Supplementary Materials

Size: px
Start display at page:

Download "Supplementary Materials"

Transcription

1 Electronic Supplementary Material (ESI) or Nanoscale. This journal is The Royal Society o Chemistry 017 Supplementary Materials Eective electro-optic modulation in low-loss graphene-plasmonic slot waveguides Y. Ding, 1 * X. Guan, 1 X. Zhu, 3 H. Hu, 1 S. I. Bozhevolnyi, 4 L. K. Oxenløwe, 1 K. J. Jin 5, N. A. Mortensen, 1,,4 Sanshui Xiao 1, * (1) Department o Photonics Engineering, Technical University o Denmark, DK-800 Kongens Lyngby, Denmark () Center or Nanostructured Graphene, Technical University o Denmark, DK-800 Kongens Lyngby, Denmark (3) Department o Micro- and Nanotechnology, Technical University o Denmark, DK-800 Kongens Lyngby, Denmark (4) Centre or Nano Optics & Danish Institute or Advanced Study, University o Southern Denmark, Campusvej 55, DK-530 Odense M, Denmark (5) Beijing National Laboratory or Condensed Matter Physics, Institute o Physics, Chinese Academy o Sciences, Beijing , China *yudin@otonik.dtu.dk *saxi@otonik.dtu.dk S1. Theory and calculation o propagation loss The schematic o the designed graphene-plasmonic slot waveguide is shown in Fig. S1. Graphene 1 n 1 Gap Graphene h n Si substrate Fig. S1. Cross section o the designed graphene-plasmonic slot waveguide. 1

2 In order to accurately calculate the mode (including the leaky mode) o a plasmonic slot waveguide, the thickness o buried oxide layer (BOX) o the silicon-on-insulator (SOI) waer and silicon substrate has to be considered. The thickness o BOX layer is 3 µm. The thickness o the sheet h that orms the plasmonic slot waveguide is varied. The Al O 3 between the graphene layer 1 and plasmonic slot waveguide is designed to be 5 nm thick, and the Al O 3 between the two layers o graphene sheet is designed to be 10 nm. The thickness o the graphene sheet is considered to be 0.5 nm, and the Fermi level E dependent complex dielectric constant ( ε G = ε G ' + jε'' G) o graphene can be described under the random phase approximation and the Kramers-Kronig relations E p E e E E p p E e ' G E p1 ln 8 E d d E 1 p 0 0 e 1 E 1 p E E 1 p E E e '' G E p 1 tan tan 4Ep 0d Ep 0d Ep 1 (Eq.S1) where E p is the photon energy, d is the thickness o the two graphene layers, Γ is the inter-band broadening, and 1/τ is the ree carrier scattering rate. The reractive indices o Si, Al O 3, are considered to be 3.45, and and j1.65, and the reractive indices o the upper cladding the substrate are denoted by n 1 and n respectively. With the complex dielectric constant o graphene and, the complex eective reractive index (n e = n e,real + jn e,imag ), the corresponding propagation is then obtained db m k0 n e, imag (Eq.S) where is the constant or converting rom m -1 to db/µm. S. Study o coupling between silicon waveguide and plasmonic waveguide The plasmonic slot waveguide can be eectively coupled with silicon waveguides by introducing inverse taper in the silicon waveguide tip, as shown in Fig. S.

3 L 750nm. µm Gap Monitor 600nm Si Fig. S. Top view o the plasmonic slot waveguide coupled with silicon waveguides with inverse tip. The transmission T is investigated by monitoring the output monitor calculated by three-dimensional Finitedierence time-domain method (3D-FDTD) simulation, and the coupling eiciency a between the silicon waveguide mode and the plasmonic leaky mode, can be express as a 10log T (Eq.S3) where L = 0 µm is considered. Fig. S3(a) shows the calculated coupling eiciency (CE) as a unction o coupling gap or dierent thicknesses. The coupling eiciency decreases as plasmonic gap increases. Increasing the thickness slightly increases the coupling eiciency. A highest CE o ~-0.86 db can be achieved or small plasmonic gap o 80 nm, which may be challenge to abricate. A CE o db and -1.3 db is expected or plasmonic gap o 10 nm and 150 nm with thickness o 90 nm, respectively. This coupling coniguration is also quite abrication tolerant. Fig. S3(b) presents the CE as a unction o misalignment between the silicon waveguide and plasmonic slot waveguide, showing that a misalignment o 45 nm and 60 nm misalignment tolerance is expected or plasmonic gap o 10 nm and 150 nm, respectively. (a) (b) CE (db) h 100nm h 90nm h 80nm CE (db) Gap 150nm Gap 10nm Gap (nm) Misalignment (nm) Fig. S3. (a) 3D FDTD calculated CE between a silicon waveguide and plasmonic slot waveguide as a unction o plasmonic gap or dierent thickness. (b) 3D FDTD calculated CE as a unction o alignment error or dierent plasmonic gap size. 3

4 S3. Fabrication process The details o the abrication process are shown in Fig. S4. The top silicon o a commercial SOI waer was irst thinned down to 90 nm in order to obtain a comparable thickness o the plasmonic slot waveguide (Fig. S4(i)~S4(ii)) by inductively coupled plasma (ICP) etching (STS Advanced Silicon Etcher). Ater that, standard SOI processing, including e-beam lithography (EBL, JEOL JBX-9300FS, e-beam resist: ZEP50A) and ICP etching, was irst used to abricate the etched silicon waveguides (Fig. S4(iii)~S4(iv)). Then the plasmonic slot waveguide was abricated by a second EBL ollowed by metal deposition and lito process (Fig. S4(v)~S4(vii)). Ater that, the whole chip was coated with 5 nm Al O 3 deposited by Atomic Layer Deposition (ALD) (Fig. S4(viii)) in order to isolate the contact between the plasmonic slot waveguide and graphene layer 1 that will be transerred later. At the same time, AZ514E photoresist was spin-coated onto the graphene covered copper oil and baked at 90 C or 1 min (Fig. S4(ix)~Fig. S4(x)). Following that, AZ514E/graphene membrane was obtained by wet-etching away the copper oil in a Fe(NO 3 ) 3 /H O solution, and transerred onto the silicon chip (Fig. S4(xi)~S4(xii)). Finally, the AZ514E was dissolved in acetone and wet transer o the graphene layer 1 was inished (Fig. S4(xiii)~S4(xiv)). The graphene coverage area was then deined by standard UV lithography and ollowed by oxygen plasma etching and resist removing (Fig. S4(xv)~S4(xvii)). The contact or graphene was then abricated by standard UV lithography ollowed by /Ti deposition and lito process (Fig. S4(xviii)~S4(xx)). Ater that, 1 nm Al was deposited on the chip, and oxidized to Al O 3 in air. This native Al O 3 layer will be seed layer or the urther Al O 3 deposition in ALD machine. Eventually, 10 nm Al O 3 was obtained (Fig. S4(xxi)). The graphene layer was wet-transerred with the same transerring process (Fig. S4(xxii)~S4(xxvii)). The coverage area o graphene layer was then deined by UV lithography ollowed by oxygen plasma etching and resist removing (Fig. S4(xxviii)~S4(xxx)). Finally, the contact or graphene layer was abricated by UV lithography ollowed by /Ti deposition and lito process (Fig. S4(xxxi)~S4(xxxiii)). 4

5 Silicon and plasmonic slot waveguide abrication (i) (ii) (iii) SiO Si substrate (vi) (v) SiO Si substrate (iv) Graphene layer 1 wet transer (ix) (x) graphene AZ514E (xii) Cu (xi) (vii) (viii) Fe(NO3)3/ HO (xiii) Patterning graphene layer 1 and metal contact abrication (xiv) (xv) (xvi) Graphene layer wet transer (xix) (xviii) (xvii) (xxii) (xxv) graphene Cu (xxiii) (xxiv) AZ514E (xx) (xxi) Fe(NO3)3/ HO Patterning graphene layer and metal contact abrication (xxvi) (xxvii) (xxviii) (xxix) (xxxii) (xxxi) (xxx) (xxxiii) Fig.S4. Detailed abrication process low o the graphene-plasmonic slot waveguide based E/O modulator. S4. Characterization setup The experimental setup or measuring the graphene-plasmonic slot waveguide based E/O modulator is exhibited in Fig. S5. Light rom a tunable laser source (TLS, ANDO AQ431A) was polarization-tuned by a polarization controller (PC), and injected into the grating coupler which was designed on the TE mode. The 5

6 light output rom the chip was coupled to the output iber by a grating coupler, and detected by the optical spectral analyzer (OSA, AQ6317B). The electrical contacts or the two graphene layers were connected to a power supply (Keithley 38, High Current Source Measure Unit). In the E/O switching experiment, the square waveorm is generated by a waveorm generator (Stanord Researcher Systems Inc., Model DG 535, Four Channel Digital Delay/Pulse Generator). Power supply OSA PC SSMF TLS Fiber holder 75 Z Y X X Y Z Silicon chip Fig. S5. Experimental setup or characterizing graphene-silicon devices. (a) (b) Graphene layer 1 µm Graphene layer 1 boundary µm Graphene layer (c) Si Fig. S6. Scanning electron microscope (SEM) images o abricated graphene-plasmonic slot waveguide ater (a) contact abrication on the graphene layer 1, corresponding to step Fig. S5(xxi). and (b) contact abrication on the graphene layer, corresponding to the inal step Fig. S5(xxxiii). (c) SEM image o the zoom-in o the coupling area between silicon waveguide with inverse taper and plasmonic slot waveguide, clearly indicating good coverage by two graphene layers. 6

Supporting Information

Supporting Information Electronic Supplementary Material (ESI) for ChemComm. This journal is The Royal Society of Chemistry 2014 Supporting Information Controllable Atmospheric Pressure Growth of Mono-layer, Bi-layer and Tri-layer

More information

5 Years (10 Semester) Integrated UG/PG Program in Physics & Electronics

5 Years (10 Semester) Integrated UG/PG Program in Physics & Electronics Courses Offered: 5 Years (10 ) Integrated UG/PG Program in Physics & Electronics 2 Years (4 ) Course M. Sc. Physics (Specialization in Material Science) In addition to the presently offered specialization,

More information

Supplementary Information Our InGaN/GaN multiple quantum wells (MQWs) based one-dimensional (1D) grating structures

Supplementary Information Our InGaN/GaN multiple quantum wells (MQWs) based one-dimensional (1D) grating structures Polarized white light from hybrid organic/iii-nitrides grating structures M. Athanasiou, R. M. Smith, S. Ghataora and T. Wang* Department of Electronic and Electrical Engineering, University of Sheffield,

More information

TABLE OF CONTENTS GENERAL PHYSICS

TABLE OF CONTENTS GENERAL PHYSICS TABLE OF CONTENTS GENERAL PHYSICS I. Molecule Microscopy 1 Scanning Desorption Molecule Microscopy (SDMM) 1 Scanning Micropipette Molecule Microscope (SMMM) 3 II. Developmental Electron Optics Laboratory

More information

Summer Review Packet AP Calculus

Summer Review Packet AP Calculus Summer Review Packet AP Calculus ************************************************************************ Directions for this packet: On a separate sheet of paper, show your work for each problem in this

More information

EP elements in rings

EP elements in rings EP elements in rings Dijana Mosić, Dragan S. Djordjević, J. J. Koliha Abstract In this paper we present a number of new characterizations of EP elements in rings with involution in purely algebraic terms,

More information

Full-color Subwavelength Printing with Gapplasmonic

Full-color Subwavelength Printing with Gapplasmonic Supporting information for Full-color Subwavelength Printing with Gapplasmonic Optical Antennas Masashi Miyata, Hideaki Hatada, and Junichi Takahara *,, Graduate School of Engineering, Osaka University,

More information

Diode Lasers and Photonic Integrated Circuits

Diode Lasers and Photonic Integrated Circuits Diode Lasers and Photonic Integrated Circuits L. A. COLDREN S. W. CORZINE University of California Santa Barbara, California A WILEY-INTERSCIENCE PUBLICATION JOHN WILEY & SONS, INC. NEW YORK / CHICHESTER

More information

Supporting Information

Supporting Information Electronic Supplementary Material (ESI) for Nanoscale. This journal is The Royal Society of Chemistry 2016 Supporting Information Graphene transfer method 1 : Monolayer graphene was pre-deposited on both

More information

SUPPLEMENTARY FIGURES

SUPPLEMENTARY FIGURES SUPPLEMENTARY FIGURES a b c Supplementary Figure 1 Fabrication of the near-field radiative heat transfer device. a, Main fabrication steps for the bottom Si substrate. b, Main fabrication steps for the

More information

Synthesis and Characterization of New 2,3-Disubstituted Thieno[3,4-b]pyrazines: Tunable Building Blocks for Low Band Gap Conjugated Materials

Synthesis and Characterization of New 2,3-Disubstituted Thieno[3,4-b]pyrazines: Tunable Building Blocks for Low Band Gap Conjugated Materials SUPPORTING INFORMATION Synthesis and Characterization of New 2,3-Disubstituted Thieno[3,4-b]pyrazines: Tunable Building Blocks for Low Band Gap Conjugated Materials Li Wen, Jon P. Nietfeld, Chad M. Amb,

More information

Supporting Information. Fast Synthesis of High-Performance Graphene by Rapid Thermal Chemical Vapor Deposition

Supporting Information. Fast Synthesis of High-Performance Graphene by Rapid Thermal Chemical Vapor Deposition 1 Supporting Information Fast Synthesis of High-Performance Graphene by Rapid Thermal Chemical Vapor Deposition Jaechul Ryu, 1,2, Youngsoo Kim, 4, Dongkwan Won, 1 Nayoung Kim, 1 Jin Sung Park, 1 Eun-Kyu

More information

Rapidity evolution of Wilson lines

Rapidity evolution of Wilson lines Rapidity evolution of Wilson lines I. Balitsky JLAB & ODU QCD evolution 014 13 May 014 QCD evolution 014 13 May 014 1 / Outline 1 High-energy scattering and Wilson lines High-energy scattering and Wilson

More information

Supplementary material for High responsivity mid-infrared graphene detectors with antenna-enhanced photo-carrier generation and collection

Supplementary material for High responsivity mid-infrared graphene detectors with antenna-enhanced photo-carrier generation and collection Supplementary material for High responsivity mid-infrared graphene detectors with antenna-enhanced photo-carrier generation and collection Yu Yao 1, Raji Shankar 1, Patrick Rauter 1, Yi Song 2, Jing Kong

More information

Introduction to Semiconductor Integrated Optics

Introduction to Semiconductor Integrated Optics Introduction to Semiconductor Integrated Optics Hans P. Zappe Artech House Boston London Contents acknowledgments reface itroduction Chapter 1 Basic Electromagnetics 1 1.1 General Relationships 1 1.1.1

More information

Optimum Access Waveguide Width for 1xN Multimode. Interference Couplers on Silicon Nanomembrane

Optimum Access Waveguide Width for 1xN Multimode. Interference Couplers on Silicon Nanomembrane Optimum Access Waveguide Width for 1xN Multimode Interference Couplers on Silicon Nanomembrane Amir Hosseini 1,*, Harish Subbaraman 2, David Kwong 1, Yang Zhang 1, and Ray T. Chen 1,* 1 Microelectronic

More information

SUPPLEMENTARY INFORMATION

SUPPLEMENTARY INFORMATION SUPPLEMENTARY INFORMATION Supplementary Information I. Schematic representation of the zero- n superlattices Schematic representation of a superlattice with 3 superperiods is shown in Fig. S1. The superlattice

More information

Highly Efficient Graphene-Based Optical Modulator With Edge Plasmonic Effect

Highly Efficient Graphene-Based Optical Modulator With Edge Plasmonic Effect Highly Efficient Graphene-Based Optical Modulator With Edge Plasmonic Effect Ran Hao, Ziwei Ye, Xiliang Peng, Yijie Gu, JianYao Jiao, Haixia Zhu, Wei E. I. Sha, and Erping Li Key Laboratory of Advanced

More information

Figure 1: Graphene release, transfer and stacking processes. The graphene stacking began with CVD

Figure 1: Graphene release, transfer and stacking processes. The graphene stacking began with CVD Supplementary figure 1 Graphene Growth and Transfer Graphene PMMA FeCl 3 DI water Copper foil CVD growth Back side etch PMMA coating Copper etch in 0.25M FeCl 3 DI water rinse 1 st transfer DI water 1:10

More information

Supporting Information

Supporting Information Supporting Information Devlin et al. 10.1073/pnas.1611740113 Optical Characterization We deposit blanket TiO films via ALD onto silicon substrates to prepare samples for spectroscopic ellipsometry (SE)

More information

Two-Dimensional (C 4 H 9 NH 3 ) 2 PbBr 4 Perovskite Crystals for. High-Performance Photodetector. Supporting Information for

Two-Dimensional (C 4 H 9 NH 3 ) 2 PbBr 4 Perovskite Crystals for. High-Performance Photodetector. Supporting Information for Supporting Information for Two-Dimensional (C 4 H 9 NH 3 ) 2 PbBr 4 Perovskite Crystals for High-Performance Photodetector Zhenjun Tan,,ǁ, Yue Wu,ǁ, Hao Hong, Jianbo Yin, Jincan Zhang,, Li Lin, Mingzhan

More information

Graphene photodetectors with ultra-broadband and high responsivity at room temperature

Graphene photodetectors with ultra-broadband and high responsivity at room temperature SUPPLEMENTARY INFORMATION DOI: 10.1038/NNANO.2014.31 Graphene photodetectors with ultra-broadband and high responsivity at room temperature Chang-Hua Liu 1, You-Chia Chang 2, Ted Norris 1.2* and Zhaohui

More information

Transient Analysis of Single Phase Transformer Using State Model

Transient Analysis of Single Phase Transformer Using State Model Transient Analysis of Single Phase Transformer Using State Model Rikta Majumder 1, Suman Ghosh 2, Rituparna Mukherjee 3 Assistant Professor, Department of Electrical Engineering, GNIT, Kolkata, West Bengal,

More information

Near-Field Nano/Atom Optics and Technology

Near-Field Nano/Atom Optics and Technology M. Ohtsu (Ed.) Near-Field Nano/Atom Optics and Technology With 189 Figures / Springer Preface List of Contributors V VII XIII 1. Introduction 1 1.1 Near-Field Optics and Related Technologies 1 1.2 History

More information

I) Simplifying fractions: x x. 1) 1 1 y x. 1 1 x 1. 4 x. 13x. x y xy. x 2. Factoring: 10) 13) 12) III) Solving: x 9 Prime (using only) 11)

I) Simplifying fractions: x x. 1) 1 1 y x. 1 1 x 1. 4 x. 13x. x y xy. x 2. Factoring: 10) 13) 12) III) Solving: x 9 Prime (using only) 11) AP Calculus Summer Packet Answer Key Reminders:. This is not an assignment.. This will not be collected.. You WILL be assessed on these skills at various times throughout the course.. You are epected to

More information

2008,, Jan 7 All-Paid US-Japan Winter School on New Functionalities in Glass. Controlling Light with Nonlinear Optical Glasses and Plasmonic Glasses

2008,, Jan 7 All-Paid US-Japan Winter School on New Functionalities in Glass. Controlling Light with Nonlinear Optical Glasses and Plasmonic Glasses 2008,, Jan 7 All-Paid US-Japan Winter School on New Functionalities in Glass Photonic Glass Controlling Light with Nonlinear Optical Glasses and Plasmonic Glasses Takumi FUJIWARA Tohoku University Department

More information

SUPPLEMENTAL MATERIAL I: SEM IMAGE OF PHOTONIC CRYSTAL RESONATOR

SUPPLEMENTAL MATERIAL I: SEM IMAGE OF PHOTONIC CRYSTAL RESONATOR 1 SUPPLEMENTAL MATERIAL I: SEM IMAGE OF PHOTONIC CRYSTAL RESONATOR Figure S1 below is a scanning electronic microscopy image of a typical evanescently coupled photonic crystal resonator used in these experiments.

More information

ORION NanoFab: An Overview of Applications. White Paper

ORION NanoFab: An Overview of Applications. White Paper ORION NanoFab: An Overview of Applications White Paper ORION NanoFab: An Overview of Applications Author: Dr. Bipin Singh Carl Zeiss NTS, LLC, USA Date: September 2012 Introduction With the advancement

More information

Supporting Information. Metallic Adhesion Layer Induced Plasmon Damping and Molecular Linker as a Non-Damping Alternative

Supporting Information. Metallic Adhesion Layer Induced Plasmon Damping and Molecular Linker as a Non-Damping Alternative Supporting Information Metallic Adhesion Layer Induced Plasmon Damping and Molecular Linker as a Non-Damping Alternative Terefe G. Habteyes, Scott Dhuey, Erin Wood, Daniel Gargas, Stefano Cabrini, P. James

More information

Supplementary Figure 1 Detailed illustration on the fabrication process of templatestripped

Supplementary Figure 1 Detailed illustration on the fabrication process of templatestripped Supplementary Figure 1 Detailed illustration on the fabrication process of templatestripped gold substrate. (a) Spin coating of hydrogen silsesquioxane (HSQ) resist onto the silicon substrate with a thickness

More information

Dielectric Meta-Reflectarray for Broadband Linear Polarization Conversion and Optical Vortex Generation

Dielectric Meta-Reflectarray for Broadband Linear Polarization Conversion and Optical Vortex Generation Supporting Information Dielectric Meta-Reflectarray for Broadband Linear Polarization Conversion and Optical Vortex Generation Yuanmu Yang, Wenyi Wang, Parikshit Moitra, Ivan I. Kravchenko, Dayrl P. Briggs,

More information

Low Power Phase Change Memory via Block Copolymer Self-assembly Technology

Low Power Phase Change Memory via Block Copolymer Self-assembly Technology Low Power Phase Change Memory via Block Copolymer Self-assembly Technology Beom Ho Mun 1, Woon Ik Park 1, You Yin 2, Byoung Kuk You 1, Jae Jin Yun 1, Kung Ho Kim 1, Yeon Sik Jung 1*, and Keon Jae Lee 1*

More information

DIELECTRIC PROPERTIES OF MIXTURES OF CLAY-WATER-ORGANIC COMPOUNDS

DIELECTRIC PROPERTIES OF MIXTURES OF CLAY-WATER-ORGANIC COMPOUNDS DIELECTRIC PROPERTIES OF MIXTURES OF CLAY-WATER-ORGANIC COMPOUNDS By Birsen Canan ABSTRACT The propagation of an electromagnetic wave through a material is dependent on the electrical and magnetic properties

More information

Nano fabrication and optical characterization of nanostructures

Nano fabrication and optical characterization of nanostructures Introduction to nanooptics, Summer Term 2012, Abbe School of Photonics, FSU Jena, Prof. Thomas Pertsch Nano fabrication and optical characterization of nanostructures Lecture 12 1 Optical characterization

More information

OPTI510R: Photonics. Khanh Kieu College of Optical Sciences, University of Arizona Meinel building R.626

OPTI510R: Photonics. Khanh Kieu College of Optical Sciences, University of Arizona Meinel building R.626 OPTI510R: Photonics Khanh Kieu College of Optical Sciences, University of Arizona kkieu@optics.arizona.edu Meinel building R.626 Announcements HW#3 is assigned due Feb. 20 st Mid-term exam Feb 27, 2PM

More information

Supporting Online Material for

Supporting Online Material for www.sciencemag.org/cgi/content/full/327/5966/662/dc Supporting Online Material for 00-GHz Transistors from Wafer-Scale Epitaxial Graphene Y.-M. Lin,* C. Dimitrakopoulos, K. A. Jenkins, D. B. Farmer, H.-Y.

More information

Supplementary Figure 1: Micromechanical cleavage of graphene on oxygen plasma treated Si/SiO2. Supplementary Figure 2: Comparison of hbn yield.

Supplementary Figure 1: Micromechanical cleavage of graphene on oxygen plasma treated Si/SiO2. Supplementary Figure 2: Comparison of hbn yield. 1 2 3 4 Supplementary Figure 1: Micromechanical cleavage of graphene on oxygen plasma treated Si/SiO 2. Optical microscopy images of three examples of large single layer graphene flakes cleaved on a single

More information

1. Fabrication. Lukáš Ondič a, Marian Varga a, Karel Hruška a, Jan Fait a,b and Peter Kapusta c

1. Fabrication. Lukáš Ondič a, Marian Varga a, Karel Hruška a, Jan Fait a,b and Peter Kapusta c Supporting information to Enhanced Extraction of Silicon-Vacancy Centers Light Emission Using Bottom-Up Engineered Polycrystalline Diamond Photonic Crystal Slabs Lukáš Ondič a, Marian Varga a, Karel Hruška

More information

Distributed feedback semiconductor lasers

Distributed feedback semiconductor lasers Distributed feedback semiconductor lasers John Carroll, James Whiteaway & Dick Plumb The Institution of Electrical Engineers SPIE Optical Engineering Press 1 Preface Acknowledgments Principal abbreviations

More information

GRATING CLASSIFICATION

GRATING CLASSIFICATION GRATING CLASSIFICATION SURFACE-RELIEF GRATING TYPES GRATING CLASSIFICATION Transmission or Reflection Classification based on Regime DIFFRACTION BY GRATINGS Acousto-Optics Diffractive Optics Integrated

More information

SUPPLEMENTARY INFORMATION

SUPPLEMENTARY INFORMATION In the format provided by the authors and unedited. SUPPLEMENTARY INFORMATION DOI: 10.1038/NPHOTON.017.65 Imaging exciton-polariton transport in MoSe waveguides F. Hu 1,, Y. Luan 1,, M. E. Scott 3, J.

More information

CURRENT STATUS OF NANOIMPRINT LITHOGRAPHY DEVELOPMENT IN CNMM

CURRENT STATUS OF NANOIMPRINT LITHOGRAPHY DEVELOPMENT IN CNMM U.S. -KOREA Forums on Nanotechnology 1 CURRENT STATUS OF NANOIMPRINT LITHOGRAPHY DEVELOPMENT IN CNMM February 17 th 2005 Eung-Sug Lee,Jun-Ho Jeong Korea Institute of Machinery & Materials U.S. -KOREA Forums

More information

Supplementary Information. "Enhanced light-matter interactions in. graphene-covered gold nanovoid arrays"

Supplementary Information. Enhanced light-matter interactions in. graphene-covered gold nanovoid arrays Supplementary Information "Enhanced light-matter interactions in graphene-covered gold nanovoid arrays" Xiaolong Zhu,, Lei Shi, Michael S. Schmidt, Anja Boisen, Ole Hansen,, Jian Zi, Sanshui Xiao,,, and

More information

MSN551 LITHOGRAPHY II

MSN551 LITHOGRAPHY II MSN551 Introduction to Micro and Nano Fabrication LITHOGRAPHY II E-Beam, Focused Ion Beam and Soft Lithography Why need electron beam lithography? Smaller features are required By electronics industry:

More information

Factorizations of b n ±1, Up to High Powers. Third Edition. John Brillhart, D. H. Lehmer J. L. Selfridge, Bryant Tuckerman, and S. S. Wagstaff, Jr.

Factorizations of b n ±1, Up to High Powers. Third Edition. John Brillhart, D. H. Lehmer J. L. Selfridge, Bryant Tuckerman, and S. S. Wagstaff, Jr. CONTEMPORARY MATHEMATICS 22 Factorizations of b n ±1, b = 2, 3, 5, 6, 7,10, 11, 12 Up to High Powers Third Edition John Brillhart, D. H. Lehmer J. L. Selfridge, Bryant Tuckerman, and S. S. Wagstaff, Jr.

More information

X-Rays From Laser Plasmas

X-Rays From Laser Plasmas X-Rays From Laser Plasmas Generation and Applications I. C. E. TURCU CLRC Rutherford Appleton Laboratory, UK and J. B. DANCE JOHN WILEY & SONS Chichester New York Weinheim Brisbane Singapore Toronto Contents

More information

Refraction and Dispersion in Nonlinear Photonic Crystal Superlattices

Refraction and Dispersion in Nonlinear Photonic Crystal Superlattices Refraction and Dispersion in Nonlinear Photonic Crystal Superlattices LEOS 18 th Annual Meeting Sydney, Australia Monday, 24 October 2005 Curtis W. Neff, Tsuyoshi Yamashita and Christopher J. Summers Presented

More information

Supporting Information. Direct Growth of Graphene Films on 3D Grating. Structural Quartz Substrates for High-performance. Pressure-Sensitive Sensor

Supporting Information. Direct Growth of Graphene Films on 3D Grating. Structural Quartz Substrates for High-performance. Pressure-Sensitive Sensor Supporting Information Direct Growth of Graphene Films on 3D Grating Structural Quartz Substrates for High-performance Pressure-Sensitive Sensor Xuefen Song, a,b Tai Sun b Jun Yang, b Leyong Yu, b Dacheng

More information

Gold nanothorns macroporous silicon hybrid structure: a simple and ultrasensitive platform for SERS

Gold nanothorns macroporous silicon hybrid structure: a simple and ultrasensitive platform for SERS Supporting Information Gold nanothorns macroporous silicon hybrid structure: a simple and ultrasensitive platform for SERS Kamran Khajehpour,* a Tim Williams, b,c Laure Bourgeois b,d and Sam Adeloju a

More information

A. Optimizing the growth conditions of large-scale graphene films

A. Optimizing the growth conditions of large-scale graphene films 1 A. Optimizing the growth conditions of large-scale graphene films Figure S1. Optical microscope images of graphene films transferred on 300 nm SiO 2 /Si substrates. a, Images of the graphene films grown

More information

Numerical Calculation of Coupling Efficiency for an Elegant Hermite-Cosh-Gaussian Beams

Numerical Calculation of Coupling Efficiency for an Elegant Hermite-Cosh-Gaussian Beams International Journal o Optics and Photonics (IJOP) Vol. 6, No., Summer-Fall Numerical Calculation o Coupling Eiciency or an Elegant Hermite-Cosh-Gaussian Beams A. Keshavarz* and M. Kazempour Department

More information

Ultra-Slow Light Propagation in Room Temperature Solids. Robert W. Boyd

Ultra-Slow Light Propagation in Room Temperature Solids. Robert W. Boyd Ultra-Slow Light Propagation in Room Temperature Solids Robert W. Boyd The Institute of Optics and Department of Physics and Astronomy University of Rochester, Rochester, NY USA http://www.optics.rochester.edu

More information

Supplementary materials for: Large scale arrays of single layer graphene resonators

Supplementary materials for: Large scale arrays of single layer graphene resonators Supplementary materials for: Large scale arrays of single layer graphene resonators Arend M. van der Zande* 1, Robert A. Barton 2, Jonathan S. Alden 2, Carlos S. Ruiz-Vargas 2, William S. Whitney 1, Phi

More information

Surface-Plasmon Sensors

Surface-Plasmon Sensors Surface-Plasmon Sensors Seok Ho Song Physics Department in Hanyang University Dongho Shin, Jaewoong Yun, Kihyong Choi Gwansu Lee, Samsung Electro-Mechanics Contents Dispersion relation of surface plasmons

More information

Supporting Information

Supporting Information Electronic Supplementary Material (ESI) for ChemComm. This journal is The Royal Society of Chemistry 2014 Supporting Information High-k Polymer/Graphene Oxide Dielectrics for Low-Voltage Flexible Nonvolatile

More information

Direct Measurement of Adhesion Energy of Monolayer Graphene As-Grown. on Copper and Its Application to Renewable Transfer Process

Direct Measurement of Adhesion Energy of Monolayer Graphene As-Grown. on Copper and Its Application to Renewable Transfer Process SUPPORTING INFORMATION Direct Measurement of Adhesion Energy of Monolayer Graphene As-Grown on Copper and Its Application to Renewable Transfer Process Taeshik Yoon 1, Woo Cheol Shin 2, Taek Yong Kim 2,

More information

arrays for mid-infrared plasmonics

arrays for mid-infrared plasmonics Scalable and tunable periodic graphene nano-hole arrays for mid-infrared plasmonics Kavitha K. Gopalan*, Bruno Paulillo*, David M.A. Mackenzie +, Daniel Rodrigo*, Nestor Bareza*, Patrick R. Whelan +, Abhay

More information

Supplementary Materials for

Supplementary Materials for advances.sciencemag.org/cgi/content/full/3/9/e1701222/dc1 Supplementary Materials for Moisture-triggered physically transient electronics Yang Gao, Ying Zhang, Xu Wang, Kyoseung Sim, Jingshen Liu, Ji Chen,

More information

Fe (III), Co (II), Ni(II), Cu(II) -3,3'-(5- -1,2,4- Co(II), Ni(II) 121

Fe (III), Co (II), Ni(II), Cu(II) -3,3'-(5- -1,2,4- Co(II), Ni(II) 121 .. -1,2,4-2002 3 .,. -1,2,4- / -. :. 2002. 240.,, - -1,2,4-. (5-, - (), - -3,3-(5--1,2,4- - :, -..,, -,, -. :.. ; -. ; - - ().., 2002.,., 2002 4 3 8 10 1. -1,2,4-, 5--1()-1,2,3,4-14 1.1. -1,2,4-14 1.2.

More information

Methods for Marsh Futures Area of Interest (AOI) Elevation Zone Delineation

Methods for Marsh Futures Area of Interest (AOI) Elevation Zone Delineation PARTNERSHIP FOR THE DELAWARE ESTUARY Science Group Methods for Marsh Futures Area of Interest (AOI) Elevation Zone Delineation Date Prepared: 07/30/2015 Prepared By: Joshua Moody Suggested Citation: Moody,

More information

IC Fabrication Technology

IC Fabrication Technology IC Fabrication Technology * History: 1958-59: J. Kilby, Texas Instruments and R. Noyce, Fairchild * Key Idea: batch fabrication of electronic circuits n entire circuit, say 10 7 transistors and 5 levels

More information

Self-study problems and questions Processing and Device Technology, FFF110/FYSD13

Self-study problems and questions Processing and Device Technology, FFF110/FYSD13 Self-study problems and questions Processing and Device Technology, FFF110/FYSD13 Version 2016_01 In addition to the problems discussed at the seminars and at the lectures, you can use this set of problems

More information

A Novel Approach to the Layer Number-Controlled and Grain Size- Controlled Growth of High Quality Graphene for Nanoelectronics

A Novel Approach to the Layer Number-Controlled and Grain Size- Controlled Growth of High Quality Graphene for Nanoelectronics Supporting Information A Novel Approach to the Layer Number-Controlled and Grain Size- Controlled Growth of High Quality Graphene for Nanoelectronics Tej B. Limbu 1,2, Jean C. Hernández 3, Frank Mendoza

More information

Electronic Supplementary Information. Au/Ag Core-shell Nanocuboids for High-efficiency Organic Solar Cells with Broadband Plasmonic Enhancement

Electronic Supplementary Information. Au/Ag Core-shell Nanocuboids for High-efficiency Organic Solar Cells with Broadband Plasmonic Enhancement Electronic Supplementary Material (ESI) for Energy & Environmental Science. This journal is The Royal Society of Chemistry 2016 Electronic Supplementary Information Au/Ag Core-shell Nanocuboids for High-efficiency

More information

Supplementary Information. Back-Contacted Hybrid Organic-Inorganic Perovskite Solar Cells

Supplementary Information. Back-Contacted Hybrid Organic-Inorganic Perovskite Solar Cells Electronic Supplementary Material (ESI) for Journal of Materials Chemistry C. This journal is The Royal Society of Chemistry 2016 Journal of Materials Chemistry C Supplementary Information Back-Contacted

More information

Supporting Information: Metasurface Optical Solar Reflectors using AZO Transparent Conducting Oxides for Radiative Cooling of Spacecraft

Supporting Information: Metasurface Optical Solar Reflectors using AZO Transparent Conducting Oxides for Radiative Cooling of Spacecraft Supporting Information: Metasurface Optical Solar Reflectors using AZO Transparent Conducting Oxides for Radiative Cooling of Spacecraft K. Sun 1,2, C. A. Riedel 1,2, Y. Wang 1,2, A. Urbani 3, M. Simeoni

More information

Biology IA & IB Syllabus Mr. Johns/Room 2012/August,

Biology IA & IB Syllabus Mr. Johns/Room 2012/August, Biology IA & IB Syllabus Mr. Johns/Room 2012/August, 2017-2018 Description of Course: A study of the natural world centers on cellular structure and the processes of life. First semester topics include:

More information

Supporting Information for: Gate-Variable Mid-Infrared Optical Transitions in a (Bi 1-

Supporting Information for: Gate-Variable Mid-Infrared Optical Transitions in a (Bi 1- Supporting Information for: Gate-Variable Mid-Infrared Optical Transitions in a (Bi 1- xsb x ) 2 Te 3 Topological Insulator 1 William S. Whitney, 2,3 Victor W. Brar, 4 Yunbo Ou, 5,6 Yinming Shao, 2 Artur

More information

UNIVERSITY OF CALIFORNIA College of Engineering Department of Electrical Engineering and Computer Sciences. Professor Chenming Hu.

UNIVERSITY OF CALIFORNIA College of Engineering Department of Electrical Engineering and Computer Sciences. Professor Chenming Hu. UNIVERSITY OF CALIFORNIA College of Engineering Department of Electrical Engineering and Computer Sciences EECS 130 Spring 2009 Professor Chenming Hu Midterm I Name: Closed book. One sheet of notes is

More information

Supplementary Information

Supplementary Information Electronic Supplementary Material (ESI) for Physical Chemistry Chemical Physics. This journal is the Owner Societies 2015 Supplementary Information Vertical Heterostructures of MoS2 and Graphene Nanoribbons

More information

Bidirectional Plasmonic Coloration with Gold Nanoparticles by Wavelength-Switched Photoredox

Bidirectional Plasmonic Coloration with Gold Nanoparticles by Wavelength-Switched Photoredox Electronic Supplementary Material (ESI) for Nanoscale. This journal is The Royal Society of Chemistry 2018 Electronic Supplementary Material (ESI) for Nanoscale. This journal is The Royal Society of Chemistry

More information

Supplementary Methods A. Sample fabrication

Supplementary Methods A. Sample fabrication Supplementary Methods A. Sample fabrication Supplementary Figure 1(a) shows the SEM photograph of a typical sample, with three suspended graphene resonators in an array. The cross-section schematic is

More information

Chromatically Unique Bipartite Graphs With Certain 3-independent Partition Numbers III ABSTRACT

Chromatically Unique Bipartite Graphs With Certain 3-independent Partition Numbers III ABSTRACT Malaysian Chromatically Journal of Mathematical Unique Biparte Sciences Graphs with 1(1: Certain 139-16 3-Independent (007 Partition Numbers III Chromatically Unique Bipartite Graphs With Certain 3-independent

More information

Model for Dredging a Horizontal Trapezoidal Open Channel with Hydraulic Jump

Model for Dredging a Horizontal Trapezoidal Open Channel with Hydraulic Jump Journal of Mathematics Research; Vol. 4, No. 3; 2012 ISSN 1916-9795 E-ISSN 1916-9809 Published by Canadian Center of Science and Education Model for Dredging a Horizontal Trapezoidal Open Channel with

More information

SUPPORTING INFORMATION: Titanium Contacts to Graphene: Process-Induced Variability in Electronic and Thermal Transport

SUPPORTING INFORMATION: Titanium Contacts to Graphene: Process-Induced Variability in Electronic and Thermal Transport SUPPORTING INFORMATION: Titanium Contacts to Graphene: Process-Induced Variability in Electronic and Thermal Transport Keren M. Freedy 1, Ashutosh Giri 2, Brian M. Foley 2, Matthew R. Barone 1, Patrick

More information

Some more detailed remarks: 1) Explain how the geometry of the slow light PhC cavity is selected. Is it an optimized version?

Some more detailed remarks: 1) Explain how the geometry of the slow light PhC cavity is selected. Is it an optimized version? Reviewers' Comments: Reviewer #1 (Remarks to the Author) Graphene-based microheaters with the combination of slow-light effect in silicon photonic crystal waveguides are utilized to enhance the heating

More information

SUPPLEMENTARY INFORMATION

SUPPLEMENTARY INFORMATION In the format provided by the authors and unedited. DOI: 10.1038/NPHOTON.2016.254 Measurement of non-monotonic Casimir forces between silicon nanostructures Supplementary information L. Tang 1, M. Wang

More information

OPTICAL PROPERTIES AND SPECTROSCOPY OF NANOAAATERIALS. Jin Zhong Zhang. World Scientific TECHNISCHE INFORMATIONSBIBLIOTHEK

OPTICAL PROPERTIES AND SPECTROSCOPY OF NANOAAATERIALS. Jin Zhong Zhang. World Scientific TECHNISCHE INFORMATIONSBIBLIOTHEK OPTICAL PROPERTIES AND SPECTROSCOPY OF NANOAAATERIALS Jin Zhong Zhang University of California, Santa Cruz, USA TECHNISCHE INFORMATIONSBIBLIOTHEK Y World Scientific NEW JERSEY. t'on.don SINGAPORE «'BEIJING

More information

Nanocomposite photonic crystal devices

Nanocomposite photonic crystal devices Nanocomposite photonic crystal devices Xiaoyong Hu, Cuicui Lu, Yulan Fu, Yu Zhu, Yingbo Zhang, Hong Yang, Qihuang Gong Department of Physics, Peking University, Beijing, P. R. China Contents Motivation

More information

Photolithography 光刻 Part II: Photoresists

Photolithography 光刻 Part II: Photoresists 微纳光电子材料与器件工艺原理 Photolithography 光刻 Part II: Photoresists Xing Sheng 盛兴 Department of Electronic Engineering Tsinghua University xingsheng@tsinghua.edu.cn 1 Photolithography 光刻胶 负胶 正胶 4 Photolithography

More information

Toward Clean Suspended CVD Graphene

Toward Clean Suspended CVD Graphene Electronic Supplementary Material (ESI) for RSC Advances. This journal is The Royal Society of Chemistry 2016 Supplemental information for Toward Clean Suspended CVD Graphene Alexander Yulaev 1,2,3, Guangjun

More information

Surface plasmon waveguides

Surface plasmon waveguides Surface plasmon waveguides Introduction Size Mismatch between Scaled CMOS Electronics and Planar Photonics Photonic integrated system with subwavelength scale components CMOS transistor: Medium-sized molecule

More information

U-Shaped Nano-Apertures for Enhanced Optical Transmission and Resolution

U-Shaped Nano-Apertures for Enhanced Optical Transmission and Resolution U-Shaped Nano-Apertures for Enhanced Optical Transmission and Resolution Mustafa Turkmen 1,2,3, Serap Aksu 3,4, A. Engin Çetin 2,3, Ahmet A. Yanik 2,3, Alp Artar 2,3, Hatice Altug 2,3,4, * 1 Electrical

More information

SUPPLEMENTARY INFORMATION

SUPPLEMENTARY INFORMATION SUPPLEMENTARY INFORMATION Nano-scale plasmonic motors driven by light Ming Liu 1, Thomas Zentgraf 1, Yongmin Liu 1, Guy Bartal 1 & Xiang Zhang 1,2 1 NSF Nano-scale Science and Engineering Center (NSEC),

More information

Asymptote. 2 Problems 2 Methods

Asymptote. 2 Problems 2 Methods Asymptote Problems Methods Problems Assume we have the ollowing transer unction which has a zero at =, a pole at = and a pole at =. We are going to look at two problems: problem is where >> and problem

More information

crystals were phase-pure as determined by x-ray diffraction. Atomically thin MoS 2 flakes were

crystals were phase-pure as determined by x-ray diffraction. Atomically thin MoS 2 flakes were Nano Letters (214) Supplementary Information for High Mobility WSe 2 p- and n-type Field Effect Transistors Contacted by Highly Doped Graphene for Low-Resistance Contacts Hsun-Jen Chuang, Xuebin Tan, Nirmal

More information

Resonator Fabrication for Cavity Enhanced, Tunable Si/Ge Quantum Cascade Detectors

Resonator Fabrication for Cavity Enhanced, Tunable Si/Ge Quantum Cascade Detectors Resonator Fabrication for Cavity Enhanced, Tunable Si/Ge Quantum Cascade Detectors M. Grydlik 1, P. Rauter 1, T. Fromherz 1, G. Bauer 1, L. Diehl 2, C. Falub 2, G. Dehlinger 2, H. Sigg 2, D. Grützmacher

More information

Large Scale Direct Synthesis of Graphene on Sapphire and Transfer-free Device Fabrication

Large Scale Direct Synthesis of Graphene on Sapphire and Transfer-free Device Fabrication Supplementary Information Large Scale Direct Synthesis of Graphene on Sapphire and Transfer-free Device Fabrication Hyun Jae Song a, Minhyeok Son a, Chibeom Park a, Hyunseob Lim a, Mark P. Levendorf b,

More information

Real-Time Software Transactional Memory: Contention Managers, Time Bounds, and Implementations

Real-Time Software Transactional Memory: Contention Managers, Time Bounds, and Implementations Real-Time Software Transactional Memory: Contention Managers, Time Bounds, and Implementations Mohammed El-Shambakey Dissertation Submitted to the Faculty of the Virginia Polytechnic Institute and State

More information

Supplementary Information for. Vibrational Spectroscopy at Electrolyte Electrode Interfaces with Graphene Gratings

Supplementary Information for. Vibrational Spectroscopy at Electrolyte Electrode Interfaces with Graphene Gratings Supplementary Information for Vibrational Spectroscopy at Electrolyte Electrode Interfaces with Graphene Gratings Supplementary Figure 1. Simulated from pristine graphene gratings at different Fermi energy

More information

EE115C Winter 2017 Digital Electronic Circuits. Lecture 3: MOS RC Model, CMOS Manufacturing

EE115C Winter 2017 Digital Electronic Circuits. Lecture 3: MOS RC Model, CMOS Manufacturing EE115C Winter 2017 Digital Electronic Circuits Lecture 3: MOS RC Model, CMOS Manufacturing Agenda MOS Transistor: RC Model (pp. 104-113) S R on D CMOS Manufacturing Process (pp. 36-46) S S C GS G G C GD

More information

Hydrodynamics of Diamond-Shaped Gradient Nanopillar Arrays for Effective. DNA Translocation into Nanochannels. (Supplementary information)

Hydrodynamics of Diamond-Shaped Gradient Nanopillar Arrays for Effective. DNA Translocation into Nanochannels. (Supplementary information) Hydrodynamics of Diamond-Shaped Gradient Nanopillar Arrays for Effective DNA Translocation into Nanochannels (Supplementary information) Chao Wang 1, Robert L. Bruce, Elizabeth A. Duch, Jyotica V. Patel,

More information

Free-Space MEMS Tunable Optical Filter in (110) Silicon

Free-Space MEMS Tunable Optical Filter in (110) Silicon Free-Space MEMS Tunable Optical Filter in (110) Silicon Ariel Lipson & Eric M. Yeatman Optical & Semiconductor Group Outline Device - Optical Filter Optical analysis Fabrication Schematic Fabricated 2

More information

SUPPLEMENTARY INFORMATION. Observation of tunable electrical bandgap in large-area twisted bilayer graphene synthesized by chemical vapor deposition

SUPPLEMENTARY INFORMATION. Observation of tunable electrical bandgap in large-area twisted bilayer graphene synthesized by chemical vapor deposition SUPPLEMENTARY INFORMATION Observation of tunable electrical bandgap in large-area twisted bilayer graphene synthesized by chemical vapor deposition Jing-Bo Liu 1 *, Ping-Jian Li 1 *, Yuan-Fu Chen 1, Ze-Gao

More information

Selective Manipulation of Molecules by Electrostatic Force and Detection of Single Molecules in Aqueous Solution

Selective Manipulation of Molecules by Electrostatic Force and Detection of Single Molecules in Aqueous Solution Supporting Information Selective Manipulation of Molecules by Electrostatic Force and Detection of Single Molecules in Aqueous Solution Zhongbo Yan, Ming Xia, Pei Zhang, and Ya-Hong Xie* Department of

More information

Electronic Supplementary Information for

Electronic Supplementary Information for Electronic Supplementary Material (ESI) for Journal of Materials Chemistry C. This journal is The Royal Society of Chemistry 018 Electronic Supplementary Information for Broadband Photoresponse Based on

More information

Supplementary Information

Supplementary Information Supplementary Information Supplementary Figure 1. fabrication. A schematic of the experimental setup used for graphene Supplementary Figure 2. Emission spectrum of the plasma: Negative peaks indicate an

More information

GRAPHENE ON THE Si-FACE OF SILICON CARBIDE USER MANUAL

GRAPHENE ON THE Si-FACE OF SILICON CARBIDE USER MANUAL GRAPHENE ON THE Si-FACE OF SILICON CARBIDE USER MANUAL 1. INTRODUCTION Silicon Carbide (SiC) is a wide band gap semiconductor that exists in different polytypes. The substrate used for the fabrication

More information

Topic 2060 Gibbs Energies; Salt Solutions; Aqueous Mixtures The solubilities of chemical substance j in two liquids l

Topic 2060 Gibbs Energies; Salt Solutions; Aqueous Mixtures The solubilities of chemical substance j in two liquids l Topic 6 Gibbs Energies; Salt Solutions; Aqueous Mixtures The solubilities of chemical substance in two liquids l and l (at the same T and p) offers a method for comparing the reference chemical potentials,

More information

Multicolor Graphene Nanoribbon/Semiconductor Nanowire. Heterojunction Light-Emitting Diodes

Multicolor Graphene Nanoribbon/Semiconductor Nanowire. Heterojunction Light-Emitting Diodes Multicolor Graphene Nanoribbon/Semiconductor Nanowire Heterojunction Light-Emitting Diodes Yu Ye, a Lin Gan, b Lun Dai, *a Hu Meng, a Feng Wei, a Yu Dai, a Zujin Shi, b Bin Yu, a Xuefeng Guo, b and Guogang

More information