THERMAL DEGRADATION OF POLY(ARYLENE SULFIDE SULFONE)/N- METHYLPYRROLIDONE CRYSTAL SOLVATE *

Size: px
Start display at page:

Download "THERMAL DEGRADATION OF POLY(ARYLENE SULFIDE SULFONE)/N- METHYLPYRROLIDONE CRYSTAL SOLVATE *"

Transcription

1 Chinese Journal of Polymer Science Vol. 8, No. 1, (010), Chinese Journal of Polymer Science Chinese Chemical Society Institute of Chemistry, CAS Springer-Verlag 010 THMAL DGADATION OF POLY(AYLN SULFID SULFON)/N- MTHYLPYOLIDON CYSTAL SOLVAT * Xiao-jun Wang a, c, Mei-lin Zhang b, Jing Liu b, Gang Zhang b a, b, c** and Jie Yang a Institute of Materials Science & Technology, Sichuan University, Chengdu , China b College of Chemistry, Sichuan University, Chengdu , China c College of Polymer Science & ngineering, Sichuan University; State Key Laboratory of Polymer Materials ngineering, Sichuan University, Chengdu , China Abstract The thermal degradation of poly(arylene sulfide sulfone)/n-methylpyrrolidone (PASS/NMP) crystal solvate was studied by thermogravimetric analysis (TGA) and was compared with pure PASS in order to determine the way in which the formation of the crystal solvate affected the thermal properties of the polymer. The activation energy of the solid state process was determined using Kissinger s method, which does not require knowledge of the reaction mechanism (M), to be kj/mol which was lower than that for pure PASS ( = 14 kj/mol). The study of master curves together with interpretation of integral methods, allows confirmation that the thermal degradation mechanism for PASS in the crystal solvate system is a decelerated n type, which is a solid-state process based on a phase boundary controlled reaction, in the conversion range considered. Whereas, the pure PASS follows a decelerated D n thermodegradation mechanism in the same conversion range. Keywords: Poly(arylene sulfide sulfone); Crystal solvate; Thermal degradation; Thermogravimetric analysis (TGA). INTODUCTION Poly(arylene sulfide sulfone) (PASS) belongs to a new generation of heat-resistant engineering thermoplastics of the polyarylene sulfide (PAS) type and has already been used as a structural polymer. PASS can co-crystallize with N-methylpyrrolidone (NMP) and form crystal solvate [1, ]. Although some early literatures [3 6] contained a few reports on the formation of polymer crystal solvates, properties of this kind of crystal solvates have seldom been reported. Because of the potential importance of thermal properties of these structural polymers, we have investigated the thermal degradation and kinetic parameters of PASS/NMP crystal solvate in this work. Attention has also been directed to the comparison of thermal degradation of PASS as a homopolymer and in crystal solvates to determine how the formation of crystal solvate may affect the thermal property of PASS. There are many methods of kinetic analysis, but each of them is based on the hypothesis that, from a simple thermogravimetric trace, meaningful values can be obtained for parameters such as activation energy, preexponential factor and reaction order. A number of widely used methods will be discussed in the next sections. DIFFNTIAL MTHOD Kinetic information can be extracted from dynamic experiments by means of various methods [7, 8].The activation energy can be determined by Kissinger s method [9], which does not need a precise knowledge of the reaction * This work was financially supported by the 863 program of China (No. 007AA 03Z561). ** Corresponding author: Jie Yang ( 杨杰 ), -mail: ppsf@scu.edu.cn eceived November 17, 008; evised January 5, 009; Accepted February, 009 doi: /s x

2 86 X.J. Wang et al. mechanism, using the following equation: β A n 1 ln = ln + ln[ n( 1 α max ) ] (1) Tmax Tmax where β is the heating rate, T max is the temperature corresponding to the inflection point of the thermal degradation curves at the maximum reaction rate, A is the pre-exponential factor, α max is the maximum conversion, and n is the reaction order. The activation energy can be calculated from the slope of the plot of ln(β/ T )versus 1000/T max. INTGAL MTHODS The integral methods discussed in this paper are the Flynn-Wall-Ozawa and Coats-edfern methods. Flynn-Wall-Ozawa Method A lg β = lg[ ] () g( α) T max where β, A, and T have the known meanings [10, 11]. The activation energy for different conversion values can be calculated from a lnβ versus 1000/T plot. Coats-edfern Method g( α) A ln = ln T β T (3) The different degradation processes g(α) are listed in Table 1. The activation energy can be determined from the plot of ln(g(α)/t ) versus 1000/T [1]. Table 1. Algebraic expressions for the most frequently used mechanisms of degradation processes [15] Symbol f (α) g (α) Degradation processes Sigmoidal curves A (1 α)[ ln(1 α)] 1/ 1/ Nucleation and growth (Avrami q. 1) A 3 3(1 α)[ ln(1 α)] /3 1/3 Nucleation and growth (Avrami q. ) A 4 4(1 α)[ ln(1 α)] 3/4 [ ln(1 α)] 1/4 Nucleation and growth (Avrami q. 3) Deceleration curves 1 1 α Phase boundary controlled reaction (contracting linear) (1 α) 1/ [1 (1 α) 1/ ] Phase boundary controlled reaction (contracting area) 3 3(1 α) /3 [1 (1 α) 1/3 ] Phase boundary controlled reaction (contracting volume) D 1 1/(α) α One-dimensional diffusion D 1/ln(1 α) (1 α)ln(1 α) + α Two-dimensional diffusion D 3 3(1 α) /3 /[1 (1 α) 1/3 ] [1 (1 α) 1/3 ] Three-dimensional diffusion (Jander equation) D 4 3/[(1 α) 1/3 1] (1 /3α) (1 α) /3 Three-dimensional diffusion (Ginstling-Brounshtein equation) F 1 1 α ln(1 α) andom nucleation with one nucleus on the individual F (1 α) 1/(1 α) particle andom nucleation with two nuclei on the individual particle F 3 1/(1 α) 3 1/(1 α) andom nucleation with two nuclei on the individual particle Criado Method for Determination of eaction Mechanism Criado method [13] defines a function dα ( ) z ( α ) = dt π ( x) T (4) β

3 Thermal Degradation of Poly(arylene sulfide sulfone)/n-methylpyrrolidone Crystal Solvate 87 where x = /T; and π(x) is an approximation of the temperature integral which cannot be expressed in a simple analytical form. In this study we used the fourth rational expression of Senum and Young [14], which gives errors lower than 10% 5% for x = 0. A combination of qs. (1) and (4) gives: z ( α ) = f ( α ) g( α ) (5) This last equation was used to obtain the master curves as a function of the reaction degree corresponding to the different models listed in Table 1. Plotting the z(α) function calculated using experimental data and q. (4), and comparing with the master curves leads to easy and precise determination of the mechanism of a solid state process. XPIMNTAL POCDU Materials PASS was prepared by polycondensation of 4,4 -dichlorodipheneyl sulfone with sodium sulfide in a polar organic solvent at atmospheric pressure according to a polymerization process described elsewhere [8]. The product was extracted repeatedly with boiling water and acetone. Sample Preparation PASS/NMP crystal solvate was reprecipitated from 18 wt% PASS-NMP solution and dried at room temperature in vacuum for 30 h. Analysis Techniques Thermalgravimetric analysis was performed using an XSTA6000 thermal analysis equipment. The system was operated in the dynamic mode in the temperature range C, at different heating rates: 5, 10, 0 and 40 K/min. All experiments were carried out under a nitrogen atmosphere. SULTS AND DISCUSSION Thermal degradation curves obtained at different heating rates: 5, 10, 0, 40 K/min are shown in Fig. 1. These TG curves correspond to a double-stage decomposition reaction distinguished by the two significant and distinct mass changes over the temperature range of C for all four heating rates investigated. The NMP content in samples is about 5 wt%. Up to 300 C, the first stage of weight loss approximately corresponds to elimination of the bound NMP in the crystal solvate system, and the second one should represent the degradation process of PASS. Based on the purpose of this report, the following analysis is mainly focused on the second part, the degradation process of PASS. The initial, final and maximum rate decomposition temperatures (T i, T f and T max ) of PASS and residual mass after initial and complete degradation at 300 C and 700 C (W 300 and W 700 ) can be determined from these curves and are shown in Table. Compared with our previously report of the decomposition temperatures of pure PASS (shown in Table 3) [8], the decomposition temperature of PASS in the crystal solvate is decreased by different levels. This suggests a variation of thermaldegradation activation energy and kinetic mechanism of the resin. Table. The degradation temperatures of PASS in the crystal solvate system and residual masses at different heating rates in nitrogen Heating rate (K/min) T i ( C) T max ( C) T f ( C) W 300 (wt%) W 700 (wt%)

4 88 X.J. Wang et al. Fig. 1 xperimental TG curves of PASS-NMP crystal solvate at different heating rates in nitrogen Table 3. The degradation temperatures of pure PASS at different heating rates in nitrogen [8] Heating rate (K/min) T i ( C) T max ( C) T f ( C) Kissinger s method was first employed to analyze the TG data of PASS/NMP crystal solvate, because it was independent of any thermal degradation mechanism and was used most widely. Using q. (1) and the experimental data recorded in the Fig. 1, the activation energy of the decomposition of PASS was calculated from a straight line fit of a plot of ln(β/ T max ) versus 1000/T max (Fig. ). The value obtained from Fig. for the activation energy was kj/mol. Fig. Kissinger method applied to experimental data at different heating rates Flynn-Wall-Ozawa method is also independent of the degradation mechanism. q. () was also used and the activation energy determined from a linear fitting of lnβ versus 1000/T at different conversions. According to the fact that the Dyle approximation was used in q. (), only conversion values in the range of 5% 0% can be considered for discussion in the method. In this work, the conversion values 5%, 8%, 11%, 14%, 17% and 0% were used for calculation. The results of the Flynn-Wall-Ozawa analysis are given in Fig. 3, which shows that the best fitting straight lines are nearly parallel, indicating a constant activation energy in the range of conversions analyzed and confirming the validity of the approach used. Activation energies corresponding to the different conversions are shown in Table 4. According to these values a mean value of 173. kj/mol was obtained. From Table 4, it can be also found that the activation energy corresponding to an 11% conversion is

5 Thermal Degradation of Poly(arylene sulfide sulfone)/n-methylpyrrolidone Crystal Solvate 89 close to the value calculated by using Kissinger method. This result suggests that the values of the activation energies of PASS in the crystal solvate obtained from these two methods are reasonable. Fig. 3 Plots of lgβ against 1000/T of PASS at various conversion values in the range 5% 0% Table 4. Activation energies obtained using the Flynn-Wall-Ozawa method α (%) a According to our previously report, the activation energies of PASS in the homopolymer was determined to be 14 kj/mol [8]. This indicates that the change of aggregation structure has significant effect on the activation energies of PASS. And this effect should be attributed to an alternation of the solid state thermodegradation mechanism of PASS. Compare to other methods, the above used two methods present the advantage that they do not require previous knowledge of the reaction mechanism for determining the activation energy. According to some literatures, the obtained activation energies can be used to check the thermodegradation mechanism models of the polymer. To investigate the solid-state processes for the second thermal degradation of PASS/NMP crystal solvate, Coats-edfern method was chosen as it involved the mechanisms of solid-state processes. Using q. (3), proposed by Coats and edfern, the activation energy for every g(α) function listed in Table 1 can be obtained at constant heating rates from fitting of ln(g(α)/t ) versus 1000/T plots. This method used the same conversion values as those previous methods. Table 5 shows activation energies and correlations for conversion at constant heating rate values 5, 10, 0 and 40 K/min. Analysis of these data shows that the activation energies which are in best agreement with those obtained by using Kissinger s method correspond to an n type mechanism. For comparison, we have chosen Kissinger s method because it is independent of a particular kinetics mechanism. Moreover, from these tables it can be conclude that the optimum heating rate value is 0 K/min, at which the activation energy corresponding to a mechanism 1 is kj/mol, very close to kj/mol obtained from Kissinger s method. These facts strongly suggest that the solid state thermodegradation mechanism followed by our PASS crystal solvate system is a deceleration ( n ) type.

6 90 X.J. Wang et al. Table 5. Activation energies obtained using the Coats-edfern method for several solid state processes at different heating rates 5 K/min 10 K/min 0 K/min 40 K/min Mechamism a a a a A A A D D D D F F F In order to confirm this deceleration thermodegradation mechanism, that is, a phase boundary controlled reaction (contracting linear) solid state process, we have used the method proposed by Criado et al [13]. This method uses reference theoretical curves called master plots, which are compared to experimental data. Accordingly, the experimental results are obtained from q. (4) at a heating rate of 0 K/min, which is considered the optimum through studies based on integral methods. Because we used the Doyle approximation, only conversion values in the range of 5% 0% are considered for discussion. Master curves and experimental data are shown in Fig. 4. As can be seen in Fig. 4, in this range of conversion experimental results show better agreement with the z( 1 ) master curve, which corresponds to a deceleration 1 mechanism. Fig. 4 Master curves z(α) experimental data calculated by q. (4) From the foregoing analysis, it is obtained that PASS in its NMP crystal solvate yields a deceleration 1 thermodegradation mechanism. However, as a homogenous polymer, pure PASS shows a D n thermodegradation mechanism [8]. The probable reason for this kinetic mechanism variation may be related to the presence of microdosage NMP remaining in PASS matrix. The exact cause remains unknown and is worthy of further study. CONCLUSIONS The activation energy and thermodegradation mechanism of PASS in its NMP crystal solvate were obtained and confirmed by means of different kinetic methods. The activation energy ( = kj/mol) obtained is lower than that for pure PASS ( = 14 kj/mol). The study of master curves together with interpretation of integral methods, allows confirmation that the thermal degradation mechanism for PASS in the crystal solvate system is

7 Thermal Degradation of Poly(arylene sulfide sulfone)/n-methylpyrrolidone Crystal Solvate 91 a decelerated n type, which is a solid-state process based on a phase boundary controlled reaction, in the conversion range considered. Whereas, the pure PASS follows a decelerated D n thermodegradation mechanism in the same conversion range. FNCS 1 Gladkova,.A., Nedel'kin, V.I., Ovsyannikova, S.I., Andrianova, O.B., Genin, Ya V., Komarova, L.I., Pavlova, S.A., Dubrovina, L.V. and Sergeev, V.A., Vysokomolekularnye Soedineniya. Seriya A, 199, 34(1): 80 Liu, Y., Bhatnagar, A., Ji, Q., iffle, J.S., McGrath, J.., Geibel, J.F. and Kashiwagi, T., Polymer, 000, 41(13): Iovleva, M.M. and Papkov, S.P., Vysokomol Soyed, 198, A4(): 33 4 Turska,. and Janeczek, H., Polymer, 1978, 19(1): 81 5 Izumi, Y., Takezawa, H., Kikuta, N., Uemura, S. and Tsutsumi, A., Macromolecules, 1998, 31(): Cohen, Y. and Adams, W.W., Polymer, 1996, 37(13): Nunez, L., Fraga, F., Nunez, M.. and Villanueva, M., Polymer, 000, 41: Wang, H.D., Yang, J., Long, S.., Wang, X.J., Yang, Z. and Li, G.X., Polym. Degrad. Stab., 004, 83(): 9 9 Kissinger, H.., Anal. Chem., 1957, 9: Flynn, J.H. and Wall, L.A., J. Polym. Sci. Part B: Polym. Lett., 1966, 4(3): Ozawa, T., Bull. Chem. Soc. Jpn., 1965, 38(11): Coats, A.W. and edfern, J.P., Nature, 1964, 01(4914): Criado, J., Málek, J. and Ortega, A., Thermochim. Acta, 1989, 147(1-): Senum, G.I. and Yang,.T., J. Therm. Anal., 1977, 11(13): Vyazovkin, S., Int. ev. Phys. Chem., 000, 19(1): 45

New incremental isoconversional method for kinetic analysis of solid thermal decomposition

New incremental isoconversional method for kinetic analysis of solid thermal decomposition J Therm Anal Calorim (2) 4:679 683 DOI.7/s973--29-9 New incremental isoconversional method for kinetic analysis of solid thermal decomposition Yunqing Han Haixiang Chen Naian Liu Received: June 2 / Accepted:

More information

Thermal degradation kinetics of Arylamine-based Polybenzoxazines

Thermal degradation kinetics of Arylamine-based Polybenzoxazines U Science Journal 9; 6(S): 3-3 Thermal degradation kinetics of Arylamine-based Polybenzoxazines Sunan Tiptipakorn *, Sarawut Rimdusit, Phiriyatorn Suwanmala 3 and Kasinee Hemvichian 3 Department of Chemistry,

More information

Thermal Degradation Kinetics of Antimicrobial Agent, Poly(hexamethylene guanidine) Phosphate

Thermal Degradation Kinetics of Antimicrobial Agent, Poly(hexamethylene guanidine) Phosphate Macromolecular Research, Vol. 14, No. 5, pp 491-498 (2006) Thermal Degradation Kinetics of Antimicrobial Agent, Poly(hexamethylene guanidine) Phosphate Sangmook Lee* and Byung Suk Jin Department of Applied

More information

European Journal of Chemistry

European Journal of Chemistry European Journal of Chemistry 5 (3) (2014) 507 512 European Journal of Chemistry Journal homepage: www.eurjchem.com The kinetic analysis of non isothermal carisoprodol reaction in nitrogen atmosphere using

More information

Isoconversional and Isokinetic Studies of 2605SA1 Metglass

Isoconversional and Isokinetic Studies of 2605SA1 Metglass IOP Conference Series: Materials Science and Engineering OPEN ACCESS Isoconversional and Isokinetic Studies of 2605SA1 Metglass To cite this article: T Lilly Shanker Rao and T Shanker Rao 2015 IOP Conf.

More information

Thermal degradation kinetics of poly {N-[(4-bromo- 3,5-difluorine)-phenyl]maleimide-co-styrene} in nitrogen

Thermal degradation kinetics of poly {N-[(4-bromo- 3,5-difluorine)-phenyl]maleimide-co-styrene} in nitrogen Journal of Physics: Conference Series Thermal degradation kinetics of poly {N-[(4-bromo- 3,5-difluorine)-phenyl]maleimide-co-styrene} in nitrogen To cite this article: Yanxun Li et al 1 J. Phys.: Conf.

More information

APPROXIMATIONS FOR THE TEMPERATURE INTEGRAL Their underlying relationship

APPROXIMATIONS FOR THE TEMPERATURE INTEGRAL Their underlying relationship Journal of Thermal Analysis and Calorimetry, Vol. 9 (08), 573 578 APPROXIMATIONS FOR THE TEMPERATURE INTEGRAL Their underlying relationship H. X. Chen * and N. A. Liu ** State Key Laboratory of Fire Science,

More information

APPLICATION OF THERMAL METHODS IN THE CHEMISTRY OF CEMENT: KINETIC ANALYSIS OF PORTLANDITE FROM NON- ISOTHERMAL THERMOGRAVIMETRC DATA

APPLICATION OF THERMAL METHODS IN THE CHEMISTRY OF CEMENT: KINETIC ANALYSIS OF PORTLANDITE FROM NON- ISOTHERMAL THERMOGRAVIMETRC DATA The First International Proficiency Testing Conference Sinaia, România 11 th 13 th October, 2007 APPLICATION OF THERMAL METHODS IN THE CHEMISTRY OF CEMENT: KINETIC ANALYSIS OF PORTLANDITE FROM NON- ISOTHERMAL

More information

Studies on the properties and the thermal decomposition kinetics of natural rubber prepared with calcium chloride

Studies on the properties and the thermal decomposition kinetics of natural rubber prepared with calcium chloride e-polymers 1, no. 7 http://www.e-polymers.org ISSN 1618-79 Studies on the properties and the thermal decomposition kinetics of natural rubber prepared with calcium chloride Cheng-peng Li, 1 Jie-ping Zhong,

More information

KINETIC ANALYSIS OF THE NON-ISOTHERMAL DEGRADATION OF PEO NANOCOMPOSITES

KINETIC ANALYSIS OF THE NON-ISOTHERMAL DEGRADATION OF PEO NANOCOMPOSITES KINETIC ANALYSIS OF THE NON-ISOTHERMAL DEGRADATION OF PEO NANOCOMPOSITES M. Erceg 1*, J. Makrić 1, T. Kovačić 1 1 Faculty of Chemistry and Technology, Department of Organic Technology, Teslina 10/V, 21000

More information

Effect of 1-substituted imidazole derivatives for the curing process of epoxy- -isocyanate composition

Effect of 1-substituted imidazole derivatives for the curing process of epoxy- -isocyanate composition 36 Pol. J. Chem. Tech., Polish Vol. Journal 15, No. of Chemical 4, 2013 Technology, 15, 4, 36 41, 10.2478/pjct-2013-0065 Effect of 1-substituted imidazole derivatives for the curing process of epoxy- -isocyanate

More information

Thermal degradation behaviours of flame-retardant polycarbonate containing potassium diphenyl sulfonate and polymethylphenylsilsesquioxane

Thermal degradation behaviours of flame-retardant polycarbonate containing potassium diphenyl sulfonate and polymethylphenylsilsesquioxane e-polymers 21, no. 22 http://www.e-polymers.org ISSN 1618-7229 Thermal degradation behaviours of flame-retardant polycarbonate containing potassium diphenyl sulfonate and polymethylphenylsilsesquioxane

More information

Non-Isothermal Crystallization and Thermal Degradation Kinetics of Biodegradable Poly(butylene adipate-co-terephthalate)/starch Blends

Non-Isothermal Crystallization and Thermal Degradation Kinetics of Biodegradable Poly(butylene adipate-co-terephthalate)/starch Blends Kasetsart J. (Nat. Sci.) 47 : 781-789 (13) Non-Isothermal Crystallization and Thermal Degradation Kinetics of Biodegradable Poly(butylene adipate-co-terephthalate)/starch Blends Surasak Chiangga 1, *,

More information

Thermal degradation of silicone sealant

Thermal degradation of silicone sealant Plasticheskie Massy, No. 3, 2011, pp. 47 51 Thermal degradation of silicone sealant E.V. Bystritskaya, 1 O.N. Karpukhin, 1 V.G. Tsverava, 2 V.I. Nepovinnykh, 2 and M.Yu. Rusin 2 1 N.N. Semenov Institute

More information

Thermal dehydration and degradation kinetics of chitosan Schiff bases of o- and m nitrobenzaldehyde Muraleedharan K.* & Viswalekshmi C.H.

Thermal dehydration and degradation kinetics of chitosan Schiff bases of o- and m nitrobenzaldehyde Muraleedharan K.* & Viswalekshmi C.H. 2017 St. Joseph s College (Autonomous), Devagiri www.devagirijournals.com ISSN 2454-2091 Thermal dehydration and degradation kinetics of chitosan Schiff bases of o- and m nitrobenzaldehyde Muraleedharan

More information

Temperature Control Modes in Thermal Analysis

Temperature Control Modes in Thermal Analysis @@@@@@@@@@@@@@ @@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@

More information

Thermal imidization kinetics of ultrathin films of hybrid poly(poss-imide)s

Thermal imidization kinetics of ultrathin films of hybrid poly(poss-imide)s SUPPTING INFMATIN belonging to the article Thermal imidization kinetics of ultrathin films of hybrid poly(pss-imide)s Michiel J.T. aaijmakers,, Emiel J. Kappert,, Arian Nijmeijer and Nieck E. Benes *,

More information

KINETICS PARAMETERS OF THE THERMAL DEHYDROXYLATION OF GIBBSITE AL(OH)3 BY DIFFERENTIAL THERMAL ANALYSIS (DTA)

KINETICS PARAMETERS OF THE THERMAL DEHYDROXYLATION OF GIBBSITE AL(OH)3 BY DIFFERENTIAL THERMAL ANALYSIS (DTA) KINTICS RMTRS OF TH THRML DHYDROXYLTION OF GIBBSIT L(OH)3 BY DIFFRNTIL THRML NLYSIS (DT) Djaida RDOUI 1, Foudil SHNOUN 1,2 (1) hysics and Chemistry of Materials Lab, Department of hysics, University Mohamed

More information

Chemometrics and Intelligent Laboratory Systems

Chemometrics and Intelligent Laboratory Systems Chemometrics and Intelligent Laboratory Systems 96 (2009) 219 226 Contents lists available at ScienceDirect Chemometrics and Intelligent Laboratory Systems journal homepage: www.elsevier.com/locate/chemolab

More information

Non-isothermal Decomposition Kinetics of 1-Amino-1,2,3-triazolium Nitrate

Non-isothermal Decomposition Kinetics of 1-Amino-1,2,3-triazolium Nitrate Non-isothermal Decomposition Kinetics of 1-Amino-1,2,3-triazolium Nitrate 99 Central European Journal of Energetic Materials, 2014, 11(1), 99-114 ISSN 1733-7178 Non-isothermal Decomposition Kinetics of

More information

Kinetic Compensation Effect in the Thermal Decomposition of Biomass in Air Atmosphere

Kinetic Compensation Effect in the Thermal Decomposition of Biomass in Air Atmosphere Kinetic Compensation Effect in the Thermal Decomposition of Biomass in Air Atmosphere LIU Naian a WANG Binghong b FAN Weicheng a a State Key Laboratory of Fire Science, University of Science and Technology

More information

How fast are chemical reactions?

How fast are chemical reactions? How fast are chemical reactions? kinetics.netzsch.com C D A B E F G H I Kinetics NEO Kinetic Analysis Software for Thermal Measurements of Chemical Reactions Model-Free and Model-Based Methods KINETICS

More information

GENERALIZED KINETIC MASTER PLOTS FOR THE THERMAL DEGRADATION OF POLYMERS FOLLOWING A RANDOM SCISSION

GENERALIZED KINETIC MASTER PLOTS FOR THE THERMAL DEGRADATION OF POLYMERS FOLLOWING A RANDOM SCISSION GENERALIZED KINETIC MASTER PLOTS FOR THE THERMAL DEGRADATION OF POLYMERS FOLLOWING A RANDOM SCISSION MECHANISM. Pedro E. Sánchez-Jiménez, Luis A. Pérez-Maqueda, Antonio Perejón and José M. Criado. Instituto

More information

The Kinetics of B-a and P-a Type Copolybenzoxazine via the Ring Opening Process

The Kinetics of B-a and P-a Type Copolybenzoxazine via the Ring Opening Process The Kinetics of B-a and P-a Type Copolybenzoxazine via the Ring Opening Process Yi-Che Su, Ding-Ru Yei, Feng-Chih Chang Institute of Applied Chemistry, National Chiao-Tung University, Hsin-Chu, Taiwan

More information

ADVANCED SIMULATION OF THE LIFETIME OF ENERGETIC MATERIALS BASED ON HFC SIGNALS

ADVANCED SIMULATION OF THE LIFETIME OF ENERGETIC MATERIALS BASED ON HFC SIGNALS ADVANCED SIMULATION OF THE LIFETIME OF ENERGETIC MATERIALS BASED ON HFC SIGNALS B. Roduit, P. Guillaume 2, S. Wilker 3, P. Folly 4, A. Sarbach 4, B. Berger 4, J. Mathieu 4, M. Ramin 5, B. Vogelsanger 5

More information

Kinetic study of the thermal decomposition of calcium carbonate by isothermal methods of analysis

Kinetic study of the thermal decomposition of calcium carbonate by isothermal methods of analysis The European Journal of Mineral Processing and Environmental Protection Technical Note Kinetic study of the thermal decomposition of calcium carbonate by isothermal methods of analysis I. Halikia*, L.

More information

Applicability of Non-isothermal DSC and Ozawa Method for Studying Kinetics of Double Base Propellant Decomposition

Applicability of Non-isothermal DSC and Ozawa Method for Studying Kinetics of Double Base Propellant Decomposition 233 Central European Journal of Energetic Materials, 2010, 7(3), 233-251 ISSN 1733-7178 Applicability of Non-isothermal DSC and Ozawa Method for Studying Kinetics of Double Base Propellant Decomposition

More information

Thermal Decomposition of Ferroelectric Glycine Patassium Sulphate Crystal

Thermal Decomposition of Ferroelectric Glycine Patassium Sulphate Crystal Research Article Thermal Decomposition of Ferroelectric Glycine Patassium Sulphate Crystal I.J.Patil 1,*, M.S.Shinde 2, P.P.Jagtap 1, P.B.Ahirrao 3 and R.S.Patil 1 1 Dept. of Physics, P. S. G. V. P. M

More information

Data Treatment in Non-isothermal Kinetics and Diagnostic Limits of Phenomenological Models

Data Treatment in Non-isothermal Kinetics and Diagnostic Limits of Phenomenological Models Netsu Sokutei 20(4)210-223 Data Treatment in Non-isothermal Kinetics and Diagnostic Limits of Phenomenological Models Nobuyoshi Koga*, Jiri Malek**, Jaroslav Sestak*** and Haruhiko Tanaka* (received April

More information

Effect of Dimethyl Terephthalate on Thermal Properties of Poly(butylene itaconate)

Effect of Dimethyl Terephthalate on Thermal Properties of Poly(butylene itaconate) 2015 2 nd International Conference on Material Engineering and Application (ICMEA 2015) ISBN: 978-1-60595-323-6 Effect of Dimethyl Terephthalate on Thermal Properties of Poly(butylene itaconate) C.H. Gao,

More information

Physico-Geometrical Kinetics of Solid-State Reactions in an Undergraduate Thermal Analysis Laboratory

Physico-Geometrical Kinetics of Solid-State Reactions in an Undergraduate Thermal Analysis Laboratory Supporting Information for Instructors Physico-Geometrical Kinetics of Solid-State Reactions in an Undergraduate Thermal Analysis Laboratory Nobuyoshi Koga,* Yuri Goshi, Masahiro Yoshikawa, and Tomoyuki

More information

Investigation of Thermal Degradation and Flammability of Polyamide-6 and Polyamide-6 Nanocomposites

Investigation of Thermal Degradation and Flammability of Polyamide-6 and Polyamide-6 Nanocomposites Investigation of Thermal Degradation and Flammability of Polyamide-6 and Polyamide-6 Nanocomposites Ruowen Zong, Yuan Hu, Naian Liu, Songyang Li, Guangxuan Liao State Key Laboratory of Fire Science, University

More information

Estimation of kinetic triplet of cellulose pyrolysis reaction from isothermal kinetic results

Estimation of kinetic triplet of cellulose pyrolysis reaction from isothermal kinetic results Korean J. Chem. Eng., 23(3), 409-414 (2006) SHORT COMMUNICATION Estimation of kinetic triplet of cellulose pyrolysis reaction from isothermal kinetic results Seungdo Kim and Yujin Eom Dept. of Environmental

More information

Study of Thermal Decomposition Kinetics of Palm Oleic Acid-Based Alkyds and Effect of Oil Length on Thermal Stability

Study of Thermal Decomposition Kinetics of Palm Oleic Acid-Based Alkyds and Effect of Oil Length on Thermal Stability J Polym Environ (2012) 20:507 513 DOI 10.1007/s10924-011-0403-4 ORIGINAL PAPER Study of Thermal Decomposition Kinetics of Palm Oleic Acid-Based Alkyds and Effect of Oil Length on Thermal Stability Shahla

More information

The morphology of PVDF/1Gra and PVDF/1IL/1Gra was investigated by field emission scanning

The morphology of PVDF/1Gra and PVDF/1IL/1Gra was investigated by field emission scanning Electronic Supplementary Material (ESI) for RSC Advances. This journal is The Royal Society of Chemistry 2015 1. Morphology The morphology of PVDF/1Gra and PVDF/1IL/1Gra was investigated by field emission

More information

Life Assessment of Energetic Materials using Advanced Kinetic Elaboration of HFC Signals

Life Assessment of Energetic Materials using Advanced Kinetic Elaboration of HFC Signals Life Assessment of Energetic Materials using Advanced Kinetic Elaboration of HFC Signals Bertrand Roduit AKTS AG Advanced Kinetics and Technology Solutions, TECHNOArk 1, 3960 Siders, Switzerland. http://www.akts.com

More information

Kinetic Investigation of Thermal Decomposition Reactions of 4 -Demethypodophyllotoxin and Podophyllotoxin. PuHong Wen

Kinetic Investigation of Thermal Decomposition Reactions of 4 -Demethypodophyllotoxin and Podophyllotoxin. PuHong Wen Advanced Materials Research nline: 2013-09-10 ISSN: 1662-8985, Vol. 800, pp 517-521 doi:10.4028/www.scientific.net/amr.800.517 2013 Trans Tech Publications, Switzerland Kinetic Investigation of Thermal

More information

Study on Thermal Stability and Non-isothermal Crystallization Behaviour of Polyethylene/clay Nanocomposites

Study on Thermal Stability and Non-isothermal Crystallization Behaviour of Polyethylene/clay Nanocomposites Study on Thermal Stability and Non-isothermal Crystallization Behaviour of Polyethylene/clay Nanocomposites Study on Thermal Stability and Non-isothermal Crystallization Behaviour of Polyethylene/clay

More information

Microkinetics of H 2 S Removal by Zinc Oxide in the Presence of Moist Gas Atmosphere

Microkinetics of H 2 S Removal by Zinc Oxide in the Presence of Moist Gas Atmosphere Journal of Natural Gas Chemistry 12(2003)43 48 Microkinetics of H 2 S Removal by Zinc Oxide in the Presence of Moist Gas Atmosphere Huiling Fan, Chunhu Li, Hanxian Guo, Kechang Xie State Key Lab of C1

More information

Maleke ashtar University of Technology, Esfahan, Iran (Received: 10/5/2015, Accepted: 1/26/2015)

Maleke ashtar University of Technology, Esfahan, Iran (Received: 10/5/2015, Accepted: 1/26/2015) ج ه ع ی - و ی " واد RاRژی" سال یازد م ماره ١ ماره ی ٢٩ هار ٩۵ :ص ١۶-١١ 3 1 - -3 - -1 ( 9/11/ : 9/7 /13 : ) (DTA).. HMX %95 %5. OFW. 33/±/ 1/1±5/ =0/1-0/9. [-ln(1-a)] 1/3 A3 13/5-15/ log A -1 3(1-a)[-ln(1-a)]

More information

CHEM*3440. Thermal Methods. Thermogravimetry. Instrumental Components. Chemical Instrumentation. Thermal Analysis. Topic 14

CHEM*3440. Thermal Methods. Thermogravimetry. Instrumental Components. Chemical Instrumentation. Thermal Analysis. Topic 14 Thermal Methods We will examine three thermal analytical techniques: Thermogravimetric Analysis (TGA) CHEM*3440 Chemical Instrumentation Topic 14 Thermal Analysis Differential Thermal Analysis (DTA) Differential

More information

Supplementary Information for Blocky Sulfonation of Syndiotactic Polystyrene: A Facile Route Toward Tailored Ionomer

Supplementary Information for Blocky Sulfonation of Syndiotactic Polystyrene: A Facile Route Toward Tailored Ionomer Supplementary Information for Blocky Sulfonation of Syndiotactic Polystyrene: A Facile Route Toward Tailored Ionomer Architecture via Post-Polymerization Functionalization in the Gel-State Gregory B. Fahs,

More information

This is the accepted manuscript made available via CHORUS. The article has been published as:

This is the accepted manuscript made available via CHORUS. The article has been published as: This is the accepted manuscript made available via CHORUS. The article has been published as: Similarity of the Signatures of the Initial Stages of Phase Separation in Metastable and Unstable Polymer Blends

More information

No. 2 lectronic state and potential energy function for UH where ρ = r r e, r being the interatomic distance and r e its equilibrium value. How

No. 2 lectronic state and potential energy function for UH where ρ = r r e, r being the interatomic distance and r e its equilibrium value. How Vol 12 No 2, February 2003 cfl 2003 Chin. Phys. Soc. 1009-1963/2003/12(02)/0154-05 Chinese Physics and IOP Publishing Ltd lectronic state and potential energy function for UH 2+* Wang Hong-Yan( Ψ) a)y,

More information

Technical Data Sheet: Thermokinetics 3

Technical Data Sheet: Thermokinetics 3 At a Glance Highlights of Thermokinetics 3 Purpose Kinetic analysis Predictions Optimization Thermokinetics is the software for studying chemical kinetics (reactional kinetics). It investigates the reaction

More information

A thermally remendable epoxy resin

A thermally remendable epoxy resin Supplementary Information A thermally remendable epoxy resin Qiao Tian a, Yan Chao Yuan a, Min Zhi Rong *b, Ming Qiu Zhang b a Key Laboratory for Polymeric Composite and Functional Materials of Ministry

More information

A METHOD FOR CALCULATING THE EFFECTIVE PERMITTIVITY OF A MIXTURE SOLUTION DURING A CHEMICAL REACTION BY EXPERIMENTAL RESULTS

A METHOD FOR CALCULATING THE EFFECTIVE PERMITTIVITY OF A MIXTURE SOLUTION DURING A CHEMICAL REACTION BY EXPERIMENTAL RESULTS Progress In Electromagnetics Research Letters, Vol. 5, 99 107, 2008 A METHOD FOR CALCULATING THE EFFECTIVE PERMITTIVITY OF A MIXTURE SOLUTION DURING A CHEMICAL REACTION BY EXPERIMENTAL RESULTS K. Huang

More information

Roasting kinetics of high-arsenic copper concentrates: a review

Roasting kinetics of high-arsenic copper concentrates: a review Roasting kinetics of high-arsenic copper concentrates: a review M. Devia Jacobs, Santiago, Chile I. Wilkomirsky and R. Parra Universidad de Concepción, Concepción, Chile Abstract The roasting process of

More information

Thermal Decomposition Behavior of Terephthalate in Inert Gas

Thermal Decomposition Behavior of Terephthalate in Inert Gas Scientific Research China Petroleum Processing and Petrochemical Technology 2017, Vol. 19, No. 3, pp 1-8 September 30, 2017 Thermal Decomposition Behavior of Terephthalate in Inert Gas Yu Jing 1, 2 ; Wang

More information

APPLICATIONS OF THERMAL ANALYSIS IN POLYMER AND COMPOSITES CHARACTERIZATION. Wei Xie TA Instruments

APPLICATIONS OF THERMAL ANALYSIS IN POLYMER AND COMPOSITES CHARACTERIZATION. Wei Xie TA Instruments APPLICATIONS OF THERMAL ANALYSIS IN POLYMER AND COMPOSITES CHARACTERIZATION Wei Xie TA Instruments Abstract Thermal Analysis is the generic name for a series of measurement techniques traditionally used

More information

Available online at Procedia Engineering 45 (2012 ) YAO Miao*, CHEN Liping, YU Jinyang, PENG Jinhua

Available online at   Procedia Engineering 45 (2012 ) YAO Miao*, CHEN Liping, YU Jinyang, PENG Jinhua Available online at www.sciencedirect.com Procedia Engineering 45 (212 ) 567 573 212 International Symposium on Safety Science and Technology Thermoanalytical investigation on pyrotechnic mixtures containing

More information

Kinetic Analysis of the Oil Shale Pyrolysis using Thermogravimetry and Differential Scanning Calorimetry

Kinetic Analysis of the Oil Shale Pyrolysis using Thermogravimetry and Differential Scanning Calorimetry 559 A publication of CHEMICAL ENGINEERING TRANSACTIONS VOL. 61, 2017 Guest Editors: Petar S Varbanov, Rongxin Su, Hon Loong Lam, Xia Liu, Jiří J Klemeš Copyright 2017, AIDIC Servizi S.r.l. ISBN 978-88-95608-51-8;

More information

SUPPLEMENTARY INFORMATION. Observation of tunable electrical bandgap in large-area twisted bilayer graphene synthesized by chemical vapor deposition

SUPPLEMENTARY INFORMATION. Observation of tunable electrical bandgap in large-area twisted bilayer graphene synthesized by chemical vapor deposition SUPPLEMENTARY INFORMATION Observation of tunable electrical bandgap in large-area twisted bilayer graphene synthesized by chemical vapor deposition Jing-Bo Liu 1 *, Ping-Jian Li 1 *, Yuan-Fu Chen 1, Ze-Gao

More information

Katarzyna Lewandowska

Katarzyna Lewandowska P-08 THERMAL STUDY OF CHITOSAN BLENDS WITH VINYL POLYMERS Katarzyna Lewandowska Nicolaus Copernicus University, Faculty of Chemistry, Department of General Chemistry ul. Gagarina 7, 87-100 Toruń, Poland

More information

Supporting Information

Supporting Information Supporting Information Enhanced Photocatalytic Activity of Titanium Dioxide: Modification with Graphene Oxide and Reduced Graphene Oxide Xuandong Li,* Meirong Kang, Xijiang Han, Jingyu Wang, and Ping Xu

More information

Anna Puchalska, Maria Mucha

Anna Puchalska, Maria Mucha THERMOGRAVIMETRY OF CHITOSAN WITH NANOFILLERS Anna Puchalska, Maria Mucha Technical University of Lodz, Faculty of Process and Environmental Engineering, ul. Wolczanska 23, 90-924 Łódź, Poland E-mail:

More information

Temperature-Modulated Differential Scanning Calorimetry Analysis of High- Temperature Silicate Glasses

Temperature-Modulated Differential Scanning Calorimetry Analysis of High- Temperature Silicate Glasses Temperature-Modulated Differential Scanning Calorimetry Analysis of High- Temperature Silicate Glasses Tobias K. Bechgaard 1,*, Ozgur Gulbiten 2, John C.Mauro 3, Yushu Hu 4, Mathieu Bauchy 4, Morten M.

More information

Isothermal and Nonisothermal Kinetic Analyses of Mahogany Oil Shale with TGA

Isothermal and Nonisothermal Kinetic Analyses of Mahogany Oil Shale with TGA Isothermal and Nonisothermal Kinetic Analyses of Mahogany Oil Shale with TGA Pankaj Tiwari, Kyeongseok Oh and Milind Deo Chemical Engineering Dept, University of Utah 1 Table of contents Introduction Background

More information

Dehydration Kinetics of Sibutramine Hydrochloride Monohydrate

Dehydration Kinetics of Sibutramine Hydrochloride Monohydrate Chemical Science Transactions DOI:10.7598/cst013.8 ISSN/E-ISSN: 78-3458/78-3318 RESEARCH AICLE Dehydration Kinetics of Sibutramine Hydrochloride Monohydrate A. RAVIKIRAN *, M. AHANAREESWARI, P. KAMARAJ,

More information

OXIDATION OF (Ti,W)C CERAMIC POWDERS

OXIDATION OF (Ti,W)C CERAMIC POWDERS Journal of Thermal Analysis and Calorimetry, Vol. 77 (2004) 75 83 OXIDATION OF (Ti,W)C CERAMIC POWDERS A. Biedunkiewicz 1, A. Szymczyk 2* and J. Chrosciechowska 3 1 Institute of Material Engineering, Technical

More information

Thermal Decomposition of Some Benzodiazepines under Non-Isothermal Conditions Kinetic Study

Thermal Decomposition of Some Benzodiazepines under Non-Isothermal Conditions Kinetic Study Thermal Decomposition of Some Benzodiazepines under Non-Isothermal Conditions Kinetic Study ADRIANA FULIAS 1, BOGDAN TITA 1*, GEZA BANDUR 2, DUMITRU TITA 1 1 Department of Analytical Chemistry, Faculty

More information

SYNTHESIS AND THERMAL PROPERTIES OF POLYBENZOXAZOLE FROM SOLUBLE PRECURSOR WITH HYDROXY-SUBSTITUTED POLYENAMINONITRILE*

SYNTHESIS AND THERMAL PROPERTIES OF POLYBENZOXAZOLE FROM SOLUBLE PRECURSOR WITH HYDROXY-SUBSTITUTED POLYENAMINONITRILE* Chinese Journal of Polymer Science Vol. 22, No. 4, (2004), 349-353 Chinese Journal of Polymer Science 2004 Springer-Verlag SYNTHESIS AND THERMAL PROPERTIES OF POLYBENZOXAZOLE FROM SOLUBLE PRECURSOR WITH

More information

Comparison of Thermal Decomposition Kinetics of Magnesite and Limestone Lei Su 1, a, Gang Zhang 2,b, Yu Dong 1,c, Jian Feng 3,d and Dong Liu 3,e

Comparison of Thermal Decomposition Kinetics of Magnesite and Limestone Lei Su 1, a, Gang Zhang 2,b, Yu Dong 1,c, Jian Feng 3,d and Dong Liu 3,e Advanced Materials Research Online: 2013-01-25 ISSN: 1662-8985, Vols. 652-654, pp 2580-2583 doi:10.4028/www.scientific.net/amr.652-654.2580 2013 Trans Tech Publications, Switzerland Comparison of Thermal

More information

Thermal degradation studies of cyclic olefin copolymers

Thermal degradation studies of cyclic olefin copolymers Polymer Degradation and Stability 81 (2003) 197 205 www.elsevier.com/locate/polydegstab Thermal degradation studies of cyclic olefin copolymers Chenyang Liu, Jian Yu, Xinghua Sun, Jun Zhang, Jiasong He*

More information

Supporting Information

Supporting Information Supporting Information Anion Conductive Triblock Copolymer Membranes with Flexible Multication Side Chain Chen Xiao Lin a,b, Hong Yue Wu a, Ling Li a, Xiu Qin Wang a, Qiu Gen Zhang a, Ai Mei Zhu a, Qing

More information

News & Trends for Thermal Analysis

News & Trends for Thermal Analysis Vietnam, October 2016 VõĐình Vũ News & Trends for Thermal Analysis Pharma Applications and Theory TA-Techniques DSC, Flash DSC, HPDSC TGA TMA DMA Agenda Compatibility and Interactions - Eutectic Systems

More information

Kinetic Study of the Thermal Decomposition of Potassium Chlorate Using the Non-isothermal TG/DSC Technique

Kinetic Study of the Thermal Decomposition of Potassium Chlorate Using the Non-isothermal TG/DSC Technique Kinetic Study of the Thermal Decomposition of Potassium Chlorate... 505 Central European Journal of Energetic Materials, 2016, 13(2), 505-525 ISSN 1733-7178 e-issn 2353-1843 Kinetic Study of the Thermal

More information

Trapping Lithium into Hollow Silica Microspheres. with a Carbon Nanotube Core for Dendrite-Free

Trapping Lithium into Hollow Silica Microspheres. with a Carbon Nanotube Core for Dendrite-Free Supporting Information Trapping Lithium into Hollow Silica Microspheres with a Carbon Nanotube Core for Dendrite-Free Lithium Metal Anodes Tong-Tong Zuo,, Ya-Xia Yin,, Shu-Hua Wang, Peng-Fei Wang,, Xinan

More information

Kinetic Description of the Leaching Mining Process for Carnallite

Kinetic Description of the Leaching Mining Process for Carnallite SCIREA Journal of Chemistry http://www.scirea.org/journal/chemistry March 14, 2017 Volume 2, Issue 1, February 2017 Kinetic Description of the Leaching Mining Process for Carnallite Yan-Fang MA 1,2, Kan-She

More information

Theoretical comparative study on hydrogen storage of BC 3 and carbon nanotubes

Theoretical comparative study on hydrogen storage of BC 3 and carbon nanotubes J. At. Mol. Sci. doi: 10.4208/jams.121011.011412a Vol. 3, No. 4, pp. 367-374 November 2012 Theoretical comparative study on hydrogen storage of BC 3 and carbon nanotubes Xiu-Ying Liu a,, Li-Ying Zhang

More information

Electronic Supplementary Information. Noninvasive Functionalization of Polymers of Intrinsic Microporosity for Enhanced CO 2 Capture

Electronic Supplementary Information. Noninvasive Functionalization of Polymers of Intrinsic Microporosity for Enhanced CO 2 Capture Electronic Supplementary Information Noninvasive Functionalization of Polymers of Intrinsic Microporosity for Enhanced CO 2 Capture Hasmukh A. Patel and Cafer T. Yavuz* Oxide and Organic Nanomaterials

More information

Polymerization Mechanisms and Curing Kinetics of Novel Polymercaptan Curing System Containing Epoxy/Nitrogen

Polymerization Mechanisms and Curing Kinetics of Novel Polymercaptan Curing System Containing Epoxy/Nitrogen Polymerization Mechanisms and Curing Kinetics of Novel Polymercaptan Curing System Containing Epoxy/Nitrogen Changli Lü, 1 Zhanchen Cui, 1 Bai Yang, 1 Xiaoping Su, 2 Chengsong Huo, 2 Jiacong Shen 1 1 Key

More information

MODELING THE THERMAL DECOMPOSITION OF POLYMER/CARBON NANOTUBE NANOCOMPOSITES

MODELING THE THERMAL DECOMPOSITION OF POLYMER/CARBON NANOTUBE NANOCOMPOSITES MODELING THE THERMAL DECOMPOSITION OF POLYMER/CARBON NANOTUBE NANOCOMPOSITES A. Galgano*, C. Branca*, C. Di Blasi** galgano@irc.cnr.it * Istituto di Ricerche sulla Combustione, C.N.R., P.le V. Tecchio,

More information

Activation Energy and Thermal Behaviors of Thermoplastic Elastomer Based on Natural Rubber and Poly(vinyl alcohol)

Activation Energy and Thermal Behaviors of Thermoplastic Elastomer Based on Natural Rubber and Poly(vinyl alcohol) PRÜFEN UND MESSEN TESTING AND MEASURING Natural Rubber Polyvinyl alcohol Thermal degration Kinetic analysis The thermal decomposition behavior and degration kinetics of natural rubber containing Poly(vinyl

More information

Assembled Hollow Metal Oxide Nanostructures for Water Treatment

Assembled Hollow Metal Oxide Nanostructures for Water Treatment UK-China Forum on Nanostructure for Water 11-13 November 2010, The University of Hong Kong Assembled Hollow Metal Oxide Nanostructures for Water Treatment Junbai Li Institute of Chemistry, Beijing CAS

More information

Supporting Information

Supporting Information Supporting Information 1. Microcapsules characterization 1.1. Thermogravimetric analysis (TGA) Thermal degradation in air and nitrogen of the synthesized microcapsules is shown in figure S1. 100 Weight

More information

Electrothermal lifetime prediction of polyimide wire insulation with application to aircraft

Electrothermal lifetime prediction of polyimide wire insulation with application to aircraft This is the peer reviewed version of the following article: P. R. Hondred, N. Bowler, and M. R. Kessler: Electrothermal Lifetime Prediction of Polyimide Wire Insulation with Application to Aircraft, Journal

More information

Supporting Information

Supporting Information Copyright WILEY-VCH Verlag GmbH & Co. KGaA, 69469 Weinheim, Germany, 213. Supporting Information for Adv. Energy Mater., DOI: 1.12/aenm.2131565 Reduction of Graphene Oxide by Hydrogen Sulfide: A Promising

More information

Anti-synchronization of a new hyperchaotic system via small-gain theorem

Anti-synchronization of a new hyperchaotic system via small-gain theorem Anti-synchronization of a new hyperchaotic system via small-gain theorem Xiao Jian( ) College of Mathematics and Statistics, Chongqing University, Chongqing 400044, China (Received 8 February 2010; revised

More information

SCIENCE CHINA Chemistry. Redox potentials of trifluoromethyl-containing compounds

SCIENCE CHINA Chemistry. Redox potentials of trifluoromethyl-containing compounds SCINC CHINA Chemistry SUPPORTING INORMATION doi: 10.1007/s11426-014-5178-8 Redox potentials of trifluoromethyl-containing compounds Yuanye Jiang 1, Haizhu Yu 2,3, Yao u 1* & Lei Liu 3* 1 Department of

More information

SPECIFICITY OF DECOMPOSITION OF SOLIDS IN NON-ISOTHERMAL CONDITIONS

SPECIFICITY OF DECOMPOSITION OF SOLIDS IN NON-ISOTHERMAL CONDITIONS Journal of Thermal Analysis and Calorimetry, Vol. 72 (2003) 597 604 SPECIFICITY OF DECOMPOSITION OF SOLIDS IN NON-ISOTHERMAL CONDITIONS T. Vlase *, G. Vlase, M. Doca and N. Doca West University of Timiºoara,

More information

Kinetic evaluation of decabromodiphenil oxide as a ame retardant for unsaturated polyester

Kinetic evaluation of decabromodiphenil oxide as a ame retardant for unsaturated polyester Thermochimica Acta 388 (2002) 283±288 Kinetic evaluation of decabromodiphenil oxide as a ame retardant for unsaturated polyester V.J. Fernandes Jr. *, N.S. Fernandes, V.M. Fonseca, A.S. Araujo, D.R. Silva

More information

Supporting Information:

Supporting Information: Supporting Information: Synthesis of Colloidal Magnesium: A Near Room Temperature Store for Hydrogen Kondo-Francois Aguey-Zinsou* and José-Ramón Ares-Fernández Department of Materials, Queen Mary, University

More information

Materials Produced from Plant Biomass. Part I: Evaluation of Thermal Stability and Pyrolysis of Wood

Materials Produced from Plant Biomass. Part I: Evaluation of Thermal Stability and Pyrolysis of Wood Materials Research. 2010; 13(3): 375-379 2010 Materials Produced from Plant Biomass. Part I: Evaluation of Thermal Stability and Pyrolysis of Wood Matheus Poletto, Juliane Dettenborn, Vinícios Pistor,

More information

Supporting Information

Supporting Information Electronic Supplementary Material (ESI) for RSC Advances. This journal is The Royal Society of Chemistry 214 Supporting Information Lei Liu, ab Yijie Xia, b Jie Zhang* b a) China Center for Modernization

More information

SITARAM K. CHAVAN * and MADHURI N. HEMADE ABSTRACT INTRODUCTION

SITARAM K. CHAVAN * and MADHURI N. HEMADE ABSTRACT INTRODUCTION Int. J. Chem. Sci.: 11(1), 013, 619-67 ISSN 097-768X www.sadgurupublications.com DENSITIES, VISCOSITIES AND EXCESS THERMODYNAMIC PROPERTIES OF MONOMETHYL AMMONIUM CHLORIDE IN TETRAHYDROFURAN AND WATER

More information

Synthesis of condensed polynuclear aromatic resin from furfural extract oil of reduced-pressure route II

Synthesis of condensed polynuclear aromatic resin from furfural extract oil of reduced-pressure route II Synthesis of condensed polynuclear aromatic resin from furfural extract oil of reduced-pressure route II Wu Mingbo, Jiang Wei, Wang Yuwei, Li Shibin and Zheng Jingtang Abstract: with high aromatic content

More information

A note on the Laplacian Estrada index of trees 1

A note on the Laplacian Estrada index of trees 1 MATCH Communications in Mathematical and in Computer Chemistry MATCH Commun. Math. Comput. Chem. 63 (2009) 777-782 ISSN 0340-6253 A note on the Laplacian Estrada index of trees 1 Hanyuan Deng College of

More information

Graphene oxide hydrogel at solid/liquid interface

Graphene oxide hydrogel at solid/liquid interface Electronic Supplementary Information Graphene oxide hydrogel at solid/liquid interface Jiao-Jing Shao, Si-Da Wu, Shao-Bo Zhang, Wei Lv, Fang-Yuan Su and Quan-Hong Yang * Key Laboratory for Green Chemical

More information

Kinetics and Functionality of Cu-coordinated Pyridyl-porphyrin Supramolecular Self-assembly on a Au(111) Surface

Kinetics and Functionality of Cu-coordinated Pyridyl-porphyrin Supramolecular Self-assembly on a Au(111) Surface Kinetics and Functionality of Cu-coordinated Pyridyl-porphyrin Supramolecular Self-assembly on a Au(111) Surface LI, Yang, MPhil candidate, Physics, HKUST Supervisor, Prof. LIN, Nian 2012-08-08 Outline

More information

Influence of Functional Sulfonic Acid Group on Pyrolysis Characteristics for Cation

Influence of Functional Sulfonic Acid Group on Pyrolysis Characteristics for Cation Journal of NUCLEAR SCIENCE and TECHNOLOGY, 24[2], pp. 124~128 (February 1987) Influence of Functional Sulfonic Acid Group on Pyrolysis Characteristics for Cation Exchange Resin Masami MATSUDA, Kiyomi FUNABASHI,

More information

Kinetic enhancement of adsorbent for CO2 capture from atmosphere by porous material

Kinetic enhancement of adsorbent for CO2 capture from atmosphere by porous material Engineering Conferences International ECI Digital Archives CO2 Summit II: Technologies and Opportunities Proceedings Spring 4-13-2016 Kinetic enhancement of adsorbent for CO2 capture from atmosphere by

More information

European Journal of Chemistry

European Journal of Chemistry European Journal of Chemistry 7 (3) (2016) 380 386 European Journal of Chemistry Journal webpage: www.eurjchem.com Synthesis, characterization and thermal decomposition of 2 amino 6 (1Hindol 3 yl) 1 methyl

More information

SUPPLEMENTARY INFORMATION

SUPPLEMENTARY INFORMATION Engineered doping of organic semiconductors for enhanced thermoelectric efficiency G.-H. Kim, 1 L. Shao, 1 K. Zhang, 1 and K. P. Pipe 1,2,* 1 Department of Mechanical Engineering, University of Michigan,

More information

Enhanced Thermal Conductivity for Poly(vinylidene fluoride) Composites with Nano-carbon Fillers

Enhanced Thermal Conductivity for Poly(vinylidene fluoride) Composites with Nano-carbon Fillers Electronic Supplementary Material (ESI) for RSC Advances. This journal is The Royal Society of Chemistry 2016 SUPPORTING INFORMATION Enhanced Thermal Conductivity for Poly(vinylidene fluoride) Composites

More information

SUPPLEMENTARY INFORMATION

SUPPLEMENTARY INFORMATION SUPPLEMENTARY INFORMATION Facile Synthesis of High Quality Graphene Nanoribbons Liying Jiao, Xinran Wang, Georgi Diankov, Hailiang Wang & Hongjie Dai* Supplementary Information 1. Photograph of graphene

More information

Production of Mesoporous Carbon from Waste Tire

Production of Mesoporous Carbon from Waste Tire Production of Mesoporous Carbon from Waste Tire E.L.K. Mui and G. M c Kay Department of Chemical Engineering Hong Kong University of Science and Technology Clear Water Bay, Kowloon, Hong Kong Corresponding

More information

Time evolution of negative binomial optical field in diffusion channel , China

Time evolution of negative binomial optical field in diffusion channel , China Chinese Physics B arxiv:1504.04437v1 [quant-ph] 17 Apr 2015 Time evolution of negative binomial optical field in diffusion channel Liu Tang-Kun a, Wu Pan-Pan a, Shan Chuan-Jia a, Liu Ji-Bing a, and Fan

More information

Electronic Supporting Information (ESI)

Electronic Supporting Information (ESI) Electronic Supplementary Material (ESI) for Journal of Materials Chemistry A. This journal is The Royal Society of Chemistry 2015 Journal of Materials Chemistry A Electronic Supporting Information (ESI)

More information

Power Law of Molecular Weight of the Nucleation Rate of Folded Chain Crystals of Polyethylene

Power Law of Molecular Weight of the Nucleation Rate of Folded Chain Crystals of Polyethylene Macromolecules 2002, 35, 6985-6991 6985 Power Law of Molecular Weight of the Nucleation Rate of Folded Chain Crystals of Polyethylene Swapan K. Ghosh, Masamichi Hikosaka,*, Akihiko Toda, Shinichi Yamazaki,

More information