Protein Structure Prediction 11/11/05

Size: px
Start display at page:

Download "Protein Structure Prediction 11/11/05"

Transcription

1 11/11/05 Protein Structure Prediction & Modeling Bioinformatics Seminars Nov 11 Fri 12:10 BCB Seminar in E164 Lago Building Supertrees Using Distances Steve Willson, Dept of Mathematics Next week - Baker Center/BCB Seminars: (seminar abstracts available at above link) Nov 14 Mon 1:10 PM Doug Brutlag, Stanford Discovering transcription factor binding sites Nov 15 Tues 1:10 PM Ilya Vakser, Univ Kansas Modeling protein-protein interactions both seminars will be in Howe Hall Auditorium 11/11/05 D Dobbs ISU - BCB 444/544X: Protein Structure Prediction 1 11/11/05 D Dobbs ISU - BCB 444/544X: Protein Structure Prediction 2 Protein Structure & Function: Analysis & Prediction Mon Protein structure: basics; classification,databases, visualization Wed Protein structure databases - cont. Thurs Lab Protein structure databases Visualization software Secondary structure prediction Reading Assignment (for Mon-Fri) Mount Bioinformatics Chp 10 Protein classification & structure prediction pp Ck Errata: Fri Protein structure prediction Protein-nucleic acid interactions 11/11/05 D Dobbs ISU - BCB 444/544X: Protein Structure Prediction 3 11/11/05 D Dobbs ISU - BCB 444/544X: Protein Structure Prediction 4 Required: BCB 544 Additional Reading Gene Prediction: Burge & Karlin 1997 JMB 268:78 Optional: Prediction of complete gene structures in human genomic DNA Structure Prediction: Schueler-Furman Baker 2005 Science 310:638 Progress in modeling of protein structures and interactions Review last lecture: Protein Structure: Databases, Classification & Visualization 11/11/05 D Dobbs ISU - BCB 444/544X: Protein Structure Prediction 5 11/11/05 D Dobbs ISU - BCB 444/544X: Protein Structure Prediction 6 D Dobbs ISU - BCB 444/544X 1

2 Protein sequence databases UniProt (SwissProt, PIR, EBI) NCBI Protein More on these later: protein function prediction Protein sequence & structure: analysis Diamond STING Millennium - many useful structure analysis tools, including Protein Dossier SwissProt (UniProt) protein knowledgebase InterPRO sequence analysis tools 11/11/05 D Dobbs ISU - BCB 444/544X: Protein Structure Prediction 7 11/11/05 D Dobbs ISU - BCB 444/544X: Protein Structure Prediction 8 Protein structure databases PDB Protein Data Bank MMDB (RCSB) - THE protein structure database Molecular Modeling Database (NCBI Entrez) - has "added" value Protein structure classification SCOP = Structural Classification of Proteins Levels reflect both evolutionary and structural relationships CATH = Classification by Class, Architecture, Topology & Homology MSD Molecular Structure Database Especially good for interactions, binding sites DALI/FSSP (recently moved to EBI & reorganized) fully automated structure alignments DALI server DALI Database (fold classification) 11/11/05 D Dobbs ISU - BCB 444/544X: Protein Structure Prediction 9 11/11/05 D Dobbs ISU - BCB 444/544X: Protein Structure Prediction 10 Protein structure visualization Molecular Visualization Freeware: MolviZ.Org Protein Explorer RASMOL (& many decendents: Protein Explorer,PyMol, MolMol, etc.) CHIME Cn3D Deep View = Swiss-PDB Viewer 11/11/05 D Dobbs ISU - BCB 444/544X: Protein Structure Prediction 11 Protein structure visualization Superb interactive structure visualization software by Jane & Dave Richardson, Duke University KINIMAGE Fantastic research tools for structure analysis & refinement 11/11/05 D Dobbs ISU - BCB 444/544X: Protein Structure Prediction 12 D Dobbs ISU - BCB 444/544X 2

3 RCSB PDB - Beta site MMDB 11/11/05 D Dobbs ISU - BCB 444/544X: Protein Structure Prediction 13 11/11/05 D Dobbs ISU - BCB 444/544X: Protein Structure Prediction 14 Cn3D Cn3D : Displaying 2' Structures 11/11/05 D Dobbs ISU - BCB 444/544X: Protein Structure Prediction 15 11/11/05 D Dobbs ISU - BCB 444/544X: Protein Structure Prediction 16 Cn3D: Structural Alignments SCOP - Structure Classification 11/11/05 D Dobbs ISU - BCB 444/544X: Protein Structure Prediction 17 11/11/05 D Dobbs ISU - BCB 444/544X: Protein Structure Prediction 18 D Dobbs ISU - BCB 444/544X 3

4 6 main classes of protein structure 1) α Domains 2) β Domains 3) α/β Domains Bundles of helices connected by loops Mainly antiparallel sheets, usually with 2 sheets forming sandwich Mainly parallel sheets with intervening helices, also mixed sheets 4) α+β Domains Mainly segregated helices and sheets 5) Multidomain (α & β) Containing domains from more than one class 6) Membrane & cell-surface proteins CATH - Structure Classification 11/11/05 D Dobbs ISU - BCB 444/544X: Protein Structure Prediction 19 11/11/05 D Dobbs ISU - BCB 444/544X: Protein Structure Prediction 20 Structural Genomics ~ 30,000 "traditional" genes in human genome (not counting:???) ~ 3,000 proteins in a typical cell > 2 million sequences in UniProt > 33,000 protein structures in the PDB Experimental determination of protein structure lags far behind sequence determination! Goal: Determine structures of "all" protein folds in nature, using combination of experimental structure determination methods (X-ray crystallography, NMR, mass spectrometry) & structure prediction Structural Genomics Projects TargetDB: database of structural genomics targets Protein Structure Prediction? 11/11/05 D Dobbs ISU - BCB 444/544X: Protein Structure Prediction 21 11/11/05 D Dobbs ISU - BCB 444/544X: Protein Structure Prediction 22 Protein Folding "Major unsolved problem in molecular biology" In cells: spontaneous assisted by enzymes assisted by chaperones Steps in Protein Folding 1- "Collapse"- driving force is burial of hydrophobic aa s (fast - msecs) 2- Molten globule - helices & sheets form, but "loose" (slow - secs) 3- "Final" native folded state - compaction, some 2' structures rearranged In vitro: many proteins fold spontaneously & many do not! Native state? - assumed to be lowest free energy - may be an ensemble of structures 11/11/05 D Dobbs ISU - BCB 444/544X: Protein Structure Prediction 23 11/11/05 D Dobbs ISU - BCB 444/544X: Protein Structure Prediction 24 D Dobbs ISU - BCB 444/544X 4

5 Protein Dynamics Protein in native state is NOT static Function of many proteins depends on conformational changes, sometimes large, sometimes small Globular proteins are inherently "unstable" (NOT evolved for maximum stability) Energy difference between native and denatured state is very small (5-15 kcal/mol) (this is equivalent to 1 or 2 H-bonds!) Folding involves changes in both entropy & enthalpy Protein Structure Prediction Structure is largely determined by sequence BUT: Similar sequences can assume different structures Dissimilar sequences can assume similar structures Many proteins are multi-functional Protein folding: determination of folding pathways prediction of tertiary structure still largely unsolved problems 11/11/05 D Dobbs ISU - BCB 444/544X: Protein Structure Prediction 25 11/11/05 D Dobbs ISU - BCB 444/544X: Protein Structure Prediction 26 New today: Protein Structure Prediction Secondary structure (text focuses on this - I won't) Tertiary structure (let's do this instead!) Deciphering the Protein Folding Code Protein Structure Prediction or "Protein Folding" Problem given the amino acid sequence of a protein, predict its 3-dimensional structure (fold) "Inverse Folding" Problem given a protein fold, identify every amino acid sequence that can adopt its 3-dimensional structure 11/11/05 D Dobbs ISU - BCB 444/544X: Protein Structure Prediction 27 11/11/05 D Dobbs ISU - BCB 444/544X: Protein Structure Prediction 28 Protein Structure Determination? High-resolution structure determination X-ray crystallography (<1A ) Nuclear magnetic resonance (NMR) (~1-2.5A ) Lower-resolution structure determination Cryo-EM (electron-microscropy) ~10-15A Theoretical Models? Highly variable - now, some equiv to X-ray! Tertiary Structure Prediction Fold or tertiary structure prediction problem can be formulated as a search for minimum energy conformation search space is defined by psi/phi angles of backbone and side-chain rotamers search space is enormous even for small proteins! number of local minima increases exponentially of the number of residues Computationally it is an exceedingly difficult problem! 11/11/05 D Dobbs ISU - BCB 444/544X: Protein Structure Prediction 29 11/11/05 D Dobbs ISU - BCB 444/544X: Protein Structure Prediction 30 D Dobbs ISU - BCB 444/544X 5

6 Ab Initio Prediction 1. Develop energy function bond energy bond angle energy dihedral angle energy van der Waals energy electrostatic energy 2. Calculate structure by minimizing energy function (usually Molecular Dynamics or Monte Carlo methods) Ab initio prediction - not practical in general Computationally? very expensive Accuracy? Usually poor for all but short peptides (but see Baker review!) Two primary methods Comparative Modeling 1) Homology modeling 2) Threading (fold recognition) Note: both rely on availability of experimentally determined structures that are "homologous" or at least structurally very similar to target Provide folded structure only Provides both folding pathway & folded structure 11/11/05 D Dobbs ISU - BCB 444/544X: Protein Structure Prediction 31 11/11/05 D Dobbs ISU - BCB 444/544X: Protein Structure Prediction 32 Homology Modeling 1. Identify homologous protein sequences PSI-BLAST multiple sequence alignment (MSA) 2. Among those with available structures, choose closest sequence match for template 3. Build model by placing residues into corresponding positions of homologous structure models & refine by "tweaking" Homology modeling - works "well" Computationally? not very expensive Accuracy? higher sequence identity better model Requires >30% sequence identity Threading - Fold Recognition Identify best fit between target sequence & template structure 1. Develop energy function 2. Develop template library 3. Align target sequence with each template & score 4. Determine best score (1D to 3D alignment) 5. Build refine structure as in homology modeling Threading - works "sometimes" Computationally? Can be expensive or cheap, depends on energy function & whether "all atom" or "backbone only" threading Accuracy? in theory, should not depend on sequence identity (should depend on quality of template library & "luck") But, usually higher sequence identity better model 11/11/05 D Dobbs ISU - BCB 444/544X: Protein Structure Prediction 33 11/11/05 D Dobbs ISU - BCB 444/544X: Protein Structure Prediction 34 Threading - a "local" example Threading Goals & Issues Target Sequence ALKKGF HFDTSE Find correct sequence-structure alignment of a target sequence with its native-like fold in PDB Structure Templates 1. Align target sequence with template structures (fold library) from the Protein Data Bank (PDB) 2. Calculate energy (score) to evaluate goodness of fit between target sequence & template structure 3. Rank models based on energy scores Structure database - must be complete: no decent model if no good template in library! Sequence-structure alignment algorithm: Bad alignment Bad score! Energy function (scoring scheme): must distinguish correct sequence-fold alignment from incorrect sequence-fold alignments must distinguish correct fold from close decoys Prediction reliability assessment - how determine whether predicted structure is correct (or even close?) 11/11/05 D Dobbs ISU - BCB 444/544X: Protein Structure Prediction 35 11/11/05 D Dobbs ISU - BCB 444/544X: Protein Structure Prediction 36 D Dobbs ISU - BCB 444/544X 6

7 Threading Structure database Build a template database (e.g., ASTRAL domain library derived from PDB) Threading - Energy function Two main methods (and combinations of these) Structural profile (environmental) physico-chemical properties of aa s Contact potential (statistical) based on contact statistics from PDB (Miyazawa & Jernigan - Jernigan now at ISU) Supplement with additional decoys, e.g., generated using ab initio approach such as Rosetta (Baker) 11/11/05 D Dobbs ISU - BCB 444/544X: Protein Structure Prediction 37 11/11/05 D Dobbs ISU - BCB 444/544X: Protein Structure Prediction 38 Protein Threading typical energy function MTYKLILNGKTKGETTTEAVDAATAEKVFQYANDNGVDGEWTYTE What is "probability" that two specific residues are in contact? Total energy: E_p + E_s + E_g How well does a specific residue fit structural environment? Alignment gap penalty? Find a sequence-structure alignment that minimizing the energy function A Rapid Threading Approach for Protein Structure Prediction Kai-Ming Ho, Physics Haibo Cao Yungok Ihm Zhong Gao James Morris Cai-zhuang Wang Drena Dobbs, GDCB Jae-Hyung Lee Michael Terribilini Jeff Sander 11/11/05 D Dobbs ISU - BCB 444/544X: Protein Structure Prediction 39 11/11/05 D Dobbs ISU - BCB 444/544X: Protein Structure Prediction 40 Performance Evaluation? "Blind Test" Typical Results: well, actually, BEST Results: HO = #1 ranked CASP prediction for this target CASP5 Competition (Critical Assessment of Protein Structure Prediction) Target 174 PDB ID = 1MG7 Predicted Structure Given: Amino acid sequence Goal: Predict 3-D structure T174_1 (before experimental results published) Actual Structure T174_2 11/11/05 D Dobbs ISU - BCB 444/544X: Protein Structure Prediction 41 D Dobbs ISU - BCB 444/544X 7

8 Overall Performance in CASP5 Contest (M. Levitt, Stanford) FR Fold Recognition (targets manually assessed by Nick Grishin) Rank Z-Score Ngood Npred NgNW NpNW Group-name Ginalski Skolnick Kolinski Baker BIOINFO.PL Shortle BAKER-ROBETTA Brooks Ho-Kai-Ming Jones-NewFold FR NgNW - number of good predictions without weighting for multiple models FR NpNW - number of total predictions without weighting for multiple models D Dobbs ISU - BCB 444/544X 8

BCB 444/544 Fall 07 Dobbs 1

BCB 444/544 Fall 07 Dobbs 1 BCB 444/544 Lecture 21 Protein Structure Visualization, Classification & Comparison Secondary Structure #21_Oct10 Required Reading (before lecture) Mon Oct 8 - Lecture 20 Protein Secondary Structure Chp

More information

D Dobbs ISU - BCB 444/544X 1

D Dobbs ISU - BCB 444/544X 1 11/7/05 Protein Structure: Classification, Databases, Visualization Announcements BCB 544 Projects - Important Dates: Nov 2 Wed noon - Project proposals due to David/Drena Nov 4 Fri PM - Approvals/responses

More information

BCB 444/544 Fall 07 Dobbs 1

BCB 444/544 Fall 07 Dobbs 1 BCB 444/544 Required Reading (before lecture) Lecture 23 Mon Oct 5 - Lecture 23 Protein Tertiary Structure Chp 5 - pp 24-230 Protein Tertiary Structure Wed Oct 7 & Thurs Oct 8 - Lecture 24 & Lab 8 RNA

More information

Giri Narasimhan. CAP 5510: Introduction to Bioinformatics. ECS 254; Phone: x3748

Giri Narasimhan. CAP 5510: Introduction to Bioinformatics. ECS 254; Phone: x3748 CAP 5510: Introduction to Bioinformatics Giri Narasimhan ECS 254; Phone: x3748 giri@cis.fiu.edu www.cis.fiu.edu/~giri/teach/bioinfs07.html 2/15/07 CAP5510 1 EM Algorithm Goal: Find θ, Z that maximize Pr

More information

Protein Structures. 11/19/2002 Lecture 24 1

Protein Structures. 11/19/2002 Lecture 24 1 Protein Structures 11/19/2002 Lecture 24 1 All 3 figures are cartoons of an amino acid residue. 11/19/2002 Lecture 24 2 Peptide bonds in chains of residues 11/19/2002 Lecture 24 3 Angles φ and ψ in the

More information

1. Protein Data Bank (PDB) 1. Protein Data Bank (PDB)

1. Protein Data Bank (PDB) 1. Protein Data Bank (PDB) Protein structure databases; visualization; and classifications 1. Introduction to Protein Data Bank (PDB) 2. Free graphic software for 3D structure visualization 3. Hierarchical classification of protein

More information

ALL LECTURES IN SB Introduction

ALL LECTURES IN SB Introduction 1. Introduction 2. Molecular Architecture I 3. Molecular Architecture II 4. Molecular Simulation I 5. Molecular Simulation II 6. Bioinformatics I 7. Bioinformatics II 8. Prediction I 9. Prediction II ALL

More information

Bioinformatics. Macromolecular structure

Bioinformatics. Macromolecular structure Bioinformatics Macromolecular structure Contents Determination of protein structure Structure databases Secondary structure elements (SSE) Tertiary structure Structure analysis Structure alignment Domain

More information

CS612 - Algorithms in Bioinformatics

CS612 - Algorithms in Bioinformatics Fall 2017 Databases and Protein Structure Representation October 2, 2017 Molecular Biology as Information Science > 12, 000 genomes sequenced, mostly bacterial (2013) > 5x10 6 unique sequences available

More information

CMPS 6630: Introduction to Computational Biology and Bioinformatics. Tertiary Structure Prediction

CMPS 6630: Introduction to Computational Biology and Bioinformatics. Tertiary Structure Prediction CMPS 6630: Introduction to Computational Biology and Bioinformatics Tertiary Structure Prediction Tertiary Structure Prediction Why Should Tertiary Structure Prediction Be Possible? Molecules obey the

More information

CAP 5510 Lecture 3 Protein Structures

CAP 5510 Lecture 3 Protein Structures CAP 5510 Lecture 3 Protein Structures Su-Shing Chen Bioinformatics CISE 8/19/2005 Su-Shing Chen, CISE 1 Protein Conformation 8/19/2005 Su-Shing Chen, CISE 2 Protein Conformational Structures Hydrophobicity

More information

Bioinformatics. Proteins II. - Pattern, Profile, & Structure Database Searching. Robert Latek, Ph.D. Bioinformatics, Biocomputing

Bioinformatics. Proteins II. - Pattern, Profile, & Structure Database Searching. Robert Latek, Ph.D. Bioinformatics, Biocomputing Bioinformatics Proteins II. - Pattern, Profile, & Structure Database Searching Robert Latek, Ph.D. Bioinformatics, Biocomputing WIBR Bioinformatics Course, Whitehead Institute, 2002 1 Proteins I.-III.

More information

CMPS 3110: Bioinformatics. Tertiary Structure Prediction

CMPS 3110: Bioinformatics. Tertiary Structure Prediction CMPS 3110: Bioinformatics Tertiary Structure Prediction Tertiary Structure Prediction Why Should Tertiary Structure Prediction Be Possible? Molecules obey the laws of physics! Conformation space is finite

More information

Molecular Modeling. Prediction of Protein 3D Structure from Sequence. Vimalkumar Velayudhan. May 21, 2007

Molecular Modeling. Prediction of Protein 3D Structure from Sequence. Vimalkumar Velayudhan. May 21, 2007 Molecular Modeling Prediction of Protein 3D Structure from Sequence Vimalkumar Velayudhan Jain Institute of Vocational and Advanced Studies May 21, 2007 Vimalkumar Velayudhan Molecular Modeling 1/23 Outline

More information

Protein Structure Prediction II Lecturer: Serafim Batzoglou Scribe: Samy Hamdouche

Protein Structure Prediction II Lecturer: Serafim Batzoglou Scribe: Samy Hamdouche Protein Structure Prediction II Lecturer: Serafim Batzoglou Scribe: Samy Hamdouche The molecular structure of a protein can be broken down hierarchically. The primary structure of a protein is simply its

More information

Design of a Novel Globular Protein Fold with Atomic-Level Accuracy

Design of a Novel Globular Protein Fold with Atomic-Level Accuracy Design of a Novel Globular Protein Fold with Atomic-Level Accuracy Brian Kuhlman, Gautam Dantas, Gregory C. Ireton, Gabriele Varani, Barry L. Stoddard, David Baker Presented by Kate Stafford 4 May 05 Protein

More information

Getting To Know Your Protein

Getting To Know Your Protein Getting To Know Your Protein Comparative Protein Analysis: Part III. Protein Structure Prediction and Comparison Robert Latek, PhD Sr. Bioinformatics Scientist Whitehead Institute for Biomedical Research

More information

Basics of protein structure

Basics of protein structure Today: 1. Projects a. Requirements: i. Critical review of one paper ii. At least one computational result b. Noon, Dec. 3 rd written report and oral presentation are due; submit via email to bphys101@fas.harvard.edu

More information

Amino Acid Structures from Klug & Cummings. 10/7/2003 CAP/CGS 5991: Lecture 7 1

Amino Acid Structures from Klug & Cummings. 10/7/2003 CAP/CGS 5991: Lecture 7 1 Amino Acid Structures from Klug & Cummings 10/7/2003 CAP/CGS 5991: Lecture 7 1 Amino Acid Structures from Klug & Cummings 10/7/2003 CAP/CGS 5991: Lecture 7 2 Amino Acid Structures from Klug & Cummings

More information

Analysis and Prediction of Protein Structure (I)

Analysis and Prediction of Protein Structure (I) Analysis and Prediction of Protein Structure (I) Jianlin Cheng, PhD School of Electrical Engineering and Computer Science University of Central Florida 2006 Free for academic use. Copyright @ Jianlin Cheng

More information

CAP 5510: Introduction to Bioinformatics CGS 5166: Bioinformatics Tools. Giri Narasimhan

CAP 5510: Introduction to Bioinformatics CGS 5166: Bioinformatics Tools. Giri Narasimhan CAP 5510: Introduction to Bioinformatics CGS 5166: Bioinformatics Tools Giri Narasimhan ECS 254; Phone: x3748 giri@cis.fiu.edu www.cis.fiu.edu/~giri/teach/bioinff18.html Proteins and Protein Structure

More information

Protein Dynamics. The space-filling structures of myoglobin and hemoglobin show that there are no pathways for O 2 to reach the heme iron.

Protein Dynamics. The space-filling structures of myoglobin and hemoglobin show that there are no pathways for O 2 to reach the heme iron. Protein Dynamics The space-filling structures of myoglobin and hemoglobin show that there are no pathways for O 2 to reach the heme iron. Below is myoglobin hydrated with 350 water molecules. Only a small

More information

Homology Modeling (Comparative Structure Modeling) GBCB 5874: Problem Solving in GBCB

Homology Modeling (Comparative Structure Modeling) GBCB 5874: Problem Solving in GBCB Homology Modeling (Comparative Structure Modeling) Aims of Structural Genomics High-throughput 3D structure determination and analysis To determine or predict the 3D structures of all the proteins encoded

More information

Syllabus of BIOINF 528 (2017 Fall, Bioinformatics Program)

Syllabus of BIOINF 528 (2017 Fall, Bioinformatics Program) Syllabus of BIOINF 528 (2017 Fall, Bioinformatics Program) Course Name: Structural Bioinformatics Course Description: Instructor: This course introduces fundamental concepts and methods for structural

More information

Protein Structure Prediction

Protein Structure Prediction Page 1 Protein Structure Prediction Russ B. Altman BMI 214 CS 274 Protein Folding is different from structure prediction --Folding is concerned with the process of taking the 3D shape, usually based on

More information

Programme Last week s quiz results + Summary Fold recognition Break Exercise: Modelling remote homologues

Programme Last week s quiz results + Summary Fold recognition Break Exercise: Modelling remote homologues Programme 8.00-8.20 Last week s quiz results + Summary 8.20-9.00 Fold recognition 9.00-9.15 Break 9.15-11.20 Exercise: Modelling remote homologues 11.20-11.40 Summary & discussion 11.40-12.00 Quiz 1 Feedback

More information

Procheck output. Bond angles (Procheck) Structure verification and validation Bond lengths (Procheck) Introduction to Bioinformatics.

Procheck output. Bond angles (Procheck) Structure verification and validation Bond lengths (Procheck) Introduction to Bioinformatics. Structure verification and validation Bond lengths (Procheck) Introduction to Bioinformatics Iosif Vaisman Email: ivaisman@gmu.edu ----------------------------------------------------------------- Bond

More information

BCB 444/544 Fall 07 Dobbs 1

BCB 444/544 Fall 07 Dobbs 1 BCB 444/544 Required Reading (before lecture) Lecture 25 Mon Oct 15 - Lecture 23 Protein Tertiary Structure Prediction Chp 15 - pp 214-230 More RNA Structure Wed Oct 17 & Thurs Oct 18 - Lecture 24 & Lab

More information

114 Grundlagen der Bioinformatik, SS 09, D. Huson, July 6, 2009

114 Grundlagen der Bioinformatik, SS 09, D. Huson, July 6, 2009 114 Grundlagen der Bioinformatik, SS 09, D. Huson, July 6, 2009 9 Protein tertiary structure Sources for this chapter, which are all recommended reading: D.W. Mount. Bioinformatics: Sequences and Genome

More information

Protein structure prediction. CS/CME/BioE/Biophys/BMI 279 Oct. 10 and 12, 2017 Ron Dror

Protein structure prediction. CS/CME/BioE/Biophys/BMI 279 Oct. 10 and 12, 2017 Ron Dror Protein structure prediction CS/CME/BioE/Biophys/BMI 279 Oct. 10 and 12, 2017 Ron Dror 1 Outline Why predict protein structure? Can we use (pure) physics-based methods? Knowledge-based methods Two major

More information

Protein Structure Prediction, Engineering & Design CHEM 430

Protein Structure Prediction, Engineering & Design CHEM 430 Protein Structure Prediction, Engineering & Design CHEM 430 Eero Saarinen The free energy surface of a protein Protein Structure Prediction & Design Full Protein Structure from Sequence - High Alignment

More information

Protein structure alignments

Protein structure alignments Protein structure alignments Proteins that fold in the same way, i.e. have the same fold are often homologs. Structure evolves slower than sequence Sequence is less conserved than structure If BLAST gives

More information

COMP 598 Advanced Computational Biology Methods & Research. Introduction. Jérôme Waldispühl School of Computer Science McGill University

COMP 598 Advanced Computational Biology Methods & Research. Introduction. Jérôme Waldispühl School of Computer Science McGill University COMP 598 Advanced Computational Biology Methods & Research Introduction Jérôme Waldispühl School of Computer Science McGill University General informations (1) Office hours: by appointment Office: TR3018

More information

Biophysics 101: Genomics & Computational Biology. Section 8: Protein Structure S T R U C T U R E P R O C E S S. Outline.

Biophysics 101: Genomics & Computational Biology. Section 8: Protein Structure S T R U C T U R E P R O C E S S. Outline. Biophysics 101: Genomics & Computational Biology Section 8: Protein Structure Faisal Reza Nov. 11 th, 2003 B101.pdb from PS5 shown at left with: animated ball and stick model, colored CPK H-bonds on, colored

More information

SCOP. all-β class. all-α class, 3 different folds. T4 endonuclease V. 4-helical cytokines. Globin-like

SCOP. all-β class. all-α class, 3 different folds. T4 endonuclease V. 4-helical cytokines. Globin-like SCOP all-β class 4-helical cytokines T4 endonuclease V all-α class, 3 different folds Globin-like TIM-barrel fold α/β class Profilin-like fold α+β class http://scop.mrc-lmb.cam.ac.uk/scop CATH Class, Architecture,

More information

Building 3D models of proteins

Building 3D models of proteins Building 3D models of proteins Why make a structural model for your protein? The structure can provide clues to the function through structural similarity with other proteins With a structure it is easier

More information

Introduction to Comparative Protein Modeling. Chapter 4 Part I

Introduction to Comparative Protein Modeling. Chapter 4 Part I Introduction to Comparative Protein Modeling Chapter 4 Part I 1 Information on Proteins Each modeling study depends on the quality of the known experimental data. Basis of the model Search in the literature

More information

Protein Structures: Experiments and Modeling. Patrice Koehl

Protein Structures: Experiments and Modeling. Patrice Koehl Protein Structures: Experiments and Modeling Patrice Koehl Structural Bioinformatics: Proteins Proteins: Sources of Structure Information Proteins: Homology Modeling Proteins: Ab initio prediction Proteins:

More information

Large-Scale Genomic Surveys

Large-Scale Genomic Surveys Bioinformatics Subtopics Fold Recognition Secondary Structure Prediction Docking & Drug Design Protein Geometry Protein Flexibility Homology Modeling Sequence Alignment Structure Classification Gene Prediction

More information

Statistical Machine Learning Methods for Bioinformatics IV. Neural Network & Deep Learning Applications in Bioinformatics

Statistical Machine Learning Methods for Bioinformatics IV. Neural Network & Deep Learning Applications in Bioinformatics Statistical Machine Learning Methods for Bioinformatics IV. Neural Network & Deep Learning Applications in Bioinformatics Jianlin Cheng, PhD Department of Computer Science University of Missouri, Columbia

More information

Introduction to" Protein Structure

Introduction to Protein Structure Introduction to" Protein Structure Function, evolution & experimental methods Thomas Blicher, Center for Biological Sequence Analysis Learning Objectives Outline the basic levels of protein structure.

More information

Syllabus BINF Computational Biology Core Course

Syllabus BINF Computational Biology Core Course Course Description Syllabus BINF 701-702 Computational Biology Core Course BINF 701/702 is the Computational Biology core course developed at the KU Center for Computational Biology. The course is designed

More information

Homology modeling. Dinesh Gupta ICGEB, New Delhi 1/27/2010 5:59 PM

Homology modeling. Dinesh Gupta ICGEB, New Delhi 1/27/2010 5:59 PM Homology modeling Dinesh Gupta ICGEB, New Delhi Protein structure prediction Methods: Homology (comparative) modelling Threading Ab-initio Protein Homology modeling Homology modeling is an extrapolation

More information

Template Free Protein Structure Modeling Jianlin Cheng, PhD

Template Free Protein Structure Modeling Jianlin Cheng, PhD Template Free Protein Structure Modeling Jianlin Cheng, PhD Associate Professor Computer Science Department Informatics Institute University of Missouri, Columbia 2013 Protein Energy Landscape & Free Sampling

More information

Protein structure prediction. CS/CME/BioE/Biophys/BMI 279 Oct. 10 and 12, 2017 Ron Dror

Protein structure prediction. CS/CME/BioE/Biophys/BMI 279 Oct. 10 and 12, 2017 Ron Dror Protein structure prediction CS/CME/BioE/Biophys/BMI 279 Oct. 10 and 12, 2017 Ron Dror 1 Outline Why predict protein structure? Can we use (pure) physics-based methods? Knowledge-based methods Two major

More information

Homology Modeling. Roberto Lins EPFL - summer semester 2005

Homology Modeling. Roberto Lins EPFL - summer semester 2005 Homology Modeling Roberto Lins EPFL - summer semester 2005 Disclaimer: course material is mainly taken from: P.E. Bourne & H Weissig, Structural Bioinformatics; C.A. Orengo, D.T. Jones & J.M. Thornton,

More information

Week 10: Homology Modelling (II) - HHpred

Week 10: Homology Modelling (II) - HHpred Week 10: Homology Modelling (II) - HHpred Course: Tools for Structural Biology Fabian Glaser BKU - Technion 1 2 Identify and align related structures by sequence methods is not an easy task All comparative

More information

Supporting Online Material for

Supporting Online Material for www.sciencemag.org/cgi/content/full/309/5742/1868/dc1 Supporting Online Material for Toward High-Resolution de Novo Structure Prediction for Small Proteins Philip Bradley, Kira M. S. Misura, David Baker*

More information

Template-Based Modeling of Protein Structure

Template-Based Modeling of Protein Structure Template-Based Modeling of Protein Structure David Constant Biochemistry 218 December 11, 2011 Introduction. Much can be learned about the biology of a protein from its structure. Simply put, structure

More information

Prediction and refinement of NMR structures from sparse experimental data

Prediction and refinement of NMR structures from sparse experimental data Prediction and refinement of NMR structures from sparse experimental data Jeff Skolnick Director Center for the Study of Systems Biology School of Biology Georgia Institute of Technology Overview of talk

More information

Introduction to Computational Structural Biology

Introduction to Computational Structural Biology Introduction to Computational Structural Biology Part I 1. Introduction The disciplinary character of Computational Structural Biology The mathematical background required and the topics covered Bibliography

More information

Protein Modeling. Generating, Evaluating and Refining Protein Homology Models

Protein Modeling. Generating, Evaluating and Refining Protein Homology Models Protein Modeling Generating, Evaluating and Refining Protein Homology Models Troy Wymore and Kristen Messinger Biomedical Initiatives Group Pittsburgh Supercomputing Center Homology Modeling of Proteins

More information

Lecture 8: Protein structure analysis

Lecture 8: Protein structure analysis Lecture 8: Protein structure analysis Torgeir R. Hvidsten Professor Norwegian University of Life Sciences Guest lecturer Umeå Plant Science Centre Computational Life Science Cluster (CLiC) Proteins play

More information

Template Free Protein Structure Modeling Jianlin Cheng, PhD

Template Free Protein Structure Modeling Jianlin Cheng, PhD Template Free Protein Structure Modeling Jianlin Cheng, PhD Professor Department of EECS Informatics Institute University of Missouri, Columbia 2018 Protein Energy Landscape & Free Sampling http://pubs.acs.org/subscribe/archive/mdd/v03/i09/html/willis.html

More information

Protein Structure Analysis and Verification. Course S Basics for Biosystems of the Cell exercise work. Maija Nevala, BIO, 67485U 16.1.

Protein Structure Analysis and Verification. Course S Basics for Biosystems of the Cell exercise work. Maija Nevala, BIO, 67485U 16.1. Protein Structure Analysis and Verification Course S-114.2500 Basics for Biosystems of the Cell exercise work Maija Nevala, BIO, 67485U 16.1.2008 1. Preface When faced with an unknown protein, scientists

More information

Sequence and Structure Alignment Z. Luthey-Schulten, UIUC Pittsburgh, 2006 VMD 1.8.5

Sequence and Structure Alignment Z. Luthey-Schulten, UIUC Pittsburgh, 2006 VMD 1.8.5 Sequence and Structure Alignment Z. Luthey-Schulten, UIUC Pittsburgh, 2006 VMD 1.8.5 Why Look at More Than One Sequence? 1. Multiple Sequence Alignment shows patterns of conservation 2. What and how many

More information

Copyright Mark Brandt, Ph.D A third method, cryogenic electron microscopy has seen increasing use over the past few years.

Copyright Mark Brandt, Ph.D A third method, cryogenic electron microscopy has seen increasing use over the past few years. Structure Determination and Sequence Analysis The vast majority of the experimentally determined three-dimensional protein structures have been solved by one of two methods: X-ray diffraction and Nuclear

More information

Protein Structure Prediction

Protein Structure Prediction Protein Structure Prediction Michael Feig MMTSB/CTBP 2009 Summer Workshop From Sequence to Structure SEALGDTIVKNA Folding with All-Atom Models AAQAAAAQAAAAQAA All-atom MD in general not succesful for real

More information

Bioinformatics. Dept. of Computational Biology & Bioinformatics

Bioinformatics. Dept. of Computational Biology & Bioinformatics Bioinformatics Dept. of Computational Biology & Bioinformatics 3 Bioinformatics - play with sequences & structures Dept. of Computational Biology & Bioinformatics 4 ORGANIZATION OF LIFE ROLE OF BIOINFORMATICS

More information

Protein Folding & Stability. Lecture 11: Margaret A. Daugherty. Fall How do we go from an unfolded polypeptide chain to a

Protein Folding & Stability. Lecture 11: Margaret A. Daugherty. Fall How do we go from an unfolded polypeptide chain to a Lecture 11: Protein Folding & Stability Margaret A. Daugherty Fall 2004 How do we go from an unfolded polypeptide chain to a compact folded protein? (Folding of thioredoxin, F. Richards) Structure - Function

More information

Protein Structure Determination

Protein Structure Determination Protein Structure Determination Given a protein sequence, determine its 3D structure 1 MIKLGIVMDP IANINIKKDS SFAMLLEAQR RGYELHYMEM GDLYLINGEA 51 RAHTRTLNVK QNYEEWFSFV GEQDLPLADL DVILMRKDPP FDTEFIYATY 101

More information

Protein Structure: Data Bases and Classification Ingo Ruczinski

Protein Structure: Data Bases and Classification Ingo Ruczinski Protein Structure: Data Bases and Classification Ingo Ruczinski Department of Biostatistics, Johns Hopkins University Reference Bourne and Weissig Structural Bioinformatics Wiley, 2003 More References

More information

Neural Networks for Protein Structure Prediction Brown, JMB CS 466 Saurabh Sinha

Neural Networks for Protein Structure Prediction Brown, JMB CS 466 Saurabh Sinha Neural Networks for Protein Structure Prediction Brown, JMB 1999 CS 466 Saurabh Sinha Outline Goal is to predict secondary structure of a protein from its sequence Artificial Neural Network used for this

More information

HOMOLOGY MODELING. The sequence alignment and template structure are then used to produce a structural model of the target.

HOMOLOGY MODELING. The sequence alignment and template structure are then used to produce a structural model of the target. HOMOLOGY MODELING Homology modeling, also known as comparative modeling of protein refers to constructing an atomic-resolution model of the "target" protein from its amino acid sequence and an experimental

More information

The protein folding problem consists of two parts:

The protein folding problem consists of two parts: Energetics and kinetics of protein folding The protein folding problem consists of two parts: 1)Creating a stable, well-defined structure that is significantly more stable than all other possible structures.

More information

CMPS 6630: Introduction to Computational Biology and Bioinformatics. Structure Comparison

CMPS 6630: Introduction to Computational Biology and Bioinformatics. Structure Comparison CMPS 6630: Introduction to Computational Biology and Bioinformatics Structure Comparison Protein Structure Comparison Motivation Understand sequence and structure variability Understand Domain architecture

More information

Protein Structure & Motifs

Protein Structure & Motifs & Motifs Biochemistry 201 Molecular Biology January 12, 2000 Doug Brutlag Introduction Proteins are more flexible than nucleic acids in structure because of both the larger number of types of residues

More information

Alpha-helical Topology and Tertiary Structure Prediction of Globular Proteins Scott R. McAllister Christodoulos A. Floudas Princeton University

Alpha-helical Topology and Tertiary Structure Prediction of Globular Proteins Scott R. McAllister Christodoulos A. Floudas Princeton University Alpha-helical Topology and Tertiary Structure Prediction of Globular Proteins Scott R. McAllister Christodoulos A. Floudas Princeton University Department of Chemical Engineering Program of Applied and

More information

FlexPepDock In a nutshell

FlexPepDock In a nutshell FlexPepDock In a nutshell All Tutorial files are located in http://bit.ly/mxtakv FlexPepdock refinement Step 1 Step 3 - Refinement Step 4 - Selection of models Measure of fit FlexPepdock Ab-initio Step

More information

Lecture 11: Protein Folding & Stability

Lecture 11: Protein Folding & Stability Structure - Function Protein Folding: What we know Lecture 11: Protein Folding & Stability 1). Amino acid sequence dictates structure. 2). The native structure represents the lowest energy state for a

More information

Protein Folding & Stability. Lecture 11: Margaret A. Daugherty. Fall Protein Folding: What we know. Protein Folding

Protein Folding & Stability. Lecture 11: Margaret A. Daugherty. Fall Protein Folding: What we know. Protein Folding Lecture 11: Protein Folding & Stability Margaret A. Daugherty Fall 2003 Structure - Function Protein Folding: What we know 1). Amino acid sequence dictates structure. 2). The native structure represents

More information

Examples of Protein Modeling. Protein Modeling. Primary Structure. Protein Structure Description. Protein Sequence Sources. Importing Sequences to MOE

Examples of Protein Modeling. Protein Modeling. Primary Structure. Protein Structure Description. Protein Sequence Sources. Importing Sequences to MOE Examples of Protein Modeling Protein Modeling Visualization Examination of an experimental structure to gain insight about a research question Dynamics To examine the dynamics of protein structures To

More information

Protein Structure Basics

Protein Structure Basics Protein Structure Basics Presented by Alison Fraser, Christine Lee, Pradhuman Jhala, Corban Rivera Importance of Proteins Muscle structure depends on protein-protein interactions Transport across membranes

More information

EBI web resources II: Ensembl and InterPro

EBI web resources II: Ensembl and InterPro EBI web resources II: Ensembl and InterPro Yanbin Yin http://www.ebi.ac.uk/training/online/course/ 1 Homework 3 Go to http://www.ebi.ac.uk/interpro/training.htmland finish the second online training course

More information

2MHR. Protein structure classification is important because it organizes the protein structure universe that is independent of sequence similarity.

2MHR. Protein structure classification is important because it organizes the protein structure universe that is independent of sequence similarity. Protein structure classification is important because it organizes the protein structure universe that is independent of sequence similarity. A global picture of the protein universe will help us to understand

More information

Protein Structure Prediction

Protein Structure Prediction Protein Structure Prediction Michael Feig MMTSB/CTBP 2006 Summer Workshop From Sequence to Structure SEALGDTIVKNA Ab initio Structure Prediction Protocol Amino Acid Sequence Conformational Sampling to

More information

STRUCTURAL BIOINFORMATICS I. Fall 2015

STRUCTURAL BIOINFORMATICS I. Fall 2015 STRUCTURAL BIOINFORMATICS I Fall 2015 Info Course Number - Classification: Biology 5411 Class Schedule: Monday 5:30-7:50 PM, SERC Room 456 (4 th floor) Instructors: Vincenzo Carnevale - SERC, Room 704C;

More information

THE TANGO ALGORITHM: SECONDARY STRUCTURE PROPENSITIES, STATISTICAL MECHANICS APPROXIMATION

THE TANGO ALGORITHM: SECONDARY STRUCTURE PROPENSITIES, STATISTICAL MECHANICS APPROXIMATION THE TANGO ALGORITHM: SECONDARY STRUCTURE PROPENSITIES, STATISTICAL MECHANICS APPROXIMATION AND CALIBRATION Calculation of turn and beta intrinsic propensities. A statistical analysis of a protein structure

More information

Visualization of Macromolecular Structures

Visualization of Macromolecular Structures Visualization of Macromolecular Structures Present by: Qihang Li orig. author: O Donoghue, et al. Structural biology is rapidly accumulating a wealth of detailed information. Over 60,000 high-resolution

More information

Protein Structure. W. M. Grogan, Ph.D. OBJECTIVES

Protein Structure. W. M. Grogan, Ph.D. OBJECTIVES Protein Structure W. M. Grogan, Ph.D. OBJECTIVES 1. Describe the structure and characteristic properties of typical proteins. 2. List and describe the four levels of structure found in proteins. 3. Relate

More information

Lecture 21 (11/3/17) Protein Stability, Folding, and Dynamics Hydrophobic effect drives protein folding

Lecture 21 (11/3/17) Protein Stability, Folding, and Dynamics Hydrophobic effect drives protein folding Reading: Ch4; 142-151 Problems: Ch4 (text); 14, 16 Ch6 (text); 1, 4 NEXT (after exam) Reading: Ch8; 310-312, 279-285, 285-289 Ch24; 957-961 Problems: Ch8 (text); 1,2,22 Ch8 (study-guide:facts); 1,2,3,4,5,9,10

More information

STRUCTURAL BIOINFORMATICS II. Spring 2018

STRUCTURAL BIOINFORMATICS II. Spring 2018 STRUCTURAL BIOINFORMATICS II Spring 2018 Syllabus Course Number - Classification: Chemistry 5412 Class Schedule: Monday 5:30-7:50 PM, SERC Room 456 (4 th floor) Instructors: Ronald Levy, SERC 718 (ronlevy@temple.edu)

More information

Ab-initio protein structure prediction

Ab-initio protein structure prediction Ab-initio protein structure prediction Jaroslaw Pillardy Computational Biology Service Unit Cornell Theory Center, Cornell University Ithaca, NY USA Methods for predicting protein structure 1. Homology

More information

HMM applications. Applications of HMMs. Gene finding with HMMs. Using the gene finder

HMM applications. Applications of HMMs. Gene finding with HMMs. Using the gene finder HMM applications Applications of HMMs Gene finding Pairwise alignment (pair HMMs) Characterizing protein families (profile HMMs) Predicting membrane proteins, and membrane protein topology Gene finding

More information

Can protein model accuracy be. identified? NO! CBS, BioCentrum, Morten Nielsen, DTU

Can protein model accuracy be. identified? NO! CBS, BioCentrum, Morten Nielsen, DTU Can protein model accuracy be identified? Morten Nielsen, CBS, BioCentrum, DTU NO! Identification of Protein-model accuracy Why is it important? What is accuracy RMSD, fraction correct, Protein model correctness/quality

More information

"Omics" - Experimental Approachs 11/18/05

Omics - Experimental Approachs 11/18/05 "Omics" - Experimental Approachs Bioinformatics Seminars "Omics" Experimental Approaches Nov 18 Fri 12:10 BCB Seminar in E164 Lago Using P-Values for the Planning and Analysis of Microarray Experiments

More information

3D Structure. Prediction & Assessment Pt. 2. David Wishart 3-41 Athabasca Hall

3D Structure. Prediction & Assessment Pt. 2. David Wishart 3-41 Athabasca Hall 3D Structure Prediction & Assessment Pt. 2 David Wishart 3-41 Athabasca Hall david.wishart@ualberta.ca Objectives Become familiar with methods and algorithms for secondary Structure Prediction Become familiar

More information

1) NMR is a method of chemical analysis. (Who uses NMR in this way?) 2) NMR is used as a method for medical imaging. (called MRI )

1) NMR is a method of chemical analysis. (Who uses NMR in this way?) 2) NMR is used as a method for medical imaging. (called MRI ) Uses of NMR: 1) NMR is a method of chemical analysis. (Who uses NMR in this way?) 2) NMR is used as a method for medical imaging. (called MRI ) 3) NMR is used as a method for determining of protein, DNA,

More information

BCMP 201 Protein biochemistry

BCMP 201 Protein biochemistry BCMP 201 Protein biochemistry BCMP 201 Protein biochemistry with emphasis on the interrelated roles of protein structure, catalytic activity, and macromolecular interactions in biological processes. The

More information

Presenter: She Zhang

Presenter: She Zhang Presenter: She Zhang Introduction Dr. David Baker Introduction Why design proteins de novo? It is not clear how non-covalent interactions favor one specific native structure over many other non-native

More information

An integrated software environment for protein structure refinement

An integrated software environment for protein structure refinement Graduate Theses and Dissertations Graduate College 2008 An integrated software environment for protein structure refinement Rahul Ravindrudu Iowa State University Follow this and additional works at: http://lib.dr.iastate.edu/etd

More information

Structural biomathematics: an overview of molecular simulations and protein structure prediction

Structural biomathematics: an overview of molecular simulations and protein structure prediction : an overview of molecular simulations and protein structure prediction Figure: Parc de Recerca Biomèdica de Barcelona (PRBB). Contents 1 A Glance at Structural Biology 2 3 1 A Glance at Structural Biology

More information

RNA and Protein Structure Prediction

RNA and Protein Structure Prediction RNA and Protein Structure Prediction Bioinformatics: Issues and Algorithms CSE 308-408 Spring 2007 Lecture 18-1- Outline Multi-Dimensional Nature of Life RNA Secondary Structure Prediction Protein Structure

More information

STRUCTURAL BIOINFORMATICS. Barry Grant University of Michigan

STRUCTURAL BIOINFORMATICS. Barry Grant University of Michigan STRUCTURAL BIOINFORMATICS Barry Grant University of Michigan www.thegrantlab.org bjgrant@umich.edu Bergen, Norway 28-Sep-2015 Objective: Provide an introduction to the practice of structural bioinformatics,

More information

Details of Protein Structure

Details of Protein Structure Details of Protein Structure Function, evolution & experimental methods Thomas Blicher, Center for Biological Sequence Analysis Anne Mølgaard, Kemisk Institut, Københavns Universitet Learning Objectives

More information

09/06/25. Computergestützte Strukturbiologie (Strukturelle Bioinformatik) Non-uniform distribution of folds. Scheme of protein structure predicition

09/06/25. Computergestützte Strukturbiologie (Strukturelle Bioinformatik) Non-uniform distribution of folds. Scheme of protein structure predicition Sequence identity Structural similarity Computergestützte Strukturbiologie (Strukturelle Bioinformatik) Fold recognition Sommersemester 2009 Peter Güntert Structural similarity X Sequence identity Non-uniform

More information

Number sequence representation of protein structures based on the second derivative of a folded tetrahedron sequence

Number sequence representation of protein structures based on the second derivative of a folded tetrahedron sequence Number sequence representation of protein structures based on the second derivative of a folded tetrahedron sequence Naoto Morikawa (nmorika@genocript.com) October 7, 2006. Abstract A protein is a sequence

More information

EBI web resources II: Ensembl and InterPro. Yanbin Yin Spring 2013

EBI web resources II: Ensembl and InterPro. Yanbin Yin Spring 2013 EBI web resources II: Ensembl and InterPro Yanbin Yin Spring 2013 1 Outline Intro to genome annotation Protein family/domain databases InterPro, Pfam, Superfamily etc. Genome browser Ensembl Hands on Practice

More information

Protein Structure Prediction and Display

Protein Structure Prediction and Display Protein Structure Prediction and Display Goal Take primary structure (sequence) and, using rules derived from known structures, predict the secondary structure that is most likely to be adopted by each

More information

Francisco Melo, Damien Devos, Eric Depiereux and Ernest Feytmans

Francisco Melo, Damien Devos, Eric Depiereux and Ernest Feytmans From: ISMB-97 Proceedings. Copyright 1997, AAAI (www.aaai.org). All rights reserved. ANOLEA: A www Server to Assess Protein Structures Francisco Melo, Damien Devos, Eric Depiereux and Ernest Feytmans Facultés

More information