Kinetics & Equilibrium. Le Châtelier's Principle. reaction rates. + Packet 9: Daily Assignment Sheet '19 Name: Per

Size: px
Start display at page:

Download "Kinetics & Equilibrium. Le Châtelier's Principle. reaction rates. + Packet 9: Daily Assignment Sheet '19 Name: Per"

Transcription

1 Daily Assignment Sheet '19 Name: Per (check them off as you complete them) Due Date Assignment Thur 2/21 Do clock reaction lab Fri 2/22 Do Not Write In That Box Below Mon 2/25 Do WS 9.1 Tue 2/26 Do WS (side 1) Wed 2/27 Do WS (side 2) Thur 2/28 Do WS 9.3 Fri 3/1 Do WS 9.4 -mustard day - play video games today Mon 3/4 Do WS 9.5 QUIZ TODAY PACKETS DUE TODAY Come to class with packets ready to be turned in, with the above underlined assignments in proper order, in your pocket folder (1/2 pt), with this page as the cover page & grade report stapled inside (1/2 pt) For 1/2 point, do not turn in old packets. -1/2 for no name on top. + Packet 9: Kinetics & Equilibrium Le Châtelier's Principle FOR OFFICE USE ONLY do not write in this space all claims filed must be submitted by the end of the fiscal year on form #G-55. reaction rates

2 + WS 9.1 Reaction Kinetics & Rate Laws 1. According to collision theory, in order for a chemical reaction to proceed, the reactants must collide with proper and with sufficient. 2. Draw a graph of energy vs reaction progress as was shown in class. 3. Factors which can change the speed of a reaction are: 1) 2) 3) 4) Rate Laws After timing the clock reaction at various concentrations, you have probably come to appreciate that the rate of a reaction depends (in part) on the of the. A rate law is an equation that relates the rate of a reaction to the concentration of reactants. 2 NO2(g) + F2(g) ---> 2 NO2F(g) rate = k[no2] a [F2] b k is called the rate constant. It is a proportionality constant in the relationship between rate and concentrations. In general, when k is small, the reaction is. When k is large, the reaction is. The exponents "a" & "b" must be determined by analyzing the experimental data, like below: [NO2] (mol/l) [F2] (mol/l) initial rate (mol/l s) experiment x 10-5 experiment x 10-5 experiment x 10-5 Compare experiment 1 & 2. Doubling the [NO2] causes the rate to double. Solve for the exponent like this: 2 a = 2 a = Compare experiment 1 & 3. Doubling the [F2] causes the rate to remain the same. Solve for the exponent like this: 2 b = 1 b = The rate law for this reaction is: These exponents refer to the reaction order. It is the power to which the concentrations of the reactant must be raised to give the observed relationship between concentration & rate. The above reaction is order with respect to [NO2] and order with respect to [F2]. The sum of these orders is, which is the overall order of the reaction. Note: It is possible for reaction orders to be fractional or negative. For more info, go ask someone else!

3 WS 9.1 (side 2) Determine the reaction order: - In zeroth order reactions, doubling the concentration of a reactant will have no effect on the rate. 2 0 = 1 - In first order reactions, doubling the concentration of a reactant will double the rate. 2 1 = 2 - In second order reactions, doubling the concentration of a reactant will quadruple the rate. 2 2 = 4, etc... 2 N2O5(g) ---> 4 NO2(g) + O2(g) example 1: initial [N2O5] (mol/l) initial rate (mol/l s) experiment x 10-6 experiment x ) Write the rate law: 2) Solve for the rate law constant: example 2: aa ---> B initial [A] (mol/l) initial rate (mol/l s) experiment x 10-4 experiment x 10-4 experiment x ) Write the rate law: 2) Solve for the rate law constant: Problem 1: Br2 + C3H6O ---> C3H5OBr + HBr [Br2] (mol/l) [C3H6O] (mol/l) initial rate (mol/l s) experiment x 10-5 experiment x 10-5 experiment x 10-5 Find the reaction order with respect to Br2 & C3H6O, the overall order, the rate law, and k. Problem 2: NO2 - + NH > N2 + 2 H2O [NO2 - ] (mol/l) [NH4 + ] (mol/l) initial rate (mol/l s) experiment x 10-7 experiment x 10-7 experiment x 10-7 experiment x 10-7 experiment x 10-7 experiment x 10-7 Find the reaction order with respect to NO2 - & NH4 +, the overall order, the rate law, and k.

4 + WS Equilibrium (side 1) 1. When a reaction has reached equilibrium, the and rates of reaction are. During dynamic equilibrium, molecules of and are still being formed, however their overall rates of are the same. At, it is not necessary to have concentrations of and. The equilibrium constant, known as, is specific for a given. It is calculated as the ratio of the concentrations of to reactants, with each concentration raised to a equal to the of that substance. If Keq is greater than 1, then are favored. If Keq is less than one, then reactants are. When calculating Keq, only substances which are or are considered. Solids and liquids are since their concentrations generally won't. Ans (IAO+1): aqueous change equal equal equilibrium favored formation forward gases ignored Keq marshmallows moles power products products products products reactants reactants reverse temperature 2. In a 4.0 L vessel, mol N2, mol O2, and mol NO have reached equilibrium at 890 K. Calculate keq for this reaction: N2(g) + O2(g) 2 NO(g) 3. For the following reaction at equilibrium, [HCl] = M, [O2] = M, [Cl2] = M, and Keq = 214 at 560 K. Calculate the concentration of the water at equilibrium. 4 HCl(g) + O2(g) 2 Cl2(g) + 2 H2O(g) 4. In a 1.0 L tank, 0.95 mol SO3, 8.95 mol H2O, and 1.35 mol H2SO4 are at equilibrium at 25 C. Calculate keq. SO3(g) + H2O(l) H2SO4(aq) 5. A 15.0 L tank at equilibrium is found to contain 4.50 mol of N2 and 2.11 mol ammonia (NH3). Given that Keq = 3.2 x 10-4, calculate how many moles of hydrogen are present. N2(g) + 3 H2(g) 2 NH3(g)

5 WS Equilibrium (side 2) 6. When 0.10 mol H2S was placed into a 10.0 L vessel at 1132 C, it resulted in an equilibrium mixture containing mol H2. What is keq? 2 H2S(g) 2 H2(g) + S2(g) 7. Keq for the following 150 C is 1.2 x What are the concentrations of each component at equilibrium if 5.00 mol of I2 and 8.00 mol of Br2 are reacted in a 10.0 L vessel? I2(g) + Br2(g) 2 IBr(g) Ans (IRO+1): 2.3 x Units: M M M M mol

6 + WS Le Châtelier's Principle Use arrows (up / down) to indicate the affect of each of these disturbances (stresses) on the concentration of the reactants and products in this equilibrium: 9 KJ + 2 SO 2 (g) + O 2 (g) 2 SO 3 (g) disturbance affect on affect on affect on [SO 2 ] [O 2 ] [SO 3 ] [SO2] [O2] [SO3] pressure temp N 2 (g) + 3 H 2 (g) 2 NH 3 (g) KJ disturbance affect on affect on affect on [N 2 ] [H 2 ] [NH 3 ] [N 2 ] [H2] [NH3] pressure temp

7 + WS C 6 H 6 (g) + 3 H 2 (g) C 6 H 12 (g) + 80 KJ disturbance affect on affect on affect on [C 6 H 6 ] [H 2 ] [C 6 H 12 ] [C 6 H 6 ] [H2] [C 6 H 12 ] pressure temp 95 KJ + 2 KClO 3 (s) 2 KCl(s) + 3 O 2 (g) disturbance affect on affect on affect on [KClO 3 ] [KCl] [O 2 ] [KClO 3 ] [KCl] [O2] pressure temp In general, Le Châtelier's principle states that if a system at is subjected to a, the equilibrium is in the direction that tends to the stress. If there is a change in pressure, this only affects equilibriums in which are involved. If the total # of of gases differs from reactants to, then under pressure, the equilibrium will in the direction to produce gases. The effect of changing the temperature of a reaction depends on which of the opposing reactions is and which is. According to the principle, the addition of heat the equilibrium so that the heat is absorbed (endothermic reaction ). The removal of heat would favor reactions. ANS (IAO+2): endothermic, equilibrium, exothermic, exothermic, favored, gases, heavier, Le Châtelier, less, moles, products, relieve, reversible, shift, shifted, shifts, solubility, stress

8 + WS Solubility Product K sp is called the solubility product constant. It is the product of the concentrations of a substances' ions in a saturated solution, each raised to the power of the coefficient. CaF 2(s) Ca +2 (aq) + 2 F - (aq) K sp = [Ca +2 ] [F - ] 2 Remember, pure solids and liquids are not included in equilibrum expressions. The numerical value for K sp can be determined from solubility data (see reference chart). Calculate the value for Ksp for the following: 1. Mg(OH)2 at 100 C 2. AgC2H3O2 at 0 C 3. PbCl 2 at 0 C 4. PbCl 2 at 20 C (answers on side 2...)

9 + WS (side 2) K sp values can be looked up in charts (see reference chart) and be used ot determine solubility data. Calculate the solubility of each 25 C, in g/l: 5. BaCO3 6. ZnS 7. Ag2S 8. Fe(OH)2 Ans (IRO+2): 0.014, 1.9E-3, 1.9E-4, 5.2E-4, 1.4E-5, 4.6E-5, 5.6E-5, 2.5E-8, 1.3E-9, 8.4E-9, 1.3E-10, 3.2E-10, 6.2E-15 Units: g/l g/l g/l g/l

10 + WS 9.5 Review Sheet - Kinetics and Equilibrium 1. Use the diagram at right to answer these questions: X a. Is this reaction endothermic or exothermic? Z b. Which is higher in energy; the reactants or products? c. What is point "X" called? d. What does line "Z" represent? e. What does line "D" represent? energy D reaction progress 2. For the following, indicate the most likely result in reaction rate: speed up or slow down increasing temperature: adding water to reactants: using higher concentration of reactants: crushing the reactants into a powder: 3. A + B ---> C Rate = k[a] 2 [B] 1 a. Which will affect the reaction rate more; doubling [A] or doubling [B]? b. What is the overall order of this reaction? 4. C + D ---> E initial [C] (mol/l) initial [D] (mol/l) initial rate (mol/l s) experiment x 10-6 experiment x 10-6 experiment x 10-6 a. the reaction order with respect to [C]? with respect to [D]? overall? b. What is the value of the rate law constant? 5. F (s) + G (aq) 3 H (g) + J (g) KJ a. Write the expression for K eq for the above : b. Name 5 ways to [J]:

11 6. NH4 + (aq) + NO2 - (aq) N2(g) + 2 H2O (l) At 400 K, the 1.0 L reaction vessel is found to contain 1.55 mol NH4 +, mol NO2 -, and 3.20 mol H2O. Given the equilibrium constant = 39.5, calculate the concentration of the N2. 7. Calculate the Ksp for barium hydroxide at O C. See reference sheet for soubility data. 8. Calculate the solubility of cobalt sulfide in 25 C, in units of g/l. See reference sheet for Ksp value. 9. CO2(g) + H2(g) CO (g) + H2O (g) At 900 K, Keq for this reaction is You start with 0.10 M CO2 & 0.10 M H2. What are the concentrations of all species at equilibrium?

12 the clock reaction kinetics lab Name: In this lab you will investigate ways to change how fast a reaction occurs. After establishing the time of the control (full concentration & room temperature), you will change the concentrations of the reactants. Then, you will change the temperature of the reactants. Solution A : is an acidified M NaHSO3 solution with starch indicator. Solution B is M KIO3 solution. Part 1: Establish the time on control (undiluted, room temperature) Use of A. Use of B. V A [A] V B [B] time (s) M M Part 2: Effect of concentration of solution B Use of A. Use indicated ml of B diluted to with water. M f = M V V t V A [A] V B [B] time (s) M M M M 20 ml 15 ml 10 ml 5 ml Part 3: Effect of concentration of solution A Use of B. Use indicated ml of A diluted to with water. M f = M V V t V A [A] V B [B] time (s) 20 ml 15 ml 10 ml 5 ml M M M M Part 4: Effect of temperature Use of cold A and of cold B. Next, use of hot A and of hot B. Bonus! Got the time? temp cold time (s) Show Mr. A that you can get the reaction to occur in seconds hot

13 Graph: Plot your data for part 2 & part 3, and create a molarity vs. time graph. Be sure to include the data point from the control (part 1). Scale your axises to best fit your data. Once your data is plotted, try to connect your points with a smooth curve or a straight line (whichever seems more appropriate). Do NOT do a dot-to-dot graph. time (sec) [A] (mol/l) [B] (mol/l) time (sec) Questions: 1. Which has a greater effect on reaction time: the [NaHSO3] or the [KIO3]? 2. Explain why changing the molarity of the reactants effected the reaction rate, in terms of collision theory. 3. Explain why changing the temperature of the reactants had an effect on the reaction rate, in terms of collision theory. 4. Based on your graph (and on common sense), what would happen to time (sec) if the molarity was zero?

Name Chem 6 Section #

Name Chem 6 Section # Equilibrium Constant and its Meaning 1. Write the expressions for K eq for the following reactions. a) CH 4 (g) + 2 H 2 S(g) CS 2 (g) + 4 H 2 (g) b) 2 N 2 O 5 (g) 4 NO 2 (g) + O 2 (g) c) 3 O 2 (g) 2 O

More information

Write equilibrium law expressions from balanced chemical equations for heterogeneous and homogeneous systems. Include: mass action expression.

Write equilibrium law expressions from balanced chemical equations for heterogeneous and homogeneous systems. Include: mass action expression. Equilibrium 1 UNIT 3: EQUILIBRIUM OUTCOMES All important vocabulary is in Italics and bold. Relate the concept of equilibrium to physical and chemical systems. Include: conditions necessary to achieve

More information

Collision Theory. Collision theory: 1. atoms, ions, and molecules must collide in order to react. Only a small number of collisions produce reactions

Collision Theory. Collision theory: 1. atoms, ions, and molecules must collide in order to react. Only a small number of collisions produce reactions UNIT 16: Chemical Equilibrium collision theory activation energy activated complex reaction rate reversible reaction chemical equilibrium law of chemical equilibrium equilibrium constant homogeneous equilibrium

More information

Chapter 15 Chemical Equilibrium

Chapter 15 Chemical Equilibrium Equilibrium To be in equilibrium is to be in a state of balance: Chapter 15 Chemical Equilibrium - Static Equilibrium (nothing happens; e.g. a tug of war). - Dynamic Equilibrium (lots of things happen,

More information

Kinetics and Equilibrium Extra Credit

Kinetics and Equilibrium Extra Credit 1. The potential energy diagram below represents the reaction 2 KClO3 2 KCl + 3 O2. 4. When AgNO3(aq) is mixed with NaCl(aq), a reaction occurs which tends to go to completion and not reach equilibrium

More information

CHEMICAL EQUILIBRIUM. Chapter 15

CHEMICAL EQUILIBRIUM. Chapter 15 Chapter 15 P a g e 1 CHEMICAL EQUILIBRIUM Examples of Dynamic Equilibrium Vapor above a liquid is in equilibrium with the liquid phase. rate of evaporation = rate of condensation Saturated solutions rate

More information

Chapter 18. Reversible Reactions. A chemical reaction in which the products can react to re-form the reactants is called a reversible reaction.

Chapter 18. Reversible Reactions. A chemical reaction in which the products can react to re-form the reactants is called a reversible reaction. Section 1 The Nature of Chemical Equilibrium Reversible Reactions A chemical reaction in which the products can react to re-form the reactants is called a reversible reaction. Section 1 The Nature of Chemical

More information

8. A piece of Mg(s) ribbon is held in a Bunsen burner flame and begins to burn according to the equation: 2Mg(s) + O2 (g) 2MgO(s).

8. A piece of Mg(s) ribbon is held in a Bunsen burner flame and begins to burn according to the equation: 2Mg(s) + O2 (g) 2MgO(s). 1. Which event must always occur for a chemical reaction to take place? A) formation of a precipitate B) formation of a gas C) effective collisions between reacting particles D) addition of a catalyst

More information

A reversible reaction is a chemical reaction where products can react to form the reactants and vice versa.

A reversible reaction is a chemical reaction where products can react to form the reactants and vice versa. Chemistry 12 Unit II Dynamic Equilibrium Notes II.1 The Concept of Dynamic Equilibrium A reversible reaction is a chemical reaction where products can react to form the reactants and vice versa. A reversible

More information

Unit 10 Thermodynamics, Kinetics and Equilibrium Notes

Unit 10 Thermodynamics, Kinetics and Equilibrium Notes Unit 10 Thermodynamics, Kinetics and Equilibrium Notes What is Thermodynamics? Almost all chemical reactions involve a between the and its. Thermo = Dynamics = What is energy? What is heat? Thermochemistry

More information

Section 10. Rates of Reactions Goal: Learn how temperature, concentration, and catalysts affect the rate of reaction. Summary

Section 10. Rates of Reactions Goal: Learn how temperature, concentration, and catalysts affect the rate of reaction. Summary Chapter 10 Reaction Rates and Chemical Equilibrium Section 10. Rates of Reactions Goal: Learn how temperature, concentration, and catalysts affect the rate of reaction. Summary The rate of a reaction is

More information

Solubility Equilibrium, Ksp and more Name

Solubility Equilibrium, Ksp and more Name MC Practice F.2 (Ch 15 & 17.4-6) This is practice - Do NOT cheat yourself of finding out what you are capable of doing. Be sure you follow the testing conditions outlined below. DO NOT USE A CALCULATOR.

More information

Equilibrium HW Holt May 2017

Equilibrium HW Holt May 2017 Equilibrium HW Holt May 2017 Answer Key p. 595 (PP 1-3, SR 1-10), p. 604 (SR 1-6); p. 616 (PP 1&2); p. 618 (PP 1&2); p. 620 (PP 1&2, SR 1-7) pp. 622-624 (2-11, 14-16, 27, 29, 32, 33, 34, 37, 39, 40 (review

More information

Regents review Kinetics & equilibrium

Regents review Kinetics & equilibrium 2011-2012 1. A is most likely to occur when reactant particles collide with A) proper energy, only B) proper orientation, only C) both proper energy and proper orientation D) neither proper energy nor

More information

Practice Test F.1 (pg 1 of 7) Unit F - General Equilibrium Kp and Kc Name Per

Practice Test F.1 (pg 1 of 7) Unit F - General Equilibrium Kp and Kc Name Per Practice Test F. (pg of 7) Unit F - General Equilibrium Kp and Kc Name Per This is practice - Do NOT cheat yourself of finding out what you are capable of doing. Be sure you follow the testing conditions

More information

6. Which will react faster: Magnesium and 2M hydrochloric acid, or Magnesium and 0.5M hydrochloric acid?

6. Which will react faster: Magnesium and 2M hydrochloric acid, or Magnesium and 0.5M hydrochloric acid? REACTION RATES WORKSHEET WS#1 1. Identify the three components of collision theory. What are the three factors that must be true for a collision to be successful? a. b. c. 2. Do all collisions result in

More information

8. The table below describes two different reactions in which Reaction 1 is faster. What accounts for this observation? Reaction 1 Reaction 2.

8. The table below describes two different reactions in which Reaction 1 is faster. What accounts for this observation? Reaction 1 Reaction 2. Public Review - Rates and Equilibrium June 2005 1. What does X represent in the diagram below? (A) activation energy for the forward reaction (B) activation energy for the reverse reaction (C) heat of

More information

Name Chemistry Exam #8 Period: Unit 8: Kinetics, Thermodynamics, & Equilibrium

Name Chemistry Exam #8 Period: Unit 8: Kinetics, Thermodynamics, & Equilibrium 1. Which quantities must be equal for a chemical reaction at equilibrium? (A) the potential energies of the reactants and products (B) the concentrations of the reactants and products (C) the activation

More information

Name Unit 10 Practice Test

Name Unit 10 Practice Test 1. Increasing the temperature increases the rate of a reaction by A) lowering the activation energy B) increasing the activation energy C) lowering the frequency of effective collisions between reacting

More information

End of Year Review ANSWERS 1. Example of an appropriate and complete solution H = 70.0 g 4.19 J/g C T = 29.8 C 22.4 C 7.4 C

End of Year Review ANSWERS 1. Example of an appropriate and complete solution H = 70.0 g 4.19 J/g C T = 29.8 C 22.4 C 7.4 C End of Year Review ANSWERS 1. Example of an appropriate and complete solution H = mc T mol HCl m = 70.0 g c = 4.19 J/g C T = 9.8 C.4 C = 7.4 C mol HCl = 3.00 mol/ 0.000 = 0.0600 mol H = 70.0 g 4.19 J/g

More information

Collision Theory. Unit 12: Chapter 18. Reaction Rates. Activation Energy. Reversible Reactions. Reversible Reactions. Reaction Rates and Equilibrium

Collision Theory. Unit 12: Chapter 18. Reaction Rates. Activation Energy. Reversible Reactions. Reversible Reactions. Reaction Rates and Equilibrium Collision Theory For reactions to occur collisions between particles must have Unit 12: Chapter 18 Reaction Rates and Equilibrium the proper orientation enough kinetic energy See Both In Action 1 2 Activation

More information

REACTION EQUILIBRIUM

REACTION EQUILIBRIUM REACTION EQUILIBRIUM A. REVERSIBLE REACTIONS 1. In most spontaneous reactions the formation of products is greatly favoured over the reactants and the reaction proceeds to completion (one direction). In

More information

January 03, Ch 13 SB equilibrium.notebook

January 03, Ch 13 SB equilibrium.notebook Ch 13: Chemical Equilibrium exists when 2 opposing reactions occur simultaneously at the same rate (dynamic rather than static) Forward rate = reverse rate https://www.youtube.com/watch?v=wld_imyqagq The

More information

Notes: Unit 10 Kinetics and Equilibrium

Notes: Unit 10 Kinetics and Equilibrium Name: Regents Chemistry: Mr. Palermo Notes: Unit 10 Kinetics and Equilibrium Name: KEY IDEAS Collision theory states that a reaction is most likely to occur if reactant particles collide with the proper

More information

Equilibrium Simulation

Equilibrium Simulation Equilibrium Simulation Imagine the two large beakers (2000 ml) are actually the same space...we have just separated them to help us keep track of reactants and products. Imagine the size of the transfer

More information

Chapter Practice Test

Chapter Practice Test Name: Class: Date: Chapter 17-18 Practice Test Multiple Choice Identify the choice that best completes the statement or answers the question. 1. Examining a chemical system before and after a reaction

More information

Name period AP Unit 8: equilibrium

Name period AP Unit 8: equilibrium Name period AP Unit 8: equilibrium 1. What is equilibrium? Rate of the forward reaction equals the rate of the reverse reaction 2. How can you tell when equilibrium has been reached? The concentrations

More information

AP Chemistry Big Idea Review

AP Chemistry Big Idea Review Name: AP Chemistry Big Idea Review Background The AP Chemistry curriculum is based on 6 Big Ideas and many Learning Objectives associated with each Big Idea. This review will cover all of the Big Ideas

More information

Chemical Equilibrium

Chemical Equilibrium Chemical Equilibrium THE NATURE OF CHEMICAL EQUILIBRIUM Reversible Reactions In theory, every reaction can continue in two directions, forward and reverse Reversible reaction! chemical reaction in which

More information

AP Questions: Thermodynamics

AP Questions: Thermodynamics AP Questions: Thermodynamics 1970 Consider the first ionization of sulfurous acid: H2SO3(aq) H + (aq) + HSO3 - (aq) Certain related thermodynamic data are provided below: H2SO3(aq) H + (aq) HSO3 - (aq)

More information

Chapter 15. Chemical Equilibrium

Chapter 15. Chemical Equilibrium Chapter 15. Chemical Equilibrium 15.1 The Concept of Equilibrium Consider colorless frozen N 2 O 4. At room temperature, it decomposes to brown NO 2. N 2 O 4 (g) 2NO 2 (g) At some time, the color stops

More information

Ch 15 Chemical Equilibrium STUDY GUIDE Accelerated Chemistry SCANTRON. Name /98

Ch 15 Chemical Equilibrium STUDY GUIDE Accelerated Chemistry SCANTRON. Name /98 Ch 15 Chemical Equilibrium STUDY GUIDE Accelerated Chemistry SCANTRON Name /98 TRUE/FALSE. Write 'T' if the statement is true and 'F' if the statement is false. Correct the False statments by changing

More information

REACTION RATES AND EQUILIBRIUM

REACTION RATES AND EQUILIBRIUM Name Date Class 18 REACTION RATES AND EQUILIBRIUM SECTION 18.1 RATES OF REACTION (pages 541 547) This section explains what is meant by the rate of a chemical reaction. It also uses collision theory to

More information

2nd- Here's another example of a reversible reaction - dissolving salt in a beaker of water, described by the following reaction: NaCl (s)

2nd- Here's another example of a reversible reaction - dissolving salt in a beaker of water, described by the following reaction: NaCl (s) CHEMICAL EQUILIBRIUM AP Chemistry (Notes) Most chemical processes are reversible. Reactants react to form products, but those products can also react to form reactants. Examples of reversible reactions:

More information

2 nd Semester Study Guide 2016

2 nd Semester Study Guide 2016 Chemistry 2 nd Semester Study Guide 2016 Name: Unit 6: Chemical Reactions and Balancing 1. Draw the remaining product 2. Write a balanced equation for the following reaction: The reaction between sodium

More information

b t u t sta t y con o s n ta t nt

b t u t sta t y con o s n ta t nt Reversible Reactions & Equilibrium Reversible Reactions Reactions are spontaneous if G G is negative. 2H 2 (g) + O 2 (g) 2H 2 O(g) + energy If G G is positive the reaction happens in the opposite direction.

More information

1. Given the system at equilibrium: Fe 3+ (aq) + SCN (aq)

1. Given the system at equilibrium: Fe 3+ (aq) + SCN (aq) 1. Given the system at equilibrium: A) Fe 3+ (aq) + SCN (aq) FeSCN 2+ (aq) What happens to the concentrations of the three ions when some Fe 3+ ion is removed by precipitation from this aqueous solution,

More information

2 nd Semester Study Guide 2017

2 nd Semester Study Guide 2017 Chemistry 2 nd Semester Study Guide 2017 Name: KEY Unit 6: Chemical Reactions and Balancing 1. Draw the remaining product 2. Write a balanced equation for the following reaction: The reaction between sodium

More information

PRACTICE MULTIPLE CHOICE- Chapters 17&18

PRACTICE MULTIPLE CHOICE- Chapters 17&18 PRACTICE MULTIPLE CHOICE- Chapters 17&18 1. What is the solubility product expression for Fe2(CO3)3? A) Ksp = [2Fe 3+ ][3CO3 2 ] B) Ksp = [2Fe 3+ ] 2 [3CO3 2 ] 3 C) Ksp = [Fe 2+ ] 2 [CO3 2 ] 3 D) Ksp =

More information

Chemistry 40S Chemical Equilibrium (This unit has been adapted from

Chemistry 40S Chemical Equilibrium (This unit has been adapted from Chemistry 40S Chemical Equilibrium (This unit has been adapted from https://bblearn.merlin.mb.ca) Name: 1 2 Lesson 1: Defining Equilibrium Goals: Describe physical and chemical equilibrium. Describe the

More information

Chemical Equilibrium

Chemical Equilibrium Chemical Equilibrium 1 Equilibrium We ve already used the phrase equilibrium when talking about reactions. In principle, every chemical reaction is reversible... capable of moving in the forward or backward

More information

CHEMISTRY. Chapter 15 Chemical Equilibrium

CHEMISTRY. Chapter 15 Chemical Equilibrium CHEMISTRY The Central Science 8 th Edition Chapter 15 Chemical Kozet YAPSAKLI The Concept of Chemical equilibrium is the point at which the concentrations of all species are constant. Chemical equilibrium

More information

Equilibrium & Reaction Rate

Equilibrium & Reaction Rate Equilibrium & Reaction Rate 1. One of the important reactions in coal gasification is the catalytic methanation reaction: CO(g) + H (g) H O(g) + CH 4 (g) H 06 kj a) Predict the direction in which this

More information

Chapter 15: Chemical Equilibrium. Chem 102 Dr. Eloranta

Chapter 15: Chemical Equilibrium. Chem 102 Dr. Eloranta Chapter 15: Chemical Equilibrium Chem 102 Dr. Eloranta Equilibrium State in which competing processes are balanced so that no observable change takes place as time passes. Lift Gravity Sometimes called

More information

Unit 13: Rates and Equilibrium- Funsheets

Unit 13: Rates and Equilibrium- Funsheets Name: Period: Unit 13: Rates and Equilibrium- Funsheets Part A: Reaction Diagrams 1) Answer the following questions based on the potential energy diagram shown here: a. Does the graph represent an endothermic

More information

Chapter Test A. Chapter: Chemical Equilibrium

Chapter Test A. Chapter: Chemical Equilibrium Assessment Chapter Test A Chapter: Chemical Equilibrium In the space provided, write the letter of the term or phrase that best completes each statement or best answers each question. 1. A 15.0 ml volume

More information

Chapter Test B. Chapter: Chemical Equilibrium. following equilibrium system? 2CO(g) O 2 (g) ^ 2CO 2 (g)

Chapter Test B. Chapter: Chemical Equilibrium. following equilibrium system? 2CO(g) O 2 (g) ^ 2CO 2 (g) Assessment Chapter Test B Chapter: Chemical Equilibrium PART I In the space provided, write the letter of the term or phrase that best completes each statement or best answers each question. 1. What is

More information

Chemical Equilibrium Practice Problems #2

Chemical Equilibrium Practice Problems #2 Chemical Equilibrium Practice Problems #2 2-20-2015 1. A CPHS student does an equilibrium experiment with the general chemical equation and derives the 2 graphs below: A = B: a. When at equilibrium is

More information

1.0 L container NO 2 = 0.12 mole. time

1.0 L container NO 2 = 0.12 mole. time CHEM 1105 GAS EQUILIBRIA 1. Equilibrium Reactions - a Dynamic Equilibrium Initial amounts: = mole = 0 mole 1.0 L container = 0.12 mole moles = 0.04 mole 0 time (a) 2 In a 1.0 L container was placed 4.00

More information

CHEM 1423 Chapter 17 Homework Questions TEXTBOOK HOMEWORK

CHEM 1423 Chapter 17 Homework Questions TEXTBOOK HOMEWORK CHEM 1423 Chapter 17 Homework Questions TEXTBOOK HOMEWORK 17.29 At 425 o C, Kp = 4.18x10-9 for the reaction 2HBr(g) H 2 (g) + Br 2 (g) In one experiment, 0.20 atm of HBr(g), 0.010 atm of H 2 (g), and 0.010

More information

CH302H EXAM 3 Spring 2013

CH302H EXAM 3 Spring 2013 Name Multiple Choice Neatly write your choice in the blank provided. (3 pts each) 1. You have 100 ml of a 0.2 M KOH solution to which you add 1 g of Al(OH)3 (Ksp = 3.75 10-15 ). Ignoring the volume change

More information

Chapter Fifteen. Chemical Equilibrium

Chapter Fifteen. Chemical Equilibrium Chapter Fifteen Chemical Equilibrium 1 The Concept of Equilibrium Dynamic Equilibrium Opposing processes occur at equal rates Forward and reverses reaction proceed at equal rates No outward change is observed

More information

AP Chemistry 1st Semester Final Review Name:

AP Chemistry 1st Semester Final Review Name: AP Chemistry 1st Semester Final Review Name: 2015-2016 1. Which of the following contains only sigma (s) bonds? 5. H2O(g) + CO(g) H2(g) + CO2(g) A) CO2 B) C3H6 C) CH3Cl D) N2O3 E) SiO2 2. What is the equilibrium

More information

1. As the number of effective collisions between reacting particles increases, the rate of reaction (1) decreases (3) remains the same (2) increases

1. As the number of effective collisions between reacting particles increases, the rate of reaction (1) decreases (3) remains the same (2) increases 1. As the number of effective collisions between reacting particles increases, the rate of reaction (1) decreases (3) remains the same (2) increases 2. The energy needed to start a chemical reaction is

More information

Chemical Equilibrium

Chemical Equilibrium Chemical Equilibrium What is equilibrium? Expressions for equilibrium constants, K eq ; Calculating K eq using equilibrium concentrations; Factors that affect equilibrium; Le Chatelier s Principle What

More information

Chemical Equilibrium

Chemical Equilibrium Chemical Equilibrium Ch 17 Apr 28 7:40 AM A Reversible reaction is a chemical reaction that can occur in both the forward and the reverse directions N 2 (g) + 3 H 2 (g) 2NH3(g) Apr 16 1:21 PM 1 Equilibrium

More information

Unit 13 Kinetics & Equilibrium Page 1 of 14 Chemistry Kinetics, Entropy, Equilibrium, LeChatelier s Principle, K, Unit 13 Quiz: Unit 13 Test:

Unit 13 Kinetics & Equilibrium Page 1 of 14 Chemistry Kinetics, Entropy, Equilibrium, LeChatelier s Principle, K, Unit 13 Quiz: Unit 13 Test: Unit 13 Kinetics & Equilibrium Page 1 of 14 Chemistry Kinetics, Entropy, Equilibrium, LeChatelier s Principle, K, Unit 13 Quiz: Unit 13 Test: Final Project: VOCABULARY: 1 Chemical equilibrium 2 equilibrium

More information

1.6 Chemical equilibria and Le Chatelier s principle

1.6 Chemical equilibria and Le Chatelier s principle 1.6 Chemical equilibria and Le Chatelier s principle Reversible reactions: Consider the reaction: Mg(s) + H2SO4(aq) MgSO4(aq) + H2(g) The reaction stops when all of the limiting reagent has been used up.

More information

CHEM Dr. Babb s Sections Exam #4 Review Sheet

CHEM Dr. Babb s Sections Exam #4 Review Sheet CHEM 116 - Dr. Babb s Sections Exam #4 Review Sheet 158. Explain using the HC 2 H 3 O 2 /NaC 2 H 3 O 2 buffer system how a buffer maintains a relatively constant ph when small quantity of acid (HCl) or

More information

Chapter 6: Chemical Equilibrium

Chapter 6: Chemical Equilibrium Chapter 6: Chemical Equilibrium 6.1 The Equilibrium Condition 6. The Equilibrium Constant 6.3 Equilibrium Expressions Involving Pressures 6.4 The Concept of Activity 6.5 Heterogeneous Equilibria 6.6 Applications

More information

1. Forming a Precipitate 2. Solubility Product Constant (One Source of Ions)

1. Forming a Precipitate 2. Solubility Product Constant (One Source of Ions) Chemistry 12 Solubility Equilibrium II Name: Date: Block: 1. Forming a Precipitate 2. Solubility Product Constant (One Source of Ions) Forming a Precipitate Example: A solution may contain the ions Ca

More information

Questions 1-3 relate to the following reaction: 1. The rate law for decomposition of N2O5(g) in the reaction above. B. is rate = k[n2o5] 2

Questions 1-3 relate to the following reaction: 1. The rate law for decomposition of N2O5(g) in the reaction above. B. is rate = k[n2o5] 2 Questions 1-3 relate to the following reaction: 2N2O5(g) 4NO2(g) + O2(g) 1. The rate law for decomposition of N2O5(g) in the reaction above A. is rate = k[n2o5] B. is rate = k[n2o5] 2 C. is rate = [NO2]

More information

Equilibrium Written Response

Equilibrium Written Response Equilibrium Written Response January 1998 2. Consider the following equilibrium: CS2 (g) + 3Cl2 (g) CCl4 (g) + S2Cl2 (g) ΔH = -238 kj a) Sketch a potential energy diagram for the reaction above and label

More information

Chemical & Solubility Equilibrium (K eq, K c, K p, K sp )

Chemical & Solubility Equilibrium (K eq, K c, K p, K sp ) Chemistry, The Central Science, 10th edition Theodore L. Brown; H. Eugene LeMay, Jr.; and Bruce E. Bursten Unit 8 (Chp 15,17): Chemical & Solubility (K eq, K c, K p, K sp ) John D. Bookstaver St. Charles

More information

a. rate = k[no] 2 b. rate = k([no][o 2 ] c. rate = k[no 2 ] 2 [NO] -2 [O 2 ] -1/2 d. rate = k[no] 2 [O 2 ] 2 e. rate = k([no][o 2 ]) 2

a. rate = k[no] 2 b. rate = k([no][o 2 ] c. rate = k[no 2 ] 2 [NO] -2 [O 2 ] -1/2 d. rate = k[no] 2 [O 2 ] 2 e. rate = k([no][o 2 ]) 2 General Chemistry III 1046 E Exam 1 1. Cyclobutane, C 4 H 8, decomposes as shown: C 4 H 8 (g)! 2 C 2 H 4 (g). In the course of a study of this reaction, the rate of consumption of C 4 H 8 at a certain

More information

Quiz B3: Le Chatelier s Principle Block:

Quiz B3: Le Chatelier s Principle Block: Quiz B3: Le Chatelier s Principle Name: Block: 1. Consider the following reaction: 2SO2(g) + O2(g) 2SO3(g) H = -197 kj/mol Which of the following will not shift the equilibrium to the right? A. Adding

More information

Equilibrium Simulation

Equilibrium Simulation Equilibrium Simulation Imagine the two large beakers (2000 ml) are actually the same space...we have just separated them to help us keep track of reactants and products. Imagine the size of the transfer

More information

Chapter 30. Chemical Kinetics. Copyright (c) 2011 by Michael A. Janusa, PhD. All rights reserved.

Chapter 30. Chemical Kinetics. Copyright (c) 2011 by Michael A. Janusa, PhD. All rights reserved. Chapter 30 Chemical Kinetics 1 Copyright (c) 2011 by Michael A. Janusa, PhD. All rights reserved. Chemists have three fundamental questions in mind when they study chemical reactions: 1.) What happens?

More information

Chemical Equilibrium. A state of no net change in reactant & product concentrations. There is a lot of activity at the molecular level.

Chemical Equilibrium. A state of no net change in reactant & product concentrations. There is a lot of activity at the molecular level. Chemical Equilibrium A state of no net change in reactant & product concentrations. BUT There is a lot of activity at the molecular level. 1 Kinetics Equilibrium For an elementary step in the mechanism:

More information

Quadratic Equation: ax 2 + bx + c = 0

Quadratic Equation: ax 2 + bx + c = 0 Exam # Key (last) (First-Name) Signature Exam 2 General Chemistry 201. May 12, 2009 No credit will be given for correct numerical answers without a clear indication of how they were obtained. Show all

More information

Name: Kinetics & Thermodynamics Date: Review

Name: Kinetics & Thermodynamics Date: Review Name: Kinetics & Thermodynamics Date: Review 1. What is required for a chemical reaction to occur? A) standard temperature and pressure B) a catalyst added to the reaction system C) effective collisions

More information

CHM 112 Chapter 13 Extra Credit : Chemical Equilibrium Name:

CHM 112 Chapter 13 Extra Credit : Chemical Equilibrium Name: CHM 112 Chapter 13 Extra Credit : Chemical Equilibrium Name: 1. Write the equilibrium expression for following reactions. In each case indicate whether the equilibrium is Homogeneous or Heterogeneous 2

More information

What does the magnitude of the equilibrium constant tell us? N2(g) + O2(g) N2 O2(g) N2(g) + 3H2(g) 2NH3(g) In Short

What does the magnitude of the equilibrium constant tell us? N2(g) + O2(g) N2 O2(g) N2(g) + 3H2(g) 2NH3(g) In Short What does the magnitude of the equilibrium constant tell us? N2(g) + O2(g) N2 O2(g) N2(g) + 3H2(g) 2NH3(g) In Short 1 D. Altering Chemical Equations and the Effect on the Equilibrium Constant What is the

More information

15.1 The Concept of Equilibrium

15.1 The Concept of Equilibrium Lecture Presentation Chapter 15 Chemical Yonsei University 15.1 The Concept of N 2 O 4 (g) 2NO 2 (g) 2 Chemical equilibrium occurs when a reaction and its reverse reaction proceed at the same rate. The

More information

Ch 10 Practice Problems

Ch 10 Practice Problems Ch 10 Practice Problems 1. Which of the following result(s) in an increase in the entropy of the system? I. (See diagram.) II. Br 2(g) Br 2(l) III. NaBr(s) Na + (aq) + Br (aq) IV. O 2(298 K) O 2(373 K)

More information

Chemical Equilibrium. Professor Bice Martincigh. Equilibrium

Chemical Equilibrium. Professor Bice Martincigh. Equilibrium Chemical Equilibrium by Professor Bice Martincigh Equilibrium involves reversible reactions Some reactions appear to go only in one direction are said to go to completion. indicated by All reactions are

More information

Unit 9 Kinetics SA Review

Unit 9 Kinetics SA Review 1. Base your answer to the following question on the information below. The equilibrium equation below is related to the manufacture of a bleaching solution. In this equation, means that chloride ions

More information

CHEMISTRY CP Name: Period:

CHEMISTRY CP Name: Period: CHEMISTRY CP Name: Period: CHEMISTRY SPRING FINAL REVIEW SHEET NOTE: Below are concepts that we have covered in class throughout the second semester. Questions are organized by chapter/concept to help

More information

Kinetics & Equilibrium

Kinetics & Equilibrium Kinetics & Equilibrium Name: Essential Questions How can one explain the structure, properties, and interactions of matter? Learning Objectives Explain Collision Theory Molecules must collide in order

More information

Name Practice Questions Date Kinetics

Name Practice Questions Date Kinetics Name Practice Questions Date Kinetics 1. An experiment was conducted to determine the rate law of the reaction 2 A + 2 B C + D. The data collected is shown below. Base your answers to questions 8 and 9

More information

AP Questions: Kinetics

AP Questions: Kinetics AP Questions: Kinetics 1972 2 A + 2 B C + D The following data about the reaction above were obtained from three experiments: Rate of Formation of [A] [B] C (mole. liter -1 min -1 ) 1 0.60 0.15 6.3 10-3

More information

Equilibrium means that the rxn rates are equal. evaporation H20(l) condensation

Equilibrium means that the rxn rates are equal. evaporation H20(l) condensation Reversible reactions Most chemical reactions are reversible they can occur backwards as well as forwards reactants products Consider an open container of water (non-equilibrium) A closed water bottle is

More information

C h a p t e r 13. Chemical Equilibrium

C h a p t e r 13. Chemical Equilibrium C h a p t e r 13 Chemical Equilibrium Chemical equilibrium is achieved when: the rates of the forward and reverse reactions are equal and the concentrations of the reactants and products remain constant

More information

Chemistry Lab Equilibrium Practice Test

Chemistry Lab Equilibrium Practice Test Chemistry Lab Equilibrium Practice Test Basic Concepts of Equilibrium and Le Chatelier s Principle 1. Which statement is correct about a system at equilibrium? (A) The forward and reverse reactions occur

More information

Reaction Rate. Products form rapidly. Products form over a long period of time. Precipitation reaction or explosion

Reaction Rate. Products form rapidly. Products form over a long period of time. Precipitation reaction or explosion Reaction Rate Products form rapidly Precipitation reaction or explosion Products form over a long period of time Corrosion or decay of organic material Chemical Kinetics Study of the rate at which a reaction

More information

The Equilibrium State. Chapter 13 - Chemical Equilibrium. The Equilibrium State. Equilibrium is Dynamic! 5/29/2012

The Equilibrium State. Chapter 13 - Chemical Equilibrium. The Equilibrium State. Equilibrium is Dynamic! 5/29/2012 Chapter 13 - Chemical Equilibrium The Equilibrium State Not all chemical reactions go to completion; instead they attain a state of equilibrium. When you hear equilibrium, what do you think of? Example:

More information

All answers are to be done on test paper. If more room is needed use the back side of the paper and indicate.

All answers are to be done on test paper. If more room is needed use the back side of the paper and indicate. 1 Chem 1105-Final Exam Date: August 10, 2016 Instructor: Calvin Howley Time Period: 3 hour Student: Student #: Instructions: Please turn off all cell phones. Only scientific calculators are allowed in

More information

10.02 PE Diagrams. 1. Given the equation and potential energy diagram representing a reaction:

10.02 PE Diagrams. 1. Given the equation and potential energy diagram representing a reaction: 10.02 PE Diagrams 1. Given the equation and potential energy diagram representing a reaction: 3. Given the potential energy diagram and equation representing the reaction between substances A and D : If

More information

Energy Changes, Reaction Rates and Equilibrium. Thermodynamics: study of energy, work and heat. Kinetic energy: energy of motion

Energy Changes, Reaction Rates and Equilibrium. Thermodynamics: study of energy, work and heat. Kinetic energy: energy of motion Energy Changes, Reaction Rates and Equilibrium Thermodynamics: study of energy, work and heat Kinetic energy: energy of motion Potential energy: energy of position, stored energy Chemical reactions involve

More information

Equilibrium Written Response

Equilibrium Written Response Equilibrium Written Response January 1998 2. Consider the following equilibrium: CS2 (g) + 3Cl2 (g) CCl4 (g) + S2Cl2 (g) H = -238 kj a) Sketch a potential energy diagram for the reaction above and label

More information

Name: Unit!!: Kinetics and Equilibrium REGENTS CHEMISTRY

Name: Unit!!: Kinetics and Equilibrium REGENTS CHEMISTRY Name: Unit!!: Kinetics and Equilibrium REGENTS CHEMISTRY 1 Name: Unit!!: Kinetics and Equilibrium Collision theory states that a reaction is most likely to occur if reactant particles collide with the

More information

Chem. 1A Final. Name. Student Number

Chem. 1A Final. Name. Student Number Chem. 1A Final Name Student Number All work must be shown on the exam for partial credit. Points will be taken off for incorrect or no units. Calculators are allowed. Cell phones may not be used for calculators.

More information

AP Chapter 14: Chemical Equilibrium & Ksp

AP Chapter 14: Chemical Equilibrium & Ksp AP Chapter 14: Chemical Equilibrium & Ksp Warm-Ups (Show your work for credit) Name Date 1. Date 2. Date 3. Date 4. Date 5. Date 6. Date 7. Date 8. AP Chapter 14: Chemical Equilibrium & Ksp 2 Warm-Ups

More information

6. [EXO] reactants have more energy 7. [EXO] H is negative 8. [ENDO] absorbing sunlight to make sugar 9. [ENDO] surroundings get cold

6. [EXO] reactants have more energy 7. [EXO] H is negative 8. [ENDO] absorbing sunlight to make sugar 9. [ENDO] surroundings get cold 10.A Thermo: Endo/Exo and ΔH 1. For each of the following laws of thermodynamics, what does each actually mean in terms of the behavior of energy and particles? 1 st Law of Thermodynamics? Energy is neither

More information

3. Indicate the mass action expression for the following reaction: 2X(g) + Y(g) 3W(g) + V(g) a) [X] 2 [Y][W] 3 [V] [W] 3 [V] [X] 2 [Y] [3W][V] [2X][Y]

3. Indicate the mass action expression for the following reaction: 2X(g) + Y(g) 3W(g) + V(g) a) [X] 2 [Y][W] 3 [V] [W] 3 [V] [X] 2 [Y] [3W][V] [2X][Y] 1. Which of the following statements concerning equilibrium is not true? a) A system that is disturbed from an equilibrium condition responds in a manner to restore equilibrium. b) Equilibrium in molecular

More information

Le Châtelier s Principle. 19 Copyright Pearson Education, Inc., or its affiliates. All Rights Reserved. Equilibrium: Le Châtelier s Principle

Le Châtelier s Principle. 19 Copyright Pearson Education, Inc., or its affiliates. All Rights Reserved. Equilibrium: Le Châtelier s Principle Factors Affecting : Le Châtelier s Principle Pressure Factors Affecting : Le Châtelier s Principle Pressure When volume decreases, the pressure increases. systems in which some reactants and products are

More information

Review Sheet 6 Math and Chemistry

Review Sheet 6 Math and Chemistry Review Sheet 6 Math and Chemistry The following are some points of interest in Math and Chemistry. Use this sheet when answering these questions. Molecular Mass- to find the molecular mass, you must add

More information

CHEM Dr. Babb s Sections Lecture Problem Sheets

CHEM Dr. Babb s Sections Lecture Problem Sheets CHEM 116 - Dr. Babb s Sections Lecture Problem Sheets Kinetics: Integrated Form of Rate Law 61. Give the integrated form of a zeroth order reaction. Define the half-life and find the halflife for a general

More information

CH1810-Lecture #8 Chemical Equilibrium: LeChatlier s Principle and Calculations with K eq

CH1810-Lecture #8 Chemical Equilibrium: LeChatlier s Principle and Calculations with K eq CH1810-Lecture #8 Chemical Equilibrium: LeChatlier s Principle and Calculations with K eq LeChatlier s Principle A system at equilibrium responds to a stress in such a way that it relieves that stress.

More information

Equilibrium and Reaction Rate

Equilibrium and Reaction Rate Equilibrium and Reaction Rate Multiple Choice Questions - Answers 1. Activation energy could be considered as the minimum energy required to do which of these? A. change the orientation of the reactant

More information