Concentration Conversion

Size: px
Start display at page:

Download "Concentration Conversion"

Transcription

1 Concentration Conversion The Amount of Solute in the solvent Dr. Fred mega Garces Chemistry 201 Miramar College 1 Expressing Concentration

2 Components of Solution Mixtures: Variable components, retains properties of its component. Homogeneous systems: Solutions Solution - Homogeneous mixture of two or more substances Components of solution Solute - Substance being dissolve Solvent - Substance in which solute is dissolved in. If solvent is water, then solution is considered aqueous. 2 Expressing Concentration

3 Expressing Concentration 5 ways of expressing concentration- Molarity (M) - moles solute / Liter solution Molality * (m) - moles solute / Kg solvent Conc. by parts (% m)- (solute [mass] / solution [mass]) * 100 w/v [mass solute (g) / volume solution (ml)] * 100 v/v [vol solute (ml) / vol solution (ml)] * 100 mole fraction ( χ A) - moles solute / Total moles solution Normality (N) - Number of equivalent / Liter solution 3 Expressing Concentration

4 Concentration Relationship Molecular Weight moles mass } Solute moles Molc Wt mass } Solvent χ Mass Solution m %m Density Solution M* Vol Solution Equivalence/mol N * Volume of solution must be used and not just volume of solvent 4 Expressing Concentration

5 Concentration Relationship * Volume of solution must be used and not just volume of solvent 5 Expressing Concentration

6 Concentration by Parts % Concentration Solute (mass or volume) Solution (mass or volume) x multiplier w/w = Wt Solute g 100 g % (pph) Wt Soln g w/v = Wt Solute g 100 g % (pph) Vol Soln ml v/v = Vol Solute ml 100 g % (pph) Vol Soln ml ppm & ppb (For dilute solution) m/m = mass Solute g 10 6 g ppm (ppm) mass Soln g v/v = Vol Solute ml 10 9 g ppb (ppb) Vol Soln ml 6 Expressing Concentration

7 Interconverting Concentration: A Calculation Example Example: A perchloric acid (HCl 4 MWt = g/mol) solution is 10.0 %m:m (by mass). The density of solution is g/cc. What is the Molarity, molality, mole fraction g mole 100 g solution cc Molarity = 1.05 M mole Kg H 2 Answer molality = 1.11 m mole 5.00 mol H 2 χa = Expressing Concentration

8 Interconverting Concentration: A Calculation Example Example: A perchloric acid (HCl 4 MWt = g/mol) solution is 10.0 %m:m (by mass). The density of solution is g/cc. What is the Molarity, molality, mole fraction g mole 100 g solution cc mole Kg H mole 5.00 mol H 2 Molarity = 1.05 M molality = 1.11 m χa = Expressing Concentration

9 Molality =, mole faction = Kg Solvent Amount solute (EtH) = ml, ρ EtH = g/cc 1. (EtH): 1a. Convert volume EtH to mass EtH by density + Moles solvent 1b. Convert mass EtH to moles EtH using molar mass. 2. Kg solvent: 100ml solution ml EtH = 60.00ml H 2 2a. Convert 60.0 ml of water to kg water ρ H2 = 1.00 g/cc 3. Moles of solvent (H 2 ): 3a. Convert mass of H to moles of H using molar mass a: 40.00ml EtH g = g EtH 1 cc 1 mol 1b: g EtH * = mol EtH 46.07g 2a: 60.00mL H g 1 cc = g H Kg H 2 2 3a: g H 2 * 1 mol 18.02g = mol H 2 Calculating molality (m) and mole fraction (χ) from volume percent Example # 1: An alcoholic beverage is proof (40.00% alcohol v:v). Calculate the molality and mole fraction of ethanol in the beverage. ρ ETH = g/cc 40.00% ethanol = 40.00mL EtH in ml solution, MW ETH = g/mol Molality = Moles, mole faction = Kg Solvent solute + Moles solvent Amount solute (EtH) = ml, ρ EtH = g/cc 1. (EtH): 1a. Convert volume EtH to mass EtH by density 1b. Convert mass EtH to moles EtH using molar mass. 2. Kg solvent: 100ml solution ml EtH = 60.00ml H 2 2a. Convert 60.0 ml of water to kg water ρ H2 = 1.00 g/cc 3. Moles of solvent (H 2 ): 3a. Convert mass of H 2 to moles of H 2 using molar mass. 1a: 40.00ml EtH g = g EtH 1 cc 1b: g EtH * 1 mol 46.07g = mol EtH 2a: 60.00mL H g 1 cc = g H Kg H 2 3a: g H 2 * 1 mol 18.02g = mol H 2 9 Expressing Concentration

10 Mass Solute Weight % = 100, mole faction = Mass solute + Mass solvent + Moles solvent Amount solute (EtH) = moles EtH, 1. Mass solute (EtH): 1a. Convert moles EtH to mass EtH by molar mass 2. Mass water: There is Kg water 2a. Convert kg of water to g 3. Moles of solvent (H 2 ): 3a. Convert mass of H 2 to moles of H 2 using molar mass. 1a: mol EtH g 2a: kg H g 1 mol = g EtH 1 Kg = g H 2 3a: g H 2 * 1 mol 18.02g = mol H 2 Calculating Weight Percent & mole fraction (χ) from from molality (m) Example # 1: An solution has a concentration of m EtH. Calculate the weight percent and mole fraction of ethanol in the beverage. ρ ETH = g/cc m ethanol = moles EtH in kg H 2, MW ETH = g/mol Weight % = Mass Solute Moles 100, mole faction = Mass solute + Mass solvent solute + Moles solvent Amount solute (EtH) = moles EtH, 1. Mass solute (EtH): 1a. Convert moles EtH to mass EtH by molar mass 2. Mass water: There is Kg water 2a. Convert kg of water to g 3. Moles of solvent (H 2 ): 3a. Convert mass of H 2 to moles of H 2 using molar mass. 1a: mol EtH g 1 mol = g EtH 2a: kg H g 1 Kg = g H 2 3a: g H 2 * 1 mol 18.02g = mol H 2 10 Expressing Concentration

11 Molality =, mole faction = Kg Solvent + Moles solvent 1. (EtH): 1a. Convert mass EtH to moles EtH using molar mass. 2. Kg solvent: There is g H 2 2a. Convert g of water to kg water 3. Moles of solvent (H 2 ): 3a. Convert mass of H 2 to moles of H 2 using molar mass. 1.0 mol 1a: 50.00g EtH = mol EtH g 1.0 kg 2a: g H 2 * 1000 g = kg H 2 3a: g H 2 * 1 mol 18.02g = mol H 2 Calculating molality (m) and mole fraction (χ) from mass of solute and solvent Example # 1: g EtH is added to g H 2. What is the molality and mole fraction of the solution? ρ ETH = g/cc, MW ETH = g/mol Molality = Moles, mole faction = Kg Solvent solute + Moles solvent 1. (EtH): 1a. Convert mass EtH to moles EtH using molar mass. 2. Kg solvent: There is g H 2 2a. Convert g of water to kg water 3. Moles of solvent (H 2 ): 3a. Convert mass of H 2 to moles of H 2 using molar mass. 1.0 mol 1a: 50.00g EtH g = mol EtH 2a: g H 2 * 1.0 kg 1000 g = kg H 2 3a: g H 2 * 1 mol 18.02g = mol H 2 11 Expressing Concentration

12 Molality = Kg Solvent, mass solute = moles solute *MW solute Given: mole faction = Best to setup equation- + Moles solvent = + Moles solvent = + Moles solvent moles solute - moles solute = moles solvent 4 moles solute - 1 mole solute = moles solvent moles solvent moles solute = mass of solute (ETH) 4a. Convert moles EtH to mass EtH 1000 ml 1a L * 1 L * 1.0 g = 1000 g 1 ml 2a g * 1 mol 18.02g = mol H 2 moles solvent 3a moles solute = 1 = moles H = moles EtH 4a: moles EtH * g = g EtH 1 mole Calculating molality (m) and mass solute from mole fraction (χ) and mass solvent Example # 1: Given a mole faction (x) of ethanoic solution in L, what is the molality and mass of solute in the solution? ρ ETH = g/cc, MW ETH = g/mol Molality = Kg Solvent, mass solute = moles solute *MW solute Given: mole faction = + Moles solvent 1. Mass of H 2 1a. Convert volume H 2 to mass H Moles of H 2 (solvent) 2a. Convert mass H 2 to moles of H Moles of solute Best to setup equation- 3a. Solve for moles solute by plugging moles of H 2 into the mole fraction equation and solve for moles solute = + Moles solvent = + Moles solvent moles solute - moles solute = moles solvent 4 moles solute - 1 mole solute = moles solvent moles solvent moles solute = mass of solute 4a. Convert moles solute to mass solute 1. Mass of H 2 1a. Convert volume H 2 to mass H Moles of H 2 (solvent) 2a. Convert mass H 2 to moles of H Moles of solute 3a. Solve for moles solute by plugging moles of H 2 into the mole fraction equation and solve for moles solute 12 Expressing Concentration 1a L * 1000 ml 1 L * 1.0 g 1 ml = 1000 g 2a g * 1 mol 18.02g = mol H 2 3a moles solute = moles solvent = moles EtH 4a: moles EtH * g 1 mole = moles H 2 3 = g EtH

13 ...and ever more Examples Extra examples 50.00ml of ethylene glycol (ρ = g/ml; MW = g/mol) is added to L water (ρ = 1.00 g/ml) at 20 C. Answer the following questions and assume additive volumes. i) What is the density of the mixture ii) Calculate the % mass of the ethylene glycol in the solution. iii) Calculate the molarity and molality of ethylene glycol in the solution. Mass H 2 = 1000 g vol = 50.0 ml ethylene Glycol ml g ml D = vol = 1000 ml H 2 = g mass H2 + mass ethylene glycol vol H2 +vol ethylene glycol D = g ml = = g ml % m = g g mol glycol, g mol mol H 2, 1000 g mol molality = Molarity = 100 = % mol 1.00kg mol L = m = M 13 Expressing Concentration

14 Practice Problems Harris 7 th ed p18 1. The density of 70.5 Wt% aqueous perchloric acid, HCl 4, is 1.67 g/ml (a) How many grams of solution are in L 1670 g (b) How many grams of HCl 4 are in 1.000L? 1180 g (c) How many moles of HCl 4 in 1.000L? 11.7 mol 2. An aqueous solution containing 20.0% wt% KI had a density of g/ml. Find the molality, mole fraction, and molarity of the KI solution m 3. The concentration of sugar (glucose, C 6 H 12 6 ) in human blood ranges from about 80mg/100mL before meal to 120mg/100mL after eating. Find the molarity before and after eating e-3M, 6.7e-3M 4. It is recommended that drinking water contain 1.6 ppm fluoride (F-) for preventing of tooth decay. Consider a reservoir with a diameter of m and and average depth of 10.0 m. (V = π r 2 h) How many grams of fluoride should be added to give 1.6 ppm? How many grams of sodium fluoride, NaF contains this much fluoride? 1.25, 2.5e6 g F -, 5.6e6 g NaF 5. How many ml of 3.00 M H 2 S 4 are required to react with 4.35 g of solid containing 23.2 m:m% Ba(N 3 ) 2 if the reaction produces BaS 4 precipitate. 133, 1.29 ml 14 Expressing Concentration

15 Solution at a Glance Solutions can be describe by the following: Solvent The component of a solution present in the greatest quantity Solute The component of solution present in the lesser quantity Solution A homogeneous mixture of two or more substances in which each substance retains its chemical identity Concentration of a Solution The amount of solute in a specific amount of solution. Molarity (M) moles of solute Liters of solution 15 Expressing Concentration

16 Activity 1: Concentration Conversion / Score Name (last) (first) Lab Section: Day Time i Show your work in another sheet of paper and then fill in the blanks in the table. The solvent is water for these solutions. Your answer should contain the right number of significant figures with the correct units. If you do not know how to determine the number of significant figures an answer should contain, please review your chem 200 fundamentals. Compound Molality Weight Percent Mole Fraction Mole Fraction (Ranking) 1 st (low), 2 nd, 3 rd, 4 th, 5 th, 6 th (high), A HF 18.0 % B CH3H 1.50 m C C6H % D NaI m E CH3C2H 5.00 % F KN m ii. Fill in the blanks in the table. Your answer should contain the right number of significant figures with the correct units. Compound Grams Compound Grams Water Molality Mole Fraction of Compound Mole Fraction (Ranking) 1 st (low), 2 nd, 3 rd, 4 th, 5 th, 6 th (high), A Na2C B C3H7H C NaN D Pb(N 3 ) E Sr(H) F Pt(NH3)2Cl iii. You wish to prepare an IV solution, NaCl, with a mole fraction of Assume that the density of water = g/cc How many grams (g) of NaCl must you combine with L of water to make this solution? What is the molality (m) of the solution? What is the concentration in ppm? (Answer) (Answer) (Answer) iv What is the mass % (m:m) of physiologically correct saline solution also known as normal saline solution? (Use 3 significant figures) (Use the Internet and keyword physiologically normal saline concentration ) What are the molarity and the mole fraction of this solution? (Answers) Note: If you rip this page from the lab manual, be sure to trim the edge. (Reminder from your lab instructor) 21

9.01 Solutions. The Chemistry of Matter in Water. Dr. Fred Omega Garces. Chemistry 100, Miramar College. 1 Solutions. Aug 17

9.01 Solutions. The Chemistry of Matter in Water. Dr. Fred Omega Garces. Chemistry 100, Miramar College. 1 Solutions. Aug 17 9.01 Solutions The Chemistry of Matter in Water Dr. Fred Omega Garces Chemistry 100, Miramar College 1 Solutions 8.01 Solutions How water Dissolves Salts 2 Solutions Components of Solution Homogeneous

More information

13.01 Solutions. The Chemistry of Matter in Water. Dr. Fred Omega Garces. Chemistry 152, Miramar College. 1 Solutions

13.01 Solutions. The Chemistry of Matter in Water. Dr. Fred Omega Garces. Chemistry 152, Miramar College. 1 Solutions 13.01 Solutions The Chemistry of Matter in Water Dr. Fred Omega Garces Chemistry 152, Miramar College 1 Solutions 12.01 Solutions How water Dissolves Salts 2 Solutions Components of Solution Homogeneous

More information

1.00 Measurements. Chemistry 251. Dr. Fred Omega Garces

1.00 Measurements. Chemistry 251. Dr. Fred Omega Garces 1.00 SI -Units Mass and Weights The Mole Millimole Solutions and Concentration Analytical Molarity Equilibrium Molarity Composition by Parts % Composition ppm, ppb Density and specific gravity Titration

More information

x =!b ± b2! 4ac 2a moles particles solution (expt) moles solute dissolved (calculated conc ) i =

x =!b ± b2! 4ac 2a moles particles solution (expt) moles solute dissolved (calculated conc ) i = Properties of Solution Practice Exam Solutions Name (last) (First) Read all questions before you start. Show all work and explain your answers. Report all numerical answers to the proper number of sig.

More information

Solution Concentration. Solute Solvent Concentration Molarity Molality ph

Solution Concentration. Solute Solvent Concentration Molarity Molality ph Solution Concentration Solute Solvent Concentration Molarity Molality ph http://en.wikipedia.org/wiki/homogeneou Lets Review Mixture: A mixture is a chemical substance which is a homogeneous or heterogeneous

More information

Solutions. Solution: A solution is homogeneous liquid mixture of two or more substances.

Solutions. Solution: A solution is homogeneous liquid mixture of two or more substances. Solutions Objectives: 1. Learn the various methods of expressing concentrations of solutions. 2. Learn to make percent and molar solutions from solids, liquids, and stock solutions. 3. Learn the various

More information

Factors that Effect the Rate of Solvation

Factors that Effect the Rate of Solvation Factors that Effect the Rate of Solvation Rate of Solvation there are three ways to increase collisions between the solvent and the solute. agitating the mixture increasing the surface area of the solute

More information

Nanoscale pictures: Figs. 5.1, 5.4, and 5.5

Nanoscale pictures: Figs. 5.1, 5.4, and 5.5 Solutions and concentration Solution: a homogeneous mixture of two or more substances. Example: water, sugar, flavor mixture (Coke). The substances are physically combined, not chemically combined or bonded

More information

SOLUBILITY AS AN EQUILIBRIUM PHENOMENA

SOLUBILITY AS AN EQUILIBRIUM PHENOMENA SOLUBILITY AS AN EQUILIBRIUM PHENOMENA Equilibrium in Solution solute (undissolved) solute (dissolved) Solubility A saturated solution contains the maximum amount of solute that will dissolve in a given

More information

Soluble: A solute that dissolves in a specific solvent. Insoluble: A solute that will not dissolve in a specific solvent. "Like Dissolves Like"

Soluble: A solute that dissolves in a specific solvent. Insoluble: A solute that will not dissolve in a specific solvent. Like Dissolves Like Solutions Homogeneous Mixtures Solutions: Mixtures that contain two or more substances called the solute and the solvent where the solute dissolves in the solvent so the solute and solvent are not distinguishable

More information

6.01 Solutions. The Chemistry of Matter in Water. Dr. Fred Omega Garces. Chemistry 111, Miramar College. 1 Solutions. January 10

6.01 Solutions. The Chemistry of Matter in Water. Dr. Fred Omega Garces. Chemistry 111, Miramar College. 1 Solutions. January 10 6.01 Solutions The Chemistry of Matter in Water Dr. Fred Omega Garces Chemistry 111, Miramar College 1 Solutions 6.01 Solutions ow water Dissolves Salts 2 Solutions Components of Solution omogeneous systems

More information

SOLUTIONS. Engr. Yvonne Ligaya F. Musico

SOLUTIONS. Engr. Yvonne Ligaya F. Musico SOLUTIONS SOLUTION A homogeneous mixture of two or more substances, the relative proportion of which may vary within certain limits. COMPONENTS OF SOLUTION SOLUTE component which is in small quantity SOLVENT

More information

Warm Up. 1. What causes the high surface tension of water? 2. In the formation of a solution, how does the solvent differ from the solute?

Warm Up. 1. What causes the high surface tension of water? 2. In the formation of a solution, how does the solvent differ from the solute? Warm Up 1. What causes the high surface tension of water? 2. In the formation of a solution, how does the solvent differ from the solute? 3. Why are all ionic compounds electrolytes? 4. How do you write

More information

Solutions. Experiment 11. Various Types of Solutions. Solution: A homogenous mixture consisting of ions or molecules

Solutions. Experiment 11. Various Types of Solutions. Solution: A homogenous mixture consisting of ions or molecules Solutions Solution: A homogenous mixture consisting of ions or molecules -Assignment: Ch 15 Questions & Problems : 5, (15b,d), (17a, c), 19, 21, 23, 27, (33b,c), 39, (43c,d),45b, 47, (49b,d), (55a,b),

More information

11/4/2017. General Chemistry CHEM 101 (3+1+0) Dr. Mohamed El-Newehy. Chapter 4 Physical Properties of Solutions

11/4/2017. General Chemistry CHEM 101 (3+1+0) Dr. Mohamed El-Newehy.   Chapter 4 Physical Properties of Solutions General Chemistry CHEM 11 (3+1+) Dr. Mohamed El-Newehy http://fac.ksu.edu.sa/melnewehy Chapter 4 Physical Properties of Solutions 1 Types of Solutions A solution is a homogenous mixture of 2 or more substances.

More information

Required math skills:

Required math skills: Quantitative Chemical Analysis Required math skills: ACCURATE ACCURATE NOT Accurate PRECISE NOT precise PRECISE Add Add Subtract Multiply Divide Powers Powers Logarithms Random error systematic error 1

More information

Solutions. Why does a raw egg swell or shrink when placed in different solutions?

Solutions. Why does a raw egg swell or shrink when placed in different solutions? Solutions 1 Why does a raw egg swell or shrink when placed in different solutions? Classification of Matter 2 Some Definitions 3 If a compound is soluble it is capable of being dissolved. A solution is

More information

Assume 1 mol hemoglobin: mass Fe 2+ = (6.8x10 4 g mol -1 ) = g

Assume 1 mol hemoglobin: mass Fe 2+ = (6.8x10 4 g mol -1 ) = g 4. Hemoglobin, a protein in red blood cells, carries O 2, from the lungs to the body s cells. Iron (as Fe 2+ ) makes up 0.33 mass % of hemoglobin. If the molar mass of hemoglobin is 6.8x10 4 g/mol, how

More information

Chemistry 112 Spring 2007 Prof. Metz Exam 3 Each question is worth 5 points, unless otherwise indicated.

Chemistry 112 Spring 2007 Prof. Metz Exam 3 Each question is worth 5 points, unless otherwise indicated. Chemistry 112 Spring 2007 Prof. Metz Exam 3 Each question is worth 5 points, unless otherwise indicated. 1. The ph of a 0.150 M solution of formic acid, HCOOH is (K a (formic acid) = 1.8 x 10-4 ). (A)

More information

INTRODUCTION TO CONCENTRATION Practice Problems. You must know the differences among the following terms to be successful making solutions.

INTRODUCTION TO CONCENTRATION Practice Problems. You must know the differences among the following terms to be successful making solutions. 1 INTRODUCTION TO CONCENTRATION Practice Problems You must know the differences among the following terms to be successful making solutions. Solution: A solution is a homogeneous mixture in which one or

More information

Solutions The federal government and state governments set standards limiting the amount of contaminants allowed in drinking water.

Solutions The federal government and state governments set standards limiting the amount of contaminants allowed in drinking water. Solutions The federal government and state governments set standards limiting the amount of contaminants allowed in drinking water. 16.1 Properties of Solutions 16. Concentrations of Solutions 16. Colligative

More information

Bushra Javed Valencia College CHM 1046 Chapter 12 - Solutions

Bushra Javed Valencia College CHM 1046 Chapter 12 - Solutions Bushra Javed Valencia College CHM 1046 Chapter 12 - Solutions 1 Chapter 12 :Solutions Tentative Outline 1. Introduction to solutions. 2. Types of Solutions 3. Solubility and the Solution Process: Saturated,

More information

Chapter 3: Composition of Substances and Solutions. Some Preliminaries to Sections 3.3 and 3.4

Chapter 3: Composition of Substances and Solutions. Some Preliminaries to Sections 3.3 and 3.4 Chapter 3: Composition of Substances and Solutions Some Preliminaries to Sections 3.3 and 3.4 We are going to switch gears from looking at pure substances to studying homogenous mixtures containing water,

More information

Chapter 5: The Water We Drink

Chapter 5: The Water We Drink Chapter 5: The Water We Drink Water 70% of the Earth s surface is covered by water The human body is 50-75% water The human brain is 75% water Blood is 83% water Lungs are 90% water Bones (!) are 22% water

More information

LESSON 11. Glossary: Solutions. Boiling-point elevation

LESSON 11. Glossary: Solutions. Boiling-point elevation LESSON 11 Glossary: Solutions Boiling-point elevation Colligative properties Freezing-point depression Molality Molarity (M) Mole (mol) Mole fraction Saturated solution a colligative property of a solution

More information

Nanoscale pictures: Figs. 5.1, 5.4, and 5.5

Nanoscale pictures: Figs. 5.1, 5.4, and 5.5 Solutions and concentration Solution: a homogeneous mixture of two or more substances. Example: water, sugar, flavor mixture (Coke). The substances are physically combined, not chemically combined or bonded

More information

Chemistry 116. Dr. Michelle Richards-Babb Dr. Babb. Tasks for first week of class:

Chemistry 116. Dr. Michelle Richards-Babb Dr. Babb. Tasks for first week of class: Chemistry 116 Dr. Michelle Richards-Babb Dr. Babb Read syllabus. Tasks for first week of class: Purchase lab goggles, lab apron, and Chem 116 Lab Manual from WVU Bookstore or Book Exchange. NOTE: White

More information

Unit V: Solutions. A. Properties of Solutions. B. Concentration Terms of Solutions. C. Mass Percent Calculation. D. Molarity of Solutions

Unit V: Solutions. A. Properties of Solutions. B. Concentration Terms of Solutions. C. Mass Percent Calculation. D. Molarity of Solutions Unit V: Solutions A. Properties of Solutions B. Concentration Terms of Solutions C. Mass Percent Calculation D. Molarity of Solutions E. Solution Stoichiometry F. Dilution Problems 5-A Properties of Solutions

More information

or supersaturatedsaturated Page 1

or supersaturatedsaturated Page 1 Solutions Unit #9 Chapter #11 A solution is a HOMOGENEOUS mixture of 2 or more substances in a single phase. One constituent is usually regarded as the SOLVENT and the others as SOLUTES. 1 Definitions

More information

Solutions. Definitions. Some Definitions. Page 1. Parts of a Solution

Solutions. Definitions. Some Definitions. Page 1. Parts of a Solution Chapter 15 s 1 Definitions 4 Why does a raw egg swell or shrink when placed in different solutions? s can be classified as saturated or unsaturated. A saturated solution contains the maximum quantity of

More information

Properties of Solutions

Properties of Solutions Chemistry, The Central Science, 11th edition Theodore L. Brown; H. Eugene LeMay, Jr.; Bruce E. Bursten; Catherine J. Murphy Chapter 13 Properties of Solutions Ahmad Aqel Ifseisi Assistant Professor of

More information

Chapter 9: Solutions

Chapter 9: Solutions 9.1 Mixtures and Solutions Chapter 9: Solutions Heterogeneous mixtures are those in which the mixing is not uniform and have regions of different composition. Homogeneous mixtures are those in which the

More information

Mass Relationships in Chemical Reactions

Mass Relationships in Chemical Reactions Mass Relationships in Chemical Reactions Chapter 3 Copyright The McGraw-Hill Companies, Inc. Permission required for reproduction or display. Micro World atoms & molecules Macro World grams Atomic mass

More information

SOLUTIONS. Homogeneous mixture uniformly mixed on the molecular level. Solvent & Solute. we will focus on aqueous solutions

SOLUTIONS. Homogeneous mixture uniformly mixed on the molecular level. Solvent & Solute. we will focus on aqueous solutions SOLUTIONS Homogeneous mixture uniformly mixed on the molecular level Solvent & Solute we will focus on aqueous solutions SOLUTE-SOLVENT SOLVENT INTERACTIONS Why do solutions form? Processes occur spontaneously

More information

CP Chapter 15/16 Solutions What Are Solutions?

CP Chapter 15/16 Solutions What Are Solutions? CP Chapter 15/16 Solutions What Are Solutions? What is a solution? A solution is uniform that may contain solids, liquids, or gases. Known as a mixture Solution = + o Solvent The substance in abundance

More information

Mole: base unit for an amount of substance A mole contains Avogadro s number (N A ) of particles (atoms, molecules, ions, formula units )

Mole: base unit for an amount of substance A mole contains Avogadro s number (N A ) of particles (atoms, molecules, ions, formula units ) Mole: base unit for an amount of substance A mole contains Avogadro s number (N A ) of particles (atoms, molecules, ions, formula units ) N A 6.0 10 mol -1 1 mol substance contains N A Molar mass (g/mol)

More information

Measurements Chapter 3

Measurements Chapter 3 Measurements Chapter 3 Analytical Chemistry is the science of chemical measurement. Its object is the generation, treatment and evaluation of signals from which information is obtained on the composition

More information

Solution. Types of Solutions. Concentration and Solution Stoichiometry

Solution. Types of Solutions. Concentration and Solution Stoichiometry Concentration and Solution Stoichiometry Solution homogenous mixture of 2 or more pure substances only one perceptible phase species do not react chemically Types of Solutions solid liquid gas Solutions

More information

Chapter 7 Solutions and Colloids

Chapter 7 Solutions and Colloids Chapter 7 Solutions and Colloids 7.1 Physical States of Solutions Solutions are homogeneous mixtures of two or more substances in which the components are present as atoms, molecules, or ions. Properties

More information

Chapter 7 Solutions and Colloids

Chapter 7 Solutions and Colloids Chapter 7 Solutions and Colloids 7.1 Physical States of Solutions Solutions are homogeneous mixtures of two or more substances in which the components are present as atoms, molecules, or ions. Properties

More information

These units of concentration are most often seen and used with commercial products. Except for 'ppm' they are not used often in the lab.

These units of concentration are most often seen and used with commercial products. Except for 'ppm' they are not used often in the lab. 4.2: Concentration Units of Concentration (v/v, w/v, w/w and ppm) These units of concentration are most often seen and used with commercial products. Except for 'ppm' they are not used often in the lab.

More information

נושא 5. 1 Prof. Zvi C. Koren

נושא 5. 1 Prof. Zvi C. Koren נושא 5 סטויכיאומטריה: כימות כימי 1 Prof. Zvi C. Koren Stoichiometry Stoicheion + (element) metron (measure) Weight relations in chemical rxns. based on conservation of matter For any rxn., The absolute

More information

Properties of Solutions Use section 15 and your textbook glossary to complete this worksheet

Properties of Solutions Use section 15 and your textbook glossary to complete this worksheet Part 1: Vocabulary Properties of Solutions Use section 15 and your textbook glossary to complete this worksheet A solution is a mixture The solvent is the medium in a solution. The particles are the solute.

More information

CH 222 Chapter Eleven Concept Guide

CH 222 Chapter Eleven Concept Guide CH 222 Chapter Eleven Concept Guide 1. Molality A 4.5 M nitric acid solution contains 65.0 g of HNO 3 in 288 g of solution. What is the molality of this solution? Molality is calculated by dividing the

More information

Class XI Chapter 1 Some Basic Concepts of Chemistry Chemistry

Class XI Chapter 1 Some Basic Concepts of Chemistry Chemistry Question 1.1: Calculate the molecular mass of the following: (i) H 2 O (ii) CO 2 (iii) CH 4 (i) H 2 O: The molecular mass of water, H 2 O = (2 Atomic mass of hydrogen) + (1 Atomic mass of oxygen) = [2(1.0084)

More information

TOPICS TO BE COVERED 1. WHAT ARE SOLUTIONS? 2. SOLVENTS AND SOLUTES 3. SOLUBILITY AND ITS FACTORS 4. CONCENTRATIONS 5. SOLUTION STOICHIOMETRY 6.

TOPICS TO BE COVERED 1. WHAT ARE SOLUTIONS? 2. SOLVENTS AND SOLUTES 3. SOLUBILITY AND ITS FACTORS 4. CONCENTRATIONS 5. SOLUTION STOICHIOMETRY 6. TOPICS TO BE COVERED 1. WHAT ARE SOLUTIONS? 2. SOLVENTS AND SOLUTES 3. SOLUBILITY AND ITS FACTORS 4. CONCENTRATIONS 5. SOLUTION STOICHIOMETRY 6. COLLIGATIVE PROPERTIES SOLUTIONS CHEMICALS + WATER 1. WHAT

More information

Chapter 13 Properties of Solutions

Chapter 13 Properties of Solutions Section 13.1 The Solution Process Chapter 13 Properties of Solutions SOLVENT - any substance that has other substances dissolved in it (often a liquid) ie. The dissolving medium - often the substance present

More information

COLLIGATIVE PROPERTIES

COLLIGATIVE PROPERTIES COLLIGATIVE PROPERTIES Depend on the number of solute particles in solution but not on the identity of the solute Vapor pressure lowering Boiling point elevation Freezing point depression Osmotic pressure

More information

Stoichiometry of Formulas and Equations. Chapter 3 Outline: Mole - Mass Relationships in Chemical Systems

Stoichiometry of Formulas and Equations. Chapter 3 Outline: Mole - Mass Relationships in Chemical Systems Chapter 3 Stoichiometry of Formulas and Equations Chapter 3 Outline: Mole - Mass Relationships in Chemical Systems 3.1 The Mole 3.2 Determining the Formula of an Unknown Compound 3.3 Writing and Balancing

More information

Concentrations. 3. A total of 60 g of sodium chloride (NaCl) are dissolved in 240 g water. Give the NaCl concentration in mass percent.

Concentrations. 3. A total of 60 g of sodium chloride (NaCl) are dissolved in 240 g water. Give the NaCl concentration in mass percent. Concentrations Most chemical reactions take place in solutions. We therefore have no pure substances but certain amounts of them in a certain amount of a solvent. Thus, the important thing is the ratio

More information

1) Define the following terms: a) solution, b) miscible, c) hydration, d) percent by mass (solute), e) colligative property, f) hypotonic.

1) Define the following terms: a) solution, b) miscible, c) hydration, d) percent by mass (solute), e) colligative property, f) hypotonic. Problems - Chapter 13 (with solutions) 1) Define the following terms: a) solution, b) miscible, c) hydration, d) percent by mass (solute), e) colligative property, f) hypotonic. a) solution - A homogeneous

More information

Solution Concentration

Solution Concentration Solution Concentration solution: homogeneous mixture of substances present as atoms, ions, and/or molecules solute: component present in smaller amount solvent: component present in greater amount Note:

More information

Chapter 13 (part I of II)Properties of Solutions (N.B. aspects of this topic were seen in chapter 4)

Chapter 13 (part I of II)Properties of Solutions (N.B. aspects of this topic were seen in chapter 4) Chemistry, The Central Science, 10th edition, AP version Theodore L. Brown; H. Eugene LeMay, Jr.; and Bruce E. Bursten Chapter 13 (part I of II)Properties of (N.B. aspects of this topic were seen in chapter

More information

Basic Concepts of Chemistry Notes for Students [Chapter 12, page 1] D J Weinkauff - Nerinx Hall High School. Chapter 12 Properties of Solutions

Basic Concepts of Chemistry Notes for Students [Chapter 12, page 1] D J Weinkauff - Nerinx Hall High School. Chapter 12 Properties of Solutions Basic Concepts of Chemistry Notes for Students [Chapter 12, page 1] Chapter 12 Properties of Solutions Section 12 1: The Nature of Aqueous Solutions 1) Sec 12 1.1 Mixtures of Two Liquids When two liquids

More information

Molality. Molality (m) is the number of moles of solute per kilogram of solvent. mol of solute kg solvent. Molality ( m) =

Molality. Molality (m) is the number of moles of solute per kilogram of solvent. mol of solute kg solvent. Molality ( m) = Molality Molality (m) is the number of moles of solute per kilogram of solvent. Molality ( m) = mol of solute kg solvent Sample Problem Calculate the molality of a solution of 13.5g of KF dissolved in

More information

Liquid in liquid: ethanol in water. Solid in liquid: any salt in water. Solid in solid: brass, bronze, and all alloys

Liquid in liquid: ethanol in water. Solid in liquid: any salt in water. Solid in solid: brass, bronze, and all alloys 1 of 6 I. The solution process Solutions, colloids, and suspensions Solution: homogeneous mixture, equally dispersed at the molecular level, uniform throughout in its physical and chemical properties Colloid:

More information

Solution Concentration

Solution Concentration Agenda Day 66 Concentration Lesson: PPT, Handouts: 1. Concentration& Dilution Handout. 2. Concentration of Solutions Worksheet Text: 1. P. 398-401 - Concentration ( %, ppm) HW: 1. Worksheets, P. 400 #

More information

Preparation of Biological Solutions and Serial Dilutions

Preparation of Biological Solutions and Serial Dilutions Preparation of Biological Solutions and Serial Dilutions - Objective: 1- To learn how to prepare solutions. 2-To get familiar with solution dilutions. - Introduction: - It is very important to understand

More information

Environmental Health. Solution Basics

Environmental Health. Solution Basics Environmental Health Solution Basics Where Do Solution "Recipes" Come From? Original Scientific Literature Lab Manuals (professional) Handbooks Manufacturers and suppliers Make their way into instructional

More information

Chapter 4 Chemical Quantities and Aqueous Reactions

Chapter 4 Chemical Quantities and Aqueous Reactions Chapter 4 Chemical Quantities and Aqueous Reactions Reaction Stoichiometry the numerical relationships between chemical amounts in a reaction is called stoichiometry the coefficients in a balanced chemical

More information

AP Chemistry--Chapter 11: Properties of Solutions

AP Chemistry--Chapter 11: Properties of Solutions AP Chemistry--Chapter 11: Properties of Solutions I. Solution Composition (ways of expressing concentration) 1. Qualitatively, use dilute or concentrated to describe 2. Quantitatively a. Mass Percentage

More information

CHEM 200/202. Professor Jing Gu Office: EIS-210. All s are to be sent to:

CHEM 200/202. Professor Jing Gu Office: EIS-210. All  s are to be sent to: CHEM 200/202 Professor Jing Gu Office: EIS-210 All emails are to be sent to: chem200@mail.sdsu.edu My office hours will be held in GMCS-212 on Monday from 9 am to 11 am or by appointment. ANNOUNCEMENTS

More information

DATA THAT YOU MAY USE UNITS Conventional Volume ml or cm 3 = cm 3 or 10-3 dm 3 Liter (L) = dm 3 Pressure atm = 760 torr = Pa CONSTANTS

DATA THAT YOU MAY USE UNITS Conventional Volume ml or cm 3 = cm 3 or 10-3 dm 3 Liter (L) = dm 3 Pressure atm = 760 torr = Pa CONSTANTS DATA THAT YOU MAY USE UNITS Conventional S.I. Volume ml or cm 3 = cm 3 or 0-3 dm 3 Liter (L) = dm 3 Pressure atm = 760 torr =.03 0 5 Pa torr = 33.3 Pa Temperature C 0 C = 73.5 K PV L-atm =.03 0 5 dm 3

More information

Chem 1515 Section 2 Problem Set #4. Name Spring 1998

Chem 1515 Section 2 Problem Set #4. Name Spring 1998 Chem 1515 Section 2 Problem Set #4 Name Spring 1998 TA Name Lab Section # ALL work must be shown to receive full credit. Due Wednesday, February 4th PS4.1. Describe all the energy changes which must be

More information

4. Magnesium has three natural isotopes with the following masses and natural abundances:

4. Magnesium has three natural isotopes with the following masses and natural abundances: Exercise #1. Determination of Weighted Average Mass 1. The average mass of pennies minted after 1982 is 2.50 g and the average mass of pennies minted before 1982 is 3.00 g. Suppose that a bag of pennies

More information

Volumetric Analysis Acids & Bases HL

Volumetric Analysis Acids & Bases HL Name: Volumetric Analysis 1. Concentrations of Solutions 3. Volumetric Analysis Objectives -define solution -define concentration -define molarity -express concentration of solutions in mol/l(molarity),

More information

Physical Properties of Solutions

Physical Properties of Solutions Physical Properties of Solutions Chapter 12 Copyright The McGraw-Hill Companies, Inc. Permission required for reproduction or display. 12.1- Types of solutions A solution is a homogenous mixture of 2 or

More information

CHAPTER THREE CHEMICAL EQUATIONS & REACTION STOICHIOMETRY

CHAPTER THREE CHEMICAL EQUATIONS & REACTION STOICHIOMETRY CHAPTER THREE CHEMICAL EQUATIONS & REACTION STOICHIOMETRY 1 Chapter Three Goals 1. Chemical Equations. Calculations Based on Chemical Equations. Percent Yields from Chemical Reactions 4. The Limiting Reactant

More information

Name Date Class PROPERTIES OF SOLUTIONS

Name Date Class PROPERTIES OF SOLUTIONS 16.1 PROPERTIES OF SOLUTIONS Section Review Objectives Identify the factors that determine the rate at which a solute dissolves Identify the units usually used to express the solubility of a solute Calculate

More information

Brass, a solid solution of Zn and Cu, is used to make musical instruments and many other objects.

Brass, a solid solution of Zn and Cu, is used to make musical instruments and many other objects. Brass, a solid solution of Zn and Cu, is used to make musical instruments and many other objects. 14.1 General Properties of Solutions 14.2 Solubility 14.3 Rate of Dissolving Solids 14.4 Concentration

More information

WEEK 10: 30 OCT THRU 05 NOV; LECTURES 28-30

WEEK 10: 30 OCT THRU 05 NOV; LECTURES 28-30 Electrolytes WEEK 10: 30 OCT THRU 05 NOV; LECTURES 28-30 Learning Objectives Know the difference between a molecular compound and an ionic compound Know the definition of electrolyte. Know the difference

More information

Chemical calculations used in medicine (concentration, dilution)

Chemical calculations used in medicine (concentration, dilution) Chemical calculations used in medicine (concentration, dilution) Pavla Balínová giga- G 10 9 mega- M 10 6 kilo- k 10 3 deci- d 10-1 centi- c 10-2 milli- m 10-3 micro- μ 10-6 nano- n 10-9 pico- p 10-12

More information

Properties of Solutions

Properties of Solutions Properties of Solutions Reading: Ch 11, section 8 Ch 12, sections 1-8 * = important homework question Homework: Chapter 11: 85*, 87 Chapter 12: 29, 33, 35, 41, 51*, 53, 55, 63*, 65, 67*, 69, 71, 75*, 79*,

More information

Subject : Chemistry Class : XII Chapter-2.Solutions Work Sheet ( WS 2. 1) Topic- 2.1 Henry s & Raoult s Laws

Subject : Chemistry Class : XII Chapter-2.Solutions Work Sheet ( WS 2. 1) Topic- 2.1 Henry s & Raoult s Laws Work Sheet ( WS 2. 1) Topic- 2.1 Henry s & Raoult s Laws Name -. Class/ sec.. Roll No.. A. Fill in the blanks: 1. Solutions are mixtures of two or more than two components. 2. Generally, the component

More information

Part A Answer all questions in this part.

Part A Answer all questions in this part. Part A Directions (1-24): For each statement or question, record on your separate answer sheet the number of the word or expression that, of those given, best completes the statement or answers the question.

More information

Solutions. Solutions. How Does a Solution Form? Solutions. Energy Changes in Solution. How Does a Solution Form

Solutions. Solutions. How Does a Solution Form? Solutions. Energy Changes in Solution. How Does a Solution Form Ummm Solutions Solutions Solutions are homogeneous mixtures of two or more pure substances. In a solution, the solute is dispersed uniformly throughout the solvent. Solutions The intermolecular forces

More information

CHAPTER 2 SOLUTIONS. Introduction Concentration Units. Introduction Definitions

CHAPTER 2 SOLUTIONS. Introduction Concentration Units. Introduction Definitions CHAPTER 2 SOLUTIONS Introduction Solutions are all around us. Our atmosphere is a solution of gases in gases, carbonated beverages are solutions of gases in liquids, sweetened drinks are solutions of solids

More information

1) Define the following terms: a) solution, b) miscible, c) hydration, d) percent by mass (solute), e) colligative property, f) hypotonic.

1) Define the following terms: a) solution, b) miscible, c) hydration, d) percent by mass (solute), e) colligative property, f) hypotonic. Problems - Chapter 13 (with solutions) 1) Define the following terms: a) solution, b) miscible, c) hydration, d) percent by mass (solute), e) colligative property, f) hypotonic. a) solution - A homogeneous

More information

IMPORTANT CHEMICAL CONCEPTS: SOLUTIONS, CONCENTRATIONS, STOICHIOMETRY

IMPORTANT CHEMICAL CONCEPTS: SOLUTIONS, CONCENTRATIONS, STOICHIOMETRY Page 1 of 9 I. Introduction IMPORTANT CHEMICAL CONCEPTS: SOLUTIONS, CONCENTRATIONS, STOICHIOMETRY A. Course outline will be reviewed. B. Laboratory experiments will be discussed in class. II. Units of

More information

CHEMISTRY 122 [Tyvoll] PRACTICE EXAM II Possibly Useful Information: 2) ( ) ( ) ( ) ( ) ( ) R = L atm/mol K

CHEMISTRY 122 [Tyvoll] PRACTICE EXAM II Possibly Useful Information: 2) ( ) ( ) ( ) ( ) ( ) R = L atm/mol K Name Student ID # CHEMISTRY 122 [Tyvoll] PRACTICE EXAM II Spring 2008 1 2 3 4 5 Possibly Useful Information: 1) ( ) ( ) ( ) ( ) ( ) d (H 2 O) = 1.00 g/ml 2) ( ) ( ) ( ) ( ) ( ) R = 0.0821 L atm/mol K 3)

More information

Chapter How many grams of a 23.4% by mass NaF solution is needed if you want to have 1.33 moles of NaF?

Chapter How many grams of a 23.4% by mass NaF solution is needed if you want to have 1.33 moles of NaF? Chapter 13 1. Which of the following compounds is a strong electrolyte? a. NH 4Cl b. NaCl c. NaC 2H 3O 2 d. HCl e. All of the above 2. A solution that is 13.58% by mass of sugar contains 13.75 grams of

More information

Concentration of Solutions

Concentration of Solutions Section 3 10C, 10D Main Ideas Molarity is moles of solute per liter of solution Molality is moles of solute per kilogram of solvent 10C calculate the concentration of solutions in units of molarity; 10D

More information

Unit 7. Solution Concentrations and Colligative Properties

Unit 7. Solution Concentrations and Colligative Properties Unit 7 Solution Concentrations and Colligative Properties Molarity Most widely used concentration unit [HCl] means concentration of HCl in mol/l Notice volume is total volume of solution Molarity (M)=

More information

Solutions and Their Properties

Solutions and Their Properties Chapter 11 Solutions and Their Properties Solutions: Definitions A solution is a homogeneous mixture. A solution is composed of a solute dissolved in a solvent. When two compounds make a solution, the

More information

Analytical Chemistry

Analytical Chemistry Analytical Chemistry Lecture No. 2 Date :2 /12/ 2012 Dr. Mohammed Hamed --------------------------------------------------------------------------------------------------------------------------------------

More information

3. Liquid solutions: a. liquid - liquid Ex. vinegar b. solid - liquid Ex. salt water c. gas - liquid Ex. carbonated water in soda pop

3. Liquid solutions: a. liquid - liquid Ex. vinegar b. solid - liquid Ex. salt water c. gas - liquid Ex. carbonated water in soda pop Solution Chemistry Nature of Solutions solutions are homogeneous mixtures substances in solution are different from their solid, liquid or gas forms there should be no observable segregation of component

More information

CHEMISTRY 102 FALL 2010 EXAM 1 FORM D SECTION 502 DR. KEENEY-KENNICUTT PART 1

CHEMISTRY 102 FALL 2010 EXAM 1 FORM D SECTION 502 DR. KEENEY-KENNICUTT PART 1 NAME CHEMISTRY 102 FALL 2010 EXAM 1 FORM D SECTION 502 DR. KEENEY-KENNICUTT Directions: (1) Put your name on PART 1 and your name and signature on PART 2 of the exam where indicated. (2) Sign the Aggie

More information

CHAPTER 12 REVIEW. Solutions. Answer the following questions in the space provided. b. sea water. c. water-absorbing super gels

CHAPTER 12 REVIEW. Solutions. Answer the following questions in the space provided. b. sea water. c. water-absorbing super gels CHAPTER 12 REVIEW Solutions SECTION 1 SHORT ANSWER Answer the following questions in the space provided. 1. Match the type of mixture on the left to its representative particle diameter on the right. c

More information

Solutions. Solutions Overview

Solutions. Solutions Overview Solutions Chapter 9 Solutions Overview Terminology Units of Concentration Dilutions Colligative Properties 1 Terminology Solution- A homogenous mixture of two or more substances (ions or small molecules)

More information

Quantitative Chemical

Quantitative Chemical Welcome to Analytical Chemistry Quantitative Chemical Analysis The textbook for this course is Quantitative Chemical Analysis Seventh Edition by Dan Harris ( 2007, W.H. Freeman & Company) http://ebooks.bfwpub.com/qchem

More information

CHEM 200/202. Professor Jing Gu Office: EIS-210. All s are to be sent to:

CHEM 200/202. Professor Jing Gu Office: EIS-210. All  s are to be sent to: CHEM 200/202 Professor Jing Gu Office: EIS-210 All emails are to be sent to: chem200@mail.sdsu.edu My office hours will be held in GMCS-212 on Monday from 9 am to 11 am or by appointment. FALL 2018 ROOM

More information

64 previous solution

64 previous solution 64 previous solution mole fraction (definition) 1 - Convert 29.6 grams sodium sulfate to moles. We already did this to find molality, so we can re-use the number. 2 - This is the total moles of both sodium

More information

Solvent: the fraction of a solution in which the other components are dissolved. (This is usually the liquid) Solute: a substance that is dissolved

Solvent: the fraction of a solution in which the other components are dissolved. (This is usually the liquid) Solute: a substance that is dissolved Solutions and Colloids David A. Katz Department of Chemistry Pima Community College Solutions SOME SOLUTION TERMINOLOGY Solvent: the fraction of a solution in which the other components are dissolved.

More information

1) Define the following terms: a) solution, b) miscible, c) hydration, d) percent by mass (solute), e) colligative property, f) hypotonic.

1) Define the following terms: a) solution, b) miscible, c) hydration, d) percent by mass (solute), e) colligative property, f) hypotonic. Problems - Chapter 13 (with solutions) 1) Define the following terms: a) solution, b) miscible, c) hydration, d) percent by mass (solute), e) colligative property, f) hypotonic. a) solution - A homogeneous

More information

solubility solubilities that increase with increasing temperature

solubility solubilities that increase with increasing temperature Solubility The concentration of the solute in a saturated solution is the solubility of the solute About 95% of all ionic compounds have aqueous solubilities that increase with increasing temperature Temperature

More information

Chemical calculations in medicine. Josef Fontana

Chemical calculations in medicine. Josef Fontana Chemical calculations in medicine Josef Fontana Chemical calculations Expression of concentration molar concentration percent concentration conversion of units Osmotic pressure, osmolarity Dilution of

More information

Chapter 3 Stoichiometry

Chapter 3 Stoichiometry Chapter 3 Sep 22 1:45 PM Average atomic mass: The weighted average of all isotopes of a specific element. Takes into consideration abundance of each isotope. (% x M 1 ) + (% x M 2 ) +... Sep 22 1:45 PM

More information

Properties of Solutions. Overview of factors affecting solubility Ways of expressing concentration Physical properties of solutions

Properties of Solutions. Overview of factors affecting solubility Ways of expressing concentration Physical properties of solutions Properties of Solutions Overview of factors affecting solubility Ways of expressing concentration Physical properties of solutions Learning objectives Define terms solute, solvent and solution Distinguish

More information

Chapter. Measuring Concentration. Table of Contents

Chapter. Measuring Concentration. Table of Contents Measuring Concentration Table of Contents Introduction 1. Percent Concentration 2. Molarity 3. Preparation of a with a Desired Concentration Measuring Concentration Warm Up How do you classify solutions

More information

1. All the solutions have the same molality. 2. All the solutions have the same molarity.

1. All the solutions have the same molality. 2. All the solutions have the same molarity. I. (41 points) A. (12 points) Write your answers on the blanks provided. 1. Which of the following solutes would be more soluble in water? a. CH 3 OH or C 17 H 35 OH b. C 2 H 5 Cl or NaCl c. CHCl 3 or

More information