Supporting Information for

Size: px
Start display at page:

Download "Supporting Information for"

Transcription

1 Supporting Information for High-Performance Supercapacitor Electrode based on Cobalt Oxide - Manganese Dioxide -Nickel Oxide Ternary 1D Hybrid Nanotubes Ashutosh K. Singh, 1,2, Debasish Sarkar, 3,,*, Keshab Karmakar, 2 Kalyan Mandal, 2 and Gobinda Gopal Khan 4,* 1 Large Area Device Laboratory, Centre for Nano and Soft Matter Sciences, Jalahalli, Bengaluru , India 2 Department of Condensed Matter Physics and Material Sciences, S. N. Bose National Centre for Basic Sciences, Block JD, Sector III, Salt Lake City, Kolkata , India 3 Solid State and Structural Chemistry Unit, Indian Institute of Science, Bengaluru , India 4 Centre for Research in Nanoscience and Nanotechnology, University of Calcutta, Technology Campus, Block JD2, Sector III, Salt Lake City, Kolkata , India ( Authors contributed equally to this work.) * Corresponding authors: deb.sarkar1985@gmail.com and gobinda.gk@gmail.com S-1

2 Experimental Methods Reagents Aluminium foil (99.99+% pure, 0.2 mm thick), Oxalic acid (99.9+% pure), Cobalt sulphate heptahydrate (CoSO 4.7H 2 O, % pure), Nickel sulphate hexahydrate (NiSO 4.6H 2 O, 99.9+% pure), Manganese sulphate monohydrate (MnSO 4.H 2 O, 99.9+% pure), Boric acid (H 3 BO 3, 99.9+% pure), Sodium hydroxide (NaOH, 99.9+% pure) and Potassium hydroxide (KOH, 99.9+% pure) were purchased from SIGMA-ALDRICH. All chemicals were of analytical grade and were used without further purification. Synthesis of Co 3 O 4 -MnO 2 -NiO ternary hybrid nanotubes Highly ordered nanoporous anodic aluminium oxide (AAO) templates were fabricated by the controlled two-stage electrochemical anodization of high-purity aluminium foil in oxalic acid solution as described elsewhere. 1-3 The software controlled three electrode electrodeposition unit (potentiostat AutoLab-30) equipped with power supply was used to synthesise high-density arrays of Co-Mn-Ni alloy nanotubes with the help of AAO template with one side coated with a conductive gold (Au) layer grown by the thermal evaporation technique. A high-purity Pt wire and an Ag/AgCl electrode were used as the counter and reference electrodes, respectively. The arrays of Co-Mn-Ni alloy nanotubes were grown in the pores of AAO using the aqueous solution of 40 g L -1 CoSO 4.7H 2 O, 45 g L -1 MnSO 4.H 2 O 50 g L -1 NiSO 4.6H 2 O and 30 g L -1 H 3 BO 3 as the electrolyte at room temperature. Here, boric acid and NH 4 OH were used as a buffer to maintain the ph of the electrolyte around 3.5 and also to control the electrodeposition process. The deposition of the arrays of Co-Mn-Ni alloy nanotubes was conducted for 30 minutes by using a dc voltage of V, following the linear sweep voltammetry (LSV) results. After the growth of the Co-Mn-Ni alloy nanotubes the template was removed by dissolving it in 2 M NaOH aqueous solution. The open arrays of Co-Mn-Ni alloy nanotubes grown on Au layer were finally oxidized to form Co 3 O 4 - MnO 2 -NiO ternary hybrid nanotubes by annealing at 600 C for 5 hours in air atmosphere. The mass of the active electrode material was measured by using a microbalance by subtracting the mass of the equal area Au foil layer, on which the hybrid nanotubes were grown, from the total mass of the cathode (hybrid nanotubes material and the Au layer). The loading density of the Co 3 O 4 - MnO 2 -NiO ternary hybrid nanotubes was found to be mg cm -2. S-2

3 Structural Characterization The crystal structures of the as prepared 1D Co 3 O 4 - MnO 2 -NiO ternary hybrid nanotubes were analyzed by X-ray diffraction (XRD, Panalytical X'Pert Pro diffractometer). Morphology of the arrays of Co-Mn-Ni alloy nanotubes and Co 3 O 4 - MnO 2 -NiO ternary hybrid nanotubes were studied using field emission scanning electron microscope (FESEM, FEI Quanta-200 Mark-2), transmission electron microscope (TEM, FEI TECNAI G2 TF20ST) and energy filtered transmission electron microscope (EFTEM). The crystalline structure of the hybrid nanotubes was further investigated by high-resolution TEM (HRTEM). Moreover, the elemental composition and chemical states of different ionic species of Co 3 O 4 -MnO 2 -NiO ternary hybrid nanotubes were further investigated by energy dispersive X-ray (EDAX) and X-ray photo-electron spectroscopy (XPS, AXIS ULTRA). Electrochemical Measurements The electrochemical properties of the samples were investigated by cyclic voltammetry (CV) and galvanostatic (GV) charge/discharge tests by using a software controlled conventional three-electrode electrochemical cell (potentiostat AutoLab-30) consisting of the as-prepared samples as the working electrode, Ag/AgCl as the reference electrode, a Pt wire as the counter electrode and 1 M KOH solution as the electrolyte, at room temperature. A potential window in the range from -0.2 V to +0.6 V was used in all the measurements. The CV measurements were performed at different scan rates varying from 2 to 100 mv/s. Galvanostatic charge/discharge measurements were conducted at various current densities varying from 12.2 to 18.4 A/g to evaluate the specific capacitance, areal capacitance, power density and energy density. Electrochemical impedance spectroscopy (EIS) was carried out to prove the capacitive performance in 1 M KOH within the frequency range of Hz at charging condition (at 0.55V) of the electrode with an ac field amplitude of 5 mv. Growth mechanism of 1D ternary NTs in AAO Based on the results of this present synthesis process and our previous works on the AAO template synthesis of transition metal and transition metal oxides, 4-7 the growth mechanism of the 1D ternary NTs could be demonstrated. It is found that the electro-deposition voltage/current and the electro-deposition time are the two major parameters to control the shape/morphology of the deposited nanostructures within the nanotubes of AAO. At a given S-3

4 voltage the metal ions start depositing at the interface or junction of AAO and the Au substrate (see Scheme 1). The interface actually acts as the preferential nucleation site for the first electrodeposition. 8 Afterwards, metal ions deposit on the Au substrate mainly and cover up the whole Au substrate within few seconds. After covering the Au substrate the metal ions start to deposit following the inner surface of the AAO tube wall. 8 Now, when the applied voltage of perfect (as obtained from LSV) the tubular type nanoarchitecture of the metal is formed if the deposition time is considerably small, as in this stage the metal ions deposit on the inner wall of the porous AAO tubes (as shown in Scheme 1). However, if the electrodeposition is carried out for a long time the metal ions gradually cover up the whole space within the tube wall and the morphology of the fabricated nanostructures becomes nanowires like. However, it is found that if the applied voltage is considerably high enough, even the short deposition tome could produce solid nanowires instead of nanotubes. Scheme 1: Growth mechanism of the 1D ternary NTs/NRs in AAO. The performance of the 1D ternary NTs electrode There are few literatures available regarding ternary hybrid nanostructures investigated for supercapacitor applications, though, mostly based on metal oxide-carbon nanocomposities, like MnO 2 /CNT/conducting polymer ternay nanocomposite, 9 γ- MnO 2 /CNT/graphene nanosheet composite, 10 SWNT/WO 3 /PANI composite thin films 11 (Journal of Alloys and Compounds, 658, 2016, ), MWCNT/PANI/MnO 2 ternary coaxial nanowires 12 (Journal of Power Sources, 196, 11, ), and Graphene/SnO 2 /PPy (GSP) nanocomposite 13 (RSC Advances, 2012, 2, ) etc. However, here for the first time we have combined three metal oxides together in a single unit with no organic components and investigated their electrochemical properties. Interestingly, our results including capacitance and cycle life, remain superior as compared to most of the other ternary composites mentioned above. S-4

5 Moreover, we have also investigated binary nanostructured materials based on pristine metal oxides, like Fe 2 O 3 /MnO 2 core-shell nanowires, 5 Co-Ni/Co 3 O 4 -NiO core-shell binary nanowires 7 though, we have observed significantly improved electrochemical performance in case of this ternary nanotube electrode. The performance of this ternary hybrid nanotube electrode as compared to other binaryternary composites is summarized below in Table S1: Table S1 System under investigation Co 3 O 4 -MnO 2 -NiO ternary hybrid 1D nanotube arrays [Present work] α-fe 2 O 3 /MnO 2 core-shell nanowires 5 Ni/NiO core-shell nanowires 6 Co-Ni/Co 3 O 4 -NiO core-shell nanowires 7 Spinel Ni 2 CoO 4 aerogel 14 MnO 2 /CNT/conducting polymer ternary nanocomposite 9 Capacitance 2525 F/g; 1125 mf/cm F/g 717 F/g 2013 F/g 1400 F/g 427 F/g SWNT/WO 3 /PANI composite thin films mf/cm 2 Graphene/SnO 2 /PPy (GSP) nanocomposite F/g MWCNT/PANI/MnO 2 ternary coaxial nanowires F/g S-5

6 Figures Figure S1. FESEM micrograph of the as prepared arrays of Co-Mn-Ni alloy nanotubes. Figure S2. Side view of FESEM micrograph of the as-prepared Co 3 O 4 -MnO 2 -NiO ternary hybrid NTs. S-6

7 Figure S3. SAED pattern micrograph of the as prepared arrays of Co 3 O 4 - MnO 2 -NiO ternary hybrid nanotubes. Figure S4. XRD pattern of the Co 3 O 4 - MnO 2 -NiO ternary hybrid nanotubes. S-7

8 Figure S5. EDS spectrum of the Co 3 O 4 - MnO 2 -NiO ternary hybrid nanotubes. 2p 3/2 Co 2p (a) Mn 2p (b) 2p 3/2 Intensity (a.u.) 2p 1/2 Intensity (a.u.) 2p 1/ Binding energy (ev) Binding energy (ev) 2p Ni 2p (c) 3/2 2p 1/2 O II O 1s (d) Intensity (a.u.) Intensity (a.u.) O I Binding energy (ev) Binding energy (ev) Figure S6. XPS spectrum of (a) Co 2p, (b) Mn 2p, (c) Ni 2p and (d) O 1s, respectively, in Co 3 O 4 - MnO 2 -NiO ternary hybrid nanotubes. S-8

9 Specific capacitance (F/g) Areal capacitance (mf/cm2) Scan rate (mv/s) Figure S7. Variation of areal and specific capacitances for the ternary hybrid nanotube electrode as a function of potential scan rate. Figure S8. FESEM micrograph of the Co3O4-MnO2-NiO ternary hybrid NTs after 5700 charge-discharge cycles. S-9

10 References (1) Sarkar, J.; Khan, G.G.; Basumallick, A. Nanowires: Properties, Applications and Synthesis via Porous Anodic Aluminium Oxide Template. Bull. Mats. Sci. 2007, 30, (2) Khan, G. G.; Mukherjee, N.; Mondal, A.; Bandyopadhyay, N. R.; Basumallick, A. Optical and Field Emission Characteristics of Anodic Aluminium Oxide/ZnO Hybrid Nanostructure. Mats. Chem. Phy. 2010, 122, (3) Khan, G. G.; Singh, A. K.; Mandal, K. Structure Dependent Photoluminescence of Nanoporous Amorphous Anodic Aluminium Oxide Membranes: Role of F + Center Defects, J. Lumin. 2013, 134, (4) Sarkar, D.; Khan, G. G.; Singh A. K.; Mandal, K. Enhanced Electrical, Optical and Magnetic Properties in Multifunctional ZnO/α-Fe 2 O 3 Semiconductor Nanoheterostructures by Heterojunction Engineering. J. Phys. Chem. C, 2012,116, (5) Sarkar, D.; Khan, G. G.; Singh A. K.; Mandal, K. High-Performance Pseudocapacitor Electrodes Based on α-fe 2 O 3 /MnO 2 Core Shell Nanowire Heterostructure Arrays. J. Phys. Chem. C, 2013,117, (6) Sarkar, D.; Khan, G. G.; Singh A. K.; Mandal, K. Unique Hydrogenated Ni-NiO Core-Shell 1D Nano-heterostructures with Superior Electrochemical Performance as Supercapacitor. J. Mater. Chem. A, 2013, 1, (7) Singh A. K.; Sarkar, D.; Khan, G. G.; Mandal, K. Designing One Dimensional Co- Ni/Co 3 O 4 -NiO Core/shell Nano-heterostructure Electrodes for High-performance Pseudocapacitor, App. Phys. Lett. 2014, 104, (8) Li, X.; Wang, Y.; Song, G.; Peng, Z.; Yu, Y.; She, X.; Li, J.; Synthesis and Growth Mechanism of Ni Nanotubes and Nanowires, Nanoscale Res. Lett. 2009, 4, (9) Hou, Y.; Cheng, Y.; Hobson, T.; Liu, J. Design and Synthesis of Hierarchical MnO 2 Nanospheres/Carbon Nanotubes/Conducting Polymer Ternary Composite for High Performance Electrochemical Electrodes. Nano. Lett., 2010, 10, (10) Rakhi, R. B.; Chen, W.; Cha, D.; Alshareef, H. N. Nanostructured Ternary Electrodes for Energy-Storage Applications, Adv. Energy. Mater., 2012, 2, (11) Yuksel, R.; Durucan, C.; Unalan, H. E. Ternary nanocomposite SWNT/WO 3 /PANI Thin Film Electrodes for Supercapacitors. J. Alloys Compd., 658, 2016, (12) Li, Q.; Liu, J.; Zou, J.; Chunder, A.; Chen, Y.; Zhai, L. Synthesis and Electrochemical Performance of Multi-walled Carbon Nanotube/polyaniline/MnO 2 Ternary Coaxial Nanostructures for Supercapacitors. J. Power Sources, 196, 11, (13) Wang, W.; Hao, Q.; Lei, W.; Xia, X.; Wang, X.; Graphene/SnO 2 /polypyrrole Ternary Nanocomposites as Supercapacitor Electrode Materials. RSC Adv., 2012, 2, S-10

11 (14) Wei, T.; Chen, C.; Chien, H.; Lu,S.; Hu, C. A Cost-Effective Supercapacitor Material of Ultrahigh Specific Capacitances: Spinel Nickel Cobaltite Aerogels from an Epoxide-Driven Sol Gel Process. Adv. Mater., 2010, 22, S-11

Fabrication of Metallic Nickel-Cobalt Phosphide Hollow Microspheres for. High-Rate Supercapacitors

Fabrication of Metallic Nickel-Cobalt Phosphide Hollow Microspheres for. High-Rate Supercapacitors Supporting Information Fabrication of Metallic Nickel-Cobalt Phosphide Hollow Microspheres for High-Rate Supercapacitors Miao Gao, Wei-Kang Wang, Xing Zhang, Jun Jiang, Han-Qing Yu CAS Key Laboratory of

More information

Facile synthesis of nanostructured CuCo 2 O 4 as a novel electrode material for high-rate supercapacitors

Facile synthesis of nanostructured CuCo 2 O 4 as a novel electrode material for high-rate supercapacitors Facile synthesis of nanostructured CuCo 2 O 4 as a novel electrode material for high-rate supercapacitors Afshin Pendashteh, a Mohammad S. Rahmanifar, b Richard B. Kaner, c and Mir F. Mousavi* a,c a Department

More information

Supporting Information. Polyaniline-MnO 2 nanotubes hybrid nanocomposite as supercapacitor electrode material in acidic electrolyte

Supporting Information. Polyaniline-MnO 2 nanotubes hybrid nanocomposite as supercapacitor electrode material in acidic electrolyte Supporting Information Polyaniline-MnO 2 nanotubes hybrid nanocomposite as supercapacitor electrode material in acidic electrolyte Jaidev, R Imran Jafri, Ashish Kumar Mishra, Sundara Ramaprabhu* Alternative

More information

Supplementary Information for. High-performance bifunctional porous non-noble metal phosphide catalyst for overall

Supplementary Information for. High-performance bifunctional porous non-noble metal phosphide catalyst for overall Supplementary Information for High-performance bifunctional porous non-noble metal phosphide catalyst for overall water splitting Yu et al. Supplementary Figure 1. A typical TEM image of as-prepared FeP/Ni

More information

Electrodeposited nickel hydroxide on nickel foam with ultrahigh. capacitance

Electrodeposited nickel hydroxide on nickel foam with ultrahigh. capacitance Electrodeposited nickel hydroxide on nickel foam with ultrahigh capacitance Guang-Wu Yang, Cai-Ling Xu* and Hu-Lin Li* College of Chemistry and Chemical Engineering, Lanzhou University, 73 (PR China) 1.

More information

Supplementary information

Supplementary information Supplementary information Electrochemical synthesis of metal and semimetal nanotube-nanowire heterojunctions and their electronic transport properties Dachi Yang, ab Guowen Meng,* a Shuyuan Zhang, c Yufeng

More information

Supplementary Information for

Supplementary Information for Electronic Supplementary Material (ESI) for Energy & Environmental Science. This journal is The Royal Society of Chemistry 2017 Supplementary Information for Cu Nanowires Shelled with NiFe Layered Double

More information

Supporting Information. High Wettable and Metallic NiFe-Phosphate/Phosphide Catalyst Synthesized by

Supporting Information. High Wettable and Metallic NiFe-Phosphate/Phosphide Catalyst Synthesized by Electronic Supplementary Material (ESI) for Journal of Materials Chemistry A. This journal is The Royal Society of Chemistry 2018 Supporting Information High Wettable and Metallic NiFe-Phosphate/Phosphide

More information

Supporting Information

Supporting Information Electronic Supplementary Material (ESI) for Journal of Materials Chemistry A. This journal is The Royal Society of Chemistry 2017 Supporting Information Experimental section Synthesis of Ni-Co Prussian

More information

Honeycomb-like Interconnected Network of Nickel Phosphide Hetero-nanoparticles

Honeycomb-like Interconnected Network of Nickel Phosphide Hetero-nanoparticles Supporting Information Honeycomb-like Interconnected Network of Nickel Phosphide Hetero-nanoparticles with Superior Electrochemical Performance for Supercapacitors Shude Liu a, Kalimuthu Vijaya Sankar

More information

Chapter - 8. Summary and Conclusion

Chapter - 8. Summary and Conclusion Chapter - 8 Summary and Conclusion The present research explains the synthesis process of two transition metal oxide semiconductors SnO 2 and V 2 O 5 thin films with different morphologies and studies

More information

Synthesis of Oxidized Graphene Anchored Porous. Manganese Sulfide Nanocrystal via the Nanoscale Kirkendall Effect. for supercapacitor

Synthesis of Oxidized Graphene Anchored Porous. Manganese Sulfide Nanocrystal via the Nanoscale Kirkendall Effect. for supercapacitor Electronic Supplementary Material (ESI) for Journal of Materials Chemistry A. This journal is The Royal Society of Chemistry 2015 Synthesis of Oxidized Graphene Anchored Porous Manganese Sulfide Nanocrystal

More information

Flexible Asymmetric Supercapacitors with High Energy and. High Power Density in Aqueous Electrolytes

Flexible Asymmetric Supercapacitors with High Energy and. High Power Density in Aqueous Electrolytes Supporting Information Flexible Asymmetric Supercapacitors with High Energy and High Power Density in Aqueous Electrolytes Yingwen Cheng, 1,2 Hongbo Zhang, 1,2 Songtao Lu, 1,2,3 Chakrapani V. Varanasi,

More information

Nickel Sulfides Freestanding Holey Films as Air-Breathing Electrodes for. Flexible Zn-Air Batteries

Nickel Sulfides Freestanding Holey Films as Air-Breathing Electrodes for. Flexible Zn-Air Batteries Nickel Sulfides Freestanding Holey Films as Air-Breathing Electrodes for Flexible Zn-Air Batteries Kyle Marcus, 1,# Kun Liang, 1,# Wenhan Niu, 1,# Yang Yang 1,* 1 NanoScience Technology Center, Department

More information

Flexible Asymmetrical Solid-state Supercapacitors Based on Laboratory Filter Paper

Flexible Asymmetrical Solid-state Supercapacitors Based on Laboratory Filter Paper SUPPORTING INFORMATION Flexible Asymmetrical Solid-state Supercapacitors Based on Laboratory Filter Paper Leicong Zhang,,,# Pengli Zhu,,,#, * Fengrui Zhou, Wenjin Zeng, Haibo Su, Gang Li, Jihua Gao, Rong

More information

Division of Physics and Semiconductor Science, Dongguk University, Seoul 04620, South Korea

Division of Physics and Semiconductor Science, Dongguk University, Seoul 04620, South Korea Electronic Supplementary Material (ESI) for Journal of Materials Chemistry A. This journal is The Royal Society of Chemistry 2017 Supplementary information for Self-assembled Two-dimensional Copper Oxide

More information

Electronic Supplementary Information

Electronic Supplementary Information Electronic Supplementary Material (ESI) for Energy & Environmental Science. This journal is The Royal Society of Chemistry 2016 Electronic Supplementary Information Self-supported formation of hierarchical

More information

Lithium-ion Batteries Based on Vertically-Aligned Carbon Nanotubes and Ionic Liquid

Lithium-ion Batteries Based on Vertically-Aligned Carbon Nanotubes and Ionic Liquid Electronic Supplementary Information Lithium-ion Batteries Based on Vertically-Aligned Carbon Nanotubes and Ionic Liquid Electrolytes Wen Lu, * Adam Goering, Liangti Qu, and Liming Dai * 1. Synthesis of

More information

Supporting information. School of optoelectronic engineering, Nanjing University of Post &

Supporting information. School of optoelectronic engineering, Nanjing University of Post & Electronic Supplementary Material (ESI) for RSC Advances. This journal is The Royal Society of Chemistry 2017 Supporting information Graphene/MnO 2 aerogel with both high compression-tolerant ability and

More information

Supporting Information

Supporting Information Supporting Information The Design of Hierarchical Ternary Hybrid for Fiber-Shaped Asymmetric Supercapacitor with High Volumetric Energy Density Xunliang Cheng, Jing Zhang, Jing Ren, Ning Liu, Peining Chen,

More information

An Ideal Electrode Material, 3D Surface-Microporous Graphene for Supercapacitors with Ultrahigh Areal Capacitance

An Ideal Electrode Material, 3D Surface-Microporous Graphene for Supercapacitors with Ultrahigh Areal Capacitance Supporting Information An Ideal Electrode Material, 3D Surface-Microporous Graphene for Supercapacitors with Ultrahigh Areal Capacitance Liang Chang, 1 Dario J. Stacchiola 2 and Yun Hang Hu 1, * 1. Department

More information

Conversion and Storage, School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin , PR China

Conversion and Storage, School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin , PR China Supporting information for Assembly of flexible CoMoO 4 @NiMoO 4 xh 2 O and Fe 2 O 3 electrodes for solid-state asymmetric supercapacitors Jing Wang a, Leipeng Zhang b, Xusong Liu a, Xiang Zhang b, Yanlong

More information

Supporting Information

Supporting Information Supporting Information Fe 3 O 4 @Carbon Nanosheets for All-Solid-State Supercapacitor Electrodes Huailin Fan, Ruiting Niu, & Jiaqi Duan, Wei Liu and Wenzhong Shen * State Key Laboratory of Coal Conversion,

More information

Electronic Supplementary Information

Electronic Supplementary Information Electronic Supplementary Material (ESI) for Chemical Communications. This journal is The Royal Society of Chemistry 2015 Electronic Supplementary Information Phosphorus-Doped CoS 2 Nanosheet Arrays as

More information

Carbon Quantum Dots/NiFe Layered Double Hydroxide. Composite as High Efficient Electrocatalyst for Water

Carbon Quantum Dots/NiFe Layered Double Hydroxide. Composite as High Efficient Electrocatalyst for Water Supplementary Information Carbon Quantum Dots/NiFe Layered Double Hydroxide Composite as High Efficient Electrocatalyst for Water Oxidation Di Tang, Juan Liu, Xuanyu Wu, Ruihua Liu, Xiao Han, Yuzhi Han,

More information

Supporting Information

Supporting Information Supporting Information Facet-Selective Deposition of FeO x on α-moo 3 Nanobelts for Lithium Storage Yao Yao, 1 Nuo Xu, 2 Doudou Guan, 1 Jiantao Li, 1 Zechao Zhuang, 1 Liang Zhou,*,1 Changwei Shi 1, Xue

More information

Electronics Supplementary Information for. Manab Kundu, Cheuk Chi Albert Ng, Dmitri Y. Petrovykh and Lifeng Liu*

Electronics Supplementary Information for. Manab Kundu, Cheuk Chi Albert Ng, Dmitri Y. Petrovykh and Lifeng Liu* Electronics Supplementary Information for Nickel foam supported mesoporous MnO 2 nanosheet arrays with superior lithium storage performance Manab Kundu, Cheuk Chi Albert Ng, Dmitri Y. Petrovykh and Lifeng

More information

Electronic Supplementary Information

Electronic Supplementary Information Electronic Supplementary Material (ESI) for Journal of Materials Chemistry A. This journal is The Royal Society of Chemistry 214 Electronic Supplementary Information Ultrathin and High-Ordered CoO Nanosheet

More information

Journal of Materials Chemistry A ELECTRONIC SUPPLEMENTARY INFORMATION (ESI )

Journal of Materials Chemistry A ELECTRONIC SUPPLEMENTARY INFORMATION (ESI ) Electronic Supplementary Material (ESI) for Journal of Materials Chemistry A. This journal is The Royal Society of Chemistry 218 Journal of Materials Chemistry A ELECTRONIC SUPPLEMENTARY INFORMATION (ESI

More information

Supporting Information

Supporting Information Electronic Supplementary Material (ESI) for Nanoscale. This journal is The Royal Society of Chemistry 2014 Engineering Cu 2 O/NiO/Cu 2 MoS 4 Hybrid Photocathode for H 2 Generation in Water Chen Yang, a,b

More information

High-Performance Silicon Battery Anodes Enabled by

High-Performance Silicon Battery Anodes Enabled by Supporting Information for: High-Performance Silicon Battery Anodes Enabled by Engineering Graphene Assemblies Min Zhou,, Xianglong Li, *, Bin Wang, Yunbo Zhang, Jing Ning, Zhichang Xiao, Xinghao Zhang,

More information

Supporting Information for

Supporting Information for Electronic Supplementary Material (ESI) for Chemical Communications. This journal is The Royal Society of Chemistry 2014 Supporting Information for Metal Nanoparticles Directed NiCo 2 O 4 Nanostructure

More information

Electronic Supplementary Information. A Flexible Alkaline Rechargeable Ni/Fe Battery Based on Graphene Foam/Carbon Nanotubes Hybrid Film

Electronic Supplementary Information. A Flexible Alkaline Rechargeable Ni/Fe Battery Based on Graphene Foam/Carbon Nanotubes Hybrid Film Electronic Supplementary Information A Flexible Alkaline Rechargeable Ni/Fe Battery Based on Graphene Foam/Carbon Nanotubes Hybrid Film Jilei Liu,, Minghua Chen, Lili Zhang, Jian Jiang, Jiaxu Yan, Yizhong

More information

Self-assembled pancake-like hexagonal tungsten oxide with ordered mesopores for supercapacitors

Self-assembled pancake-like hexagonal tungsten oxide with ordered mesopores for supercapacitors Electronic Supplementary Material (ESI) for Journal of Materials Chemistry A. This journal is The Royal Society of Chemistry 2018 Electronic Supporting Information Self-assembled pancake-like hexagonal

More information

Supporting Information. Electropolymerization of aniline on nickel-based electrocatalysts substantially

Supporting Information. Electropolymerization of aniline on nickel-based electrocatalysts substantially Supporting Information Electropolymerization of aniline on nickel-based electrocatalysts substantially enhances their performance for hydrogen evolution Fuzhan Song, Wei Li, Guanqun Han, and Yujie Sun*

More information

state expose the the positive (electrode 2; top electrode S 1

state expose the the positive (electrode 2; top electrode S 1 Supplementary Figure 1. Procedure for fabricatingg ENHANS ribbon. (a) All solid state symmetric supercapacitor, (b) supercapacitor after peeling off the paper cover from one of the copper tape electrodes

More information

Supporting Information for. Highly active catalyst derived from a 3D foam of Fe(PO 3 ) 2 /Ni 2 P for extremely efficient water oxidation

Supporting Information for. Highly active catalyst derived from a 3D foam of Fe(PO 3 ) 2 /Ni 2 P for extremely efficient water oxidation Supporting Information for Highly active catalyst derived from a 3D foam of Fe(PO 3 ) 2 /Ni 2 P for extremely efficient water oxidation Haiqing Zhou a,1, Fang Yu a,1, Jingying Sun a, Ran He a, Shuo Chen

More information

Supporting Information. High-Performance Supercapacitor

Supporting Information. High-Performance Supercapacitor Supporting Information Mesoporous CoO Nanocubes @ Continuous 3D Porous Carbon Skeleton of Rose Based Electrode for High-Performance Supercapacitor Danni Lan, Yangyang Chen, Pan Chen, Xuanying Chen, Xu

More information

Supporting Information

Supporting Information Supporting Information NiFe-Layered Double Hydroxide Nanosheet Arrays Supported on Carbon Cloth for Highly Sensitive Detection of Nitrite Yue Ma,, Yongchuang Wang,, Donghua Xie,, Yue Gu,, Haimin Zhang,

More information

Large-Scale Synthesis of Transition-metal Doped TiO 2 Nanowires. with Controllable Overpotential

Large-Scale Synthesis of Transition-metal Doped TiO 2 Nanowires. with Controllable Overpotential Large-Scale Synthesis of Transition-metal Doped TiO 2 Nanowires with Controllable Overpotential Bin Liu 1, Hao Ming Chen, 1 Chong Liu 1,3, Sean C. Andrews 1,3, Chris Hahn 1, Peidong Yang 1,2,3,* 1 Department

More information

High Salt Removal Capacity of Metal-Organic Gel Derived. Porous Carbon for Capacitive Deionization

High Salt Removal Capacity of Metal-Organic Gel Derived. Porous Carbon for Capacitive Deionization Supporting Information High Salt Removal Capacity of Metal-Organic Gel Derived Porous Carbon for Capacitive Deionization Zhuo Wang, Tingting Yan, Guorong Chen, Liyi Shi and Dengsong Zhang* Research Center

More information

Supporting Infromation

Supporting Infromation Supporting Infromation Transparent and Flexible Self-Charging Power Film and Its Application in Sliding-Unlock System in Touchpad Technology Jianjun Luo 1,#, Wei Tang 1,#, Feng Ru Fan 1, Chaofeng Liu 1,

More information

Electronic Supporting Information

Electronic Supporting Information Electronic Supplementary Material (ESI) for Journal of Materials Chemistry A. This journal is The Royal Society of Chemistry 2018 Electronic Supporting Information Synthesis of Amorphous Boride Nanosheets

More information

A Robust and Highly Active Copper-Based Electrocatalyst. for Hydrogen Production at Low Overpotential in Neutral

A Robust and Highly Active Copper-Based Electrocatalyst. for Hydrogen Production at Low Overpotential in Neutral Electronic Supplementary Material (ESI) for ChemComm. This journal is The Royal Society of Chemistry 2015 Supporting information A Robust and Highly Active Copper-Based Electrocatalyst for Hydrogen Production

More information

η (mv) J (ma cm -2 ) ma cm

η (mv) J (ma cm -2 ) ma cm J (ma cm -2 ) 250 200 150 100 50 0 253 mv@10 ma cm -2-50 0.00 0.05 0.10 0.15 0.20 0.25 0.30 0.35 η (mv) Supplementary Figure 1 Polarization curve of NiSe. S1 FeO x Fe-Se Intensity (a. u.) 720 717 714 711

More information

MATERIALS FOR SUPERCAPACITORS ELECTRODES: PREFORMANCE AND NEW TRENDS

MATERIALS FOR SUPERCAPACITORS ELECTRODES: PREFORMANCE AND NEW TRENDS MATERIALS FOR SUPERCAPACITORS ELECTRODES: PREFORMANCE AND NEW TRENDS Bologna, May 23 th 2017 M. Federica De Riccardis SSPT-PROMAS-MATAS OUTLINE Basic concepts EDLC and PC Porosity Electrode materials Carbon

More information

Electronic Supplementary Information

Electronic Supplementary Information Electronic Supplementary Material (ESI) for Journal of Materials Chemistry A. This journal is The Royal Society of Chemistry 2017 Electronic Supplementary Information Two-dimensional CoNi nanoparticles@s,n-doped

More information

High-Performance Flexible Asymmetric Supercapacitors Based on 3D. Electrodes

High-Performance Flexible Asymmetric Supercapacitors Based on 3D. Electrodes Supporting Information for: High-Performance Flexible Asymmetric Supercapacitors Based on 3D Porous Graphene/MnO 2 Nanorod and Graphene/Ag Hybrid Thin-Film Electrodes Yuanlong Shao, a Hongzhi Wang,* a

More information

General Synthesis of Graphene-Supported. Bicomponent Metal Monoxides as Alternative High- Performance Li-Ion Anodes to Binary Spinel Oxides

General Synthesis of Graphene-Supported. Bicomponent Metal Monoxides as Alternative High- Performance Li-Ion Anodes to Binary Spinel Oxides Electronic Supplementary Material (ESI) for Journal of Materials Chemistry A. This journal is The Royal Society of Chemistry 2016 Electronic Supplementary Information (ESI) General Synthesis of Graphene-Supported

More information

Supporting Information

Supporting Information Electronic Supplementary Material (ESI) for Journal of Materials Chemistry A. This journal is The Royal Society of Chemistry 2017 Supporting Information Ultrathin Petal-like NiAl Layered Double oxide/sulfide

More information

Electronic Supplementary Information

Electronic Supplementary Information Electronic Supplementary Material (ESI) for ChemComm. This journal is The Royal Society of Chemistry 2015 Electronic Supplementary Information Nickel Cobalt Phosphides Quasi-Hollow Nanocubes as an Efficient

More information

Supporting Information

Supporting Information Supporting Information Surfactant-Free Assembly of Mesoporous Carbon Hollow Spheres with Large Tunable Pore Sizes Hongwei Zhang, Owen Noonan, Xiaodan Huang, Yannan Yang, Chun Xu, Liang Zhou, and Chengzhong

More information

Role of boric acid in nickel nanotube electrodeposition: a surface-directed growth mechanism

Role of boric acid in nickel nanotube electrodeposition: a surface-directed growth mechanism Electronic Supporting Information: Role of boric acid in nickel nanotube electrodeposition: a surface-directed growth mechanism Lauren M. Graham, Seungil Il Cho, Sung Kyoung Kim, Malachi Noked, and Sang

More information

Fabrication and characterization of poly (ethylene oxide) templated nickel oxide nanofibers for dye degradation

Fabrication and characterization of poly (ethylene oxide) templated nickel oxide nanofibers for dye degradation Electronic Supplementary Material (ESI) for Environmental Science: Nano. This journal is The Royal Society of Chemistry 2014 Supplementary Information Fabrication and characterization of poly (ethylene

More information

Tailorable and Wearable Textile Devices for Solar Energy Harvesting and Simultaneous Storage

Tailorable and Wearable Textile Devices for Solar Energy Harvesting and Simultaneous Storage Supporting Information Tailorable and Wearable Textile Devices for Solar Energy Harvesting and Simultaneous Storage Zhisheng Chai,, Nannan Zhang,, Peng Sun, Yi Huang, Chuanxi Zhao, Hong Jin Fan, Xing Fan,*,

More information

Supporting Information

Supporting Information Supporting Information A Novel Potassium-Ion Hybrid Capacitor Based on an Anode of K 2 Ti 6 O 13 Micro-Scaffolds Shengyang Dong,, Zhifei Li, Zhenyu Xing, Xianyong Wu, Xiulei Ji*, and Xiaogang Zhang*, Jiangsu

More information

Supporting information

Supporting information Electronic Supplementary Material (ESI) for Journal of Materials Chemistry A. This journal is The Royal Society of Chemistry 2018 Supporting information Effect of cation substitution on pseudocapacitive

More information

Supporting information:

Supporting information: Supporting information: The Role of Anisotropic Structure and Its Aspect Ratio: High-Loading Carbon Nanospheres Supported Pt Nanowires and Their High Performance Toward Methanol Electrooxidation Feng-Zhan

More information

Supplementary Figure 1 XPS, Raman and TGA characterizations on GO and freeze-dried HGF and GF. (a) XPS survey spectra and (b) C1s spectra.

Supplementary Figure 1 XPS, Raman and TGA characterizations on GO and freeze-dried HGF and GF. (a) XPS survey spectra and (b) C1s spectra. Supplementary Figure 1 XPS, Raman and TGA characterizations on GO and freeze-dried HGF and GF. (a) XPS survey spectra and (b) C1s spectra. (c) Raman spectra. (d) TGA curves. All results confirm efficient

More information

Supplemental Information. In Situ Electrochemical Production. of Ultrathin Nickel Nanosheets. for Hydrogen Evolution Electrocatalysis

Supplemental Information. In Situ Electrochemical Production. of Ultrathin Nickel Nanosheets. for Hydrogen Evolution Electrocatalysis Chem, Volume 3 Supplemental Information In Situ Electrochemical Production of Ultrathin Nickel Nanosheets for Hydrogen Evolution Electrocatalysis Chengyi Hu, Qiuyu Ma, Sung-Fu Hung, Zhe-Ning Chen, Daohui

More information

Hydrogenated CoO x Ni(OH) 2 nanosheet core shell nanostructures for high-performance asymmetric supercapacitors

Hydrogenated CoO x Ni(OH) 2 nanosheet core shell nanostructures for high-performance asymmetric supercapacitors . Electronic Supplementary Material (ESI) for Nanoscale Electronic Supplementary Information (ESI) Hydrogenated CoO x nanowire @ Ni(OH) 2 nanosheet core shell nanostructures for high-performance asymmetric

More information

Achieving Stable and Efficient Water Oxidation by Incorporating NiFe. Layered Double Hydroxide Nanoparticles into Aligned Carbon.

Achieving Stable and Efficient Water Oxidation by Incorporating NiFe. Layered Double Hydroxide Nanoparticles into Aligned Carbon. Electronic Supplementary Material (ESI) for Nanoscale Horizons. This journal is The Royal Society of Chemistry 2015 Achieving Stable and Efficient Water Oxidation by Incorporating NiFe Layered Double Hydroxide

More information

Supporting Information

Supporting Information Copyright WILEY-VCH Verlag GmbH & Co. KGaA, 69469 Weinheim, Germany, 2015. Supporting Information for Adv. Energy Mater., DOI: 10.1002/aenm.201500060 Interconnected Nanorods Nanoflakes Li 2 Co 2 (MoO 4

More information

Supporting Information

Supporting Information Supporting Information Universal, In-Situ Transformation of Bulky Compounds into Nanoscale Catalysts by High Temperature Pulse Shaomao Xu 1, (a), Yanan Chen 1, (a), Yiju Li 1, (a), Aijiang Lu 1, Yonggang

More information

High-resolution on-chip supercapacitors with ultra-high scan rate ability

High-resolution on-chip supercapacitors with ultra-high scan rate ability Electronic Supplementary Material (ESI) for Journal of Materials Chemistry A. This journal is The Royal Society of Chemistry 214 Supporting Information High-resolution on-chip supercapacitors with ultra-high

More information

Supporting Information

Supporting Information Supporting Information Hierarchical Mesoporous Zinc-Nickel-Cobalt Ternary Oxide Nanowire Arrays on Nickel Foam as High Performance Electrodes for Supercapacitors Chun Wu a, Junjie Cai a, Qiaobao Zhang

More information

School of Materials Science and Engineering, Nanyang Technological University, 50 Nanyang Avenue, , Singapore. b

School of Materials Science and Engineering, Nanyang Technological University, 50 Nanyang Avenue, , Singapore. b Electronic Supplementary Material (ESI) for ChemComm. This journal is The Royal Society of Chemistry 2014 Dopamine-Mo VI complexation-assisted large-scale aqueous synthesis of single-layer MoS 2 /carbon

More information

Supporting Information

Supporting Information Supporting Information A General Strategy for the Synthesis of Transition-Metal Phosphide/N-doped Carbon Frameworks for Hydrogen and Oxygen Evolution Zonghua Pu, Chengtian Zhang, Ibrahim Saana Amiinu,

More information

Supplementary Figure 1. (a-b) EDX of Mo 2 and Mo 2

Supplementary Figure 1. (a-b) EDX of Mo 2 and Mo 2 Supplementary Figure 1. (a-b) EDX of Mo 2 C@NPC/NPRGO and Mo 2 C@NPC. Supplementary Figure 2. (a) SEM image of PMo 12 2-PPy, (b) TEM, (c) HRTEM, (d) STEM image and EDX elemental mapping of C, N, P, and

More information

Large-Scale Multifunctional Electrochromic-Energy Storage Device Based on Tungsten Trioxide Monohydrate Nanosheets and Prussian White

Large-Scale Multifunctional Electrochromic-Energy Storage Device Based on Tungsten Trioxide Monohydrate Nanosheets and Prussian White Supporting Information Large-Scale Multifunctional Electrochromic-Energy Storage Device Based on Tungsten Trioxide Monohydrate Nanosheets and Prussian White Zhijie Bi, a,b Xiaomin Li,* a Yongbo Chen, a,b

More information

Supplementary Figure 1. (a) XRD pattern of NCUNs. The red lines present the standard nickel hydroxide hydrate (JCPDS No ) peaks, the blue

Supplementary Figure 1. (a) XRD pattern of NCUNs. The red lines present the standard nickel hydroxide hydrate (JCPDS No ) peaks, the blue Supplementary Figure 1. (a) XRD pattern of NCUNs. The red lines present the standard nickel hydroxide hydrate (JCPDS No. 22-0444) peaks, the blue lines demonstrate the standard cobalt hydroxide (JCPDS

More information

Electronic Supplementary Information. High-performance Flexible Asymmetric Supercapacitors Based on A New Graphene

Electronic Supplementary Information. High-performance Flexible Asymmetric Supercapacitors Based on A New Graphene Electronic Supplementary Material (ESI) for Energy & Environmental Science. This journal is The Royal Society of Chemistry 2014 Electronic Supplementary Information High-performance Flexible Asymmetric

More information

Electronic Supplementary Information

Electronic Supplementary Information Electronic Supplementary Material (ESI) for Journal of Materials Chemistry C. This journal is The Royal Society of Chemistry 2017 Electronic Supplementary Information Trifunctional NiO Ag NiO Electrodes

More information

Electronic Supplementary Information. Hydrogen Evolution Reaction (HER) over Electroless- Deposited Nickel Nanospike Arrays

Electronic Supplementary Information. Hydrogen Evolution Reaction (HER) over Electroless- Deposited Nickel Nanospike Arrays Electronic Supplementary Material (ESI) for RSC Advances. This journal is The Royal Society of Chemistry 2014 Electronic Supplementary Information Hydrogen Evolution Reaction (HER) over Electroless- Deposited

More information

N-doped Carbon-Coated Cobalt Nanorod Arrays Supported on a Titanium. Mesh as Highly Active Electrocatalysts for Hydrogen Evolution Reaction

N-doped Carbon-Coated Cobalt Nanorod Arrays Supported on a Titanium. Mesh as Highly Active Electrocatalysts for Hydrogen Evolution Reaction Electronic Supplementary Material (ESI) for Journal of Materials Chemistry A. This journal is The Royal Society of Chemistry 2014 Electronic Supplementary Information N-doped Carbon-Coated Cobalt Nanorod

More information

Electronic Supplementary Information

Electronic Supplementary Information Electronic Supplementary Information High Electrocatalytic Activity of Self-standing Hollow NiCo 2 S 4 Single Crystalline Nanorod Arrays towards Sulfide Redox Shuttles in Quantum Dot-sensitized Solar Cells

More information

Electronic Supplementary Information

Electronic Supplementary Information Electronic Supplementary Material (ESI) for ChemComm. This journal is The Royal Society of Chemistry 2018 Electronic Supplementary Information One-Dimensional MoO2-Co2Mo3O8@C Nanorods: A Novel and High

More information

Experimental Section Chemicals. Tetraethyl orthosilicate (TEOS), ammonia aqueous solution (NH 4 OH, 28 wt.%), and dopamine hydrochloride (DA) were

Experimental Section Chemicals. Tetraethyl orthosilicate (TEOS), ammonia aqueous solution (NH 4 OH, 28 wt.%), and dopamine hydrochloride (DA) were Electronic Supplementary Material (ESI) for Chemical Communications. This journal is The Royal Society of Chemistry 2015 Experimental Section Chemicals. Tetraethyl orthosilicate (TEOS), ammonia aqueous

More information

In-situ Growth of Layered Bimetallic ZnCo Hydroxide Nanosheets for Highperformance All-Solid-State Pseudocapacitor

In-situ Growth of Layered Bimetallic ZnCo Hydroxide Nanosheets for Highperformance All-Solid-State Pseudocapacitor Supporting Information In-situ Growth of Layered Bimetallic ZnCo Hydroxide Nanosheets for Highperformance All-Solid-State Pseudocapacitor Zhichang Pan, Yingchang Jiang, Peiyu Yang, Zeyi Wu, Wenchao Tian,

More information

The design and construction of 3D rose petal-shape MoS 2. hierarchical nanostructures with structure-sensitive. properties

The design and construction of 3D rose petal-shape MoS 2. hierarchical nanostructures with structure-sensitive. properties Electronic Supplementary Material (ESI) for Journal of Materials Chemistry A. This journal is The Royal Society of Chemistry 2014 The design and construction of 3D rose petal-shape MoS 2 hierarchical nanostructures

More information

Dynamic Hydrogen Bubble Templated NiCu Phosphide Electrodes for ph-insensitive Hydrogen Evolution Reactions

Dynamic Hydrogen Bubble Templated NiCu Phosphide Electrodes for ph-insensitive Hydrogen Evolution Reactions Dynamic Hydrogen Bubble Templated NiCu Phosphide Electrodes for ph-insensitive Hydrogen Evolution Reactions Majid Asnavandi +, Bryan H. R. Suryanto +, Wanfeng Yang, Xin Bo and Chuan Zhao* School of Chemistry,

More information

The goal of this project is to enhance the power density and lowtemperature efficiency of solid oxide fuel cells (SOFC) manufactured by atomic layer

The goal of this project is to enhance the power density and lowtemperature efficiency of solid oxide fuel cells (SOFC) manufactured by atomic layer Stanford University Michael Shandalov1, Shriram Ramanathan2, Changhyun Ko2 and Paul McIntyre1 1Department of Materials Science and Engineering, Stanford University 2Division of Engineering and Applied

More information

Supporting Information

Supporting Information Supporting Information Ultrathin Spinel-Structured Nanosheets Rich in Oxygen Deficiencies for Enhanced Electrocatalytic Water Oxidation** Jian Bao, Xiaodong Zhang,* Bo Fan, Jiajia Zhang, Min Zhou, Wenlong

More information

Supporting Information

Supporting Information Electronic Supplementary Material (ESI) for Sustainable Energy & Fuels. This journal is The Royal Society of Chemistry 2017 Supporting Information Asymmetric hybrid energy storage of battery-type nickel

More information

Supporting Information. Phenolic/resin assisted MOFs derived hierarchical Co/N-doping carbon

Supporting Information. Phenolic/resin assisted MOFs derived hierarchical Co/N-doping carbon Electronic Supplementary Material (ESI) for Journal of Materials Chemistry A. This journal is The Royal Society of Chemistry 2018 Electronic Supplementary Material (ESI) for Journal of Materials Chemistry

More information

Electronic Supplementary Information

Electronic Supplementary Information Electronic Supplementary Material (ESI) for Energy & Environmental Science. This journal is The Royal Society of Chemistry 2014 Electronic Supplementary Information Hierarchical MoS 2 microboxes constructed

More information

Mg, Zn) as High Voltage Layered Cathodes for

Mg, Zn) as High Voltage Layered Cathodes for Supporting Information for Honeycomb-Ordered Na 3 Ni 1.5 M 0.5 BiO 6 (M = Ni, Cu, Mg, Zn) as High Voltage Layered Cathodes for Sodium-Ion Batteries Peng-Fei Wang, a,d, Yu-Jie Guo, a,d, Hui Duan, a,d Tong-Tong

More information

Supporting Information

Supporting Information Electronic Supplementary Material (ESI) for Nanoscale. This journal is The Royal Society of Chemistry 2015 Supporting Information Synthesis and electrochemical properties of spherical and hollow-structured

More information

Materials and Structural Design for Advanced Energy Storage Devices

Materials and Structural Design for Advanced Energy Storage Devices Materials and Structural Design for Advanced Energy Storage Devices Imran Shakir Sustainable Energy Technologies Center (SET) King Saud University Saudi Arabia Specific Power (W/kg) Introduction and Motivation

More information

Electronic Supplementary Material (ESI) for Chemical Communications This journal is The Royal Society of Chemistry 2011

Electronic Supplementary Material (ESI) for Chemical Communications This journal is The Royal Society of Chemistry 2011 Supplementary Information for Selective adsorption toward toxic metal ions results in selective response: electrochemical studies on polypyrrole/reduced graphene oxide nanocomposite Experimental Section

More information

Film: A Pseudocapacitive Material with Superior Performance

Film: A Pseudocapacitive Material with Superior Performance Supporting Information for Three-Dimentional Porous NanoNi/Co(OH) 2 Nanoflake Composite Film: A Pseudocapacitive Material with Superior Performance X. H. Xia, J. P. Tu*, Y. Q. Zhang, Y. J. Mai, X. L. Wang*,

More information

Electronic Supporting Information. porous carbon substrate with enhanced capacitance through. faster ionic and electrical mobility

Electronic Supporting Information. porous carbon substrate with enhanced capacitance through. faster ionic and electrical mobility Electronic Supplementary Material (ESI) for Chemical Communications. This journal is The Royal Society of Chemistry 2014 Electronic Supporting Information Electrochemically grown nanoporous MnO 2 nanowall

More information

Trapping Lithium into Hollow Silica Microspheres. with a Carbon Nanotube Core for Dendrite-Free

Trapping Lithium into Hollow Silica Microspheres. with a Carbon Nanotube Core for Dendrite-Free Supporting Information Trapping Lithium into Hollow Silica Microspheres with a Carbon Nanotube Core for Dendrite-Free Lithium Metal Anodes Tong-Tong Zuo,, Ya-Xia Yin,, Shu-Hua Wang, Peng-Fei Wang,, Xinan

More information

Dominating Role of Aligned MoS 2 /Ni 3 S 2. Nanoarrays Supported on 3D Ni Foam with. Hydrophilic Interface for Highly Enhanced

Dominating Role of Aligned MoS 2 /Ni 3 S 2. Nanoarrays Supported on 3D Ni Foam with. Hydrophilic Interface for Highly Enhanced Supporting Information Dominating Role of Aligned MoS 2 /Ni 3 S 2 Nanoarrays Supported on 3D Ni Foam with Hydrophilic Interface for Highly Enhanced Hydrogen Evolution Reaction Jiamu Cao a, Jing Zhou a,

More information

Supporting Information

Supporting Information Supporting Information Hierarchical Porous N-doped Graphene Monoliths for Flexible Solid-State Supercapacitors with Excellent Cycle Stability Xiaoqian Wang, Yujia Ding, Fang Chen, Han Lu, Ning Zhang*,

More information

Carbon nanotubes and conducting polymer composites

Carbon nanotubes and conducting polymer composites University of Wollongong Thesis Collections University of Wollongong Thesis Collection University of Wollongong Year 4 Carbon nanotubes and conducting polymer composites May Tahhan University of Wollongong

More information

Flexible Waterproof Rechargeable Hybrid Zinc Batteries Initiated. by Multifunctional Oxygen Vacancies-Rich Cobalt Oxide

Flexible Waterproof Rechargeable Hybrid Zinc Batteries Initiated. by Multifunctional Oxygen Vacancies-Rich Cobalt Oxide Flexible Waterproof Rechargeable Hybrid Zinc Batteries Initiated by Multifunctional Oxygen Vacancies-Rich Cobalt Oxide Longtao Ma 1, Shengmei Chen 1, Zengxia Pei 1, Hongfei Li 1, Zifeng Wang 1, Zhuoxin

More information

Supplementary Figure 1 A schematic representation of the different reaction mechanisms

Supplementary Figure 1 A schematic representation of the different reaction mechanisms Supplementary Figure 1 A schematic representation of the different reaction mechanisms observed in electrode materials for lithium batteries. Black circles: voids in the crystal structure, blue circles:

More information

Electronic Supplementary Information

Electronic Supplementary Information Electronic Supplementary Material (ESI) for Journal of Materials Chemistry A. This journal is The Royal Society of Chemistry 2017 Electronic Supplementary Information Experimental Section Materials: Ti

More information

Dual redox catalysts for oxygen reduction and evolution reactions: towards a redox flow Li-O 2 battery

Dual redox catalysts for oxygen reduction and evolution reactions: towards a redox flow Li-O 2 battery Electronic Supplementary Material (ESI) for Chemical Communications. This journal is The Royal Society of Chemistry 2015 Supporting Information Dual redox catalysts for oxygen reduction and evolution reactions:

More information