Comparative study of UV-activated processes for the degradation of organic pollutants in

Size: px
Start display at page:

Download "Comparative study of UV-activated processes for the degradation of organic pollutants in"

Transcription

1 Comparative study of UV-activated processes for the degradation of organic pollutants in water Italo Mazzarino Dipartimento di Scienza del Materiali e Ingegneria Chimica Politecnico di Torino c. Duca degli Abruzzi Torino, Italia italo@athena.polito. it Abstract Homogeneous and photocatalytic photo-activated processes were experimentally investigated by carrying out the degradation of various refractory organic pollutants in pilot size reactors. The efficiency of the processes was evaluated by measuring both the degradation of the primary pollutants and the decrease of the total organic carbon in the treated water. The comparison between the purification processes is performed in terms of rate of degradation of the organic pollutants and energy efficiency. 1 Introduction A wide number of organic pollutants of industrial waste waters shows a strong resistance to the conventional purification processes. These compounds are usually defined as "refractory pollutants". The study of the processes for the treatment of waters contaminated by refractory pollutants is an interesting challenge for the applied research. In last years various processes based on oxidation reactions activated by short wavelength radiations have been investigated, e.g. Matthews [1], Peyton et al. [2], Negrini et al. [3] and Oppenlander et al. [4].

2 38 Water Pollution A common feature of these processes is the radical reaction mechanism. The first step of the photoactivated processes is the production of highly reactive free radicals in the aqueous media. This phenomenon can occur by different mechanisms: A) the decomposition of the pollutant due to the direct impact of photons with the organic molecules (direct photolysis); B) the degradation of a reactive inorganic compound added to the water (hydrogen peroxide is the most commonly used); C) the adsorption of photons on a photoconductor followed by the reaction between charge carriers produced by thisfirststep (electrons and electronic vacancy) and the chemical species absorbed on the photoconductor surface (heterogeneous photocatalysis). A first exam of the basic features of these mechanisms shows that the direct photolysis is the less attractive for a practical application. In fact, a process based on this mechanism is effective only if the photons have an energy sufficient to brake the molecules of the pollutant. For many organic compounds this requires the use a very short wavelength radiation which are quite expensive to produce. Furthermore the photolysis of the primary pollutants can lead to the formation of stable intermediates. In this case the purification processes stops after the first step and no significant reduction of the organic load of the water is obtained. Hydroxyl free radicals can be easily obtained by the decomposition of hydrogen peroxide in aqueous solutions. The reaction is quite fast at room temperature in presence of UV radiations. The efficiency of the process increases with the decrease of the wavelength of the radiation and with the concentration of the hydrogen peroxide, e.g. Mazzarino et al. [5]. The photocatalytic process requires the presence of a solid photoconductor in contact with the polluted water. Titanium dioxide is commonly used as the photocatalyst because of its low cost. The band gap of Titania is quite small and the photoconductivity occurs in presence of relatively long wavelength radiations (X<360 nm). The process can be carried out by dispersing fine particles of the catalyst in the liquid media (slurry catalytic system). As an alternative it is possible to use a fixed catalyst supported on the solid surface of an inert material. If compared with the catalyst dispersion this last solution seems to be advantageous for two main reasons: i) the opacity of the catalyst suspension limits remarkably the diffusion of the activating radiation in the reacting media; ii) the separation of the solid after the photocatalytic treatment in the case of the dispersed catalyst is not easy because of the small size of the particles. The results obtained with fixed photocatalysts are very promising and the feasibility of the photocatalysis could be remarkably improved in this way, e.g. Crittenden et al. [6], Brucato et al. [7], Renzi et al. [8].

3 Water Pollution 39 In the present work the following processes have been examined: a) homogeneous photo-oxidation in presence of hydrogen peroxide; b) heterogeneous photocatalytic oxidation by a suspended catalyst; c) heterogeneous photocatalytic degradation by a fixed supported catalyst; d) the combination of (a) and (c) processes. 2 Experimental The experiments were carried out in a tubular continuous photochemical reactor equipped with an axial UV lamp. The reactor was 750 mm long and its internal diameter was 33 mm. The length of the lamp was the same of the reactor and its external diameter was 25 mm. The power of the UV source was 40 W and the photonic efficiency was about 40%. The emitted radiation was almost monochromatic with a wavelength of 254nm. The liquid phase consisting of an aqueous solution of the tested pollutant was fed at the bottom of the reactor and flowed upward in an annular section between the surface of the lamp and the reactor shell. The experimental equipment could also operate in biphasic flow regime by mixing a gas phase with the liquid before to feed it to the reactor. The temperature, the pressure and the flow rates of the fluid phases were controlled during the experiments. The tests with the dispersed catalyst were performed by using a suspension of a commercial Titania powder (Degussa P25) in the pollutant solution. A stable and uniform dispersion was obtained by sonication of the liquid-solid system with a 20 khz horn. Both the lamp and the reactor were carefully cleaned of the deposited solid particles after each test in order to restore the same initial conditions. The supported photocatalyst consisted of emicylindrical stainless steel bodies (each 125 mm long) coated by a thin film of Titania. These bodies were placed in the reactor coaxial with the UV lamp. The coating on the steel surface was performed by a physical vapour deposition process. After the deposition the Titanium oxides were converted into the photocatalytically active material (Anatase) by a thermal treatment at 500 C. 3 Results The first class of pollutants examined in this work was the aliphatic acids group. These compounds can be found, at relatively high concentration ( mg/l) in waste waters produced by the cleaning of boilers in power plants. Various acids characterised by different degree of molecular complexity have been tested. The most simple among these is the formic acid. With this pollutant the deep oxidation to water and carbon dioxide is easily achieved by all the tested photoactivated process. In other words no intermediate can be found at a detectable concentration in the treated water.

4 40 Water Pollution With other aliphatic acids (glycolic, citric and propanoic) the conversion is sensibly slower and various partial oxidation products are detected. This fact leads to a significant difference between the conversions of the primary pollutants (the acids) and the organic load (TOC). The figure 1 shows the ratio between the TOC and the acid relative conversions observed in the case of photocatalytic oxidation by the supported catalyst. The trend is almost the same for all the photo-activated processes tested in this work T (mm) Figure 1. Ratio between the TOC and the primary reactant conversion vs. the residence time for various acids (initial concentration 20 mg/l) The figure 2 shows a comparison between the various processes in the case of the degradation of the Formic acid. As far as the photocatalytic oxidation is concerned the supported catalyst (Cat S) proves to be is sensibly more efficient than the dispersed one (Cat D). The better performance of the fixed system is probably due to a better irradiation of the catalytic surface. The best results are obtained by the homogeneous oxidation process in the presence of the hydrogen peroxide. The experimental tests were carried out at various concentrations of the oxidising reactant. The data reported in the figure 2 were obtained using a large excess of the hydrogen peroxide (2 times the stoichiometric amount required to achieve the full conversion the organic pollutant to water and CO2). At lower concentration of H2 2 the conversion rate decreases sensibly and with a stoichiometric amount it is very close to that performed by the supported photocatalyst If compared with the homogeneous oxidation the combined process (Catalyst + H2O2) does not lead to a significant increase of the purification efficiency.

5 Water Pollution 41 The contribution of the catalytic mechanism to global of degradation is negligible probably because most of the radiation is absorbed in the liquid by the decomposition of the Peroxide and can not reach the catalyst surface. C/C. # A T CatS HA Cat + HA CatD i (min) Figure 2. TOC conversion vs. residence time in the degradation of Formic acid (initial concentration 200 mg/l) C/C T (min) Figure 3. TOC conversion vs. residence time in the degradation of Phenol (initial concentration 20 mg/l) With Phenol and Toluen di-isocianate (Figures 3 and 4) the conversion of the TOC is slower than in the case of aliphatic acids, but the relative efficiency of

6 42 Water Pollution the various degradation processes is very similar. The best performance is obtained by the homogeneous photo-oxidation and no significant improvement of the abatement efficiency is achieved by the combination of the catalytic and the homogeneous processes. C/C CatS A Cat + HO T (min) Figure 4. TOC conversion vs. residence time in the degradation of Toluen di-isocianate TDI (initial concentration 20 mg/l) C/C T (min) Figure 5. TOC conversion vs. residence time in the degradation of a dyes mixture (initial concentration 5 mg/l of TOC) The figure 5 shows the conversion of the total organic carbon in a solution of various organic dyes. In this case the exact composition of the solution was

7 Water Pollution 43 unknown because a real waste water was used. The results obtained by the photocatalytic oxidation with both the dispersed and the supported catalyst are not very good, but a satisfactory conversion of the pollutants can be obtained by the homogeneous photo-oxidation. Similar results have been obtained for the degradation of Na-dodecylsulfate (NaDS). With this pollutant a satisfactory reduction of the organic content of the solution can be achieved in a reasonable time only by the homogeneous process (Figure 6). C/C T (min) Figure 6. TOC conversion vs. residence time in the degradation of Na-dodecylsulfate (initial concentration lomg/l) The energy efficiency of a photoactivated water purification process can be defined as the ratio between the amount of photons emitted by the radiation source and the molar conversion of the organic carbon in the liquid phase. In our case the lamp has an effective light power of 16.5 W. Assuming a monochromatic radiation at 254 nm the photonic emission rate is "^ mole/s. The values of the energy efficiency calculated on the basis of the experimental results of the TOC conversion are summarised in the figures 7-9. The efficiency is relatively high in the case of light organic compounds like the formic acid, but it decreases sensibly with the increases the complexity of the molecular structure. The efficiency also depends on the pollutant concentration. The influence of the concentration is high in the case of the photocatalytic process while it is moderate for the homogeneous oxidation. This might be due to fact that the electrons and the vacancies created on the catalyst surface can easily recombine

8 44 Water Pollution with no photocatalytic effect if the concentration of the adsorbed species is very low. n p - I Supported Catalyst Dispersed catalyst Formic Glycolic Citric Propanoic Figure 7. Photonic efficiency in the degradation of various organic acids (initial concentration 200 mg/l) I I Supported Catalyst Dispersed catalyst UV ppm ppm ppm Figure 8. Photonic efficiency in the degradation of formic acid at different initial concentrations

9 Water Pollution 45 I Supported Catalyst b%# Dispersed catalyst UV+HO, Phenol 20 ppm TDI 15 ppm Dyes 5ppmC NaDS 10 ppm Figure 9. Photonic efficiency in the degradation of various organic pollutants 4 Conclusions Both the homogeneous photo-oxidation in presence of hydrogen peroxide and the photocatalytic mechanism proved to be effective in the degradation of a wide class of refractory organic pollutants. The supported fixed catalyst shows a better performance if compared with the dispersed solid system. The homogeneous process seems to be more effective than the heterogeneous photocatalysis, particularly in the case of compounds with a complex molecular structure and at very low concentration of the pollutants. On the other hand a good efficiency of the homogeneous photo-oxidation is achieved only by using a large excess of hydrogen peroxide. This fact might limit the feasibility of the process because of the secondary pollution due to the presence of a high concentration of the peroxide in the treated water. References 1. Matthews, R.W. Purification of Water with Near-UV Illuminated Suspensions of Titanium Dioxide, Water Res,, 24 pp , Peyton, G.R., Huang, F.Y., Burleson, J.L. and Glaze, W.H., Destruction of Pollutants in Water with Ozone in Combination with UV Radiation, Environ. Sci. TechnoL, 16, pp , Legrini, O., Oliveros, E., Braun A.M., Oxidation of Pollutants in Water by UV-Hydrogen Peroxide and UV-Ozone Processes, Chem Rev., 93, pp , 1993

10 46 Water Pollution 4. Oppenlander, T. and Baum, G., Bin Modularer Excimer-Durchflussreaktor zur Reinigung belasteter Abwasser durch Vakuum-UV/UV-Doppelbestrahlung ohne Oxidationmittelzusatz, Chem. Ing. Tech., 66, pp , Mazzarino, I., Piccinini, P. and Spinelli, L., Degradation of Organic Pollutants in Water by Photochemical Reactors, Proc. of the II Int. Sysmposium on Catalysis in Multiphase Reactors.Toulouse, France, Crittenden, J.C., Zhang, Y., Hand, D.W., Perram, L.D. and Marchand, E.G., Solar Detoxification of Contaminated Groundwaters Using Fixed-Bed Photocatalysts 7. Brucato, A., Mannino, V., Rizzuti, L., Sclafani, A., Photocatalytic Degradation of Phenol in a Glass-Beads Diluted Fixed-Bed Reactor, Chemical Industry and Environment II, Eds. N. Piccinini and R. Delorenzo, Torino, pp , Renzi, C., Mazzarino, I., and Baldi, G., Heterogeneous Photocatalytic Oxidation of Toxic Organic Waste Waters with Supported Semiconductors, Proc. of the V World Congress of Chemical Engineering, San Diego, USA, 1996

Chapter - III THEORETICAL CONCEPTS. AOPs are promising methods for the remediation of wastewaters containing

Chapter - III THEORETICAL CONCEPTS. AOPs are promising methods for the remediation of wastewaters containing Chapter - III THEORETICAL CONCEPTS 3.1 Advanced Oxidation Processes AOPs are promising methods for the remediation of wastewaters containing recalcitrant organic compounds such as pesticides, surfactants,

More information

Catalytic materials for plasma-based VOC removal

Catalytic materials for plasma-based VOC removal Catalytic materials for plasma-based VOC removal David Cameron, Tatyana Ivanova, Marja-Leena Kääriäinen Advanced Surface Technology Research Laboratory (ASTRaL) Lappeenranta University of Technology Finland

More information

Photolytic Degradation of Rhodamine B in Water Using H 2 O 2 /UV System

Photolytic Degradation of Rhodamine B in Water Using H 2 O 2 /UV System 265 Journal of Pharmaceutical, Chemical and Biological Sciences ISSN: 2348-7658 Impact Factor (SJIF): 2.092 December 2014-February 2015; 2(4):265-269 Available online at http://www.jpcbs.info Online published

More information

Journal of Innovative Engineering R Senthilkumar et al., Journal of Innovative Engineering 2014, 2(2): 5

Journal of Innovative Engineering R Senthilkumar et al., Journal of Innovative Engineering 2014, 2(2): 5 Article Type: Research Article Phenol Degradation of Industrial Wastewater by Photocatalysis Dheeaa Al Deen Atallah Aljoubory 1 and Ramaligham Senthilkumar 2 1 Caledonian College of Engineering, Muscat,

More information

Oxidation Power of Various Reactive Species (Chlorine=1) Oxidation Power of Various Reactive Species (Chlorine=1)

Oxidation Power of Various Reactive Species (Chlorine=1) Oxidation Power of Various Reactive Species (Chlorine=1) In order to fully understand photo-catalytic oxidation we must first learn a little about the metal catalyst involved (Titanium in our case). Titanium has been stated as being light, strong and anti-corrosive,

More information

Photocatalysis: semiconductor physics

Photocatalysis: semiconductor physics Photocatalysis: semiconductor physics Carlos J. Tavares Center of Physics, University of Minho, Portugal ctavares@fisica.uminho.pt www.fisica.uminho.pt 1 Guimarães Where do I come from? 3 Guimarães 4 Introduction>>

More information

Titanium dioxide nanoparticles as a highly active photocatalytic material

Titanium dioxide nanoparticles as a highly active photocatalytic material Titanium dioxide nanoparticles as a highly active photocatalytic material 1 Ultrafine (nanoparticle) TiO 2 production at Cinkarna Celje, Inc... 4 Photocatalytic degradation of organic pollutants and of

More information

TYLOSIN ABATEMENT IN WATER BY PHOTOCATALYTIC PROCESS

TYLOSIN ABATEMENT IN WATER BY PHOTOCATALYTIC PROCESS TYLOSIN ABATEMENT IN WATER BY PHOTOCATALYTIC PROCESS LAOUFI N.A 1,4, ALATRACHE A. 2,4, PONS M.N. 3, ZAHRAA O. 4 1 USTHB, Faculté de Génie Mécanique et de Génie des Procédés. Département de Génie Chimique

More information

Photo catalytic degradation of methylene blue in aqueous solutions using TiO2 nanoparticles

Photo catalytic degradation of methylene blue in aqueous solutions using TiO2 nanoparticles Journal of Biodiversity and Environmental Sciences (JBES) ISSN: 2220-6663 (Print) 2222-3045 (Online) Vol. 3, No. 12, p. 8-12, 2013 http://www.innspub.net RESEARH PAPER OPEN AESS Photo catalytic degradation

More information

Plasma and catalysts. Part-financed by the European Union (European Regional Development Fund

Plasma and catalysts. Part-financed by the European Union (European Regional Development Fund Plasma and catalysts David Cameron Professor of Material Technology Advanced Surface technology Research Laboratory (ASTRaL) University of Lappeenranta Finland Part-financed by the European Union (European

More information

DEGRADATION OF REACTIVE RED 2 BY FENTON AND PHOTO-FENTON OXIDATION PROCESSES

DEGRADATION OF REACTIVE RED 2 BY FENTON AND PHOTO-FENTON OXIDATION PROCESSES DEGRADATION OF REACTIVE RED 2 BY FENTON AND PHOTO-FENTON OXIDATION PROCESSES Tuty Emilia A., Yourdan Wijaya A. and Febrian Mermaliandi Department of Chemical Engineering, Faculty of Engineering, University

More information

MODELING OPTIMIZATION OF FIXED ARBITRARY CONCENTRATORS

MODELING OPTIMIZATION OF FIXED ARBITRARY CONCENTRATORS MODELING OPTIMIZATION OF FIXED ARBITRARY CONCENTRATORS Jenni Brito Department of Chemical Engineering Universidad de las Américas-Puebla Santa Catarina Mártir San Andrés Cholula, Puebla, México 72810 Email:

More information

Techniques for effluent treatment. Lecture 5

Techniques for effluent treatment. Lecture 5 Techniques for effluent treatment Lecture 5 Techniques for effluent treatment Dye effluent treatment methods are classified into three main categories: 1. Physical treatment method 2. Chemical treatment

More information

N.Hadj Salah a,b, M.Bouhelassa a, B.David b, *

N.Hadj Salah a,b, M.Bouhelassa a, B.David b, * Available online at www.sciencedirect.com Physics Procedia 21 (2011) 115 121 Seventh International Conference on Material Sciences (CSM7) Photocatalytic Decoloration of Cibacron Green RG12, on TiO 2 Fixed

More information

BAE 820 Physical Principles of Environmental Systems

BAE 820 Physical Principles of Environmental Systems BAE 820 Physical Principles of Environmental Systems Catalysis of environmental reactions Dr. Zifei Liu Catalysis and catalysts Catalysis is the increase in the rate of a chemical reaction due to the participation

More information

How can oxidation be done

How can oxidation be done Oxidation of Colors How can oxidation be done Synthetic dyes are difficult to degrade due to their complex aromatic structure and synthetic origin. Some of them are known to be toxic or carcinogenic The

More information

Thermal Gravimetric Analyzer (TGA) ก TiO 2 /AC

Thermal Gravimetric Analyzer (TGA) ก TiO 2 /AC ก ก ก ก PREPARATION TITANIUM DIOXIDE SUPPORTED ACTIVATED CARBON (TiO 2 /AC) FOR TREATMENT OF PHENOL IN AQUEOUS SOLUTION ก 1, 2, 3, 1 Chalermpan Ngamsopasiriskun 1, Surachai Thachepan 2, Suchart Suwanatus

More information

Oxidation of Phenolic Wastewater by Fenton's Reagent

Oxidation of Phenolic Wastewater by Fenton's Reagent Iraqi Journal of Chemical and Petroleum Engineering Iraqi Journal of Chemical and Petroleum Engineering Vol.0 No. ( June 009) 35-4 ISSN: 997-4884 University of Baghdad College of Engineering xidation of

More information

Photo Catalytic Degradation of Effluent of Iron and Power Plant Industries in Aqueous Solution by Tio 2 Nano Catalyst Using Uv Irradiation

Photo Catalytic Degradation of Effluent of Iron and Power Plant Industries in Aqueous Solution by Tio 2 Nano Catalyst Using Uv Irradiation IOSR Journal of Applied Chemistry (IOSRJAC) ISSN : 2278-5736 Volume 1, Issue 3 (July-Aug. 2012), PP 43-48 Photo Catalytic Degradation of Effluent of Iron and Power Plant Industries in Aqueous Solution

More information

Photocatalytic Ozonation for Treatment of Wastewater

Photocatalytic Ozonation for Treatment of Wastewater 2 nd International Conference on Multidisciplinary Research & Practice P a g e 202 Photocatalytic Ozonation for Treatment of Wastewater Nikita P. Chokshi, J. P. Ruparelia Chemical Engineering Department,

More information

Contribution to the Study of Quantum Efficiency of Photocatalytic Reaction of 2,6-Dichloroindophenol

Contribution to the Study of Quantum Efficiency of Photocatalytic Reaction of 2,6-Dichloroindophenol Contribution to the Study of Quantum Efficiency of Photocatalytic Reaction of 2,6-Dichloroindophenol K. BEZDĚKOVÁ, M. VESELÝ, and L. LAPČÍK Faculty of Chemistry, Brno University of Technology, CZ-612 00

More information

PHOTOCATALYTIC DEGRADATION OF META- CHLOROPHENOL USING SOLAR AND ARTIFICIAL RADIATION

PHOTOCATALYTIC DEGRADATION OF META- CHLOROPHENOL USING SOLAR AND ARTIFICIAL RADIATION PHOTOCATALYTIC DEGRADATION OF META- CHLOROPHENOL USING SOLAR AND ARTIFICIAL RADIATION 1 Shilpa S. Patil, 2 Prof. S. T. Patil, 2 Dr. Sanjay P. Kamble 1,2,3 Tatyasaheb Kore Institute of Engineering and Technology

More information

INTERFERING EFFECTS IN THE MEASUREMENT OF BTEX DEPOLLUTION IN AIR BY PHOTOCATALYTIC MATERIALS

INTERFERING EFFECTS IN THE MEASUREMENT OF BTEX DEPOLLUTION IN AIR BY PHOTOCATALYTIC MATERIALS INTERFERING EFFECTS IN THE MEASUREMENT OF BTEX DEPOLLUTION IN AIR BY PHOTOCATALYTIC MATERIALS Alberto Strini and Elisa Bossi ITC, Consiglio Nazionale delle Ricerche, San Giuliano Mil., Italy Abstract In

More information

Electronic Supplementary Information

Electronic Supplementary Information Electronic Supplementary Information Tailored TiO 2 layers for the photocatalytic ozonation of cumylphenol, a refractory pollutant exerting hormonal activity S. Ardizzone, G. Cappelletti, D. Meroni and

More information

Adsorption Studies of Methylene Blue on TiO 2 Nanoparticles: Experimental and Mathematical Modeling

Adsorption Studies of Methylene Blue on TiO 2 Nanoparticles: Experimental and Mathematical Modeling International Proceedings of Chemical, Biological and Environmental Engineering, Vl. 9 (25) DOI:.7763/IPCBEE. 25. V9. 3 Adsorption Studies of Methylene Blue on TiO 2 Nanoparticles: Experimental and Mathematical

More information

Glossary of Terms in Photocatalysis and Radiation Catalysis. Poster presented at the IUPAC Congress/General Assembly July 2001

Glossary of Terms in Photocatalysis and Radiation Catalysis. Poster presented at the IUPAC Congress/General Assembly July 2001 Glossary of Terms in Photocatalysis and Radiation Catalysis Poster presented at the IUPAC Congress/General Assembly July 2001 Synopsis This document presents a glossary of terms to be used for phenomena

More information

APPLICATION OF TITANIUM DIOXIDE PHOTOCATALYSIS TO CREATE SELF-CLEANING MATERIALS

APPLICATION OF TITANIUM DIOXIDE PHOTOCATALYSIS TO CREATE SELF-CLEANING MATERIALS MOCM 13 Volume 3 ROMANIAN TECHNICAL SCIENCES ACADEMY - 2007 280 APPLICATION OF TITANIUM DIOXIDE PHOTOCATALYSIS TO CREATE SELF-CLEANING MATERIALS MARIUS STAMATE, GABRIEL LAZAR Bacau University, Engineering

More information

CHEMICAL OXIDATION. The use of oxidizing agents without the need of microorganisms for the reactions to proceed

CHEMICAL OXIDATION. The use of oxidizing agents without the need of microorganisms for the reactions to proceed CHEMICAL OXIDATION The use of oxidizing agents without the need of microorganisms for the reactions to proceed oxidizing agents : O 3, H 2 O 2, Cl 2 or HOCl or O 2 etc catalysts : ph, transition metals,

More information

3.30 TITANIUM DIOXIDE

3.30 TITANIUM DIOXIDE 181 3.30 TITANIUM DIOXIDE Technology Prospects Addressable market size 5 Competitive landscape 3 IP landscape 4 Commercial prospects 4 Technology drawbacks 3 Total score (out of max. 25): 19 3.30.1 Properties

More information

A STUDY OF PROCESS VARIABLES FOR THE PHOTOCATALYTIC DEGRADATION OF RHODAMINE B

A STUDY OF PROCESS VARIABLES FOR THE PHOTOCATALYTIC DEGRADATION OF RHODAMINE B Brazilian Journal of Chemical Engineering ISSN 0104-6632 Printed in Brazil www.abeq.org.br/bjche Vol. 24, No. 01, pp. 29-36, January - March, 2007 A STUDY OF PROCESS VARIABLES FOR THE PHOTOCATALYTIC DEGRADATION

More information

KTaO 3 a perovskite for water and air treatment

KTaO 3 a perovskite for water and air treatment Available online at www.worldscientificnews.com WSN 75 (2017) 73-80 EISSN 2392-2192 KTaO 3 a perovskite for water and air treatment Anna Różańska*, Jacek Namieśnik Department of Analytical Chemistry, Faculty

More information

CHAPTER 3 MATERIALS AND METHODS

CHAPTER 3 MATERIALS AND METHODS 86 CHAPTER 3 MATERIALS AND METHODS 3.1 GENERAL Experimental investigations were carried out in order to develop an integrated MW-UV reactor indigenously by incorporating a conventional UV lamp in microwave

More information

Photocatalytic degradation of 4-nitrophenol in aqueous N, S-codoped TiO 2 suspensions

Photocatalytic degradation of 4-nitrophenol in aqueous N, S-codoped TiO 2 suspensions Photocatalytic degradation of 4-nitrophenol in aqueous N, S-codoped TiO 2 suspensions Rahmatollah Rahimi, Samaneh Safalou moghaddam, Mahboubeh Rabbani Department of Chemistry, Iran University of Science

More information

INTERNATIONAL JOURNAL OF PURE AND APPLIED RESEARCH IN ENGINEERING AND TECHNOLOGY

INTERNATIONAL JOURNAL OF PURE AND APPLIED RESEARCH IN ENGINEERING AND TECHNOLOGY INTERNATIONAL JOURNAL OF PURE AND APPLIED RESEARCH IN ENGINEERING AND TECHNOLOGY A PATH FOR HORIZING YOUR INNOVATIVE WORK DEGRADATION OF M-CHLOROPHENOL USING SOLAR RADIATIONS MRS. SHILPA S. PATIL 1, PROF.

More information

Degradation of Chlorophenol by Photocatalysts with Various Transition Metals

Degradation of Chlorophenol by Photocatalysts with Various Transition Metals Korean J. Chem. Eng., 22(3), 382-386 (2005) Degradation of Chlorophenol by Photocatalysts with Various Transition Metals Il-Kyu Kim, Hyun-Jung Ha, Sang-Keun Lee and Jea-Keun Lee Dept. of Environ. Eng.,

More information

Advanced Method of Purification of Pharmaceutical

Advanced Method of Purification of Pharmaceutical Volume-5, Issue-6, December-015 International Journal of Engineering and Management Research Page Number: 46-5 Advanced Method of Purification of Pharmaceutical Prof.Shilpa S.Patil 1, Prof.S.U.Patil, Prof.S.V.Kadoli

More information

Characteristics of Spherical Activated Carbon contained Titanium Oxide

Characteristics of Spherical Activated Carbon contained Titanium Oxide Characteristics of Spherical Activated Carbon contained Titanium Oxide Jeong-Kwon Suh 1, Joon-Jae Lee 1, Ji-Sook Hong 1, Young-Seak Lee 2 and Jung-Min Lee 1 1 Korea research Institute of Chemical Technology

More information

PHOTOCATALYTIC DEGRADATION STUDIES OF POLYANILINE BASED ZnO-Al 2 O 3 NANOCOMPOSITE

PHOTOCATALYTIC DEGRADATION STUDIES OF POLYANILINE BASED ZnO-Al 2 O 3 NANOCOMPOSITE PHOTOCATALYTIC DEGRADATION STUDIES OF POLYANILINE BASED ZnO-Al 2 O 3 NANOCOMPOSITE Baiju V 1, Dedhila Devadathan 2, Biju R 3, Raveendran R 4 Nanoscience Research Laboratory, Department of Physics, Sree

More information

THE EFFECT OF PHOTOCATALYTIC BUILDING MATERIALS IN URBAN DEPOLLUTION

THE EFFECT OF PHOTOCATALYTIC BUILDING MATERIALS IN URBAN DEPOLLUTION THE EFFECT OF PHOTOCATALYTIC BUILDING MATERIALS IN URBAN DEPOLLUTION Th. Maggos, D. Kotzias, J.G Bartzis, N. Moussiopoulos Photocatalysis provides a very promising solution for pollutants removal compared

More information

A Novel Approach for the Production of Nitrogen Doped TiO 2 Nanoparticles

A Novel Approach for the Production of Nitrogen Doped TiO 2 Nanoparticles 721 A publication of CHEMICAL ENGINEERING TRANSACTIONS VOL. 43, 2015 Chief Editors: Sauro Pierucci, Jiří J. Klemeš Copyright 2015, AIDIC Servizi S.r.l., ISBN 978-88-95608-34-1; ISSN 2283-9216 The Italian

More information

Chemical Oxidation Oxidizing agents

Chemical Oxidation Oxidizing agents Chemical Oxidation CENG 4710 Environmental Control Chemical oxidation is used to detoxify waste by adding an oxidizing agent to chemically transform waste compounds. It is capable of destroying a wide

More information

Preparation of Carbon-Coated TiO 2 at Different Heat Treatment Temperatures and Their Photoactivity

Preparation of Carbon-Coated TiO 2 at Different Heat Treatment Temperatures and Their Photoactivity Carbon Science Vol. 7, No. 4 December 2006 pp. 259-265 Preparation of Carbon-Coated TiO 2 at Different Heat Treatment Temperatures and Their Photoactivity Ming-Liang Chen 1, Jang-Soon Bae 2 and Won-Chun

More information

PHOTOCATALYTIC REMOVAL OF TRI- AND HEXA-VALENT CHROMIUM IONS FROM CHROME-ELECTROPLATING WASTEWATER

PHOTOCATALYTIC REMOVAL OF TRI- AND HEXA-VALENT CHROMIUM IONS FROM CHROME-ELECTROPLATING WASTEWATER AJSTD Vol. 22 Issue 4 pp. 355-362 (2005) PHOTOCATALYTIC REMOVAL OF TRI- AND HEXA-VALENT CHROMIUM IONS FROM CHROME-ELECTROPLATING WASTEWATER Puangrat Kajitvichyanukul *1,2 and Chulaluck Changul 1 1 Department

More information

Photolytic and Photocatalytic Recreational Water Treatment

Photolytic and Photocatalytic Recreational Water Treatment 2014 5th International Conference on Environmental Science and Technology IPCBEE vol.69 (2014) (2014) IACSIT Press, Singapore DOI: 10.7763/IPCBEE. 2014. V69. 5 Photolytic and Photocatalytic Recreational

More information

slurry photoreactor ENEA - C.R. "Casaccia Guido Spanò

slurry photoreactor ENEA - C.R. Casaccia Guido Spanò Photocatalytic reduction of CO 2 in a batch slurry photoreactor ENEA - C.R. "Casaccia - 18-06-2012 Guido Spanò www.eni.it Introduction Since the seminal work of Inoue et al [1] in 1979, the phocatalytic

More information

Synthesis and photocatalytic activity of TiO2 Nanoparticles

Synthesis and photocatalytic activity of TiO2 Nanoparticles Journal of Babylon University/Pure and Applied Sciences/ No.(1)/ Vol.(22): 2012 College of Science/Babylon University Scientific Conference Synthesis and photocatalytic activity of TiO2 Nanoparticles MAJEED

More information

Degradation of ferrohexacyanide by advanced oxidation processes

Degradation of ferrohexacyanide by advanced oxidation processes Indian Journal of Chemical Technology Vol. 12, January 2005, pp. 19-24 Degradation of ferrohexacyanide by advanced oxidation processes Sarla Malhotra a*, M Pandit a & D K Tyagi b a Centre for Fire, Explosive

More information

Optimization of In-Situ Chemical Oxidation Design Parameters

Optimization of In-Situ Chemical Oxidation Design Parameters Optimization of In-Situ Chemical Oxidation Design Parameters by Amine Dahmani, PhD Director, Site Assessment & Remediation Laboratories Ken Huang, PhD Remediation Laboratory Manager Environmental Research

More information

DEGRADATION OF METHYLENE BLUE VIA GEOPOLYMER COMPOSITE PHOTOCATALYSIS Wellington, New Zealand

DEGRADATION OF METHYLENE BLUE VIA GEOPOLYMER COMPOSITE PHOTOCATALYSIS Wellington, New Zealand DEGRADATION OF METHYLENE BLUE VIA GEOPOLYMER COMPOSITE PHOTOCATALYSIS Masliana M. 1*, Kenneth J.D.M. 2, Meor Yusoff M.S. 1 Wilfred S.P. 1 and Nur Aqilah S. 1 1 Material Technology Group, Malaysian Nuclear

More information

Photcatalytic Degradation of Rhodamine b using Titanium Dioxide

Photcatalytic Degradation of Rhodamine b using Titanium Dioxide International Journal of Multidisciplinary and Current Research Research Article ISSN: 2321-3124 Available at: http://ijmcr.com Hazim Y. Al-gubury and Hedear H. Alsaady Babylon University, College of Science

More information

Photocatalytic discoloration of the azo dye methylene blue in the presence of irradiated TiO 2 /Pt nano-composite

Photocatalytic discoloration of the azo dye methylene blue in the presence of irradiated TiO 2 /Pt nano-composite Photocatalytic discoloration of the azo dye methylene blue in the presence of irradiated TiO 2 /Pt nano-composite Vojka Žunič 1,2 1 Advanced Materials Department, Jožef Stefan Institute, Ljubljana, Slovenia

More information

SIR MICHELANGELO REFALO

SIR MICHELANGELO REFALO SIR MIELANGEL REFAL SIXT FRM Annual Exam 2015 Subject: hemistry ADV 2 nd Time: 3 hours ANSWER ANY 6 QUESTINS. All questions carry equal marks. You are reminded of the importance of clear presentation in

More information

Effect of Silver Dispersion on Photocatalytic Activity of Silver-Loaded Titanium Oxide

Effect of Silver Dispersion on Photocatalytic Activity of Silver-Loaded Titanium Oxide 274 Chiang Mai J. Sci. 2008; 35(2) Chiang Mai J. Sci. 2008; 35(2) : 274-282 www.science.cmu.ac.th/journal-science/josci.html Contributed Paper Effect of Silver Dispersion on Photocatalytic Activity of

More information

A photo-catalytic reactor for degrading volatile organic compounds (VOCs) in paper mill environment

A photo-catalytic reactor for degrading volatile organic compounds (VOCs) in paper mill environment Journal of Bioresources and Bioproducts. 2018, 3(2) 78-83 ORIGINAL PAPER DOI: 10.21967/jbb.v3i2.113 A photo-catalytic reactor for degrading volatile organic compounds (VOCs) in paper mill environment Jun

More information

Available online at I-SEEC Proceeding - Science and Engineering (2013) 89 94

Available online at   I-SEEC Proceeding - Science and Engineering (2013) 89 94 Available online at www.iseec2012.com I-SEEC 2012 Proceeding - Science and Engineering (2013) 89 94 Proceeding Science and Engineering www.iseec2012.com Science and Engineering Symposium 4 th International

More information

Comparison of efficiecy of two solar-catalytic sytems treatment of textile dyes and washing out reagents

Comparison of efficiecy of two solar-catalytic sytems treatment of textile dyes and washing out reagents Proceedings of International Symposium on Environmental Pollution Control and Waste Management 7- January 02, Tunis (EPCOWM 02), p.683-687. Comparison of efficiecy of two solar-catalytic sytems treatment

More information

Laurea in Scienza dei Materiali Materiali Inorganici Funzionali. Hydrogen production by photocatalytic water splitting

Laurea in Scienza dei Materiali Materiali Inorganici Funzionali. Hydrogen production by photocatalytic water splitting Laurea in Scienza dei Materiali Materiali Inorganici Funzionali Hydrogen production by photocatalytic water splitting Prof. Dr. Antonella Glisenti -- Dip. Scienze Chimiche -- Università degli Studi di

More information

Atmospheric Analysis Gases. Sampling and analysis of gaseous compounds

Atmospheric Analysis Gases. Sampling and analysis of gaseous compounds Atmospheric Analysis Gases Sampling and analysis of gaseous compounds Introduction - External environment (ambient air) ; global warming, acid rain, introduction of pollutants, etc - Internal environment

More information

Nano-engineered materials for H 2 production by water photo-electrolysis

Nano-engineered materials for H 2 production by water photo-electrolysis Nano-engineered materials for H 2 production by water photo-electrolysis C. Ampelli, R. Passalacqua, S. Perathoner, G. Centi Department of Industrial Chemistry and Materials Engineering, University of

More information

TYPES OF CATALYSIS Reading Supplement

TYPES OF CATALYSIS Reading Supplement TYPES OF CATALYSIS Reading Supplement This page looks at the the different types of catalyst (heterogeneous and homogeneous) with examples of each kind, and explanations of how they work. You will also

More information

ROLE OF COPRECIPITATED NiS-ZnS IN PHOTOCATALYTIC DEGRADATION OF ALIZARIN RED S

ROLE OF COPRECIPITATED NiS-ZnS IN PHOTOCATALYTIC DEGRADATION OF ALIZARIN RED S Int. J. Chem. Sci.: 8(2), 2010, 961-968 ROLE OF COPRECIPITATED NiS-ZnS IN PHOTOCATALYTIC DEGRADATION OF ALIZARIN RED S VIJAYA SHARMA, NEELAM GANDHI, ANKUR KHANT and R. C. KHANDELWAL * Department of Chemistry,

More information

Photocatalytic Oxidation of Ethyl Alcohol in an Annulus Fluidized Bed Reactor

Photocatalytic Oxidation of Ethyl Alcohol in an Annulus Fluidized Bed Reactor Korean J. Chem. Eng., 21(3), 721-725 (2004) Photocatalytic Oxidation of Ethyl Alcohol in an Annulus Fluidized Bed Reactor Myung-Jin Kim, Wooseok Nam and Gui Young Han Department of Chem. Eng., Sungkyunkwan

More information

Department of Chemistry, University of Missouri-Columbia, Missouri

Department of Chemistry, University of Missouri-Columbia, Missouri Synthesis of an Improved TiO 2 Co-catalyst for the Breakdown of Organic Materials Taylor D. Bell, Shane E. Moore Department of Chemistry, University of Missouri-Columbia, Missouri 65201 Email: tdbth5@mail.missouri.edu;

More information

PHOTOCHEMICAL OXIDATION OF p-aminophenol BY FENTON REAGENT

PHOTOCHEMICAL OXIDATION OF p-aminophenol BY FENTON REAGENT Int. J. Chem. Sci.: 9(3), 2011, 1415-1420 ISSN 0972-768X www.sadgurupublications.com PHOTOCHEMICAL OXIDATION OF p-aminophenol BY FENTON REAGENT DHARMENDRA KUMAR Department of Chemistry, M. S. J. Government

More information

Oscillation in the Concentration of H 2 O 2 during Advanced Oxidation Processes:TiO 2 Mediated Sonocatalytic Degradation of Phenol

Oscillation in the Concentration of H 2 O 2 during Advanced Oxidation Processes:TiO 2 Mediated Sonocatalytic Degradation of Phenol IOSR Journal of Applied Chemistry (IOSR-JAC) ISSN: 7-573 PP 1- www.iosrjournals.org Oscillation in the Concentration of H O during Advanced Oxidation Processes:TiO Mediated Sonocatalytic Degradation of

More information

Photocatalytic Degradation Study of Methylene Blue Solutions and Its Application to Dye Industry Effluent

Photocatalytic Degradation Study of Methylene Blue Solutions and Its Application to Dye Industry Effluent Vol.2, Issue.3, May-June 2012 pp-1204-1208 ISSN: 2249-6645 Photocatalytic Degradation Study of Methylene Blue Solutions and Its Application to Dye Industry Effluent Susheela Bai Gajbhiye * * Department

More information

External and internal mass transfer effect on photocatalytic degradation

External and internal mass transfer effect on photocatalytic degradation Catalysis Today 66 (2001) 475 485 External and internal mass transfer effect on photocatalytic degradation Dingwang Chen, Fengmei Li, Ajay K. Ray Department of Chemical and Environmental Engineering, The

More information

INORGANIC SUPPORTED POLYMERIC CATALYSTS INORGANIC SUPPORTED POLYMERIC CATALYSTS PDF ELENA GROPPO UNIVERSITY OF TORINO - ACADEMIA.

INORGANIC SUPPORTED POLYMERIC CATALYSTS INORGANIC SUPPORTED POLYMERIC CATALYSTS PDF ELENA GROPPO UNIVERSITY OF TORINO - ACADEMIA. PDF ELENA GROPPO UNIVERSITY OF TORINO - ACADEMIA.EDU CATALYSIS - WIKIPEDIA 1 / 5 2 / 5 3 / 5 inorganic supported polymeric catalysts pdf A new heterogeneous catalyst for CO(2) activation was identified

More information

DEGRADATION OF FAST GREEN FCF USING IMMOBILIZED PHOTO-FENTON REAGENT

DEGRADATION OF FAST GREEN FCF USING IMMOBILIZED PHOTO-FENTON REAGENT Sci. Revs. Chem. Commun.: 4(4), 2014, 138-145 ISSN 2277-2669 DEGRADATION OF FAST GREEN FCF USING IMMOBILIZED PHOTO-FENTON REAGENT GARGI SHARMA a, DIPTI SONI a, SURBHI BENJAMIN a, RAKSHIT AMETA a and SANYOGITA

More information

Zn 1.5 PW 12 O 40 Mixed Oxide Nanotube: An Efficient and Stable Catalyst for Degradation of Phenol by Ultraviolet

Zn 1.5 PW 12 O 40 Mixed Oxide Nanotube: An Efficient and Stable Catalyst for Degradation of Phenol by Ultraviolet 2011 International Conference on Biology, Environment and Chemistry IPCBEE vol.24 (2011) (2011)IACSIT Press, Singapoore Zn 1.5 PW 12 O 40 Mixed Oxide Nanotube: An Efficient and Stable Catalyst for Degradation

More information

Photo Catalytic Degradation of Effluent of Iron and Power Plant Industries in Aqueous Solution by CDS Nano Catalyst Using UV Irradiation

Photo Catalytic Degradation of Effluent of Iron and Power Plant Industries in Aqueous Solution by CDS Nano Catalyst Using UV Irradiation IOSR Journal of Applied Chemistry (IOSR-JAC) e-issn: 2278-5736.Volume 7, Issue 10 Ver. II. (Oct. 2014), PP 45-51 Photo Catalytic Degradation of Effluent of Iron and Power Plant Industries in Aqueous Solution

More information

Sawsan Mohamed Abu El Hassan Mosa

Sawsan Mohamed Abu El Hassan Mosa International Journal of Advanced Research in Chemical Science (IJARCS) Volume 1, Issue 9, November 2014, PP 30-37 ISSN 2349-039X (Print) & ISSN 2349-0403 (Online) www.arcjournals.org Comparison between

More information

Phenols removal using ozonation-adsorption with granular activated carbon (GAC) in rotating packed bed reactor

Phenols removal using ozonation-adsorption with granular activated carbon (GAC) in rotating packed bed reactor IOP Conference Series: Materials Science and Engineering PAPER OPEN ACCESS Phenols removal using ozonation-adsorption with granular activated carbon (GAC) in rotating packed bed reactor To cite this article:

More information

Catalytic thin film coatings

Catalytic thin film coatings Catalytic thin film coatings David Cameron Professor of Material Technology Advanced Surface technology Research Laboratory (ASTRaL) University of Lappeenranta Finland Part-financed by the European Union

More information

-:Vijay Singh(09CEB023)

-:Vijay Singh(09CEB023) Heterogeneous Semiconductor Photocatalyst -:Vijay Singh(09CEB023) Guided by Azrina Abd Aziz Under Dr. Saravanan Pichiah Preparation of TiO 2 Nanoparticle TiO 2 was prepared by hydrolysis and poly-condensation

More information

Degradation of cefuroxime in aqueous TiO 2 suspensions under simulated solar radiation

Degradation of cefuroxime in aqueous TiO 2 suspensions under simulated solar radiation 15 th International Conference on Environmental Science and Technology Rhodes, Greece, 31 August to 2 September 2017 Degradation of cefuroxime in aqueous TiO 2 suspensions under simulated solar radiation

More information

PHOTOCATALYTIC DEGRADATION OF TURQUOISE BLUE DYE USING IMMOBILIZED AC/TIO2: OPTIMIZATION OF PROCESS PARAMETERS AND PILOT PLANT INVESTIGATION

PHOTOCATALYTIC DEGRADATION OF TURQUOISE BLUE DYE USING IMMOBILIZED AC/TIO2: OPTIMIZATION OF PROCESS PARAMETERS AND PILOT PLANT INVESTIGATION Journal of Engineering Science and Technology Special Issue on SOMCHE 2014 & RSCE 2014 Conference, January (2015) 64-73 School of Engineering, Taylor s University PHOTOCATALYTIC DEGRADATIO OF TURQUOISE

More information

Investigation on dyes oxidation by Fenton s reagent in aqueous medium

Investigation on dyes oxidation by Fenton s reagent in aqueous medium A N N A L E S U N I V E R S I T A T I S M A R I A E C U R I E - S K Ł O D O W S K A L U B L I N P O L O N I A VOL. LIX, 5 SECTIO AA 24 Investigation on dyes oxidation by Fenton s reagent in aqueous medium

More information

Supporting information. Enhanced photocatalytic degradation of methylene blue and adsorption of

Supporting information. Enhanced photocatalytic degradation of methylene blue and adsorption of Electronic Supplementary Material (ESI) for RSC Advances. This journal is The Royal Society of Chemistry 2015 Supporting information Enhanced photocatalytic degradation of methylene blue and adsorption

More information

Fe/C CATALYSTS FOR HETEROGENEOUS FENTON TREATMENT OF PHENOL IN AQUEOUS PHASE

Fe/C CATALYSTS FOR HETEROGENEOUS FENTON TREATMENT OF PHENOL IN AQUEOUS PHASE Fe/C CATALYSTS FOR HETEROGENEOUS FENTON TREATMENT OF PHENOL IN AQUEOUS PHASE Zazo, J.A. 1, Casas, J.A. 1, Bahamonde, A., Gilarranz, M.A. 1, Mohedano, A.F. 1, Rodriguez, J.J 1. 1 Area de Ingeniería Química,

More information

Physicochemical Processes

Physicochemical Processes Lecture 3 Physicochemical Processes Physicochemical Processes Air stripping Carbon adsorption Steam stripping Chemical oxidation Supercritical fluids Membrane processes 1 1. Air Stripping A mass transfer

More information

Reaction Rate Constants for Hydrogen Peroxide Oxidation of Phenol and Chlorinated Phenols in a Continuous Stirred Tank Reactor

Reaction Rate Constants for Hydrogen Peroxide Oxidation of Phenol and Chlorinated Phenols in a Continuous Stirred Tank Reactor Reaction Rate Constants for Hydrogen Peroxide Oxidation of Phenol and Chlorinated Phenols in a Continuous Stirred Tank Reactor Asim K De * and Avik De Department of Chemical Engineering University of Calcutta

More information

Electronic Supplementary Information (ESI) Tunable Phase and Visible-Light Photocatalytic Activity

Electronic Supplementary Information (ESI) Tunable Phase and Visible-Light Photocatalytic Activity Electronic Supplementary Information (ESI) Metallic-Zinc Assistant Synthesis of Ti 3+ Self-Doped TiO 2 with Tunable Phase and Visible-Light Photocatalytic Activity Zhaoke Zheng, a Baibiao Huang,* a Xiaodong

More information

Supporting Information

Supporting Information Supporting Information Dynamic Interaction between Methylammonium Lead Iodide and TiO 2 Nanocrystals Leads to Enhanced Photocatalytic H 2 Evolution from HI Splitting Xiaomei Wang,, Hong Wang,, Hefeng Zhang,,

More information

Contributing factors on the removal of Azo-dyes from industrial wastewater: A comparison of the efficiency of sonocataysis and photocatalysis process

Contributing factors on the removal of Azo-dyes from industrial wastewater: A comparison of the efficiency of sonocataysis and photocatalysis process Journal of Applied Chemical Research, 10, 4, 15-23 (2016) Journal of Applied Chemical Research www.jacr.kiau.ac.ir Contributing factors on the removal of Azo-dyes from industrial wastewater: A comparison

More information

Photocatalytic degradation of methylene blue and crystal violet by sulfur/reduced graphene oxide composite

Photocatalytic degradation of methylene blue and crystal violet by sulfur/reduced graphene oxide composite Photocatalytic degradation of methylene blue and crystal violet by sulfur/reduced graphene oxide composite RahmatollahRahimi, MahsaMoshari, MahboubehRabbani Department of Chemistry, Iran University of

More information

Optimal Configuration of a Photocatalytic lab-reactor by using Immobilized Nanostructured TiO 2

Optimal Configuration of a Photocatalytic lab-reactor by using Immobilized Nanostructured TiO 2 199 A publication of CHEMICAL ENGINEERING TRANSACTIONS VOL. 47, 2016 Guest Editors: Angelo Chianese, Luca Di Palma, Elisabetta Petrucci, Marco Stoller Copyright 2016, AIDIC Servizi S.r.l., ISBN 978-88-95608-38-9;

More information

NATO Science for Peace and Security (SPS) Programme Workshop on CBRN Defence October 2013 Brussels

NATO Science for Peace and Security (SPS) Programme Workshop on CBRN Defence October 2013 Brussels AT Science for Peace and Security (SPS) Programme Workshop on CBR Defence 22-24 ctober 2013 Brussels Emerging Security Challenges Division AT Brussels. Belgium, 22 october 2013 1 Project Description -

More information

Effect of gamma-irradiation on aqueous solutions of Apollofix dyes

Effect of gamma-irradiation on aqueous solutions of Apollofix dyes NUKLEONIKA 2007;52(3):109 113 ORIGINAL PAPER Effect of gamma-irradiation on aqueous solutions of Apollofix dyes Dilek Solpan, Murat Torun, Olgun Güven Abstract. Radiation processing has been considered

More information

EXPERIMENT OF NANOMETER PHOTOCATALYTIC TO ELIMINATE DILUTE FORMALDEHYDE IN AIR

EXPERIMENT OF NANOMETER PHOTOCATALYTIC TO ELIMINATE DILUTE FORMALDEHYDE IN AIR Proceedings: Indoor Air 25 EXPERIMENT OF NANOMETER PHOTOCATALYTIC TO ELIMINATE DILUTE FORMALDEHYDE IN AIR S Geng 1*, R Wang 1, X Han 2, L Wang 1 1 Engineering Institute of Engineer Corps PLA University

More information

Supplementary Information

Supplementary Information Supplementary Information In situ ion exchange synthesis of the novel Ag/AgBr/BiOBr hybrid with highly efficient decontamination of pollutants Hefeng Cheng, Baibiao Huang*, Peng Wang, Zeyan Wang, Zaizhu

More information

Effect of silver nano particle, ferrous sulfate and hydrogen peroxide on photodgradtion of Tornasole RPe and Alizarin yellow G

Effect of silver nano particle, ferrous sulfate and hydrogen peroxide on photodgradtion of Tornasole RPe and Alizarin yellow G Science Journal of Analytical Chemistry 2015; 3(1): 1-5 Published online December 19, 2014 (http://www.sciencepublishinggroup.com/j/sjac) doi: 10.11648/j.sjac.20150301.11 Effect of silver nano particle,

More information

CHAPTER 7 FRIEDEL-CRAFTS ACYLATION OF TOLUENE WITH ACETIC ACID

CHAPTER 7 FRIEDEL-CRAFTS ACYLATION OF TOLUENE WITH ACETIC ACID 113 CHAPTER 7 FRIEDEL-CRAFTS ACYLATION OF TOLUENE WITH ACETIC ACID 7.1 INTRODUCTION Acylation of aromatic compounds are industrially prominent reaction as its products are intermediates in many organic

More information

Thermochemical Treatment of TiO2 Nanoparticles for Photocatalytic Applications

Thermochemical Treatment of TiO2 Nanoparticles for Photocatalytic Applications University of South Florida Scholar Commons Graduate Theses and Dissertations Graduate School 10-31-2007 Thermochemical Treatment of TiO2 Nanoparticles for Photocatalytic Applications Mark Schmidt University

More information

Decolorized of Textile dye waste waters by Hydrogen peroxide, UV and Sunlight

Decolorized of Textile dye waste waters by Hydrogen peroxide, UV and Sunlight International Journal of ChemTech Research CODEN( USA): IJCRGG ISSN : 0974-4290 Vol.6, No.2, pp 985-990, April-June 2014 Decolorized of Textile dye waste waters by Hydrogen peroxide, UV and Sunlight *Mohammad

More information

Supporting Information High Activity and Selectivity of Ag/SiO 2 Catalyst for Hydrogenation of Dimethyloxalate

Supporting Information High Activity and Selectivity of Ag/SiO 2 Catalyst for Hydrogenation of Dimethyloxalate Supporting Information High Activity and Selectivity of Ag/SiO 2 Catalyst for Hydrogenation of Dimethyloxalate An-Yuan Yin, Xiao-Yang Guo, Wei-Lin Dai*, Kang-Nian Fan Shanghai Key Laboratory of Molecular

More information

Hydrogen evolution over nano-cu/tio 2 catalyst through photoreforming of alcohols: a kinetic investigation

Hydrogen evolution over nano-cu/tio 2 catalyst through photoreforming of alcohols: a kinetic investigation Hydrogen evolution over nano-cu/tio 2 catalyst through photoreforming of alcohols: a kinetic investigation Ilaria Di Somma a, Laura Clarizia b, Danilo Russo b, Roberto Andreozzi b, Raffaele Marotta b disomma@irc.cnr.it

More information

Preparation of TiO2-Bamboo Leaves Ash Composite as Photocatalyst for Dye Photodegradation

Preparation of TiO2-Bamboo Leaves Ash Composite as Photocatalyst for Dye Photodegradation Preparation of TiO2-Bamboo Leaves Ash Composite as Photocatalyst for Dye Photodegradation Atin Prihatiningsih*, LitaDewi Pertiwi, Is Fatimah Chemistry Department, Universitas Islam Indonesia KampusTerpadu

More information

The content is identical to the content of the published paper, but without the final typesetting by the publisher.

The content is identical to the content of the published paper, but without the final typesetting by the publisher. This document contains the post-print pdf-version of the refereed paper: Modeling and geometry optimization of photochemical reactors: Single- and multi-lamp reactors for UV H 2 O 2 AOP systems by Thomas

More information

Photodegradation of benzene, toluene, ethylbenzene and xylene by fluidized bed gaseous reactor with TiO 2 /SiO 2 photocatalysts

Photodegradation of benzene, toluene, ethylbenzene and xylene by fluidized bed gaseous reactor with TiO 2 /SiO 2 photocatalysts Korean J. Chem. Eng., 28(8), 1693-1697 (2011) DOI: 10.1007/s11814-011-0021-9 INVITED REVIEW PAPER Photodegradation of benzene, toluene, ethylbenzene and xylene by fluidized bed gaseous reactor with TiO

More information