Neutron Activation of 74 Ge and 76 Ge

Size: px
Start display at page:

Download "Neutron Activation of 74 Ge and 76 Ge"

Transcription

1 Neutron Activation of 74 Ge and 76 Ge people involved: P. Grabmayr J. Jochum Georg Meierhofer P. Kudejova L. Canella J. Jolie IKP, Universität zu Köln Eurograd, Hallstatt

2 Outline Motivation: Neutrinoless double beta decay experiments Neutrinoless double beta decay GERDA experiment Background in GERDA Neutron capture on 74 Ge and 76 Ge How to reject background Measurements with cold neutrons Prompt γ-ray spectrum in 75 Ge and 77 Ge Cross section of the 74 Ge(n,γ) and 76 Ge(n,γ) reactions Summary Talk by Kai Freund

3 Background in GERDA Radiopurity of: Germanium detector (cosmogenic 68 Ge) Germanium detector (cosmogenic 60 Co) Germanium detector (bulk) Total background Germanium detector (surface) level in ROI Cabling Copper holder < 10-2 cts/(kev kg y) (Phase I) Electronics < 10-3 cts/(kev kg y) (Phase II) Cryogenic liquid Infrastructure Sources: Natural activity of rock Muons and neutrons

4 Background in GERDA Radiopurity of: Germanium detector (cosmogenic 68 Ge) Germanium detector (cosmogenic 60 Co) Germanium detector (bulk) Germanium detector (surface) Cabling Copper holder Electronics Cryogenic liquid Infrastructure Sources: Natural activity of rock Muons and neutrons Muons produce neutrons close to the experiment, the neutrons can propagate undetected through the muon veto to the Ge-diodes and be captured by a 74 Ge or 76 Ge nucleus.

5 Neutron capture by 76 Ge LNGS: 1 muon/(m 2 h) MC-simulations: ~1 n-capture/(kg y) Limit from previous experiments: max. 6 0νββ-counts/y in phase I

6 Neutron capture by 76 Ge / /2-0 7/2+ E (kev) J π 77 Ge IT t1/2 = 52.9 s t1/2 = 11.3 h MC-simulations: ~1 n-capture/(kg y) β - Limit from previous experiments: max. 6 0νββ-counts/y in phase I 215 3/2-0 3/2- E (kev) J π 77 As

7 Neutron capture by 76 Ge /2+ prompt γ-cascade after neutron capture E max = 5911 kev 159 1/2-0 7/2+ E (kev) J π 77 Ge IT β /2- unstable, decay to 77 Se 0 3/2- E (kev) J π 77 As

8 Neutron capture by 76 Ge /2+ prompt γ-cascade after neutron capture E max = 5911 kev delayed β-spectrum E max = 2862 kev continouos mimics 0νββ signal 159 1/2-0 7/2+ E (kev) J π 77 Ge IT β /2- unstable, decay to 77 Se 0 3/2- E (kev) J π 77 As

9 Neutron capture by 76 Ge /2+ prompt γ-cascade after neutron capture E max = 5911 kev delayed β-spectrum E max = 2862 kev continouos mimics 0νββ signal 159 1/2-0 7/2+ E (kev) J π 77 Ge IT β - delayed γ-rays E max = 2353 kev 215 3/2- unstable, decay to 77 Se 0 3/2- E (kev) J π 77 As

10 Neutron Capture by 76 Ge /2+ γ-rays can be rejected by pulse shape analysis and/or segmentation of detectors (multi-site events). β-particles deposit their energiy in single-site events like 0νββ-decay. If β-particles occure together with γ-rays -> multi-site event -> rejection /2-0 7/2+ E (kev) J π 77 Ge IT β - after neutron capture 215 3/2- unstable, decay to 77 Se 0 3/2- E (kev) J π 77 As

11 Neutron Capture by 76 Ge /2+ γ-rays can be rejected by pulse shape analysis and/or segmentation of detectors (multi-site events). β-particles deposit their energiy in single-site events like 0νββ-decay. If β-particles occure together with γ-rays -> multi-site event -> rejection /2-0 7/2+ E (kev) J π 77 Ge IT β - after neutron capture This does not work for decays directly to the ground state. 50% of all nuclei undergo this decay! Only coincidences with prompt transitions can be used /2- unstable, decay to 77 Se 0 3/2- E (kev) J π 77 As

12 Neutron Capture by 74 Ge γ-rays can be rejected by pulse shape analysis and/or segmentation of detectors (multi-site events). after neutron capture β-particles deposit their energiy in single-site events like 0νββ-decay. If β-particles occure together with γ-rays -> multi-site event -> rejection. This does not work for decays directly to the ground state. 50% of all nuclei undergo this decay! Only coincidences with prompt transitions can be used.

13 Prompt transitions in 77 Ge kev not in decay scheme IAEA Nuclear Data Services 2064 kev 1880 kev E [kev] E [kev] 1248 kev 1021 kev kev 159 Nuclear Data Sheets kev 0 kev Only 15% of energy known

14 FRM II Beam 2.9 x 10 9 n th /(cm 2 s 1 ) <λ n > = 6.7 Å <E n > = 1.83 mev Detectors 2 HPGe with Comptonsuppresion Li/Cd/Pb shielding

15 Neutron source FRM II Power: 20 MW Moderator for neutrons: liquid D 2 (25 K) neutron guides to experiments Pictures: Neutronenquelle Heinz-Meier-Leibniz

16 Prompt γ-spectrum in 77 Ge 1e+06 "A0126.txt" u Counts Channel

17 Prompt γ-spectrum in 77 Ge 1e+06 Comparing spectra with different isotopical composition allows to determine unambiguously the transitions in 77 Ge. "A0126.txt" u 1 Counts E [kev] (preliminary) Channel

18 Coincidence CS HPGedetector CS m ~ 300 mg of enriched 76 GeO 2 Irradiation time 8 d t between detectors Lead shielding Lead shielding FWHM=20ns Neutron beam prompt gammas 76 Ge Target Au Foil prompt gammas t Lead shielding Lead shielding Time difference is used to distinguish between random and true coincidences. CS HPGe-detector

19 Decay scheme in 77 Ge (preliminary) new transitions transitions known from β-decay of 77 Ga

20 Decay scheme in 77 Ge (preliminary) new transitions transitions known from β-decay of 77 Ga

21 Cross-section 76 Ge target was activated together with a gold foil and after irradiation the γ-rays after β-decay were measured by HPGe detectors. The total cross-section was calculated relative to 198 Au using the emission probabilities. Possible because of 1 / v - l a w f o r c o l d n e u t r o n s. decay spectrum of 77 Ge Compton suppression lead neutron beam HPGedetector decay gammas 76 Ge target Au foil Compton suppression lead

22 Cross-section 76 Ge target was activated together with a gold foil and after irradiation the γ-rays after β-decay were measured by HPGe detectors. The total cross-section was calculated relative to 198 Au using the emission probabilities. Possible because of 1 / v - l a w f o r c o l d n e u t r o n s / /2-0 7/2+ E (kev) J π 77 Ge IT σ Ge A ( λ) = A σ 0, Ge Ge Au = ( I ) ( I ) ( Au,γ ) nau ( r) Φ( r) ( Ge,γ ) nge ( r) Φ( r) ( AGe I( Au,γ ) nau ) σ 0, Au ( A I n ) Au ( Ge,γ ) Ge σ ( λ) Au decay spectrum of 77 Ge β /2-0 3/2- E (kev) J π 77 As

23 Cross-section results Evaluating the data one could see that the emission probabilities given in literature are not consistent. Some transitions lead to lower crosssections than those used here. Check needed. 76 Ge σ( 77 Ge) direct σ( 77 Ge) σ( 77m Ge) 46.9 ± 4.7 mb 68.8 ± 3.4 mb 115 ± 16 mb Meierhofer et al. EPJA, 40, (2009)

24 Cross-section results Evaluating the data one could see that the emission probabilities given in literature are not consistent. Some transitions lead to lower crosssections than those used here. Check needed. 76 Ge 74 Ge (preliminary) σ( 77 Ge) direct 46.9 ± 4.7 mb σ( 75 Ge) direct 369 ± 52 mb σ( 77 Ge) 68.8 ± 3.4 mb σ( 75 Ge) 500 ± 53 mb σ( 77m Ge) 115 ± 16 mb σ( 75m Ge) ± 6.8 mb

25 Summary The knowledge of the prompt spectrum after neutron capture by 76 Ge is important for background analysis in GERDA. The observation of a prompt cascade in GERDA would allow to veto the delayed electrons offline from the β-decay of 77m Ge Measurement of the prompt spectrum using PGAA To predict the background contribution by neutron capture in GERDA quantitatively the capture cross sections have to be known well. Measurement using the PGAA facility

26 Pulse shape analysis PhD thesis D. Budjas, Heidelberg 2009

27 Analysis Detector II Time information Detector I

28 Cross Section σ Ge ( λ) = A A Ge Au ( I ) ( I ) ( Au, γ) nau( r) Φ( r) ( Ge, γ) nge ( r) Φ( r) σ Au ( λ) σ 0, Ge = ( AGe I( Au, γ) nau) σ0, Au ( A I n ) Au ( Ge, γ) Ge

29 What can we lern from 0νββ? If 0νββ is observed: Hd-M best value PLB586(2004)198 m 3 m 3 m 2 m² 12 (inverse) m² 23 m² 12 m 2 m 1 m ν ² in ev m 1 m² 23 (normal) m² 12 = (7.92±0.07) 10-5 ev² (solar ν) m² 23 = (2.6±0.4) 10-3 ev² (atm. ν) Mass hierachy (degenerate, inverted or normal) F.Feruglio, A. Strumia, F. Vissani, NPB 637

30 Sensitivity Background Phase I Phase II Phase I: 10-2 cts/(kev kg y) Phase II: 10-3 cts/(kev kg y) Hd-M best value PLB586(2004)198 phase II Phase III (inverse) phase I KKDC claim (normal) F. Feruglio, A. Strumia, F.Vissani, NPB 637

31 Coincidence Detector II Detector I

32

33

34 Cross Section Target: enriched target (87% 76 Ge) Ø = 12 mm d = ~2 mm m = 470/500 g Flux determination: Au foil Irradiation: ~1200/1800 s ( 77 Ge g ) ~60/120/180 s ( 77 Ge m ) Measurement: ~15 h ( 77 Ge g ) ~120/180 s ( 77 Ge m ) Compton suppression Lead shielding Neutron beam HPGe- Detector Decay gammas 76 Ge Target Au Foil Compton suppression Lead shielding Sketch not to scale Shielding against neutrons not shown

35 0νββ-Decay segmented detector 0νββ event, energy is deposited in a very small volume due to the short range of electrons

36 Neutron Capture in GERDA ~1 n-capture/(kg y) (MC simulation) Possible background in the region of interest (2039 kev) Source γ-ray Background in ROI Rejection method Prompt Gamma Rays Peak? Compton scattering β-decay of 77 Ge β-decay of 77 Ge m β-decay of 77 As Peak ( kev) Compton scattering (E max = kev) (E max = kev) (E max =682.9 kev) γ segmented detector

37 Neutron Capture in GERDA ~1 n-capture/(kg y) (MC simulation) Possible background in the region of interest (2039 kev) Source γ-ray Background in ROI Rejection method Prompt Gamma Rays Peak? Compton scattering multisite events β-decay of 77 Ge β-decay of 77 Ge m β-decay of 77 As Peak ( kev) Compton scattering (E max = kev) (E max = kev) (E max =682.9 kev) multisite events γ segmented detector

38 Neutron Capture in GERDA ~1 n-capture/(kg y) (MC simulation) Possible background in the region of interest (2039 kev) Source β- Background in ROI Rejection method Prompt Gamma Rays segmented detector β-decay of 77 Ge Continuous (E max = kev) β-decay of 77 Ge m Continuous (E max = kev) detection of prompt gamma rays β-decay of 77 As (E max =682.9 kev)

39 Neutron Capture in GERDA ~1 n-capture/(kg y) (MC simulation) Possible background in the region of interest (2039 kev) Source γ-ray Background in ROI Rejection method β- Background in ROI Rejection method Prompt Gamma Rays Peak? Compton scattering multisite events β-decay of 77 Ge β-decay of 77 Ge m Peak ( kev) Compton scattering (E max = kev) (E max = kev) multisite events Continuous (E max = kev) Continuous (E max = kev) detection of prompt gamma rays β-decay of 77 As (E max =682.9 kev) (E max =682.9 kev)

40 Neutron Capture in GERDA ~1 n-capture/(kg y) (MC simulation) Possible background in the region of interest (2039 kev) Source Prompt Gamma Rays β-decay of 77 Ge β-decay of 77 Ge m γ-ray Background in ROI Peak? Compton scattering Peak ( kev) Compton scattering (E max = kev) (E max = kev) Rejection method multisite events multisite events β- Background in ROI Continuous (E max = kev) Continuous Only 15% of the energy weighted intensity known (E max = kev) Rejection method detection of prompt gamma rays β-decay of 77 As (E max =682.9 kev) (E max =682.9 kev)

41 Cross-section of 76(n,γ) in the literature cross section [mbarn] σ( 77 Ge g ) σ( 77 Ge m ) Seren (1947): 85 ±17 Pomerance (1952): 350 ± 70 Brooksbank (1955): 300 ± 60 Metosian (1957): 76 ± 15 Lyon (1957): 43 ± 2 Metosian (1957): 87 ± 15 Lyon (1957): 137 ± 15

42 Cross Section Preliminary results: NUDAT Our measurement cross section [mbarn] σ( 77 Ge g direct) σ( 77 Ge g ) σ( 77 Ge m ) using IT using β-decay 46.2 ± ± ± ± 14

43 Cross Section Preliminary results: NUDAT. Our measurement cross section [mbarn] σ( 77 Ge g direct) σ( 77 Ge g ) σ( 77 Ge m ) using IT using β-decay 46.2 ± ± ± ± 14

44 Cross Section Preliminary Results: Our measurement cross section [mbarn] σ( 77 Ge g direct) 46.0 ± 5.0 Literature cross section Lyon (1957): 6 ± 5 [mbarn] σ( 77 Ge g ) σ( 77 Ge m ) using IT using β-decay 64.3 ± ± ± 14 Seren (1947): 85 ±17 Pomerance (1952): 350 ± 70 Brooksbank (1955): 300 ± 60 Metosian (1957): 76 ± 15 Lyon (1957): 43 ± 2 Metosian (1957): 87 ± 15 Lyon (1957): 137 ± 15

45 Prompt Gamma Ray Spectrum CS HPGe- Detector CS Rate [Ereign./keV/s] Single spectra m ~ 300 mg Irradiation time > s Coincidence spectra m ~ 300 Depleted mg Enriched Abgereicherte Probe Irradiation Background Leere Probe Angereicherte time Probe 10 d Diff. Differenz (Ang. - Leer - 0,01) Coincident events ,6 1,4 1,2 1,0 0,8 0,6 0,4 0,2 73 Ge 1471,75 Lead shielding Neutron beam Lead shielding prompt gammas 76 Ge Target Au Foil prompt gammas Lead shielding Lead shielding 0, Energie [kev] CS HPGe-Detector Sketch not to scale Shielding against neutrons not shown

46 Prompt Gamma Ray Spectrum CS HPGe- Detector CS Lead shielding Lead shielding prompt gammas Neutron beam 76 Ge Target Au Foil prompt gammas Coincidence spectra m ~ 300 mg Irradiation time 10 d Coincident events Lead shielding CS HPGe-Detector Lead shielding Sketch not to scale Shielding against neutrons not shown

Neutron Activation of 76Ge

Neutron Activation of 76Ge Neutron Activation of 76Ge Georg Meierhofer people involved: P. Grabmayr J. Jochum Kepler Center for Astro and Particle Physics University Tübingen P. Kudejova L. Canella J. Jolie IKP, Universität zu Köln

More information

Background by Neutron Activation in GERDA

Background by Neutron Activation in GERDA Background by Neutron Activation in GERDA Georg Meierhofer people involved: Kepler Center for Astro and Particle Physics University Tübingen P. Grabmayr J. Jochum P. Kudejova L. Canella J. Jolie IKP, Universität

More information

The GERmanium Detector Array

The GERmanium Detector Array The GERmanium Detector Array n n ν=v p e - e - p Outline: Exp. issues of 0νββ-decay of 76 Ge Concept of GERDA Status of the experiment Summary and conclusions Kevin Kröninger (Max-Planck-Institut für Physik,

More information

GERDA: The GERmanium Detector Array for the search for neutrinoless decays of 76 Ge. Allen Caldwell Max-Planck-Institut für Physik

GERDA: The GERmanium Detector Array for the search for neutrinoless decays of 76 Ge. Allen Caldwell Max-Planck-Institut für Physik GERDA: The GERmanium Detector Array for the search for neutrinoless decays of 76 Ge Allen Caldwell Max-Planck-Institut für Physik What we know Mass Scale NORMAL INVERTED m 12 2 known m 13 2 known Mixing

More information

Status of the GERDA experiment

Status of the GERDA experiment Status of the GERDA experiment Hardy Simgen Max-Planck-Institute for Nuclear Physics Heidelberg The GERDA experiment Next generation 76 Ge double beta decay experiment at Gran Sasso. Basic idea: Operation

More information

The GERDA Experiment:

The GERDA Experiment: The GERDA Experiment: a search for neutrinoless double beta decay Max-Planck-Institute for Physics, Munich now at University of Wisconsin, Madison on behalf of the GERDA Collaboration Outline: Motivation

More information

Background Free Search for 0 Decay of 76Ge with GERDA

Background Free Search for 0 Decay of 76Ge with GERDA Background Free Search for 0 Decay of 76Ge with GERDA Victoria Wagner for the GERDA collaboration Max-Planck-Institut für Kernphysik Rencontres de Moriond, Electro Weak La Thuile, March 24 2017 The GERDA

More information

Background rejection techniques in Germanium 0νββ-decay experiments. ν=v

Background rejection techniques in Germanium 0νββ-decay experiments. ν=v Background rejection techniques in Germanium 0νββ-decay experiments n p ν=v n eep II. Physikalisches Institut Universität Göttingen Institutsseminar des Inst. für Kern- und Teilchenphysik, Outline Neutrinos

More information

Neutrinoless Double Beta Decay for Particle Physicists

Neutrinoless Double Beta Decay for Particle Physicists Neutrinoless Double Beta Decay for Particle Physicists GK PhD Presentation Björn Lehnert Institut für Kern- und Teilchenphysik Berlin, 04/10/2011 About this talk Double beta decay: Particle physics implications

More information

GERDA Meeting, September 2009, LNGS. News from Low-Level-Lab: Attempt to Reduce Neutron Background at Shallow Depths

GERDA Meeting, September 2009, LNGS. News from Low-Level-Lab: Attempt to Reduce Neutron Background at Shallow Depths GERDA Meeting, September 2009, LNGS News from Low-Level-Lab: Attempt to Reduce Neutron Background at Shallow Depths 1. Motivation 1.1 Gamma Spectroscopy at MPI-K Gentner Building Bruno Corrado Low-level-laboratory

More information

HEROICA: a test facility for the characterization of BEGe detectors for the GERDA experiment

HEROICA: a test facility for the characterization of BEGe detectors for the GERDA experiment Physikalisches Institut Kepler Center for Astro and Particle Physics : a test facility for the characterization of BEGe detectors for the GERDA experiment Raphael Falkenstein for the GERDA collaboration

More information

Cosmogenic background for the GERDA experiment. Luciano Pandola INFN, Laboratori del Gran Sasso, Italy

Cosmogenic background for the GERDA experiment. Luciano Pandola INFN, Laboratori del Gran Sasso, Italy Cosmogenic background for the GERDA experiment Luciano Pandola INFN, Laboratori del Gran Sasso, Italy Cosmogenic Activity and Background Workshop, Berkeley April 15 th, 2011 GERDA experiment at LNGS The

More information

The GERDA Neutrinoless double beta decay experiment

The GERDA Neutrinoless double beta decay experiment The GERDA Neutrinoless double beta decay experiment Stefan Schönert, MPIK Heidelberg Workshop on Precision Measurements at Low Energy January 18 th & 19 th 2007 Paul Scherrer Institut, Villingen, Switzerland

More information

Experimental Searches for Neutrinoless Double-Beta Decays in 76-Ge Alan Poon

Experimental Searches for Neutrinoless Double-Beta Decays in 76-Ge Alan Poon Experimental Searches for Neutrinoless Double-Beta Decays in 76-Ge Alan Poon Institute for Nuclear and Particle Astrophysics Nuclear Science Division 1 Outline Introduction - 0νββ decay (see Agostini s

More information

Design, Construction, Operation, and Simulation of a Radioactivity Assay Chamber

Design, Construction, Operation, and Simulation of a Radioactivity Assay Chamber Design, Construction, Operation, and Simulation of a Radioactivity Assay Chamber Wesley Ketchum and Abe Reddy EWI Group, UW REU 2006 Outline Neutrino Physics Background Double Beta Decay and the Majorana

More information

GERDA experiment A search for neutrinoless double beta decay. Roberto Santorelli (Physik-Institut der Universität Zürich)

GERDA experiment A search for neutrinoless double beta decay. Roberto Santorelli (Physik-Institut der Universität Zürich) GERDA experiment A search for neutrinoless double beta decay Roberto Santorelli (Physik-Institut der Universität Zürich) on behalf of the GERDA collaboration ÖPG/SPS/ÖGAA meeting 04/09/09 Neutrinos mixing

More information

Results on neutrinoless double beta decay of 76 Ge from the GERDA experiment

Results on neutrinoless double beta decay of 76 Ge from the GERDA experiment EPJ Web of Conferences 95, 04049 (05) DOI:.5/ epjconf/ 059504049 C Owned by the authors, published by EDP Sciences, 05 Results on neutrinoless double beta decay of 76 Ge from the GERDA experiment Dimitrios

More information

The Majorana Neutrinoless Double-Beta Decay Experiment

The Majorana Neutrinoless Double-Beta Decay Experiment The Majorana Neutrinoless Double-Beta Decay Experiment A proposed detector to search for neutrinoless double-beta decay Reyco Henning Lawrence Berkeley National Laboratory for the Majorana Collaboration

More information

L esperimento GERDA. GERDA - gruppo INFN. L Aquila, Congresso SIF, 30/09/2011. OUTLINE: GERDA Motivations GERDA Status GERDA Future plans

L esperimento GERDA. GERDA - gruppo INFN. L Aquila, Congresso SIF, 30/09/2011. OUTLINE: GERDA Motivations GERDA Status GERDA Future plans L esperimento GERDA Balata M., Bellotti E., Benato G., Bettini A., Brugnera R., Cattadori C., Garfagnini A., Hemmer S., Iannucci L., Junker M., Laubenstein M., Nisi S., Pandola L., Pullia A., Riboldi S.,

More information

GERDA & the future of 76 Ge-based experiments

GERDA & the future of 76 Ge-based experiments GERDA & the future of 76 Ge-based experiments Matteo Agostini on behalf of the GERDA Collaboration Technische Universität München (TUM), Germany Gran Sasso Science Institute (INFN), L Aquila, Italy 25th

More information

Investigation and development of the suppression methods of the 42 K background in LArGe

Investigation and development of the suppression methods of the 42 K background in LArGe bb G E R D A Investigation and development of the suppression methods of the 42 K background in LArGe A.V. Lubashevskiy on behalf of GERDA collaboration, Max-Planck-Institut für Kernphysik, Heidelberg.

More information

Double Beta Present Activities in Europe

Double Beta Present Activities in Europe APPEAL Workshop 19-21 February 2007, Japan Double Beta Present Activities in Europe Xavier Sarazin Laboratoire de l Accélérateur Linéaire Orsay France Germanium detector Bolometers CdZnTe semiconductors

More information

New results of CUORICINO on the way to CUORE

New results of CUORICINO on the way to CUORE New results of CUORICINO on the way to CUORE Laboratori Nazionali del Gran Sasso of INFN On behalf of the CUORE Collaboration The CUORE experiment CUORE (Cryogenic Underground Observatory for Rare Events)

More information

First results on neutrinoless double beta decay of 82 Se with CUPID-0

First results on neutrinoless double beta decay of 82 Se with CUPID-0 First results on neutrinoless double beta decay of 82 Se with CUPID-0 Lorenzo Pagnanini on behalf of the CUPID-0 collaboration 30 th Rencontres de Blois CUPID: a next generation experiment CUPID (CUORE

More information

The Gerda Experiment for the Search of Neutrinoless Double Beta Decay

The Gerda Experiment for the Search of Neutrinoless Double Beta Decay The Gerda Experiment for the Search of Neutrinoless Double Beta Decay Manuel Walter for the Gerda collaboration Physik-Institut, Universität Zürich, 8057 Zürich, Switzerland DOI: will be assigned The Gerda

More information

THE CRYOGENIC UNDERGROUND OBSERVATORY FOR RARE EVENTS: STATUS AND PROSPECTS

THE CRYOGENIC UNDERGROUND OBSERVATORY FOR RARE EVENTS: STATUS AND PROSPECTS THE CRYOGENIC UNDERGROUND OBSERVATORY FOR RARE EVENTS: STATUS AND PROSPECTS Eric B. Norman Dept. of Nuclear Engineering Univ. of California, Berkeley, CA U. S. A. Recent results in n physics Neutrinos

More information

Excited State Transitions in Double Beta Decay: A brief Review

Excited State Transitions in Double Beta Decay: A brief Review Excited State Transitions in Double Beta Decay: A brief Review Fifteenth International Symposium on Capture Gamma-Ray Spectroscopy and Related Topics (CGS15) Dresden 26/08/2014 Björn Lehnert Institut für

More information

Partial Neutron Capture Cross Section Determination of 237 Np, 242

Partial Neutron Capture Cross Section Determination of 237 Np, 242 Partial Neutron Capture Cross Section Determination of 237 Np, 242 Pu and 241 Am using Cold Neutron Beams Christoph Genreith 1, Matthias Rossbach 1 1 Institute of Energy and Climate Research, IEK-6, Forschungszentrum

More information

Search for 0νββ-decay with GERDA Phase II

Search for 0νββ-decay with GERDA Phase II Search for 0νββ-decay with GERDA Phase II (MPI für Physik) for the collaboration GERDA OUTLINE: Phase I background results Phase II data taking Phase II background \wo cuts LAr veto and PSD cuts 0νββ result

More information

David Reyna Belkis Cabrera-Palmer AAP2010, Japan

David Reyna Belkis Cabrera-Palmer AAP2010, Japan David Reyna Belkis Cabrera-Palmer AAP2010, Japan Sandia is a multiprogram laboratory operated by Sandia Corporation, a Lockheed Martin Company, for the United States Department of Energy s National Nuclear

More information

Coincidence measurements for Gerda Phase II

Coincidence measurements for Gerda Phase II Coincidence measurements for Gerda Phase II Katharina von Sturm Università degli Studi di Padova June 26, 2014 Katharina von Sturm (Uni Padova) Coincidence measurements June 26, 2014 1 / 17 Table of contents

More information

This paper should be understood as an extended version of a talk given at the

This paper should be understood as an extended version of a talk given at the This paper should be understood as an extended version of a talk given at the Abstract: 1 st JINA workshop at Gull Lake, 2002. Recent experimental developments at LANL (Los Alamos, NM, USA) and CERN (Geneva,

More information

Two Neutrino Double Beta (2νββ) Decays into Excited States

Two Neutrino Double Beta (2νββ) Decays into Excited States Two Neutrino Double Beta (2νββ) Decays into Excited States International School of Subnuclear Physics 54 th Course: The new physics frontiers in the LHC-2 era Erice, 17/06/2016 Björn Lehnert TU-Dresden,

More information

Background Studies for the XENON100 Experiment. Alexander Kish Physics Institute, University of Zürich Doktorandenseminar August 30, 2010 UZH

Background Studies for the XENON100 Experiment. Alexander Kish Physics Institute, University of Zürich Doktorandenseminar August 30, 2010 UZH Background Studies for the XENON100 Experiment Alexander Kish Physics Institute, University of Zürich Doktorandenseminar August 30, 2010 UZH The XENON dark matter search program Target Volume 62 kg Total

More information

Status of CUORE and Results from CUORICINO. SERGIO DI DOMIZIO UNIVERSITÀ & INFN GENOVA On behalf of the CUORE Collaboration

Status of CUORE and Results from CUORICINO. SERGIO DI DOMIZIO UNIVERSITÀ & INFN GENOVA On behalf of the CUORE Collaboration Status of CUORE and Results from CUORICINO SERGIO DI DOMIZIO UNIVERSITÀ & INFN GENOVA On behalf of the CUORE Collaboration 11th Seminar on Innovative Particle and Radiation Detectors Siena, 1 October 2008

More information

Photofission of 238-U Nuclei

Photofission of 238-U Nuclei Photofission of 238-U Nuclei International Thorium Energy Conference - ThEC18, 29-31st of October 2018, Belgium İsmail Boztosun This research has been supported by TÜBİTAK with grant number 114F220 Motivations

More information

a step forward exploring the inverted hierarchy region of the neutrino mass

a step forward exploring the inverted hierarchy region of the neutrino mass a step forward exploring the inverted hierarchy region of the neutrino mass Maria Martinez (U. La Sapienza, Rome) on behalf of the CUPID-0 collaboration 28th Rencontres de Blois, May 29 - June 03 (2016)

More information

MC Benchmarks for LAr Instrumentation in GERDA

MC Benchmarks for LAr Instrumentation in GERDA MC Benchmarks for LAr Instrumentation in GERDA Björn Lehnert Institut für Kern- und Teilchenphysik TU-Dresden DPG, Mainz, 22/03/2012 GERDA - GERmanium Detector Array Novel idea: Operate germanium detectors

More information

Results on geoneutrinos at Borexino experiment. Heavy Quarks and Leptons Yamagata Davide Basilico

Results on geoneutrinos at Borexino experiment. Heavy Quarks and Leptons Yamagata Davide Basilico Results on geoneutrinos at Borexino experiment Heavy Quarks and Leptons 2018 - Yamagata Davide Basilico Outline 1. Geoneutrinos 2. Borexino 3. Analysis and results 2 What are geoneutrinos? Distribution

More information

Nuclear Resonance Fluorescence with. NRF with monoenergetic photons and fundamental experiments at ELI-NP. Julius Wilhelmy

Nuclear Resonance Fluorescence with. NRF with monoenergetic photons and fundamental experiments at ELI-NP. Julius Wilhelmy Nuclear Resonance Fluorescence with monoenergetic photons and fundamental experiments at ELI-NP Julius Wilhelmy Institute for Nuclear Physics, University of Cologne g BMBF Verbund 05P2015 Darmstadt Köln

More information

arxiv: v1 [nucl-ex] 20 Dec 2008

arxiv: v1 [nucl-ex] 20 Dec 2008 Operation of a GERDA Phase I prototype detector in liquid argon and nitrogen M. Barnabé Heider a, A. Bakalyarov b, L. Bezrukov c, C. Cattadori d, O. Chkvorets a, K. Gusev b,e, M. Hult f, I. Kirpichnikov

More information

-> to worldwide experiments searching for neutrinoless double beta decay

-> to worldwide experiments searching for neutrinoless double beta decay From Baksan to -> A.Smolnikov International Session-Conference of RAS "Physics of fundamental interactions dedicated to 50th anniversary of Baksan Neutrino Observatory, Nalchik, Russia, June 6-8, 2017

More information

Neutron- and muoninduced. underground physics experiments. L. Pandola, V. Tomasello and V. Kudryavtsev. for the JRA1 and N3 simulation groups

Neutron- and muoninduced. underground physics experiments. L. Pandola, V. Tomasello and V. Kudryavtsev. for the JRA1 and N3 simulation groups Neutron- and muoninduced background in underground physics experiments L. Pandola, V. Tomasello and V. Kudryavtsev for the JRA1 and N3 simulation groups ILIAS 4 th Annual Meeting, Chambery, 2007 ILIAS

More information

A Liquid Argon Scintillation Veto for the GERDA Experiment

A Liquid Argon Scintillation Veto for the GERDA Experiment A Liquid Argon Scintillation Veto for the GERDA Experiment for the GERDA Collaboration 2nd European Nuclear Physics Conference Bucharest, 18/09/2012 Institut für Kern- und Teilchenphysik GERDA - GERmanium

More information

Background Neutron Studies for Coherent Elastic Neutrino-Nucleus Scattering Measurements at the SNS

Background Neutron Studies for Coherent Elastic Neutrino-Nucleus Scattering Measurements at the SNS Background Neutron Studies for Coherent Elastic Neutrino-Nucleus Scattering Measurements at the SNS D. Markoff (NC Central University, Triangle Universities Nuclear Laboratory) For the COHERENT Collaboration

More information

The search for neutrino-less double beta decay with LNGS: status and perspectives

The search for neutrino-less double beta decay with LNGS: status and perspectives The search for neutrino-less double beta decay with GERDA @ LNGS: status and perspectives Stefan Schönert Physik Department, TUM On behalf of the GERDA collaboration Astroteilchenphysik in Deutschland,

More information

Search for Low Energy Events with CUORE-0 and CUORE

Search for Low Energy Events with CUORE-0 and CUORE Search for Low Energy Events with CUORE-0 and CUORE Kyungeun E. Lim (on behalf of the CUORE collaboration) Oct. 30. 015, APS Division of Nuclear Physics meeting, Santa Fe, NM The CUORE Experiment CUORE

More information

Search for Sterile Neutrinos with the Borexino Detector

Search for Sterile Neutrinos with the Borexino Detector Search for Sterile Neutrinos with the Borexino Detector PANIC 2014 Hamburg on behalf of the BOREXINO Collaboration Institut für Experimentalphysik (Universität Hamburg) Borexino Detector Site 1400 m of

More information

Neutrinos. Why measure them? Why are they difficult to observe?

Neutrinos. Why measure them? Why are they difficult to observe? Outline What is a neutrino? Why do we want to study them? Building a detector to detect the undetectable What does a neutrino detector see? How do you seperate a neutrino signal from the background? Neutrinos

More information

The GERDA Phase II detector assembly

The GERDA Phase II detector assembly The GERDA Phase II detector assembly Tobias Bode 1, Carla Cattadori 2, Konstantin Gusev 1, Stefano Riboldi 2, Stefan Schönert 1, Bernhard Schwingenheuer 3 und Viktoria Wagner 3 for the GERDA collaboration

More information

Neutron flux measurement using fast-neutron activation of 12 B and 12 N isotopes in hydrocarbonate scintillators

Neutron flux measurement using fast-neutron activation of 12 B and 12 N isotopes in hydrocarbonate scintillators Neutron flux measurement using fast-neutron activation of 12 B and 12 N isotopes in hydrocarbonate scintillators M. M. Boliev E-mail: kchkrv@rambler.ru Yu. F. Novoseltsev R. V. Novoseltseva V. B. Petkov

More information

Compton suppression spectrometry

Compton suppression spectrometry Compton suppression spectrometry In gamma ray spectrometry performed with High-purity Germanium detectors (HpGe), the detection of low intensity gamma ray lines is complicated by the presence of Compton

More information

Measurements of liquid xenon s response to low-energy particle interactions

Measurements of liquid xenon s response to low-energy particle interactions Measurements of liquid xenon s response to low-energy particle interactions Payam Pakarha Supervised by: Prof. L. Baudis May 5, 2013 1 / 37 Outline introduction Direct Dark Matter searches XENON experiment

More information

Results from GERDA Phase I and status of the upgrade to Phase II. Stefan Schönert (TU München) on behalf of the GERDA collabora;on

Results from GERDA Phase I and status of the upgrade to Phase II. Stefan Schönert (TU München) on behalf of the GERDA collabora;on Results from GERDA Phase I and status of the upgrade to Phase II Stefan Schönert (TU München) on behalf of the GERDA collabora;on 1 The GERDA experiment @ LNGS plasac µ- veto clean room with lock and glove

More information

1 v. L18.pdf Spring 2010, P627, YK February 22, 2012

1 v. L18.pdf Spring 2010, P627, YK February 22, 2012 L18.pdf Spring 2010, P627, YK February 22, 2012 18 T2 Nuclear Information Service at LANL: http://t2.lanl.gov/data/ ENDF/B VI Neutron Data : http://t2.lanl.gov/cgi bin/nuclides/endind Thermal neutron x

More information

- The CONUS Experiment - COherent elastic NeUtrino nucleus Scattering

- The CONUS Experiment - COherent elastic NeUtrino nucleus Scattering - The CONUS Experiment - COherent elastic NeUtrino nucleus Scattering C. Buck, J. Hakenmüller, G. Heusser, M. Lindner, W. Maneschg, T. Rink, H. Strecker, T. Schierhuber and V. Wagner Max-Planck-Institut

More information

How can we search for double beta decay? Carter Hall University of Maryland

How can we search for double beta decay? Carter Hall University of Maryland How can we search for double beta decay? Carter Hall University of Maryland 1 Neutrinoless Double Beta Decay (ββ0ν) Forbidden if neutrino mass is Dirac only N(Z,A) N(Z+2,A)e - e - e L - 2n W-W- ν R +εν

More information

Shielding Strategies. Karl Tasso Knöpfle MPI Kernphysik, Heidelberg

Shielding Strategies. Karl Tasso Knöpfle MPI Kernphysik, Heidelberg Shielding Strategies Karl Tasso Knöpfle MPI Kernphysik, Heidelberg ktkno@mpi-hd.mpg.de Application of Germanium Detector in Fundamental Research Tsinghua University Bejing, March 24-26, 20011 outline Introduction

More information

Nuclear Reactions A Z. Radioactivity, Spontaneous Decay: Nuclear Reaction, Induced Process: x + X Y + y + Q Q > 0. Exothermic Endothermic

Nuclear Reactions A Z. Radioactivity, Spontaneous Decay: Nuclear Reaction, Induced Process: x + X Y + y + Q Q > 0. Exothermic Endothermic Radioactivity, Spontaneous Decay: Nuclear Reactions A Z 4 P D+ He + Q A 4 Z 2 Q > 0 Nuclear Reaction, Induced Process: x + X Y + y + Q Q = ( m + m m m ) c 2 x X Y y Q > 0 Q < 0 Exothermic Endothermic 2

More information

Background Characterization and Rejection in the LZ Detector. David Malling Brown University IDM 2012 July 25, 2012

Background Characterization and Rejection in the LZ Detector. David Malling Brown University IDM 2012 July 25, 2012 Background Characterization and Rejection in the LZ Detector David Malling Brown University IDM 2012 July 25, 2012 LZ Construction 2 Background Sources Ti cryostats 1500 kg

More information

Application of prompt gamma activation analysis with neutron beams for the detection and analysis of nuclear materials in containers

Application of prompt gamma activation analysis with neutron beams for the detection and analysis of nuclear materials in containers Application of prompt gamma activation analysis with neutron beams for the detection and analysis of nuclear materials in containers Zsolt Révay Institute of Isotopes, Budapest, Hungary Dept. of Nuclear

More information

INTRODUCTION TO MEDICAL PHYSICS 1 Quiz #1 Solutions October 6, 2017

INTRODUCTION TO MEDICAL PHYSICS 1 Quiz #1 Solutions October 6, 2017 INTRODUCTION TO MEDICAL PHYSICS 1 Quiz #1 Solutions October 6, 2017 This is a closed book examination. Adequate information is provided you to solve all problems. Be sure to show all work, as partial credit

More information

Reactor On/Off Monitoring with a Prototype of Plastic Anti-neutrino Detector Array (PANDA)

Reactor On/Off Monitoring with a Prototype of Plastic Anti-neutrino Detector Array (PANDA) Reactor On/Off Monitoring with a Prototype of Plastic Anti-neutrino Detector Array (PANDA) Yasuhiro Kuroda A, Yo Kato A, Nozomu Tomita A, Ryoko Nakata, Shugo Oguri, Chikara Ito B, Yoshizumi Inoue C, Makoto

More information

STATUS OF THE CALIBRATION

STATUS OF THE CALIBRATION STATUS OF THE CALIBRATION R.Santorelli (on the behalf of the WG) Content of the talk Introduction Calibration system Estimation of the optimal source position Strength of the source Background from the

More information

E15. Background suppression in GERDA Phase II. and its study in the LARGE low background set-up

E15. Background suppression in GERDA Phase II. and its study in the LARGE low background set-up Background suppression in GERDA Phase II and its study in the LARGE low background set-up bb Dušan Budjáš Technische Universität München for the GERDA collaboration http://www.mpi-hd.mpg.de/gerda E15 Modified

More information

Low Background Experiments and Material Assay. Tessa Johnson NSSC Summer School July 2016

Low Background Experiments and Material Assay. Tessa Johnson NSSC Summer School July 2016 Low Background Experiments and Material Assay Tessa Johnson NSSC Summer School July 2016 Outline How do we detect particles? Some interesting questions relating to particle physics How can particle detection

More information

Germanium detector test-stands at the Max Planck Institute for Physics and alpha interactions on passivated surfaces

Germanium detector test-stands at the Max Planck Institute for Physics and alpha interactions on passivated surfaces Journal of Physics: Conference Series PAPER OPEN ACCESS Germanium detector test-stands at the Max Planck Institute for Physics and alpha interactions on passivated surfaces To cite this article: C Gooch

More information

Determination of the boron content in polyethylene samples using the reactor Orphée

Determination of the boron content in polyethylene samples using the reactor Orphée Determination of the boron content in polyethylene samples using the reactor Orphée F. Gunsing, A. Menelle CEA Saclay, F-91191 Gif-sur-Yvette, France O. Aberle European Organization for Nuclear Research

More information

GERDA Status and Perspectives

GERDA Status and Perspectives GERDA Status and Perspectives K.T.Knöpfle for the GERDA collaboration MPI Kernphysik, Heidelberg ktkno@mpi-hd.mpg.de NOW2012, Sep 9-16, Conca Specchiulla, Otranto, Lecce, Italy About 100 members, 19 institutions,

More information

Prompt γ-rays from Neutron Inelastic

Prompt γ-rays from Neutron Inelastic Prompt γ-rays from Neutron Inelastic Scattering at FaNGaS: Benchmark Spectrum Analysis T.H. Randriamalala, M. Rossbach Institute of Energy and Climate Research, Nuclear Waste Management and Reactor Safety,

More information

Turkey s first photonuclear reactions performed at Akdeniz University: Matter, Anti-matter, Pure Energy and Alchemy

Turkey s first photonuclear reactions performed at Akdeniz University: Matter, Anti-matter, Pure Energy and Alchemy (Ülkemizin ilk fotonükleer reaksiyonu Akdeniz Üniversitesinde gerçekleştirildi: Madde, Anti-Madde, Saf Enerji ve Simya) Turkey s first photonuclear reactions performed at Akdeniz University: Matter, Anti-matter,

More information

An active-shield method for the reduction of surface contamination in CUORE

An active-shield method for the reduction of surface contamination in CUORE An active-shield method for the reduction of surface contamination in CUORE Marisa Pedretti on behalf of CUORE Collaboration INFN - Milano Università degli Studi dell Insubria Outline of the talk Introduction

More information

Measurement of 39 Ar in Underground Argon for Dark Matter Experiments

Measurement of 39 Ar in Underground Argon for Dark Matter Experiments Measurement of 39 Ar in Underground Argon for Dark Matter Experiments Jingke Xu Princeton University June 7 th, 2013 1 Evidences for Dark Matter Rotation Curve Gravitational Lensing CMB Power Spectrum

More information

(a) (i) State the proton number and the nucleon number of X.

(a) (i) State the proton number and the nucleon number of X. PhysicsAndMathsTutor.com 1 1. Nuclei of 218 84Po decay by the emission of an particle to form a stable isotope of an element X. You may assume that no emission accompanies the decay. (a) (i) State the

More information

Results on neutrinoless double beta decay of 76 Ge from GERDA Phase I

Results on neutrinoless double beta decay of 76 Ge from GERDA Phase I Home Search Collections Journals About Contact us My IOPscience Results on neutrinoless double beta decay of 76 Ge from GERDA Phase I This content has been downloaded from IOPscience. Please scroll down

More information

Investigation of dipole strength at the ELBE accelerator in Dresden-Rossendorf

Investigation of dipole strength at the ELBE accelerator in Dresden-Rossendorf EPJ Web of Conferences 21, 04006 (2012) DOI: 10.1051/ epjconf/ 20122104006 C Owned by the authors, published by EDP Sciences, 2012 Investigation of dipole strength at the ELE accelerator in Dresden-Rossendorf

More information

Background Modeling and Materials Screening for the LUX and LZ Detectors. David Malling Brown University LUX Collaboration AARM Meeting February 2011

Background Modeling and Materials Screening for the LUX and LZ Detectors. David Malling Brown University LUX Collaboration AARM Meeting February 2011 Background Modeling and Materials Screening for the LUX and LZ Detectors David Malling Brown University LUX Collaboration AARM Meeting February 2011 1 Summary LUX screening program limits background contributions

More information

Measuring Neutron Capture Cross Sections on s-process Radioactive Nuclei

Measuring Neutron Capture Cross Sections on s-process Radioactive Nuclei Measuring Neutron Capture Cross Sections on s-process Radioactive Nuclei 5th Workshop on Nuclear Level Density and Gamma Strength Oslo, May 18-22, 2015 LLNL-PRES-670315 LLNL-PRES-XXXXXX This work was performed

More information

Björn Lehnert. Search for double beta decays of palladium isotopes into excited states

Björn Lehnert. Search for double beta decays of palladium isotopes into excited states Search for double beta decays of palladium isotopes into excited states INTERNATIONAL SCHOOL OF NUCLEAR PHYSICS 35th Course Erice 23/09/2013 Björn Lehnert Institut für Kern- und Teilchenphysik Outline

More information

CANDLES Experiment Current Status and Future Plan. X. Li for the CANDLES Collaboration

CANDLES Experiment Current Status and Future Plan. X. Li for the CANDLES Collaboration CANDLES Experiment Current Status and Future Plan X. Li for the CANDLES Collaboration 1 Neutrinoless Double Beta Decay (0νββ) 2νββ decay 0νββ decay (A, Z) => (A, Z+2) + 2e - process beyond Standard Model

More information

Status of the CUORE and CUORE-0 experiments at Gran Sasso

Status of the CUORE and CUORE-0 experiments at Gran Sasso Status of the CUORE and CUORE-0 experiments at Gran Sasso S. Di Domizio INFN and University of Genova for the CUORE collaboration Weak Interactions and Neutrinos Natal, September 19 2013 Neutrinoless double

More information

Prospects for kev-dm searches with the GERDA experiment

Prospects for kev-dm searches with the GERDA experiment Physik-Institut Prospects for kev-dm searches with the GERDA experiment Roman Hiller for the GERDA collaboration 29/03/2017 Page 1 GERDA concept Cleanroom Lock systen Enriched 76 Ge detectors Cryostat

More information

Background simulations and shielding calculations

Background simulations and shielding calculations Background simulations and shielding calculations Vitaly A. Kudryavtsev University of Sheffield Contributions from many others Outline Note 1: results are relevant to many experiments and techniques (mainly

More information

Technical Specifications and Requirements on Direct detection for Dark Matter Searches

Technical Specifications and Requirements on Direct detection for Dark Matter Searches Technical Specifications and Requirements on Direct detection for Dark Matter Searches Jin Li THU/IHEP Symposium of the Sino-German GDT Cooperation 04/08/2013 Tübingen Outline Introduction Direct detection

More information

Studies of the XENON100 Electromagnetic Background

Studies of the XENON100 Electromagnetic Background Studies of the XENON100 Electromagnetic Background Daniel Mayani Physik-Institut University of Zurich PhD Seminar PSI, August 26-27, 2015 Searching for elusive particles The main challenge for experiments

More information

Status of the CUORE and CUORE-0 experiments at Gran Sasso

Status of the CUORE and CUORE-0 experiments at Gran Sasso Status of the CUORE and CUORE-0 experiments at Gran Sasso S. Di Domizio INFN and University of Genova for the CUORE collaboration Les Rencontres de Physique de la Vallée d'aoste La Thuile, February 25

More information

The Possibility to Use Energy plus Transmutation Setup for Neutron Production and Transport Benchmark Studies

The Possibility to Use Energy plus Transmutation Setup for Neutron Production and Transport Benchmark Studies The Possibility to Use Energy plus Transmutation Setup for Neutron Production and Transport Benchmark Studies V. WAGNER 1, A. KRÁSA 1, M. MAJERLE 1, F. KŘÍŽEK 1, O. SVOBODA 1, A. KUGLER 1, J. ADAM 1,2,

More information

Neutrinoless Double-Beta Decay

Neutrinoless Double-Beta Decay Neutrinoless Double-Beta Decay Michal Tarka Stony Brook University ELBA XIV, 27 June 2016 Outline Neutrinoless double-beta decay (0νββ) Historical background & Motivation Neutrino masses Overview of (2νββ

More information

High-energy calibration data for neutron activation analysis

High-energy calibration data for neutron activation analysis Nuclear Analysis and Radiography Department High-energy calibration data for neutron activation analysis L. Szentmiklósi 1, Zs. Révay 2, B. Maróti 1, D. Párkányi 1, I. Harsányi 1 1 Nuclear Analysis and

More information

Status and Perspectives of the COBRA-Experiment

Status and Perspectives of the COBRA-Experiment Status and Perspectives of the COBRA-Experiment Jan Tebrügge for the COBRA Collaboration Status and Perspectives of the COBRA-Experiment Jan Tebrügge beta decays for thedouble COBRA Collaboration CdZnTe

More information

A new neutron monitor for pulsed fields at high-energy accelerators

A new neutron monitor for pulsed fields at high-energy accelerators A new neutron monitor for pulsed fields at high-energy accelerators Marlies Luszik-Bhadra *, Eike Hohmann Physikalisch-Technische Bundesanstalt, Bundesallee 100, D-38116, Braunschweig, Germany. Abstract.

More information

PPC Ge detectors for dark matter, neutrino-less double beta decay and CNS measurements

PPC Ge detectors for dark matter, neutrino-less double beta decay and CNS measurements PPC Ge detectors for dark matter, neutrino-less double beta decay and CNS measurements Ryan Martin, Queen s University Coherent Neutrino Scattering Experiment Workshop, Texas A&M 12 November 2015 R. Martin,

More information

DOUBLE BETA DECAY OF 106 Cd - EXPERIMENT TGV (Telescope Germanium Vertical) EXPERIMENT SPT (Silicon Pixel Telescope)

DOUBLE BETA DECAY OF 106 Cd - EXPERIMENT TGV (Telescope Germanium Vertical) EXPERIMENT SPT (Silicon Pixel Telescope) DOUBLE BETA DECAY OF 106 Cd - EXPERIMENT TGV (Telescope Germanium Vertical) EXPERIMENT SPT (Silicon Pixel Telescope) I. Štekl (IEAP CTU in Prague) on behalf of TGV collaboration CSNSM Orsay, France CU

More information

KamLAND. Introduction Data Analysis First Results Implications Future

KamLAND. Introduction Data Analysis First Results Implications Future KamLAND Introduction Data Analysis First Results Implications Future Bruce Berger 1 Tohoku University, Sendai, Japan University of Alabama University of California at Berkeley/LBNL California Institute

More information

Neutron capture cross sections on light nuclei

Neutron capture cross sections on light nuclei Mem. S.A.It. Vol. 77, 922 c SAIt 2006 Memorie della Neutron capture cross sections on light nuclei M. Heil, F. Käppeler, and E. Uberseder Forschungszentrum Karlsruhe, Institut für Kernphysik, Postfach

More information

High precision neutron inelastic cross section measurements

High precision neutron inelastic cross section measurements High precision neutron inelastic cross section measurements A. Olacel, C. Borcea, M. Boromiza, A. Negret IFIN-HH, DFN Outline The experimental setup GELINA GAINS Data analysis algorithm. Monte Carlo simulations

More information

UCLA Dark Matter 2014 Symposium. Origins and Distributions of the Backgrounds. 15 min

UCLA Dark Matter 2014 Symposium. Origins and Distributions of the Backgrounds. 15 min S. Fiorucci Brown University UCLA Dark Matter 2014 Symposium Origins and Distributions of the Backgrounds 15 min What is a signal for LUX? Nuclear recoil Single scatter Signal Low energy, typically < 25

More information

M.Cagnazzo Atominstitut, Vienna University of Technology Stadionallee 2, 1020 Wien, Austria

M.Cagnazzo Atominstitut, Vienna University of Technology Stadionallee 2, 1020 Wien, Austria Measurements of the In-Core Neutron Flux Distribution and Energy Spectrum at the Triga Mark II Reactor of the Vienna University of Technology/Atominstitut ABSTRACT M.Cagnazzo Atominstitut, Vienna University

More information

arxiv: v1 [physics.ins-det] 8 Feb 2016

arxiv: v1 [physics.ins-det] 8 Feb 2016 arxiv:1602.02462v1 [physics.ins-det] 8 Feb 2016 The CDEX Dark Matter Program at the China Jinping Underground Laboratory Qian Yue 1, Kejun Kang, Jianming Li Department of Engineering Physics, Tsinghua

More information

GERDA Phase II detectors: behind the production and characterisation at low background conditions

GERDA Phase II detectors: behind the production and characterisation at low background conditions GERDA Phase II detectors: behind the production and characterisation at low background conditions Werner Maneschg - on behalf of the GERDA collaboration - Max-Planck-Institut für Kernphysik, Heidelberg

More information