Zhi-jia( 孙志嘉 ) 2;3) Yang Gui-an( 杨桂安 ) 2;3) Xu Hong( 许虹 ) 2;3) Wang Yan-feng( 王艳凤 ) 2;3) Liu Qian( 刘倩 ) 3;4) LIU Hong-bang( 刘宏邦 ) 3;4) Chen Shi( 陈石 ) 4) Xie Yi-gang( 谢一冈 ) 2;4) Zheng Yang-heng( 郑阳恒 ) 3;4) Wang Xiao-dong( 王晓冬 ) 1 Zhang Xiao-dong( 张小东 ) 1 Hu Bi-tao( 胡碧涛 ) 1 Chen Yuan-Bo( 陈元柏 ) 2;3) 1 School of Nuclear Science and Technology, Lanzhou University, Lanzhou , China; 2 Institute of High Energy Physics, Chinese Academy of Sciences, Beijing , China; 3 State Key Laboratory of Particle Detection and Electronics,Beijing ,China; 4 University of Chinese Academy of Sciences, Beijing ,China Abstract: In this paper, the performances of a type of the domestic THGEM (THick Gaseous Electron Multiplier) working in the Ar/CO 2 mixtures are reported in details. This kind of single THGEM can provide the gain range from 100 to 1000, which is very suitable for the application in the neutron detection. In order to study its basic characteristics as the references for the development of THGEM based neutron detector, the counting rate plateau, the energy resolution and the gain of the THGEM have been measured in the different Ar/CO 2 mixtures with the change of the electrical fields. For the Ar/CO 2 (90%/10%) gas mixture, a wide counting rate plateau is got from 720V to 770V with the plateau slope of 2.4% / 100 V and the excellent energy resolution about 22% is obtained at the 5.9keV full energy peak of the 55 Fe X-ray source. Key words: THGEM, counting rate plateau, gas gain, energy resolution; PACS: Gx, Cs, Cz 1. Introduction Neutrons are used to investigate the structure and dynamics of a material. Many efforts have recently been devoted to the development of the next generation of neutron facilities, which include SNS in USA, J- PARC in Japan, ISIS in UK, CSNS (China Spallation Neutron Source) in China and ESS in Europe [1]. The neutron detector is one of the key components of the neutron scattering instruments. With the international development of the new generation neutron source, the traditional neutron detector based on He-3 has not been able to satisfy very well the demand of the application of high flux especially. And also facing the global crisis of He-3 * Supported by National Natural Science Foundation of China ( , ) *) zhoujr@ihep.ac.cn Phone:

2 supply as well [2], the research on the new style of the neutron detector which can replace the He-3 based detection technology becomes extremely urgent. As a good candidate, a boron coated GEM became the focus of attention recently [3], which was firstly designed by Martin Klein using CERN standard GEM in 2006[4]. It has the outstanding and excellent characteristics, such as high counting rate capability (>10MHz), good spatial resolution and timing properties, radiation resistance, flexible detector shape and readout patterns [5]. In 2011, IHEP and UCAS firstly developed successfully a kind of THGEM, manufactured economically by standard printed-circuit drilling and etching technology in China. Compared with the CERN standard GEM, THGEM has higher gain, sub-millimeter spatial resolution and the possibility of industrial production capability of large-area robust detectors, which is very suitable and adequate for the application of neutron detection. In this paper, the THGEM is provided by Zheng Yang-heng group of UCAS. It s a thinner-thgem with a thickness of 200μm, hole diameter of 200μm, pitch of 500μm and a very small rim of 5 10μm. The thinner-thgem is made of FR4 glass epoxy substrate, with 20μm thick copper- cladding on both sides and has an active area of 50mm*50mm [6].In order to study its basic characteristics as the references for the development of this kind of domestic THGEM based neutron detector, the performances of the counting rate plateau, the energy resolution and the gain have been measured in the different Ar/CO 2 mixtures with the different high voltages. According to the experiments, the working conditions optimized of the THGEM have been obtained, which would be very helpful for the design of this kind of THGEM based neutron detector in future [7,8]. 2. Experimental setup Fig.1 shows a schematic view of the detector configuration consisting of cathode, anode and a single THGEM. The THGEM detector was operated in different Ar/CO 2 mixtures at a normal pressure and temperature. Measurements were carried out by using a 55 Fe X ray source (activity 10mCi) which was positioned in such a way that a collimated beam (ф1 hole) of X-rays perpendicularly entered the upper drift region. The ionization electrons generated by the interaction of 55 Fe 5.9keV X-rays with Ar atoms were amplified in avalanche mode in the THGEM holes [8], and then entered the induction region, where they were finally collected by the anode. All the three electrodes of HV were supplied by the WIENER MPOD mini-hv power and the signals were readout with an ORTEC 142IH preamplifier followed by an ORTEC 572A amplifier (shaping time t=2μs) and an ORTEC multi-channel analyzer (trump-usb-8k).

3 3. Results and discussions 3.1 Plateau Fig.1 Schematic view of a single THGEM detector with drift region Dd=5.5mm and induction region Di=3.5mm. In order to know the suitable working voltage of the detector in different Ar/CO 2 mixture, its counter plateau was measured in different Ed (drift field) and Ei (induction field) and the results are shown on Fig.2. During the experiment, the total flow of Ar and CO 2 gas is 50 SCCM to ensure the amount of effective working gas in the chamber. The counts were recorded in every one minute and the voltage of THGEM was increased by the increment of 5V until the spark discharge occurred. As the Fig.2 shows, it has a longer plateau in the Ar/CO 2 mixture ratio of 90%/10% and gets shorter with the increase of the proportion of CO 2. In certain extent, the counting rate was independent on the Ed and increasing with the Ei, so that the plateau was shifted left with the increasing of the Ei. For the gas mixture Ar/CO 2 (90%/10%), the induction field Ei of 2.0 kv/cm and the drift field Ed of 0.5kV/cm, the plateau range of this kind of THGEM was from 720V to770 V and its plateau slope was about 2.4% / 100 V, as shown in the top left of the Fig.2. This optimization would be helpful to know the working range of the THGEM and find the conditions with the lower HV. Fig.2 Counting rate plateaus of the THGEM detector in the three different kinds of gas mixture (90%Ar/10%CO 2 80%Ar/20%CO 2 and 70%Ar/30%CO 2 ) with Ed=0.5kV/cm and Ei=1.0kV/cm 1.5kV/cm 2.0kV/cm and 3.0kV/cm.

4 3.2 Gain By using the 5.9keV full energy peak of the 55 Fe X-ray source, the effective gain was measured with the voltage of THGEM increased by the increment of 5V in different Ar/CO 2 mixture and different fields Ed and Ei. In certain extent, the stronger the induction field Ei is and the greater the voltage of the THGEM is, the gain is larger for the same gas mixture. As Fig.3 shows, the gain increases exponentially with the voltage of the THGEM for each kind of gas mixture and the single THGEM can provide a wide gain range from 100 to1000. The gain decreases with the increase of the proportion of CO 2 in the gas mixture. Fig.3 The experimental gain in the three different kinds of gas mixture (90%Ar/10%CO 2 80%Ar/20%CO 2 and 70%Ar/30%CO 2 ) with Ed=0.5kV/cm and Ei=1.0kV/cm 1.5kV/cm 2.0kV/cm and 3.0kV/cm. As mentioned above, the influence of drift field Ed to the gain is very small in certain extent. Fig.4 (a) shows the gain as a function of Ed in different Ei in the Ar /CO 2 (90%/10%) gas mixture. In different Ed, the gain keeps nearly no change at the voltage 770V of THGEM for each Ei and increases with the Ei. As the same, Fig.4 (b) shows the gain change with Ed in different Ei in the Ar/CO 2 (80%/20%) gas mixture and it shows the similar results as those in the Ar/CO 2 (90%/10%) gas mixture. For the Ar/CO 2 (70%/30%) gas mixture, the same regularity exists. Due to no common appropriate voltage of THGEM, the similar kind of this figure has not been presented.

5 Fig.4 Gain vs Ed is in different Ei and in same voltage of the THGEM. (a) Gain changes with the Ed in an Ar/CO 2 (90%/10% ) gas mixture and the voltage of the THGEM VGem=770V.(b) Gain changes with the Ed in an Ar/CO 2 (80%/20%) gas mixture and the voltage of the THGEM VGem=830V. 3.3 Energy resolution Energy resolution is one of the most important parameters related to the detector performance. By using the 5.9 kev full energy peak of the 55 Fe X-ray source, the energy resolution was measured. The Fig.5 shows the results of three kinds of gas mixture with the voltage of THGEM increased by the increment of 5V in different field Ei. There are three regions with clear boundary related to the ratio of CO 2 in the gas mixture. As the ratio of CO 2 decreases, the working voltage of the THGEM will get lower and the energy resolution will get smaller as well. The much better energy resolution is obtained in the Ar/CO 2 (90%/10%) gas mixture. With the voltage of THGEM increasing, the energy resolution will also get better obviously. The induction field Ei has a bit affection on the energy resolution and the drift field has nearly no effect on the energy resolution from 0.5 to 3kV/cm (measured and not included in the figure). As a summary for the optimization, the best working points of this kind of THGEM are recommended as following: the Ar/CO 2 (90%/10%) gas mixture, the drift field 0.5kV/cm, the induction field 2kV/cm and the voltage range of THGEM from 720V-770V, which will give the better energy resolution smaller than 25%. Fig.5 The energy resolution in the three different kinds of gas mixture (90%Ar/10%CO 2 80%Ar/20%CO 2 and 70%Ar/30%CO 2 ) with Ed=0.5kV/cm and Ei=1.0 kv/cm 1.5 kv/cm 2.0 kv/cm and 3.0kV/cm. Fig.6 shows a pulse height spectrum obtained with a 55 Fe source in the Ar/CO 2 (90%/10%) gas mixture. For obtaining energy resolution, it s fitted with the Gaussian function. It indicates the energy resolution (FWHM) of the detector based on THGEM is about 22%. With such an energy resolution, the detector can entirely separate the 3keV of Ar escape peak from the 55 Fe main X-ray peak located at 5.9keV.

6 4. Conclusion Fig.6 A pulse height spectrum in the Ar/CO 2 (90%/10%) gas mixture Ed=0.5kV/cm Ei=2kV/cm and the voltage of the THGEM VGem=770V with 55 Fe source. In this paper, the experimental performance of a kind of domestic THGEM working in the Ar/CO 2 mixtures are presented in details. The effective gain of single THGEM can reach about 1000 in the Ar/CO 2 mixture. As the ratio of CO 2 decreases from 30% to 10%, the working voltage of the THGEM will get lower, the plateau will get longer and the energy resolution will get much better as well. With the induction field Ei increasing from 1 to 3kV/cm, the performance of THGEM will be getting better and better. The drift field Ed (0.5 to 1.5kV/cm) has nearly no influence on the performance of THGEM. As a summary for the optimization, the best working points of this kind of THGEM are recommended as following: the Ar/CO 2 (90%/10%) gas mixture, the drift field 0.5kV/cm, the induction field 2kV/cm and the voltage range of THGEM from 720V-770V, which will give the better energy resolution smaller than 25%. According to the experiments, it would be very helpful for the design of this kind of THGEM based neutron detector in future. 5. Acknowledgements We are grateful to the supports from National Natural Science Foundation of China (item: and ), China Spallation Neutron Source, the State Key Laboratory of Particle Detection and Electronics and the State Key Laboratory of neutron detection and fast electronics technology in Dongguan University of Technology. References [1]B.Gebauer, Towards detectors for next generation spallation neutron sources, Nucl.Instr. and Meth. A,2004, 535: [2] Dana A. Shea et al. The Helium-3 Shortage: Supply, Demand, and Options for Congress, Congressional Research Service, 2010 [3]H. Ohshita et al. Development of a neutron detector with a GEM, Nucl.Instr. and Meth. A, 2010,623: [4] C.Schmidt, M.Klein, The CASCADE Neutron Detector: A System for 2D Position

7 Sensitive Neutron Detection at Highest Intensities, Neutron News, 2006, 17(1):12-15 [5] M.Klein, C.Schmidt, CASCADE neutron detectors for highest count rates in combination with ASIC/FPGA based readout electronics, Nucl.Instr. and Meth. A, 2011, 628:9-18 [6] H.B. Liu, Y.H.Zheng et al. The performance of thinner-thgem, Nucl.Instr. and Meth. A,2011,659: [7] Zhou JianRong et al. Neutron beam monitor based on a boron-coated GEM, Chinese Physics C,2011,35(7): [8] WANG Yan-Feng, SUN Zhi-Jia, ZHOU Jian-Rong et al. Simulation study on the boron-coated GEM neutron beam monitor, Chinese Physics, SCIENCE CHINA Physics,Mechanics & Astronomy,2013(received) [9] A.Breskin, R.Alon et al.a concise review on THGEM detectors, Nucl.Instr. and Meth. A,2009,598:

Experimental research on the THGEM-based thermal neutron detector

Experimental research on the THGEM-based thermal neutron detector Experimental research on the THGEM-based thermal neutron detector YANG Lei( 杨雷 ) 1) Zhou Jian-Rong( 周健荣 ) 2;3,*) Sun Zhi-Jia( 孙志嘉 ) 2;3) Zhang Ying( 张莹 ) 4) Huang Chao-Qiang( 黄朝强 ) 4) Sun Guang-Ai( 孙光爱

More information

Performance study of the ceramic THGEM *

Performance study of the ceramic THGEM * Performance study of the ceramic THGEM * YAN Jia-Qing 1,2;1) XIE Yu-Guang 2,3;2) HU Tao 2,3 LU Jun-Guang 2,3 ZHOU Li 2,3 QU Guo-Pu 1 CAI Xiao 2,3 NIU Shun-Li 2,3 CHEN Hai-Tao 2 1 University of South China,

More information

Simulation and performance study of ceramic THGEM *

Simulation and performance study of ceramic THGEM * Submitted to Chinese Physics C Simulation and performance study of ceramic THGEM * YAN Jia-Qing( 颜嘉庆 ) 1,2;1) XIE Yu-Guang( 谢宇广 ) 2,3;2) HU Tao 2,3 ( 胡涛 ) LU Jun-Guang 2,3 ( 吕军光 ) ZHOU Li 2,3 ( 周莉 ) QU

More information

p/π + response of single layer THGEM detector in Ar/3%iso *

p/π + response of single layer THGEM detector in Ar/3%iso * p/π + response of single layer THGEM detector in Ar/3%iso * Hong Daojin( 洪道金 ) 1,2,3;1 Yu Boxiang( 俞伯祥 ) 3,4 Liu Hongbang( 刘宏邦 ) 1,2;2 He Xiaorong( 何小荣 ) 1 An Guangpeng( 安广朋 ) 3,4 Chen Haitao( 陈海涛 ) 3,4

More information

& SUN ZhiJia 1;2. Abstract

& SUN ZhiJia 1;2. Abstract Study on the imaging ability of the 2D neutron detector based on MWPC TIAN LiChao 1;2;3*, CHEN YuanBo 1;2, TANG Bin 1;2,ZHOU JianRong 1;2,QI HuiRong 1;2, LIU RongGuang 1;2, ZHANG Jian 1;2, YANG GuiAn 1;2,

More information

Spatial resolution measurement of Triple-GEM detector and diffraction imaging test at synchrotron radiation

Spatial resolution measurement of Triple-GEM detector and diffraction imaging test at synchrotron radiation Spatial resolution measurement of Triple-GEM detector and diffraction imaging test at synchrotron radiation Y.L. Zhang, a,b,c H.R. Qi, b,c Z.W. Wen, a,b,c H.Y. Wang, b,c,d Q. Ouyang, b,c Y.B. Chen, b,c

More information

Advances in the Micro-Hole & Strip Plate gaseous detector

Advances in the Micro-Hole & Strip Plate gaseous detector Nuclear Instruments and Methods in Physics Research A 504 (2003) 364 368 Advances in the Micro-Hole & Strip Plate gaseous detector J.M. Maia a,b,c, *, J.F.C.A. Veloso a, J.M.F. dos Santos a, A. Breskin

More information

GEM at CERN. Leszek Ropelewski CERN PH-DT2 DT2-ST & TOTEM

GEM at CERN. Leszek Ropelewski CERN PH-DT2 DT2-ST & TOTEM GEM at CERN Leszek Ropelewski CERN PH-DT2 DT2-ST & TOTEM MicroStrip Gas Chamber Semiconductor industry technology: Photolithography Etching Coating Doping A. Oed Nucl. Instr. and Meth. A263 (1988) 351.

More information

Aging effect in the BESIII drift chamber

Aging effect in the BESIII drift chamber Aging effect in the BESIII drift chamber DONG Ming-Yi( 董明义 ) 1, 2 XIU Qing-Lei( 修青磊 ) 1, 2 WU Ling-Hui( 伍灵慧 ) 1 WU Zhi( 吴智 ) 1, 2 QIN Zhong-Hua( 秦中华 ) 1, 2 SHEN Pin ( 沈品 ) 1 AN Fen-Fen( 安芬芬 ) 1 1, 2, 3

More information

Chinese Physics C. Study of n-γ discrimination in low energy range (above 40. kevee) by charge comparison method with a BC501A liquid

Chinese Physics C. Study of n-γ discrimination in low energy range (above 40. kevee) by charge comparison method with a BC501A liquid CPC(HEP & NP) Chinese Physics C Study of n-γ discrimination in low energy range (above 40 kevee) by charge comparison method with a BC501A liquid scintillation detector CHEN Yong-Hao( 陈永浩 ) 1, CHEN Xi-Meng(

More information

Performance of high pressure Xe/TMA in GEMs for neutron and X-ray detection

Performance of high pressure Xe/TMA in GEMs for neutron and X-ray detection Performance of high pressure Xe/TMA in GEMs for neutron and X-ray detection R. Kreuger, C. W. E. van Eijk, Member, IEEE, F. A. F. Fraga, M. M. Fraga, S. T. G. Fetal, R. W. Hollander, Member, IEEE, L. M.

More information

Performance of a triple-gem detector for high-rate particle triggering

Performance of a triple-gem detector for high-rate particle triggering Performance of a triple-gem detector for high-rate particle triggering G. Bencivenni 1, W. Bonivento 2,4,A.Cardini 2,C. Deplano 2, P. de Simone 1, G. Felici 1, D. Marras 2, F.Murtas 1, D.Pinci 2,3, M.

More information

Key words: boron-coated straw, n-gamma discrimination, longitudinal resolution, three-dimensional positioning, neutron scattering spectrometer

Key words: boron-coated straw, n-gamma discrimination, longitudinal resolution, three-dimensional positioning, neutron scattering spectrometer Experimental Study of Boron-coated Straws with a Neutron Source Zhaoyang Xie 1,2,3, Jianrong Zhou 2,3,5;*, Yushou Song 1;1), Liang Sun 4;2), Zhijia Sun 2,3, Bitao Hu 5, Yuanbo Chen 2,3 1 Key Discipline

More information

GEM: A new concept for electron amplification in gas detectors

GEM: A new concept for electron amplification in gas detectors GEM: A new concept for electron amplification in gas detectors F. Sauli, Nucl. Instr. & Methods in Physics Research A 386 (1997) 531-534 Contents 1. Introduction 2. Two-step amplification: MWPC combined

More information

Micro Pixel Chamber with resistive electrodes for spark reduction

Micro Pixel Chamber with resistive electrodes for spark reduction Micro Pixel Chamber with resistive electrodes for spark reduction arxiv:1310.5550v1 [physics.ins-det] 21 Oct 2013 Atsuhiko Ochi a, Yuki Edo a, Yasuhiro Homma a, Hidetoshi Komai a and Takahiro Yamaguchi

More information

arxiv:physics/ v2 27 Mar 2001

arxiv:physics/ v2 27 Mar 2001 High pressure operation of the triple-gem detector in pure Ne, Ar and Xe A. Bondar, A. Buzulutskov, L. Shekhtman arxiv:physics/0103082 v2 27 Mar 2001 Budker Institute of Nuclear Physics, 630090 Novosibirsk,

More information

Electron transparency, ion transparency and ion feedback of a 3M GEM

Electron transparency, ion transparency and ion feedback of a 3M GEM Nuclear Instruments and Methods in Physics Research A 525 (2004) 33 37 Electron transparency, ion transparency and ion feedback of a 3M GEM P.S. Barbeau a, J. Collar a, J. Miyamoto b, *, I. Shipsey b a

More information

R&D on Astroparticles Detectors. (Activity on CSN )

R&D on Astroparticles Detectors. (Activity on CSN ) R&D on Astroparticles Detectors (Activity on CSN5 2000-2003) Introduction Results obtained with the R&D activity (2000-2003) with some drift chambers prototypes are reported. With different photocathode

More information

Nuclear Instruments and Methods in Physics Research A

Nuclear Instruments and Methods in Physics Research A Nuclear Instruments and Methods in Physics Research A 712 (2013) 8 112 Contents lists available at SciVerse ScienceDirect Nuclear Instruments and Methods in Physics Research A journal homepage: www.elsevier.com/locate/nima

More information

X-ray ionization yields and energy spectra in liquid argon

X-ray ionization yields and energy spectra in liquid argon E-print arxiv:1505.02296 X-ray ionization yields and energy spectra in liquid argon A. Bondar, a,b A. Buzulutskov, a,b,* A. Dolgov, b L. Shekhtman, a,b A. Sokolov a,b a Budker Institute of Nuclear Physics

More information

Development of New MicroStrip Gas Chambers for X-ray Applications

Development of New MicroStrip Gas Chambers for X-ray Applications Joint International Workshop: Nuclear Technology and Society Needs for Next Generation Development of New MicroStrip Gas Chambers for X-ray Applications H.Niko and H.Takahashi Nuclear Engineering and Management,

More information

A Triple-GEM Telescope for the TOTEM Experiment

A Triple-GEM Telescope for the TOTEM Experiment A Triple-GEM Telescope for the TOTEM Experiment Giuseppe Latino (Siena University & Pisa INFN) IPRD06 Siena October 4, 2006 TOTEM Experiment @ LHC T2 Telescope 3-GEM Technology Detailed Detector Simulation

More information

Rate Dependency Study on Gas Electron Multiplier Gain

Rate Dependency Study on Gas Electron Multiplier Gain Rate Dependency Study on Gas Electron Multiplier Gain Final presentation Instructor: Dr. Francisco García Supervisor: Prof. Harri Ehtamo The document can be stored and made available to the public on the

More information

Devices for high precision x-ray beam intensity

Devices for high precision x-ray beam intensity Devices for high precision x-ray beam intensity monitoring on BSRF LI Hua-Peng( 李华鹏 ) 1, * TANG Kun( 唐坤 ) 1 ZHAO Yi-Dong( 赵屹东 ) 1 ZHENG-Lei( 郑雷 )1 LIU Shu-Hu( 刘树虎 ) 1 ZHAO Xiao-Liang( 赵晓亮 ) 1 ZHAO Ya-Shuai(

More information

Simulating the Charge Dispersion Phenomena in Micro Pattern Gas Detectors with a Resistive Anode

Simulating the Charge Dispersion Phenomena in Micro Pattern Gas Detectors with a Resistive Anode Simulating the Charge Dispersion Phenomena in Micro Pattern Gas Detectors with a Resistive Anode M. S. Dixit a b and A. Rankin a a Department of Physics Carleton University 1125 Colonel By Drive Ottawa

More information

Study of GEM-like detectors with resistive electrodes for RICH applications

Study of GEM-like detectors with resistive electrodes for RICH applications Study of GEM-like detectors with resistive electrodes for RICH applications A.G. Agócs, 1,2 A. Di Mauro, 3 A. Ben David, 4 B. Clark, 5 P. Martinengo, 3 E. Nappi, 6 3, 7 V. Peskov 1 Eotvos University, Budapest,

More information

Breakdown limit studies in high-rate gaseous detectors

Breakdown limit studies in high-rate gaseous detectors Nuclear Instruments and Methods in Physics Research A 422 (1999) 300 304 Breakdown limit studies in high-rate gaseous detectors Yu. Ivaniouchenkov, P. Fonte, V. Peskov *, B.D. Ramsey LIP, Coimbra University,

More information

Micro Pixel Chamber Operation with Gas Electron Multiplier

Micro Pixel Chamber Operation with Gas Electron Multiplier Contents ts Micro Pixel Chamber Operation with Gas Electron Multiplier Kyoto University dept. of physics Cosmic-ray ygroup K. Hattori 1. μ-pic (Micro Pixel Chamber), micro-tpc (Time Projection Chamber

More information

arxiv: v1 [physics.ins-det] 19 Apr 2014

arxiv: v1 [physics.ins-det] 19 Apr 2014 Sub to Chinese Physics C Vol. 33, No. X, Xxx, 9 Proton irradiation effect on SCDs * arxiv:144.4931v1 [physics.ins-det] 19 Apr 14 YANG Yan-Ji() 1,;1) LU Jing-Bin() 1 WANG Yu-Sa() CHEN Yong() XU Yu-Peng()

More information

X-ray ionization yields and energy spectra in liquid argon

X-ray ionization yields and energy spectra in liquid argon X-ray ionization yields and energy spectra in liquid argon A. Bondar, a,b A. Buzulutskov, a,b,* A. Dolgov, b L. Shekhtman, a,b A. Sokolov a,b a Budker Institute of Nuclear Physics SB RAS, Lavrentiev avenue

More information

First experimental research of low energy proton radiography

First experimental research of low energy proton radiography First eperimental research of low energy proton radiography Wei Tao( 魏涛 ) 1) Yang Guojun( 杨国君 ) Long Jidong( 龙继东 ) He Xiaozhong( 何小中 ) Li Yiding( 李一丁 ) Zhang Xiaoding( 张小丁 ) Ma Chaofan( 马超凡 ) Zhao Liangchao(

More information

ATLAS New Small Wheel Phase I Upgrade: Detector and Electronics Performance Analysis

ATLAS New Small Wheel Phase I Upgrade: Detector and Electronics Performance Analysis ATLAS New Small Wheel Phase I Upgrade: Detector and Electronics Performance Analysis Dominique Trischuk, Alain Bellerive and George Iakovidis IPP CERN Summer Student Supervisor August 216 Abstract The

More information

PHOTOELECTRON COLLECTION EFFICIENCY AT HIGH PRESSURE FOR A GAMMA DETECTOR ENVISAGING MEDICAL IMAGING

PHOTOELECTRON COLLECTION EFFICIENCY AT HIGH PRESSURE FOR A GAMMA DETECTOR ENVISAGING MEDICAL IMAGING 822 PHOTOELECTRON COLLECTION EFFICIENCY AT HIGH PRESSURE FOR A GAMMA DETECTOR ENVISAGING MEDICAL IMAGING C.D.R. Azevedo 1, C.A.B. Oliveira 1, J.M.F. dos Santos 2, J.F.C.A. Veloso 1 1.University of Aveiro,

More information

CCD readout of GEM-based neutron detectors

CCD readout of GEM-based neutron detectors Nuclear Instruments and Methods in Physics Research A 478 (2002) 357 361 CCD readout of GEM-based neutron detectors F.A.F. Fraga a, *, L.M.S. Margato a, S.T.G. Fetal a, M.M.F.R. Fraga a, R. Ferreira Marques

More information

General Overview of Gas Filled Detectors

General Overview of Gas Filled Detectors GAS-FILLED DETECTOR General Overview of Gas Filled Detectors Gas-Filled Detectors Ion chamber Proportional counter G-M (Geiger-Miller) counter Diagram of a Generic Gas-Filled Detector A Anode High-voltage

More information

GEM-based photon detector for RICH applications

GEM-based photon detector for RICH applications Nuclear Instruments and Methods in Physics Research A 535 (2004) 324 329 www.elsevier.com/locate/nima GEM-based photon detector for RICH applications Thomas Meinschad, Leszek Ropelewski, Fabio Sauli CERN,

More information

A fast triple GEM detector for high-rate charged-particle triggering

A fast triple GEM detector for high-rate charged-particle triggering Nuclear Instruments and Methods in Physics Research A 478 (2002) 245 249 A fast triple GEM detector for high-rate charged-particle triggering G. Bencivenni a, W. Bonivento b,1, C. Bosio c, A. Cardini b,

More information

Simulation of GEM-TPC Prototype for the Super-FRS Beam Diagnostics System at FAIR

Simulation of GEM-TPC Prototype for the Super-FRS Beam Diagnostics System at FAIR Progress in NUCLEAR SCIENCE and TECHNOLOGY, Vol. 2, pp.401-405 (2011) ARTICLE Simulation of GEM-TPC Prototype for the Super-FRS Beam Diagnostics System at FAIR Matti KALLIOKOSKI * Helsinki Institute of

More information

Research Article Analytic Approximation of Energy Resolution in Cascaded Gaseous Detectors

Research Article Analytic Approximation of Energy Resolution in Cascaded Gaseous Detectors Advances in High Energy Physics Volume 216, Article ID 561743, pages http://dx.doi.org/1.1155/216/561743 Research Article Analytic Approximation of Energy Resolution in Cascaded Gaseous Detectors Dezsy

More information

Development of a new MeV gamma-ray camera

Development of a new MeV gamma-ray camera Development of a new MeV gamma-ray camera ICEPP Symposium February 16, 2004 Hakuba, Nagano, Japan Kyoto University Atsushi Takeda H. Kubo, K. Miuchi, T. Nagayoshi, Y. Okada, R. Orito, A. Takada, T. Tanimori,

More information

A new detector for neutron beam monitoring

A new detector for neutron beam monitoring A new detector for neutron beam monitoring European Organization for Nuclear Research (CERN), Geneva, Switzerland in collaboration with Commissariat à l Energie Atomique (CEA), Saclay, France, Instituto

More information

High Spatial Resolution in thermal Neutron Detection: from CASCADE to BASTARD. Markus Köhli. DPG Frühjahrstagung Münster

High Spatial Resolution in thermal Neutron Detection: from CASCADE to BASTARD. Markus Köhli. DPG Frühjahrstagung Münster High Spatial Resolution in thermal Neutron Detection: from CASCADE to BASTARD DPG Frühjahrstagung Münster 27.03.2017 Physikalisches Institut (LCTPC) Rheinische Friedrich-Wilhelms-Universität Bonn Markus

More information

Particle Energy Loss in Matter

Particle Energy Loss in Matter Particle Energy Loss in Matter Charged particles, except electrons, loose energy when passing through material via atomic excitation and ionization These are protons, pions, muons, The energy loss can

More information

A Complete Simulation of a Triple-GEM Detector

A Complete Simulation of a Triple-GEM Detector 1638 IEEE TRANSACTIONS ON NUCLEAR SCIENCE, VOL. 49, NO. 4, AUGUST 2002 A Complete Simulation of a Triple-GEM Detector W. Bonivento, A. Cardini, G. Bencivenni, F. Murtas, and D. Pinci Abstract Since some

More information

Flux and neutron spectrum measurements in fast neutron irradiation experiments

Flux and neutron spectrum measurements in fast neutron irradiation experiments Flux and neutron spectrum measurements in fast neutron irradiation experiments G.Gorini WORKSHOP A neutron irradiation facility for space applications Rome, 8th June 2015 OUTLINE ChipIr and SEE: New Istrument

More information

Recent advances in gaseous imaging photomultipliers

Recent advances in gaseous imaging photomultipliers Elsevier Science 1 Journal logo Recent advances in gaseous imaging photomultipliers A.Breskin a, M. Balcerzyk 1, R. Chechik, G. P. Guedes 2, J. Maia 3 and D. Mörmann Department of Particle Physics The

More information

Status and Challenges of CEPC Time Projection Chamber Detector. Huirong On behalf of CEPC Tracking Subgroup

Status and Challenges of CEPC Time Projection Chamber Detector. Huirong On behalf of CEPC Tracking Subgroup Status and Challenges of CEPC Time Projection Chamber Detector Huirong On behalf of CEPC Tracking Subgroup 015.01.1 Content Status of GEM and TPC Detector Requirements and Concept design Preliminary Simulation

More information

Hybrid Gaseous Detector Module for CEPC-TPC

Hybrid Gaseous Detector Module for CEPC-TPC Hybrid Gaseous Detector Module for CEPC-TPC Huirong QI Institute of High Energy Physics, CAS June 15 th, 2016, Tsinghua University, Beijing - 1 - Outline Requirements of CEPC-TPC Occupancy and simulation

More information

Precision neutron flux measurement with a neutron beam monitor

Precision neutron flux measurement with a neutron beam monitor Journal of Physics: Conference Series OPEN ACCESS Precision neutron flux measurement with a neutron beam monitor To cite this article: T Ino et al 2014 J. Phys.: Conf. Ser. 528 012039 View the article

More information

Microscopic Simulation of GEM Signals

Microscopic Simulation of GEM Signals Microscopic Simulation of GEM Signals von Moritz Seidel Bachelorarbeit in Physik vorgelegt der Fakultät für Mathematik, Informatik und Naturwissenschaften der RWTH Aachen angefertigt im III. Physikalischen

More information

Progress in the Development of Photosensitive GEMs with Resistive Electrodes Manufactured by a Screen Printing Technology

Progress in the Development of Photosensitive GEMs with Resistive Electrodes Manufactured by a Screen Printing Technology Progress in the Development of Photosensitive GEMs with Resistive Electrodes Manufactured by a Screen Printing Technology P. Martinengo 1, E. Nappi 2, R. Oliveira 1, G. Paic 3, V. Peskov 1,4, F. Pietropaolo

More information

Signals in Particle Detectors (1/2?)

Signals in Particle Detectors (1/2?) Signals in Particle Detectors (1/2?) Werner Riegler, CERN CERN Detector Seminar, 5.9.2008 The principle mechanisms and formulas for signal generation in particle detectors are reviewed. As examples the

More information

PoS(EPS-HEP2015)232. Performance of a 1 m 2 Micromegas Detector Using Argon and Neon based Drift Gases

PoS(EPS-HEP2015)232. Performance of a 1 m 2 Micromegas Detector Using Argon and Neon based Drift Gases Performance of a m Micromegas Detector Using Argon and Neon based Drift Gases a, Otmar Biebel a, Jonathan Bortfeldt a, Ralf Hertenberger a, Ralph Müller a and Andre Zibell b a Ludwig-Maximilians-Universität

More information

Submitted to Chinese Physics C CSNS/RCS

Submitted to Chinese Physics C CSNS/RCS Study the vibration and dynamic response of the dipole girder system for CSNS/RCS Liu Ren-Hong ( 刘仁洪 ) 1,2;1) Wang Min( 王敏 ) 1 Zhang Jun-Song( 张俊嵩 ) 2 Wang Guang-Yuan ( 王广源 ) 2 1 No. 58 Research Institute

More information

Precision Calibration of Large Area Micromegas Detectors Using Cosmic Muons

Precision Calibration of Large Area Micromegas Detectors Using Cosmic Muons Precision Calibration of Large Area Micromegas Detectors Using Cosmic Muons a, Otmar Biebel a, Jonathan Bortfeldt b, Bernhard Flierl a, Maximilian Herrmann a, Ralf Hertenberger a, Felix Klitzner a, Ralph

More information

Development of a Time Projection Chamber with GEM technology in IMP. Herun yang Gas detector group

Development of a Time Projection Chamber with GEM technology in IMP. Herun yang Gas detector group Development of a Time Projection Chamber with GEM technology in IMP Herun yang Gas detector group Outline Introduction TPC prototype based on GEM performance test based cosmic ray Beam test Summary Gas

More information

Design and performance of Hall probe measurement system in CSNS

Design and performance of Hall probe measurement system in CSNS Radiat Detect Technol Methods (2017) 1:18 https://doi.org/10.1007/s41605-017-0017-z ORIGINAL PAPER Design and performance of Hall probe measurement system in CSNS Xi Wu 1,2 Wen Kang 1,2 Wan Chen 1,2 Chang-dong

More information

Imaging principle and experiment results of an 11 MeV low-energy proton radiography system

Imaging principle and experiment results of an 11 MeV low-energy proton radiography system NUCLEAR SCIENCE AND TECHNIQUES 25, 060203 (2014) Imaging principle and experiment results of an 11 MeV low-energy proton radiography system LI Yi-Ding ( 李一丁 ), 1, ZHANG Xiao-Ding ( 张小丁 ), 1 WEI Tao ( 魏涛

More information

Neutron Structure Functions and a Radial Time Projection Chamber

Neutron Structure Functions and a Radial Time Projection Chamber Neutron Structure Functions and a Radial Time Projection Chamber Stephen Bültmann Old Dominion University for the BoNuS Collaboration The Structure of the Neutron The BoNuS Experiment at CLAS A New Proton

More information

SUPPLEMENTARY INFORMATION. Observation of tunable electrical bandgap in large-area twisted bilayer graphene synthesized by chemical vapor deposition

SUPPLEMENTARY INFORMATION. Observation of tunable electrical bandgap in large-area twisted bilayer graphene synthesized by chemical vapor deposition SUPPLEMENTARY INFORMATION Observation of tunable electrical bandgap in large-area twisted bilayer graphene synthesized by chemical vapor deposition Jing-Bo Liu 1 *, Ping-Jian Li 1 *, Yuan-Fu Chen 1, Ze-Gao

More information

The Compact Muon Solenoid Experiment. Conference Report. Mailing address: CMS CERN, CH-1211 GENEVA 23, Switzerland

The Compact Muon Solenoid Experiment. Conference Report. Mailing address: CMS CERN, CH-1211 GENEVA 23, Switzerland Available on CMS information server CMS CR -2018/225 The Compact Muon Solenoid Experiment Conference Report Mailing address: CMS CERN, CH-1211 GENEVA 23, Switzerland 27 September 2018 (v2, 19 November

More information

A proposal to study gas gain fluctuations in Micromegas detectors

A proposal to study gas gain fluctuations in Micromegas detectors A proposal to study gas gain fluctuations in Micromegas detectors M. Chefdeville 15/05/2009 We present two methods to measure gas gain fluctuations in Micromegas detectors and the experimental setup that

More information

STUDIES OF A GAMMA-BLIND FAST-NEUTRON IMAGING DETECTOR FOR BNCT APPLICATIONS

STUDIES OF A GAMMA-BLIND FAST-NEUTRON IMAGING DETECTOR FOR BNCT APPLICATIONS UNIVERSITA DEGLI STUDI DI MILANO Facoltà di Scienze Matematiche Fisiche e Naturali Corso di laurea magistrale in Fisica STUDIES OF A GAMMA-BLIND FAST-NEUTRON IMAGING DETECTOR FOR BNCT APPLICATIONS Relatore

More information

arxiv:physics/ v2 [physics.ins-det] 31 Oct 2003

arxiv:physics/ v2 [physics.ins-det] 31 Oct 2003 arxiv:physics/37152v2 [physics.ins-det] 31 Oct 23 Position Sensing from Charge Dispersion in Micro-Pattern Gas Detectors with a Resistive Anode M. S. Dixit a,d,, J. Dubeau b, J.-P. Martin c and K. Sachs

More information

Siberian Branch of Russian Academy of Science. A. Buzulutskov, A. Bondar, L. Shekhtman, R. Snopkov, Yu. Tikhonov

Siberian Branch of Russian Academy of Science. A. Buzulutskov, A. Bondar, L. Shekhtman, R. Snopkov, Yu. Tikhonov Siberian Branch of Russian Academy of Science BUDKER INSTITUTE OF NUCLEAR PHYSICS A. Buzulutskov, A. Bondar, L. Shekhtman, R. Snopkov, Yu. Tikhonov FIRST RESULTS FROM CRYOGENIC AVALANCHE DETECTOR BASED

More information

R&D of a novel gas electron multiplier the THGEM

R&D of a novel gas electron multiplier the THGEM Thesis for a degree Master of Science חיבור לשם קבלת תואר מוסמך מדעים By Chen Ken Shalem מאת חן שלם R&D of a novel gas electron multiplier the THGEM חקר ופיתוח של מכפל אלקטרונים גזי חדיש Advised by Prof.

More information

High pressure xenon gas detector with segmented electroluminescence readout for 0nbb search

High pressure xenon gas detector with segmented electroluminescence readout for 0nbb search High pressure xenon gas detector with segmented electroluminescence readout for 0nbb search Kiseki Nakamura Kobe university for the AXEL collaboration PMT AXEL experiment High pressure xenon gas TPC for

More information

Detectors in Nuclear and High Energy Physics. RHIG summer student meeting June 2014

Detectors in Nuclear and High Energy Physics. RHIG summer student meeting June 2014 Detectors in Nuclear and High Energy Physics RHIG summer student meeting June 2014 Physics or Knowledge of Nature Experimental Data Analysis Theory ( application) Experimental Data Initial Conditions /

More information

TitleDevelopment of an MeV gamma-ray ima. works must be obtained from the IEE

TitleDevelopment of an MeV gamma-ray ima.   works must be obtained from the IEE TitleDevelopment of an MeV gamma-ray ima Takeda, A; Kubo, H; Miuchi, K; Naga Author(s) Orito, R; Takada, A; Tanimori, T; U Bouianov, M Citation IEEE TRANSACTIONS ON NUCLEAR SCIENC 51(5): 2140-2144 Issue

More information

SILVER NEUTRON ACTIVATION DETECTOR FOR MEASURING BURSTS OF 14 MEV NEUTRONS

SILVER NEUTRON ACTIVATION DETECTOR FOR MEASURING BURSTS OF 14 MEV NEUTRONS SILVER NEUTRON ACTIVATION DETECTOR FOR MEASURING BURSTS OF 14 MEV NEUTRONS Song Zhaohui, Guan Xinyin, Zhang Zichuan Northwest Institute of Nuclear Technology, Xi an, 71004, China In order to measure bursts

More information

A complete simulation of a triple-gem detector

A complete simulation of a triple-gem detector A complete simulation of a triple-gem detector W. Bonivento, A. Cardini, D. Pinci Abstract Since some years the Gas Electron Multipliers (GEM) based detectors have been proposed for many different applications,

More information

Status report of CPHS and neutron activities at Tsinghua University

Status report of CPHS and neutron activities at Tsinghua University IL NUOVO CIMENTO 38 C (2015) 185 DOI 10.1393/ncc/i2015-15185-y Colloquia: UCANS-V Status report of CPHS and neutron activities at Tsinghua University X. Wang( 1 )( 2 )( ),Q.Xing( 1 )( 2 ),S.Zheng( 1 )(

More information

GEM upgrade of the ALICE TPC. Markus Ball Physics Department E18 Technische Universität München On Behalf of the ALICE TPC upgrade

GEM upgrade of the ALICE TPC. Markus Ball Physics Department E18 Technische Universität München On Behalf of the ALICE TPC upgrade GEM upgrade of the ALICE TPC Markus Ball Physics Department E18 Technische Universität München On Behalf of the ALICE TPC upgrade 1 Outline Motivation for the GEM upgrade Ion Backflow Suppression with

More information

Neutron collimator design of neutron radiography based on the BNCT facility arxiv: v1 [physics.ins-det] 3 May 2013

Neutron collimator design of neutron radiography based on the BNCT facility arxiv: v1 [physics.ins-det] 3 May 2013 CPC(HEP & NP), 2009, 33(X): 1 5 Chinese Physics C Vol. 33, No. X, Xxx, 2009 Neutron collimator design of neutron radiography based on the BNCT facility arxiv:1305.0672v1 [physics.ins-det] 3 May 2013 YANG

More information

Development of Gamma-ray Monitor using CdZnTe Semiconductor Detector

Development of Gamma-ray Monitor using CdZnTe Semiconductor Detector Development of Gamma-ray Monitor using CdZnTe Semiconductor Detector A. H. D. Rasolonjatovo 1, T. Shiomi 1, T. Nakamura 1 Y. Tsudaka 2, H. Fujiwara 2, H. Araki 2, K. Matsuo 2, H. Nishizawa 2 1 Cyclotron

More information

Recent advances in gaseous imaging photomultipliers

Recent advances in gaseous imaging photomultipliers Nuclear Instruments and Methods in Physics Research A 513 (2003) 250 255 Recent advances in gaseous imaging photomultipliers A. Breskin*, M. Balcerzyk 1, R. Chechik, G.P. Guedes 2, J. Maia 3,D.M.ormann

More information

ACCURATE MEASUREMENTS OF SURFACE EMISSION RATE FOR LARGE-AREA ALPHA AND BETA REFERENCE SOURCES

ACCURATE MEASUREMENTS OF SURFACE EMISSION RATE FOR LARGE-AREA ALPHA AND BETA REFERENCE SOURCES ACCURATE MEASUREMENTS OF SURFACE EMISSION RATE FOR LARGE-AREA ALPHA AND BETA REFERENCE SOURCES Doru Stanga*, Pierino De Felice** *National Institute of R&D for Physics and Nuclear Engineering-Horia Hulubei(IFIN-HH)

More information

China high-intensity accelerator technology developments for Neutron Sources & ADS

China high-intensity accelerator technology developments for Neutron Sources & ADS AT/INT-04 China high-intensity accelerator technology developments for Neutron Sources & ADS J. Wei, Tsinghua University, China S.N. Fu, IHEP, CAS, China International Topical Meeting on Nuclear Research

More information

Absorption and Backscattering ofβrays

Absorption and Backscattering ofβrays Experiment #54 Absorption and Backscattering ofβrays References 1. B. Brown, Experimental Nucleonics 2. I. Kaplan, Nuclear Physics 3. E. Segre, Experimental Nuclear Physics 4. R.D. Evans, The Atomic Nucleus

More information

Track Resolution Measurements for a Time Projection Chamber with Gas Electron Multiplier Readout

Track Resolution Measurements for a Time Projection Chamber with Gas Electron Multiplier Readout Track Resolution Measurements for a Time Projection Chamber with Gas Electron Multiplier Readout Dean Karlen 1,2, Paul Poffenberger 1, Gabe Rosenbaum 1, Robert Carnegie 3, Madhu Dixit 3,2, Hans Mes 3,

More information

PHYS 3446 Lecture #12

PHYS 3446 Lecture #12 PHYS 3446 Lecture #12 Wednesday, Oct. 18, 2006 Dr. 1. Particle Detection Ionization Detectors MWPC Scintillation Counters Time of Flight 1 Announcements Next LPCC Workshop Preparation work Each group to

More information

Investigation of GEM space point resolution for a TPC tracker

Investigation of GEM space point resolution for a TPC tracker Investigation of GEM space point resolution for a TPC tracker Dean Karlen / Carleton University Carleton GEM group: Bob Carnegie, Madhu Dixit, Jacques Dubeau, Dean Karlen, Hans Mes, Morley O'Neill, Ernie

More information

PERFORMANCE IMPROVEMENT OF CZT DETECTORS BY LINE ELECTRODE GEOMETRY

PERFORMANCE IMPROVEMENT OF CZT DETECTORS BY LINE ELECTRODE GEOMETRY Applications of Nuclear Techniques (CRETE3) International Journal of Modern Physics: Conference Series Vol. 27 (24) 4644 (8 pages) The Authors DOI:.42/S294546446 PERFORMANCE IMPROVEMENT OF CZT DETECTORS

More information

Spatial Resolution of a Micromegas-TPC Using the Charge Dispersion Signal

Spatial Resolution of a Micromegas-TPC Using the Charge Dispersion Signal 25 International Linear Collider Workshop - Stanford, U.S.A. Spatial Resolution of a Micromegas-TPC Using the Charge Dispersion Signal A. Bellerive, K. Boudjemline, R. Carnegie, M. Dixit, J. Miyamoto,

More information

Final report on DOE project number DE-FG07-99ID High Pressure Xenon Gamma-Ray Spectrometers for Field Use

Final report on DOE project number DE-FG07-99ID High Pressure Xenon Gamma-Ray Spectrometers for Field Use Final report on DOE project number DE-FG07-99ID13772 High Pressure Xenon Gamma-Ray Spectrometers for Field Use Principle Investigator: Glenn K. Knoll Co-investigator: David K. Wehe, Zhong He, University

More information

TPC-like analysis for thermal neutron detection using a GEMdetector

TPC-like analysis for thermal neutron detection using a GEMdetector Bernhard Flierl - LS Schaile TPC-like analysis for thermal neutron detection using a GEMdetector Triple GEM Detector B-Cathode 6 mm drift space 2 mm GEMs 2 mm 2 mm APV25 readout 2 µm B-converter cathode

More information

Scintillation Detector

Scintillation Detector Scintillation Detector Introduction The detection of ionizing radiation by the scintillation light produced in certain materials is one of the oldest techniques on record. In Geiger and Marsden s famous

More information

Flexible Asymmetrical Solid-state Supercapacitors Based on Laboratory Filter Paper

Flexible Asymmetrical Solid-state Supercapacitors Based on Laboratory Filter Paper SUPPORTING INFORMATION Flexible Asymmetrical Solid-state Supercapacitors Based on Laboratory Filter Paper Leicong Zhang,,,# Pengli Zhu,,,#, * Fengrui Zhou, Wenjin Zeng, Haibo Su, Gang Li, Jihua Gao, Rong

More information

arxiv: v1 [astro-ph.im] 25 Apr 2014

arxiv: v1 [astro-ph.im] 25 Apr 2014 CPC(HEP & NP), 9, 33(X): 5 Chinese Physics C Vol. 33, No. X, Xxx, 9 A linear calibration method on DNL error for energy spectrum * arxiv:44.633v [astro-ph.im] 5 Apr 4 LU Bo() ;) FU Yan-Hong(), CHEN Yong()

More information

arxiv: v1 [physics.ins-det] 26 Jun 2013

arxiv: v1 [physics.ins-det] 26 Jun 2013 Preprint typeset in JINST style - HYPER VERSION arxiv:136.6247v1 [physics.ins-det] 26 Jun 213 Investigation of gamma-ray sensitivity of neutron detectors based on thin converter films A. Khaplanov a,b,

More information

Absorption and Backscattering of β-rays

Absorption and Backscattering of β-rays Experiment #54 Absorption and Backscattering of β-rays References 1. B. Brown, Experimental Nucleonics 2. I. Kaplan, Nuclear Physics 3. E. Segre, Experimental Nuclear Physics 4. R.D. Evans, The Atomic

More information

Charge readout and double phase

Charge readout and double phase Charge readout and double phase Vyacheslav Galymov IPN Lyon 1 st annual meeting AIDA-2020 Liquid argon double-phase TPC Concept of double-phase LAr TPC (Not to scale) Anode 0V 2 mm Collection field 5kV/cm

More information

Boron-based semiconductor solids as thermal neutron detectors

Boron-based semiconductor solids as thermal neutron detectors Boron-based semiconductor solids as thermal neutron detectors Douglas S. McGregor 1 and Stan M. Vernon 2 1 S.M.A.R.T. Laboratory, Department of Nuclear Engineering and Radiological Sciences, University

More information

DESIGN OF NEUTRON DOSE RATE METER FOR RADIATION PROTECTION IN THE EQUIVALENT DOSE

DESIGN OF NEUTRON DOSE RATE METER FOR RADIATION PROTECTION IN THE EQUIVALENT DOSE DESIGN OF NEUTRON DOSE RATE METER FOR RADIATION PROTECTION IN THE EQUIVALENT DOSE Hiroo Sato 1 and Yoichi Sakuma 2 1 International University of Health and Welfare, Kitakanemaru 2600-1, Ohtawara 324-8501

More information

Concept of a novel fast neutron imaging detector based on THGEM for fan-beam tomography applications

Concept of a novel fast neutron imaging detector based on THGEM for fan-beam tomography applications Concept of a novel fast neutron imaging detector based on THGEM for fan-beam tomography applications M. Cortesi, a* R. Zboray, a R. Adams, a,b V. Dangendorf c and H.-M. Prasser a,b a Paul Scherrer Institut

More information

6th International Conference on Information Engineering for Mechanics and Materials (ICIMM 2016)

6th International Conference on Information Engineering for Mechanics and Materials (ICIMM 2016) 6th International Conference on Information Engineering for Mechanics and Materials (ICIMM 2016) Design of Compensated Thermal Neutron Detector Based on He-3 Tube of SiC Micro-structure Jianlu Wu1, Hui

More information

Lecture 18. New gas detectors Solid state trackers

Lecture 18. New gas detectors Solid state trackers Lecture 18 New gas detectors Solid state trackers Time projection Chamber Full 3-D track reconstruction x-y from wires and segmented cathode of MWPC z from drift time de/dx information (extra) Drift over

More information

GEANT4 simulation of the 10 B-based Jalousie detector for neutron diffractometers

GEANT4 simulation of the 10 B-based Jalousie detector for neutron diffractometers GEANT4 simulation of the 10 B-based Jalousie detector for neutron diffractometers Irina Stefanescu 1, R. Hall-Wilton 1, G. Kemmerling 2, M. Klein 3, C.J. Schmidt 3,4, W. Schweika 1,2 1 European Spallation

More information

2008, hm 2. ( Commodity Bundle) [ 6], 25 4 Vol. 25 No JOURNAL OF NATURAL RESOURCES Apr., , 2, 3, 1, 2 3*,

2008, hm 2. ( Commodity Bundle) [ 6], 25 4 Vol. 25 No JOURNAL OF NATURAL RESOURCES Apr., , 2, 3, 1, 2 3*, 25 4 Vol. 25 No. 4 2010 4 JOURNAL OF NATURAL RESOURCES Apr., 2010 1, 2, 3, 3*, 3, 3, 1, 2 ( 1., 100101; 2., 100049; 3., 100193) :,,,,, ;, 2005, 12 7 5, 2005 :,,, : ; ; ; ; : F301. 21 : A : 1000-3037( 2010)

More information

Design, construction and test of Boron Array Neutron Detector - Gas Electron Multiplier (BAND-GEM)

Design, construction and test of Boron Array Neutron Detector - Gas Electron Multiplier (BAND-GEM) Design, construction and test of Boron Array Neutron Detector - Gas Electron Multiplier (BAND-GEM) Radiation portal monitors for screening people, vehicles, and cargo. Measuring neutrons streaming from

More information