Supporting information. Cooperatively Enhanced Ion Pair Binding with a Hybrid Receptor

Size: px
Start display at page:

Download "Supporting information. Cooperatively Enhanced Ion Pair Binding with a Hybrid Receptor"

Transcription

1 Supporting information Cooperatively Enhanced Ion Pair Binding with a Hybrid Receptor Toni Mäkelä, a Elina Kalenius a and Kari Rissanen a* a University of Jyvaskyla, Department of Chemistry, Nanoscience Center, P.O. Box 35, FI University of Jyvaskyla, Finland. Contents 1. General information Synthesis and characterization Solution studies Job Plots H NMR titrations H NMR experiment of R 1 + TBABPh Single crystal structures MS measurements References... 71

2 1. General information All the reagents and solvents were purchased from Aldrich, Fluka and Altia and used as received. All the yields refer to spectroscopically homogenous materials. 1 H NMR spectra were measured with Bruker Avance 300 and Bruker Avance 500 instruments at 303 K. 13 C spectra were measured with Bruker Avance 500 instrument at 303 K. All the spectra are calibrated using the solvent signals of CDCl 3 ( 1 H = 7.26 ppm, 13 C = ppm) or DMSO ( 1 H = 2.50 ppm, 13 C = ppm) as internal standards. All high resolution (HR) mass measurements were performed with Micromass LCT ESI TOF MS instrument by using lockmass method. 2. Synthesis and characterization Synthesis of 2 Dinitrobenzo 18 crown 6 (2) was synthesized according to the literature procedure [1] with small modifications. Commercial benzo 18 crown 6 (1) (2.03 g, 6.50 mmol) was dissolved in chloroform (50 ml) and the solution was cooled to 2 O C in ice bath. Concentrated nitric acid was added dropwise during 15 minutes keeping the temperature under 5 O C and 5 ml of concentrated sulfuric acid was added dropwise during 20 minutes keeping the temperature under 10 O C. The ice bath was removed and the mixture was stirred at room temperature for 2 days. Reaction mixture was diluted with chloroform (30 ml) and poured to ice water (100 ml). The organic phase was separated and washed with water (100 ml + 2 * 50 ml). Water phases were combined and washed with chloroform (60 ml). Organic phases were combined and dried with Na 2 SO 4. Evaporation of the dried chloroform solution resulted in a gel like residue which was mixed with diethyl ether and kept in freezer for 1 hour. The formed solid was filtered and washed with diethyl ether and a second batch of product started to precipitate from the filtrate. The solids were combined and washed with diethyl ether and dried in air; yield 84 %. 1 H NMR (500 MHz, CDCl 3, 303 K): δ = 3.64 (4H, s, CH 2 ), (8H, m, CH 2 ), 3.94 (4H, t, CH 2 ), 4.28 (4H, t, CH 2 ), 7.34 (2H, s, ArH) ppm. 13 C NMR (126 MHz, CDCl 3, 303K): δ = 68.90, 69.84, 70.49, 70.68, 71.02, , , ppm. HRMS (ESI+): calcd. for C 16 H 22 N 2 O 10 Na, [M + Na] + : m/z ; found: m/z (Δ = 0.6 mda). 2

3 Fig. S1 500 MHz 1 H NMR spectrum of 2 in CDCl 3. Fig. S2 126 MHz 13 C NMR spectrum of 2 in CDCl 3. 3

4 Synthesis of 3 Diaminebenzo 18 crown 6 (3) was synthesized according to the literature procedure [1] with small modifications. Ethanol and hydrazine monohydrate were degassed prior of use by sonication and simultaneous argon bubbling through the solution. Dinitrobenzo 18 crown 6 (2) (0.175 g, 0.43 mmol) and 10 % Pd/C (50 mg) were mixed in 20 ml of degassed ethanol under argon atmosphere and degassed hydrazine monohydrate (0.20 ml) was added to the mixture which was heated at 80 O C in the dark for 1 hour. The mixture was filtered quickly through Celite while hot to avoid exposure to air and the filtrate was evaporated close to dryness under reduced pressure. Resulting residue was dried under vacuum overnight resulting in a brown solid which was used without purification in the next step. Due to the instability of the amine compound only 1 H NMR was recorded; quant. 1 H NMR (300 MHz, CDCl 3, 303 K): δ = 3.19 (4H, bs, NH 2 ), 3.67 (4H, s, CH 2 ) (8H, m, CH 2 ), 3.88 (4H, t, CH 2 ), 4.07 (4H, t, CH 2 ), 6.37 (2H, s, ArH) ppm. Fig. S3 300 MHz 1 H NMR spectrum of 3 in CDCl 3. Synthesis of R 1 3 (0.107 g, mmol) was dissolved in degassed dichloromethane (10 ml) under argon. 4 nitrophenylisocyanate (4) (0.128 g, 0,780 mmol) was dissolved in degassed dichloromethane (10 ml) and added slowly to 3 through septum. Solution was stirred overnight under argon 4

5 and the precipitated solid was filtered, washed with dichloromethane, methanol and diethyl ether and dried in air. The product was recrystallized by slow diffusion of methanol into DMF solution; yield 52 %. 1 H NMR (500 MHz, DMSO, 303 K): δ = 3.54 (4H, s, CH 2 ), (8H, m, CH 2 ), 3.77 (4H, m, CH 2 ), 4.06 (4H, t, CH 2 ), 7.23 (2H, s, ArH), 7.71 (4H, d, ArH), 8.11 (2H, s, NH), 8.17 (4H, d, ArH), 9.74 (2H, s, NH) ppm. 13 C NMR (126 MHz, DMSO, 303 K): δ = 68.52, 68.68, , , , , , , , , ppm. HRMS (+ESI): calcd. for C 30 H 34 N 6 O 12 Na, [M + Na] + : m/z ; found: m/z (Δ = 1.8 mda). Fig. S4 500 MHz 1 H NMR spectrum of R 1 in DMSO. 5

6 Fig. S MHz 13 C NMR spectrum of R 1 in DMSO. 6

7 3. Solution studies 3.1 Job Plots General Job plot measurements were performed in 4:1 CDCl 3 /DMSO (anion and ion pair binding) solvent mixture and in DMSO (cation binding). 2.5 mm stock solutions of R 1 and the guest were prepared. For ion pair investigations 2.5 mm stock solution of R 1 with 1 equivalent of the desired BPh 4 salt was prepared. The samples with mole fractions according to the guest X = 0, 0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9 were prepared in NMR tubes with a total volume of 500 µl. The 1 H NMR spectra were measured with Bruker Avance 300 at 303 K with 16 scans. The spectra were calibrated using the CHCl 3 signal (δ = 7.26 ppm, anion and ion pair binding) or DMSO (δ = 2.50 ppm, cation binding) as internal standard. The Job plots were obtained by plotting against the mole fraction of the guest (H = R1, G = guest). The chemical shifts of the receptors urea protons H a, H b, aromatic proton H c and aliphatic proton H d were followed. 7

8 3.1.2 Results of Job Plot analysis Fig. S6 Job plot for R 1 + KBPh 4. (a) (b) Fig. S7 (a) Job plot for R 1 + TBACl. (b) Job plot for R 1 + TBABr. 8

9 (a) (b) (c) Fig. S8 (a) Job plot for R 1 + KBPh 4 + TBACl. (b) Job plot for R 1 + KBPh 4 + TBABr. (c) Job plot for R 1 + KBPh 4 + TBAI. (a) (b) Fig. S9. (a) Job plot for R 1 + NaBPh 4 + TBACl. (b) Job plot for R 1 + RbBPh 4 + TBACl. 9

10 H NMR titrations General Cation titrations were performed in DMSO because of the limited solubility of some of the BPh 4 salts used in the study. A 0.05 M stock solution of R 1 was prepared in DMSO and the sample was diluted with DMSO to give a final sample concentration of 2.5 mm and a total volume of 500 ul. The sample was titrated with 0.25 M stock solution of the desired BPh 4 salt in DMSO. Titration was performed with 16 measurements with following amounts of the guest added: 0, 0.5, 1.0, 1.5, 2.0, 3.0, 4.0, 5.0, 6.0, 8.0, 10.0, 12.0, 15.0, 20.0, 30.0, 50.0 equivalents. The spectra were measured with Bruker Avance 500 at 303 K with 16 scans. The spectra were calibrated using the DMSO signal (δ = 2.50 ppm) as internal standard. Anion and ion pair titrations were performed in 4:1 CDCl 3 /DMSO. For anion titrations 0.05 M stock solution of R 1 was prepared in DMSO and the sample was diluted with DMSO and CDCl 3 to give a final sample concentration of 2.5 mm and a total volume 500 µl. For ion pair titrations 0.05 M R 1 and BPh 4 salt stocks were prepared in DMSO. Sample was prepared by measuring equal amounts of R 1 and BPh 4 salt and diluting as before. The sample was titrated with M stock solution of corresponding TBA salt in 4:1 CDCl 3 /DMSO. Titrations were performed with 18 measurements with following amounts of the guest added: 0, 0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.8, 1.0, 1.2, 1.4, 1.6, 2.0, 2.5, 3.0, 4.0, 6.0, 10.0 equivalents. The spectra were measured with Bruker Avance 500 at 303 K with 16 scans. The spectra were calibrated using the CHCl 3 signal (δ = 7.26 ppm) as internal standard. Titration data was fitted into suitable binding model with HypNMR2008 program [2]. The chemical shifts of the receptor R 1 urea protons H a, H b, aromatic proton H c and aliphatic proton H d were followed. In the case of R 2 only urea protons H a and H b were followed. 10

11 H NMR titration of R 1 + NaBPh 4 Log beta value for species 2 was kept as constant because of large error value obtained by its free refinement. TCY NaBPh4_2 Species Log beta TCY037 Na 1 1, refine 2 1, constant Species concentrations/mol dm 3 Point T(TCY037) T(Na) F(TCY037) F(Na) species 1 species 2 1 2,4977e 03 0,0000e00 2,4977e 03 3,9974e 90 3,2713e 91 1,3768e ,4976e 03 1,2449e 03 2,4065e 03 1,1537e 03 9,0971e 05 1,1051e ,4853e 03 2,4775e 03 2,3105e 03 2,3024e 03 1,7430e 04 4,2252e ,4730e 03 3,6980e 03 2,2213e 03 3,4454e 03 2,5076e 04 9,0966e ,4609e 03 4,9065e 03 2,1383e 03 4,5823e 03 3,2104e 04 1,5489e ,4370e 03 7,2882e 03 1,9884e 03 6,8364e 03 4,4539e 04 3,2059e ,4136e 03 9,6242e 03 1,8569e 03 9,0623e 03 5,5137e 04 5,2609e ,3906e 03 1,1916e 02 1,7408e 03 1,1258e 02 6,4215e 04 7,6118e ,3680e 03 1,4164e 02 1,6376e 03 1,3423e 02 7,2024e 04 1,0179e ,3242e 03 1,8535e 02 1,4624e 03 1,7658e 02 8,4607e 04 1,5730e ,2819e 03 2,2748e 02 1,3195e 03 2,1764e 02 9,4090e 04 2,1561e ,2412e 03 2,6810e 02 1,2009e 03 2,5742e 02 1,0129e 03 2,7452e ,1827e 03 3,2639e 02 1,0567e 03 3,1476e 02 1,0898e 03 3,6119e ,0918e 03 4,1705e 02 8,7834e 04 4,0442e 02 1,1639e 03 4,9558e ,9309e 03 5,7745e 02 6,5287e 04 5,6396e 02 1,2064e 03 7,1631e ,6734e 03 8,3410e 02 4,2677e 04 8,2064e 02 1,1475e 03 9,9148e 05 Measured chemical shifts Point H c H d 1 7,2252e00 3,5430e00 2 7,2261e00 3,5432e00 3 7,2282e00 3,5437e00 4 7,2299e00 3,5440e00 5 7,2316e00 3,5446e00 6 7,2335e00 3,5450e00 7 7,2360e00 3,5456e00 8 7,2380e00 3,5461e00 9 7,2400e00 3,5463e ,2433e00 3,5470e ,2457e00 3,5473e ,2482e00 3,5476e ,2516e00 3,5478e ,2555e00 3,5480e ,2613e00 3,5477e ,2685e00 3,5466e00 Calculated chemical shifts Point H c H d 1 7,2250e00 3,5428e00 2 7,2267e00 3,5433e00 3 7,2283e00 3,5437e00 4 7,2297e00 3,5441e00 5 7,2311e00 3,5445e00 6 7,2337e00 3,5451e00 7 7,2360e00 3,5456e00 8 7,2381e00 3,5460e00 9 7,2399e00 3,5464e ,2432e00 3,5469e ,2460e00 3,5473e ,2484e00 3,5476e ,2514e00 3,5478e ,2555e00 3,5480e ,2613e00 3,5477e ,2685e00 3,5466e00 Chemical shifts for each nucleus species H c H d TCY037 7,2250e00 3,5428e00 (TCY037)Na 7,2714e00 3,5557e00 (TCY037)Na2 7,4230e00 3,4576e00 11

12 Converged in 4 iterations with sigma = 0, standard value deviation Comments 1 log beta((tcy037)na) (3) log beta((tcy037)na2) fixed logk = ± (a) (b) (c) Fig. S10 R 1 + NaBPh 4 titration. Observed and calculated chemical shifts for (a) H c and (b) H d using 1:1 and 1:2 binding models. (c) Species distribution as function of guest concentration. 12

13 H NMR titration of R 1 + KBPh 4 TCY KBPh4_1 Species Log beta TCY037 K 1 2, refine 2 3, refine Species concentrations/mol dm 3 Point T(TCY037) T(K) F(TCY037) F(K) species 1 species 2 1 2,5350e 03 0,0000e00 2,5350e 03 2,9044e 90 2,3593e 90 3,0808e ,5224e 03 1,2459e 03 2,0308e 03 7,5274e 04 4,8986e 04 1,6578e ,5099e 03 2,4795e 03 1,6503e 03 1,6137e 03 8,5338e 04 6,1914e ,4975e 03 3,7009e 03 1,3658e 03 2,5564e 03 1,1188e 03 1,2859e ,4853e 03 4,9104e 03 1,1518e 03 3,5559e 03 1,3125e 03 2,0982e ,4611e 03 7,2940e 03 8,6115e 04 5,6544e 03 1,5603e 03 3,9665e ,4375e 03 9,6318e 03 6,7864e 04 7,8133e 03 1,6991e 03 5,9687e ,4143e 03 1,1925e 02 5,5578e 04 9,9868e 03 1,7786e 03 7,9859e ,3915e 03 1,4175e 02 4,6828e 04 1,2152e 02 1,8236e 03 9,9631e ,3472e 03 1,8550e 02 3,5298e 04 1,6419e 02 1,8571e 03 1,3709e ,3045e 03 2,2766e 02 2,8098e 04 2,0571e 02 1,8522e 03 1,7131e ,2634e 03 2,6832e 02 2,3205e 04 2,4598e 02 1,8290e 03 2,0227e ,2043e 03 3,2665e 02 1,8259e 04 3,0400e 02 1,7786e 03 2,4309e ,1125e 03 4,1738e 02 1,3296e 04 3,9460e 02 1,6812e 03 2,9827e ,9500e 03 5,7791e 02 8,3880e 05 5,5552e 02 1,4932e 03 3,7293e ,6900e 03 8,3476e 02 4,6142e 05 8,1392e 02 1,2035e 03 4,4038e 04 Measured chemical shifts Point H c H d 1 7,2252e00 3,5430e00 2 7,2424e00 3,5524e00 3 7,2560e00 3,5599e00 4 7,2665e00 3,5656e00 5 7,2739e00 3,5695e00 6 7,2849e00 3,5751e00 7 7,2922e00 3,5786e00 8 7,2966e00 3,5804e00 9 7,3003e00 3,5817e ,3044e00 3,5830e ,3074e00 3,5837e ,3097e00 3,5837e ,3121e00 3,5838e ,3146e00 3,5834e ,3185e00 3,5821e ,3223e00 3,5795e00 Calculated chemical shifts Point H c H d 1 7,2248e00 3,5428e00 2 7,2427e00 3,5527e00 3 7,2563e00 3,5601e00 4 7,2665e00 3,5655e00 5 7,2742e00 3,5696e00 6 7,2849e00 3,5750e00 7 7,2917e00 3,5782e00 8 7,2964e00 3,5803e00 9 7,2998e00 3,5816e ,3045e00 3,5831e ,3076e00 3,5837e ,3098e00 3,5840e ,3123e00 3,5840e ,3151e00 3,5835e ,3184e00 3,5820e ,3220e00 3,5794e00 Chemical shifts for each nucleus species H c H d TCY037 7,2248e00 3,5428e00 (TCY037)K 7,3164e00 3,5936e00 (TCY037)K2 7,3476e00 3,5446e00 13

14 Converged in 6 iterations with sigma = 0, standard value deviation Comments 1 log beta((tcy037)k) (8) 2 log beta((tcy037)k2) (1) Correlation coefficients between stability constants. Numbering as above logk = ± (a) (b) (c) Fig. S11 R 1 + KBPh 4 titration. Observed and calculated chemical shifts for (a) H c and (b) H d using 1:1 and 1:2 binding models. (c) Species distribution as function of guest concentration. 14

15 H NMR titration of R 1 + RbBPh 4 TCY RbBPh4_1 Species Log beta TCY037 Rb 1 2, refine 2 3, refine Species concentrations/mol dm 3 Point T(TCY037) T(Rb) F(TCY037) F(Rb) species 1 species 2 1 2,5101e 03 0,0000e00 2,5101e 03 3,4500e 90 1,3153e 90 4,2752e ,4976e 03 1,2470e 03 2,1855e 03 9,3214e 04 3,0941e 04 2,7173e ,4853e 03 2,4816e 03 1,9196e 03 1,9060e 03 5,5569e 04 9,9786e ,4730e 03 3,7041e 03 1,7005e 03 2,9110e 03 7,5186e 04 2,0620e ,4609e 03 4,9146e 03 1,5187e 03 3,9387e 03 9,0850e 04 3,3713e ,4370e 03 7,3003e 03 1,2377e 03 6,0365e 03 1,1348e 03 6,4537e ,4136e 03 9,6402e 03 1,0337e 03 8,1618e 03 1,2814e 03 9,8532e ,3906e 03 1,1935e 02 8,8060e 04 1,0292e 02 1,3765e 03 1,3348e ,3680e 03 1,4187e 02 7,6243e 04 1,2414e 02 1,4375e 03 1,6812e ,3242e 03 1,8566e 02 5,9353e 04 1,6602e 02 1,4966e 03 2,3408e ,2819e 03 2,2786e 02 4,7990e 04 2,0690e 02 1,5081e 03 2,9396e ,2412e 03 2,6855e 02 3,9902e 04 2,4665e 02 1,4948e 03 3,4736e ,1827e 03 3,2693e 02 3,1444e 04 3,0409e 02 1,4522e 03 4,1605e ,0918e 03 4,1774e 02 2,2720e 04 3,9405e 02 1,3598e 03 5,0481e ,9309e 03 5,7841e 02 1,3974e 04 5,5436e 02 1,1766e 03 6,1452e ,6734e 03 8,3548e 02 7,3432e 05 8,1255e 02 9,0623e 04 6,9375e 04 Measured chemical shifts Point H c H d 1 7,2251e00 3,5431e00 2 7,2358e00 3,5482e00 3 7,2458e00 3,5531e00 4 7,2539e00 3,5574e00 5 7,2627e00 3,5611e00 6 7,2741e00 3,5661e00 7 7,2812e00 3,5695e00 8 7,2879e00 3,5719e00 9 7,2925e00 3,5738e ,2993e00 3,5761e ,3040e00 3,5776e ,3076e00 3,5785e ,3116e00 3,5790e ,3159e00 3,5794e ,3213e00 3,5794e ,3257e00 3,5781e00 Calculated chemical shifts Point H c H d 1 7,2241e00 3,5426e00 2 7,2364e00 3,5486e00 3 7,2466e00 3,5536e00 4 7,2551e00 3,5576e00 5 7,2621e00 3,5609e00 6 7,2731e00 3,5658e00 7 7,2812e00 3,5693e00 8 7,2874e00 3,5719e00 9 7,2922e00 3,5737e ,2993e00 3,5762e ,3042e00 3,5776e ,3079e00 3,5785e ,3118e00 3,5792e ,3162e00 3,5795e ,3211e00 3,5793e ,3255e00 3,5781e00 Chemical shifts for each nucleus species H c H d TCY037 7,2241e00 3,5426e00 (TCY037)Rb 7,3228e00 3,5913e00 (TCY037)Rb2 7,3399e00 3,5646e00 15

16 Converged in 6 iterations with sigma = 0, standard value deviation Comments 1 log beta((tcy037)rb) (2) 2 log beta((tcy037)rb2) excessive relative error on beta = 50% Correlation coefficients between stability constants. Numbering as above logk = ± (a) (b) (c) Fig. S12 R 1 + RbBPh 4 titration. Observed and calculated chemical shifts for (a) H c and (b) H d using 1:1 and 1:2 binding models. (c) Species distribution as function of guest concentration. 16

17 H NMR titration of R 1 + CsBPh 4 TCY CsBPh4_1 Species Log beta TCY037 Cs 1 1, refine 2 2, refine Species concentrations/mol dm 3 Point T(TCY037) T(Cs) F(TCY037) F(Cs) species 1 species 2 1 2,4853e 03 0,0000e00 2,4853e 03 3,6542e 90 8,7114e 91 1,9971e ,4729e 03 1,2409e 03 2,2516e 03 1,0181e 03 2,1990e 04 1,4046e ,4607e 03 2,4694e 03 2,0512e 03 2,0547e 03 4,0428e 04 5,2115e ,4485e 03 3,6859e 03 1,8783e 03 3,1047e 03 5,5938e 04 1,0896e ,4365e 03 4,8904e 03 1,7282e 03 4,1641e 03 6,9030e 04 1,8034e ,4129e 03 7,2644e 03 1,4821e 03 6,2983e 03 8,9541e 04 3,5381e ,3897e 03 9,5928e 03 1,2901e 03 8,4380e 03 1,0442e 03 5,5280e ,3669e 03 1,1877e 02 1,1373e 03 1,0571e 02 1,1532e 03 7,6476e ,3446e 03 1,4118e 02 1,0132e 03 1,2688e 02 1,2332e 03 9,8166e ,3012e 03 1,8475e 02 8,2535e 04 1,6858e 02 1,3347e 03 1,4116e ,2593e 03 2,2674e 02 6,9082e 04 2,0923e 02 1,3865e 03 1,8200e ,2190e 03 2,6723e 02 5,9041e 04 2,4874e 02 1,4087e 03 2,1984e ,1611e 03 3,2532e 02 4,8064e 04 3,0581e 02 1,4099e 03 2,7051e ,0711e 03 4,1569e 02 3,6139e 04 3,9519e 02 1,3700e 03 3,3967e ,9117e 03 5,7557e 02 2,3403e 04 5,5446e 02 1,2447e 03 4,3298e ,6568e 03 8,3137e 02 1,3008e 04 8,1096e 02 1,0119e 03 5,1484e 04 Measured chemical shifts Point H c H d 1 7,2249e00 3,5431e00 2 7,2317e00 3,5454e00 3 7,2384e00 3,5477e00 4 7,2435e00 3,5494e00 5 7,2497e00 3,5513e00 6 7,2574e00 3,5536e00 7 7,2649e00 3,5559e00 8 7,2701e00 3,5573e00 9 7,2744e00 3,5583e ,2817e00 3,5601e ,2865e00 3,5612e ,2908e00 3,5620e ,2957e00 3,5625e ,3008e00 3,5631e ,3087e00 3,5632e ,3157e00 3,5630e00 Calculated chemical shifts Point H c H d 1 7,2243e00 3,5430e00 2 7,2320e00 3,5455e00 3 7,2386e00 3,5477e00 4 7,2443e00 3,5496e00 5 7,2494e00 3,5512e00 6 7,2577e00 3,5537e00 7 7,2644e00 3,5557e00 8 7,2698e00 3,5572e00 9 7,2743e00 3,5584e ,2814e00 3,5601e ,2867e00 3,5612e ,2909e00 3,5619e ,2957e00 3,5626e ,3014e00 3,5632e ,3084e00 3,5634e ,3157e00 3,5629e00 Chemical shifts for each nucleus species H c H d TCY037 7,2243e00 3,5430e00 (TCY037)Cs 7,3093e00 3,5717e00 (TCY037)Cs2 7,3513e00 3,5506e00 17

18 Converged in 7 iterations with sigma = 0, standard value deviation Comments 1 log beta((tcy037)cs) (3) 2 log beta((tcy037)cs2) excessive relative error on beta = 53% Correlation coefficients between stability constants. Numbering as above logk = ± (a) (b) (c) Fig. S13 R 1 + CsBPh 4 titration. Observed and calculated chemical shifts for (a) H c and (b) H d using 1:1 and 1:2 binding models. (c) Species distribution as function of guest concentration. 18

19 H NMR titration of R 1 + TBACl TCY TBACl_6 Species Log beta TCY037 TBACl 1 2, refine Species concentrations/mol dm 3 Point T(TCY037) T(TBACl) F(TCY037) F(TBACl) species 1 1 2,5474e 03 0,0000e00 2,5474e 03 2,0609e 90 3,8947e ,5423e 03 2,5185e 04 2,3815e 03 9,1028e 05 1,6082e ,5372e 03 5,0269e 04 2,2242e 03 1,8969e 04 3,1300e ,5322e 03 7,5254e 04 2,0759e 03 2,9627e 04 4,5626e ,5272e 03 1,0014e 03 1,9367e 03 4,1095e 04 5,9044e ,5222e 03 1,2493e 03 1,8067e 03 5,3380e 04 7,1546e ,5172e 03 1,4961e 03 1,6858e 03 6,6477e 04 8,3137e ,5073e 03 1,9870e 03 1,4706e 03 9,5030e 04 1,0367e ,4974e 03 2,4740e 03 1,2884e 03 1,2650e 03 1,2090e ,4877e 03 2,9572e 03 1,1356e 03 1,6051e 03 1,3521e ,4780e 03 3,4367e 03 1,0078e 03 1,9665e 03 1,4702e ,4684e 03 3,9124e 03 9,0100e 04 2,3450e 03 1,5674e ,4494e 03 4,8529e 03 7,3581e 04 3,1393e 03 1,7136e ,4261e 03 6,0083e 03 5,9219e 04 4,1744e 03 1,8339e ,4032e 03 7,1420e 03 4,9239e 04 5,2312e 03 1,9108e ,3587e 03 9,3463e 03 3,6542e 04 7,3530e 03 1,9933e ,2745e 03 1,3519e 02 2,3894e 04 1,1483e 02 2,0355e ,1228e 03 2,1029e 02 1,4031e 04 1,9047e 02 1,9825e 03 Measured chemical shifts Point H a H b H c 1 9,0494e00 7,9173e00 7,1649e00 2 9,0815e00 7,9467e00 7,1833e00 3 9,1159e00 7,9768e00 7,2030e00 4 9,1527e00 8,0097e00 7,2237e00 5 9,1861e00 8,0372e00 7,2425e00 6 9,2164e00 8,0667e00 7,2595e00 7 9,2467e00 8,0932e00 7,2763e00 8 9,3003e00 8,1405e00 7,3061e00 9 9,3469e00 8,1818e00 7,3316e ,3825e00 8,2140e00 7,3517e ,4164e00 8,2431e00 7,3693e ,4417e00 8,2658e00 7,3830e ,4812e00 8,3009e00 7,4040e ,5164e00 8,3328e00 7,4229e ,5410e00 8,3536e00 7,4349e ,5727e00 8,3830e00 7,4511e ,6028e00 8,4120e00 7,4658e ,6276e00 8,4365e00 7,4767e00 Calculated chemical shifts Point H a H b H c 1 9,0416e00 7,9100e00 7,1638e00 2 9,0813e00 7,9454e00 7,1854e00 3 9,1190e00 7,9790e00 7,2058e00 4 9,1547e00 8,0109e00 7,2252e00 5 9,1883e00 8,0408e00 7,2434e00 6 9,2197e00 8,0688e00 7,2605e00 7 9,2489e00 8,0949e00 7,2764e00 19

20 8 9,3012e00 8,1415e00 7,3047e00 9 9,3455e00 8,1810e00 7,3288e ,3828e00 8,2143e00 7,3490e ,4140e00 8,2422e00 7,3660e ,4402e00 8,2655e00 7,3802e ,4808e00 8,3017e00 7,4022e ,5161e00 8,3332e00 7,4214e ,5407e00 8,3552e00 7,4348e ,5721e00 8,3832e00 7,4518e ,6034e00 8,4111e00 7,4688e ,6279e00 8,4329e00 7,4821e00 Chemical shifts for each nucleus species H a H b H c TCY037 9,0416e00 7,9100e00 7,1638e00 (TCY037)TBACl 9,6694e00 8,4699e00 7,5046e00 Converged in 4 iterations with sigma = 2, standard value deviation Comments 1 log beta((tcy037)tbacl) (6) (a) (b) (c) Fig. S14 R 1 + TBACl titration. Observed and calculated chemical shifts for (a) H a, (b) H b and (c) H c using 1:1 binding model. 20

21 H NMR titration of R 1 + TBABr TCY TBABr_3 Species Log beta TCY037 TBABr 1 2, refine Species concentrations/mol dm 3 Point T(TCY037) T(TBABr) F(TCY037) F(TBABr) species 1 1 2,4826e 03 0,0000e00 2,4826e 03 3,3603e 90 1,3621e ,4803e 03 2,5014e 04 2,4097e 03 1,7951e 04 7,0630e ,4754e 03 4,9929e 04 2,3374e 03 3,6137e 04 1,3792e ,4704e 03 7,4745e 04 2,2684e 03 5,4543e 04 2,0202e ,4655e 03 9,9462e 04 2,2025e 03 7,3154e 04 2,6307e ,4607e 03 1,2408e 03 2,1394e 03 9,1958e 04 3,2123e ,4558e 03 1,4860e 03 2,0792e 03 1,1094e 03 3,7663e ,4461e 03 1,9736e 03 1,9665e 03 1,4939e 03 4,7967e ,4365e 03 2,4573e 03 1,8633e 03 1,8841e 03 5,7321e ,4270e 03 2,9372e 03 1,7688e 03 2,2790e 03 6,5821e ,4176e 03 3,4134e 03 1,6821e 03 2,6779e 03 7,3549e ,4082e 03 3,8860e 03 1,6024e 03 3,0801e 03 8,0585e ,3897e 03 4,8201e 03 1,4612e 03 3,8916e 03 9,2847e ,3669e 03 5,9677e 03 1,3132e 03 4,9140e 03 1,0537e ,3446e 03 7,0937e 03 1,1903e 03 5,9394e 03 1,1543e ,3012e 03 9,2831e 03 9,9914e 04 7,9811e 03 1,3020e ,2190e 03 1,3427e 02 7,5149e 04 1,1960e 02 1,4675e ,0711e 03 2,0887e 02 4,9861e 04 1,9315e 02 1,5724e 03 Measured chemical shifts Point H a H b H c 1 9,0143e00 7,5799e00 6,8291e00 2 9,0275e00 7,5885e00 6,8364e00 3 9,0414e00 7,5975e00 6,8438e00 4 9,0537e00 7,6057e00 6,8505e00 5 9,0648e00 7,6132e00 6,8566e00 6 9,0762e00 7,6209e00 6,8630e00 7 9,0875e00 7,6285e00 6,8691e00 8 9,1086e00 7,6424e00 6,8803e00 9 9,1263e00 7,6545e00 6,8901e ,1423e00 7,6654e00 6,8988e ,1588e00 7,6766e00 6,9076e ,1718e00 7,6856e00 6,9146e ,1970e00 7,7028e00 6,9279e ,2221e00 7,7190e00 6,9415e ,2433e00 7,7348e00 6,9521e ,2786e00 7,7596e00 6,9702e ,3246e00 7,7920e00 6,9935e ,3711e00 7,8248e00 7,0149e00 Calculated chemical shifts Point H a H b H c 1 9,0153e00 7,5791e00 6,8310e00 2 9,0286e00 7,5882e00 6,8380e00 3 9,0413e00 7,5969e00 6,8447e00 4 9,0535e00 7,6053e00 6,8511e00 5 9,0651e00 7,6132e00 6,8572e00 6 9,0763e00 7,6209e00 6,8631e00 7 9,0869e00 7,6282e00 6,8687e00 21

22 8 9,1069e00 7,6419e00 6,8792e00 9 9,1252e00 7,6544e00 6,8889e ,1420e00 7,6659e00 6,8977e ,1574e00 7,6765e00 6,9059e ,1717e00 7,6862e00 6,9133e ,1968e00 7,7035e00 6,9266e ,2233e00 7,7216e00 6,9406e ,2453e00 7,7367e00 6,9522e ,2797e00 7,7602e00 6,9703e ,3243e00 7,7908e00 6,9938e ,3701e00 7,8222e00 7,0179e00 Chemical shifts for each nucleus species H a H b H c TCY037 9,0153e00 7,5791e00 6,8310e00 (TCY037)TBABr 9,4826e00 7,8992e00 7,0771e00 Converged in 4 iterations with sigma = 1, standard value deviation Comments 1 log beta((tcy037)tbabr) (5) (a) (b) (c) Fig. S15 R 1 + TBABr titration. Observed and calculated chemical shifts for (a) H a, (b) H b and (c) H c using 1:1 binding model. 22

23 H NMR titration of R 1 + TBAI TCY TBAI_3 Species Log beta TCY037 TBAI 1 1, refine Species concentrations/mol dm 3 Point T(TCY037) T(TBAI) F(TCY037) F(TBAI) species 1 1 2,4853e 03 0,0000e00 2,4853e 03 3,9689e 90 3,3269e ,4803e 03 2,4822e 04 2,4613e 03 2,2919e 04 1,9026e ,4754e 03 4,9544e 04 2,4377e 03 4,5780e 04 3,7641e ,4704e 03 7,4169e 04 2,4146e 03 6,8583e 04 5,5855e ,4655e 03 9,8695e 04 2,3919e 03 9,1327e 04 7,3678e ,4607e 03 1,2312e 03 2,3695e 03 1,1401e 03 9,1120e ,4558e 03 1,4746e 03 2,3476e 03 1,3664e 03 1,0819e ,4461e 03 1,9584e 03 2,3049e 03 1,8171e 03 1,4126e ,4365e 03 2,4384e 03 2,2636e 03 2,2654e 03 1,7296e ,4270e 03 2,9146e 03 2,2237e 03 2,7112e 03 2,0335e ,4176e 03 3,3871e 03 2,1851e 03 3,1546e 03 2,3250e ,4082e 03 3,8560e 03 2,1477e 03 3,5955e 03 2,6046e ,3897e 03 4,7829e 03 2,0766e 03 4,4698e 03 3,1307e ,3669e 03 5,9217e 03 1,9938e 03 5,5486e 03 3,7313e ,3446e 03 7,0390e 03 1,9171e 03 6,6115e 03 4,2750e ,3012e 03 9,2116e 03 1,7796e 03 8,6900e 03 5,2160e ,2190e 03 1,3324e 02 1,5550e 03 1,2660e 02 6,6399e ,0711e 03 2,0726e 02 1,2394e 03 1,9894e 02 8,3165e 04 Measured chemical shifts Point H a H b H c 1 9,0162e00 7,5817e00 6,8307e00 2 9,0192e00 7,5843e00 6,8334e00 3 9,0207e00 7,5849e00 6,8337e00 4 9,0222e00 7,5854e00 6,8342e00 5 9,0239e00 7,5861e00 6,8348e00 6 9,0251e00 7,5868e00 6,8351e00 7 9,0265e00 7,5874e00 6,8358e00 8 9,0292e00 7,5885e00 6,8366e00 9 9,0311e00 7,5894e00 6,8379e ,0334e00 7,5905e00 6,8385e ,0359e00 7,5920e00 6,8396e ,0378e00 7,5925e00 6,8398e ,0418e00 7,5949e00 6,8420e ,0458e00 7,5972e00 6,8442e ,0500e00 7,5995e00 6,8462e ,0578e00 7,6041e00 6,8503e ,0696e00 7,6114e00 6,8567e ,0872e00 7,6222e00 6,8665e00 Calculated chemical shifts Point H a H b H c 1 9,0185e00 7,5828e00 6,8317e00 2 9,0198e00 7,5835e00 6,8324e00 3 9,0211e00 7,5842e00 6,8330e00 4 9,0224e00 7,5850e00 6,8336e00 5 9,0237e00 7,5856e00 6,8342e00 6 9,0249e00 7,5863e00 6,8348e00 7 9,0261e00 7,5870e00 6,8354e00 23

24 8 9,0285e00 7,5883e00 6,8366e00 9 9,0308e00 7,5896e00 6,8377e ,0330e00 7,5908e00 6,8387e ,0351e00 7,5920e00 6,8398e ,0372e00 7,5931e00 6,8408e ,0411e00 7,5953e00 6,8427e ,0457e00 7,5979e00 6,8449e ,0500e00 7,6002e00 6,8470e ,0576e00 7,6045e00 6,8507e ,0702e00 7,6114e00 6,8567e ,0878e00 7,6212e00 6,8653e00 Chemical shifts for each nucleus species H a H b H c TCY037 9,0185e00 7,5828e00 6,8317e00 (TCY037)TBAI 9,1911e00 7,6784e00 6,9153e00 Converged in 4 iterations with sigma = 0, standard value deviation Comments 1 log beta((tcy037)tbai) (3) (a) (b) (c) Fig. S16 R 1 + TBAI titration. Observed and calculated chemical shifts for (a) H a, (b) H b and (c) H c using 1:1 binding model. 24

25 H NMR titration of R 2 + TBACl TGA TBACl_4 Species Log beta TGA001 TBACl 1 2, refine Species concentrations/mol dm 3 Point T(TGA001) T(TBACl) F(TGA001) F(TBACl) species 1 1 2,5351e 03 0,0000e00 2,5351e 03 1,9611e 90 4,0118e ,5300e 03 2,4897e 04 2,3666e 03 8,5565e 05 1,6341e ,5250e 03 4,9696e 04 2,2067e 03 1,7871e 04 3,1824e ,5174e 03 8,6708e 04 1,9837e 03 3,3339e 04 5,3369e ,5100e 03 1,2350e 03 1,7816e 03 5,0664e 04 7,2837e ,5045e 03 1,5034e 03 1,6467e 03 6,4559e 04 8,5785e ,4986e 03 1,7949e 03 1,5121e 03 8,0846e 04 9,8648e ,4888e 03 2,2777e 03 1,3158e 03 1,1047e 03 1,1730e ,4781e 03 2,8044e 03 1,1365e 03 1,4628e 03 1,3416e ,4660e 03 3,3975e 03 9,7230e 04 1,9038e 03 1,4937e ,4565e 03 3,8678e 03 8,6572e 04 2,2770e 03 1,5907e ,4470e 03 4,3345e 03 7,7682e 04 2,6643e 03 1,6702e ,4282e 03 5,2571e 03 6,3924e 04 3,4681e 03 1,7890e ,4006e 03 6,6148e 03 4,9972e 04 4,7139e 03 1,9009e ,3737e 03 7,9420e 03 4,0768e 04 5,9760e 03 1,9660e ,3300e 03 1,0089e 02 3,1020e 04 8,0691e 03 2,0198e ,2474e 03 1,4154e 02 2,0854e 04 1,2116e 02 2,0389e ,0986e 03 2,1478e 02 1,2537e 04 1,9505e 02 1,9732e 03 Measured chemical shifts Point H a H b 1 9,0878e00 7,7553e00 2 9,1203e00 7,7831e00 3 9,1559e00 7,8138e00 4 9,2070e00 7,8580e00 5 9,2538e00 7,8986e00 6 9,2846e00 7,9251e00 7 9,3226e00 7,9581e00 8 9,3734e00 8,0021e00 9 9,4173e00 8,0402e ,4646e00 8,0814e ,4926e00 8,1057e ,5124e00 8,1225e ,5477e00 8,1531e ,5812e00 8,1823e ,6039e00 8,2017e ,6254e00 8,2204e ,6497e00 8,2411e ,6690e00 8,2569e00 Calculated chemical shifts Point H a H b 1 9,0768e00 7,7455e00 2 9,1177e00 7,7809e00 3 9,1566e00 7,8146e00 4 9,2111e00 7,8617e00 5 9,2606e00 7,9046e00 6 9,2938e00 7,9333e00 7 9,3269e00 7,9619e00 8 9,3754e00 8,0039e00 9 9,4198e00 8,0423e ,4605e00 8,0775e ,4871e00 8,1005e ,5092e00 8,1197e ,5436e00 8,1494e ,5785e00 8,1796e ,6015e00 8,1995e ,6260e00 8,2207e ,6516e00 8,2428e ,6725e00 8,2609e00 Chemical shifts for each nucleus species H a H b TGA001 9,0768e00 7,7455e00 (TGA001)TBACl 9,7103e00 8,2937e00 25

26 Converged in 4 iterations with sigma = 4, standard value deviation Comments 1 log beta((tga001)tbacl) (1) (a) (b) Fig. S17 R 2 + TBACl titration. Observed and calculated chemical shifts for (a) H a, (b) H b using 1:1 binding model. 26

27 H NMR titration of R 2 + TBABr TGA TBABr_2 Species Log beta TGA001 TBABr 1 2, refine Species concentrations/mol dm 3 Point T(TGA001) T(TBABr) F(TGA001) F(TBABr) species 1 1 2,5351e 03 0,0000e00 2,5351e 03 3,3967e 90 1,5044e ,5300e 03 2,5097e 04 2,4547e 03 1,7564e 04 7,5326e ,5250e 03 5,0094e 04 2,3779e 03 3,5390e 04 1,4703e ,5199e 03 7,4991e 04 2,3047e 03 5,3464e 04 2,1527e ,5139e 03 1,0474e 03 2,2211e 03 7,5456e 04 2,9282e ,5080e 03 1,3434e 03 2,1421e 03 9,7757e 04 3,6586e ,5020e 03 1,6381e 03 2,0674e 03 1,2034e 03 4,3467e ,4922e 03 2,1261e 03 1,9516e 03 1,5855e 03 5,4060e ,4824e 03 2,6102e 03 1,8459e 03 1,9737e 03 6,3653e ,4718e 03 3,1385e 03 1,7401e 03 2,4068e 03 7,3170e ,4622e 03 3,6148e 03 1,6524e 03 2,8050e 03 8,0978e ,4527e 03 4,0874e 03 1,5720e 03 3,2067e 03 8,8069e ,4338e 03 5,0217e 03 1,4300e 03 4,0179e 03 1,0038e ,4107e 03 6,1696e 03 1,2818e 03 5,0407e 03 1,1289e ,3880e 03 7,2959e 03 1,1592e 03 6,0671e 03 1,2288e ,3438e 03 9,4859e 03 9,6962e 04 8,1117e 03 1,3742e ,2602e 03 1,3632e 02 7,2592e 04 1,2097e 02 1,5343e ,1097e 03 2,1095e 02 4,7940e 04 1,9465e 02 1,6303e 03 Measured chemical shifts Point H a H b 1 9,0908e00 7,7613e00 2 9,1045e00 7,7695e00 3 9,1164e00 7,7774e00 4 9,1297e00 7,7862e00 5 9,1438e00 7,7954e00 6 9,1573e00 7,8043e00 7 9,1677e00 7,8112e00 8 9,1875e00 7,8247e00 9 9,2048e00 7,8362e ,2224e00 7,8481e ,2366e00 7,8576e ,2505e00 7,8672e ,2731e00 7,8828e ,2971e00 7,8994e ,3168e00 7,9131e ,3487e00 7,9356e ,3892e00 7,9644e ,4294e00 7,9930e00 Calculated chemical shifts Point H a H b 1 9,0922e00 7,7600e00 2 9,1052e00 7,7689e00 3 9,1176e00 7,7775e00 4 9,1295e00 7,7856e00 5 9,1431e00 7,7949e00 6 9,1560e00 7,8037e00 7 9,1682e00 7,8120e00 8 9,1871e00 7,8250e00 9 9,2044e00 7,8368e ,2217e00 7,8487e ,2361e00 7,8585e ,2493e00 7,8675e ,2727e00 7,8835e ,2971e00 7,9002e ,3174e00 7,9141e ,3488e00 7,9356e ,3893e00 7,9633e ,4304e00 7,9914e00 Chemical shifts for each nucleus species H a H b TGA001 9,0922e00 7,7600e00 (TGA001)TBABr 9,5299e00 8,0595e00 27

28 Converged in 5 iterations with sigma = 0, standard value deviation Comments 1 log beta((tga001)tbabr) (4) (a) (b) Fig. S18 R 2 + TBABr titration. Observed and calculated chemical shifts for (a) H a, (b) H b using 1:1 binding model. 28

29 H NMR titration of R 2 + TBAI The binding constant was calculated by using only H a because of H b proton had large deviations in chemical shifts upon titration. TGA TBAI_2 Species Log beta TGA001 TBAI 1 1, refine Species concentrations/mol dm 3 Point T(TGA001) T(TBAI) F(TGA001) F(TBAI) species 1 1 2,5351e 03 0,0000e00 2,5351e 03 4,0997e 90 2,7846e ,5300e 03 2,5038e 04 2,5142e 03 2,3458e 04 1,5802e ,5250e 03 4,9976e 04 2,4937e 03 4,6846e 04 3,1299e ,5189e 03 7,9770e 04 2,4694e 03 7,4820e 04 4,9504e ,5129e 03 1,0942e 03 2,4457e 03 1,0269e 03 6,7292e ,5070e 03 1,3894e 03 2,4223e 03 1,3047e 03 8,4675e ,5020e 03 1,6342e 03 2,4032e 03 1,5354e 03 9,8860e ,4922e 03 2,1211e 03 2,3658e 03 1,9946e 03 1,2643e ,4824e 03 2,6041e 03 2,3295e 03 2,4511e 03 1,5298e ,4727e 03 3,0834e 03 2,2942e 03 2,9048e 03 1,7855e ,4622e 03 3,6062e 03 2,2566e 03 3,4006e 03 2,0560e ,4503e 03 4,1950e 03 2,2152e 03 3,9600e 03 2,3504e ,4315e 03 5,1254e 03 2,1521e 03 4,8459e 03 2,7942e ,4084e 03 6,2684e 03 2,0778e 03 5,9378e 03 3,3056e ,3812e 03 7,6116e 03 1,9950e 03 7,2254e 03 3,8622e ,3373e 03 9,7844e 03 1,8704e 03 9,3175e 03 4,6693e ,2542e 03 1,3898e 02 1,6618e 03 1,3306e 02 5,9242e ,1045e 03 2,1306e 02 1,3570e 03 2,0558e 02 7,4747e 04 Measured chemical shifts Point H a 1 9,0926e00 2 9,0927e00 3 9,0939e00 4 9,0959e00 5 9,0974e00 6 9,0988e00 7 9,0999e00 8 9,1016e00 9 9,1041e ,1056e ,1076e ,1099e ,1134e ,1169e ,1219e ,1292e ,1407e ,1576e00 Calculated chemical shifts Point H a 1 9,0923e00 2 9,0934e00 3 9,0945e00 4 9,0959e00 5 9,0972e00 6 9,0985e00 7 9,0995e00 8 9,1016e00 9 9,1036e ,1055e ,1076e ,1099e ,1134e ,1175e ,1221e ,1290e ,1406e ,1576e00 29

30 Chemical shifts for each nucleus species H a TGA001 9,0923e00 (TGA001)TBAI 9,2762e00 Converged in 4 iterations with sigma = 0, standard value deviation Comments 1 log beta((tga001)tbai) (2) Fig. S19 R 2 + TBAI titration. Observed and calculated chemical shifts for H a using 1:1 binding model. 30

31 H NMR titration of R 1 + NaBPh 4 + TBACl TCY NaBPh4 + TBACl_1 Species Log beta TCY037 + Na TBACl 1 3, refine Species concentrations/mol dm 3 Point T(TCY037 + Na) T(TBACl) F(TCY037 + Na) F(TBACl) species 1 1 2,4790e 03 0,0000e00 2,4790e 03 7,7837e 91 1,0383e ,4741e 03 2,4897e 04 2,2442e 03 1,9041e 05 2,2993e ,4682e 03 5,4643e 04 1,9689e 03 4,7129e 05 4,9931e ,4623e 03 8,4248e 04 1,7027e 03 8,2902e 05 7,5957e ,4565e 03 1,1371e 03 1,4486e 03 1,2929e 04 1,0078e ,4506e 03 1,4303e 03 1,2106e 03 1,9035e 04 1,2400e ,4453e 03 1,6979e 03 1,0110e 03 2,6364e 04 1,4343e ,4357e 03 2,1815e 03 7,0785e 04 4,5363e 04 1,7278e ,4262e 03 2,6612e 03 4,9323e 04 7,2830e 04 1,9329e ,4167e 03 3,1372e 03 3,5582e 04 1,0764e 03 2,0609e ,4073e 03 3,6096e 03 2,6984e 04 1,4721e 03 2,1375e ,3980e 03 4,0782e 03 2,1422e 04 1,8945e 03 2,1838e ,3796e 03 5,0048e 03 1,4938e 04 2,7746e 03 2,2302e ,3570e 03 6,1431e 03 1,0737e 04 3,8935e 03 2,2496e ,3348e 03 7,2600e 03 8,3528e 05 5,0088e 03 2,2512e ,2916e 03 9,4319e 03 5,7677e 05 7,1980e 03 2,2339e ,2099e 03 1,3543e 02 3,5543e 05 1,1369e 02 2,1743e ,0628e 03 2,0945e 02 2,0083e 05 1,8902e 02 2,0427e 03 Measured chemical shifts Point H a H b H c 1 9,0446e00 7,6018e00 6,8747e00 2 9,0946e00 7,6533e00 6,9036e00 3 9,1502e00 7,7103e00 6,9353e00 4 9,2144e00 7,7758e00 6,9716e00 5 9,2769e00 7,8402e00 7,0075e00 6 9,3347e00 7,8992e00 7,0417e00 7 9,3951e00 7,9605e00 7,0748e00 8 9,4807e00 8,0480e00 7,1241e00 9 9,5414e00 8,1090e00 7,1583e ,5798e00 8,1476e00 7,1801e ,6073e00 8,1742e00 7,1945e ,6212e00 8,1871e00 7,2011e ,6388e00 8,2032e00 7,2096e ,6491e00 8,2117e00 7,2138e ,6544e00 8,2158e00 7,2156e ,6613e00 8,2195e00 7,2168e ,6663e00 8,2205e00 7,2157e ,6696e00 8,2170e00 7,2103e00 Calculated chemical shifts Point H a H b H c 1 9,0231e00 7,5845e00 6,8661e00 2 9,0837e00 7,6451e00 6,8997e00 3 9,1550e00 7,7165e00 6,9392e00 4 9,2241e00 7,7858e00 6,9775e00 5 9,2905e00 7,8522e00 7,0143e00 6 9,3528e00 7,9146e00 7,0489e00 7 9,4053e00 7,9672e00 7,0780e00 31

32 8 9,4854e00 8,0473e00 7,1223e00 9 9,5423e00 8,1043e00 7,1539e ,5788e00 8,1408e00 7,1741e ,6017e00 8,1638e00 7,1868e ,6165e00 8,1786e00 7,1950e ,6338e00 8,1959e00 7,2046e ,6450e00 8,2072e00 7,2108e ,6514e00 8,2135e00 7,2144e ,6583e00 8,2205e00 7,2182e ,6642e00 8,2264e00 7,2215e ,6684e00 8,2305e00 7,2238e00 Chemical shifts for each nucleus species H a H b H c TCY037 + Na 9,0231e00 7,5845e00 6,8661e00 (TCY037 + Na)TBACl 9,6747e00 8,2369e00 7,2273e00 Converged in 6 iterations with sigma = 8, standard value deviation Comments 1 log beta((tcy037 + Na)TBACl) (3) (a) (b) (c) Fig. S20 R 1 + NaBPh 4 + TBACl titration. Observed and calculated chemical shifts for (a) H a, (b) H b and (c) H c using 1:1 binding model. 32

33 H NMR titration of R 1 + NaBPh 4 + TBABr TCY NaBPh4 + TBABr_2 Species Log beta TCY037 + Na TBABr 1 3, refine Species concentrations/mol dm 3 Point T(TCY037 + Na) T(TBABr) F(TCY037 + Na) F(TBABr) species 1 1 2,4790e 03 0,0000e00 2,4790e 03 1,4423e 90 6,3627e ,4741e 03 2,4973e 04 2,2739e 03 4,9488e 05 2,0024e ,4692e 03 4,9847e 04 2,0769e 03 1,0615e 04 3,9231e ,4643e 03 7,4621e 04 1,8891e 03 1,7108e 04 5,7513e ,4594e 03 9,9298e 04 1,7118e 03 2,4541e 04 7,4756e ,4545e 03 1,2388e 03 1,5460e 03 3,3024e 04 9,0852e ,4497e 03 1,4836e 03 1,3926e 03 4,2654e 04 1,0570e ,4400e 03 1,9703e 03 1,1258e 03 6,5606e 04 1,3143e ,4304e 03 2,4532e 03 9,1232e 04 9,3512e 04 1,5181e ,4209e 03 2,9324e 03 7,4725e 04 1,2587e 03 1,6737e ,4115e 03 3,4078e 03 6,2167e 04 1,6179e 03 1,7899e ,4022e 03 3,8795e 03 5,2619e 04 2,0035e 03 1,8760e ,3837e 03 4,8121e 03 3,9562e 04 2,8240e 03 1,9881e ,3610e 03 5,9579e 03 2,9772e 04 3,8946e 03 2,0633e ,3387e 03 7,0820e 03 2,3713e 04 4,9804e 03 2,1016e ,2954e 03 9,2678e 03 1,6748e 04 7,1398e 03 2,1279e ,2134e 03 1,3405e 02 1,0489e 04 1,1297e 02 2,1085e ,0659e 03 2,0853e 02 5,9816e 05 1,8846e 02 2,0061e 03 Measured chemical shifts Point H a H b H c 1 9,0477e00 7,6053e00 6,8774e00 2 9,0832e00 7,6363e00 6,8982e00 3 9,1180e00 7,6666e00 6,9189e00 4 9,1525e00 7,6966e00 6,9396e00 5 9,1836e00 7,7235e00 6,9577e00 6 9,2120e00 7,7481e00 6,9747e00 7 9,2393e00 7,7716e00 6,9907e00 8 9,2834e00 7,8096e00 7,0169e00 9 9,3168e00 7,8381e00 7,0366e ,3427e00 7,8603e00 7,0519e ,3624e00 7,8768e00 7,0631e ,3777e00 7,8896e00 7,0717e ,4003e00 7,9083e00 7,0843e ,4191e00 7,9236e00 7,0947e ,4313e00 7,9330e00 7,1009e ,4476e00 7,9456e00 7,1092e ,4615e00 7,9540e00 7,1131e ,4728e00 7,9600e00 7,1160e00 Calculated chemical shifts Point H a H b H c 1 9,0509e00 7,6109e00 6,8814e00 2 9,0854e00 7,6400e00 6,9012e00 3 9,1186e00 7,6681e00 6,9203e00 4 9,1503e00 7,6949e00 6,9386e00 5 9,1804e00 7,7204e00 6,9558e00 6 9,2086e00 7,7442e00 6,9720e00 7 9,2347e00 7,7663e00 6,9871e00 33

34 8 9,2803e00 7,8049e00 7,0133e00 9 9,3170e00 7,8359e00 7,0344e ,3454e00 7,8599e00 7,0507e ,3670e00 7,8782e00 7,0632e ,3835e00 7,8922e00 7,0727e ,4062e00 7,9113e00 7,0857e ,4231e00 7,9257e00 7,0954e ,4337e00 7,9346e00 7,1015e ,4458e00 7,9448e00 7,1084e ,4567e00 7,9540e00 7,1147e ,4645e00 7,9607e00 7,1192e00 Chemical shifts for each nucleus species H a H b H c TCY037 + Na 9,0509e00 7,6109e00 6,8814e00 (TCY037 + Na)TBABr 9,4769e00 7,9711e00 7,1263e00 Converged in 5 iterations with sigma = 3, standard value deviation Comments 1 log beta((tcy037 + Na)TBABr) (1) (a) (b) (c) Fig. S21 R 1 + NaBPh 4 + TBABr titration. Observed and calculated chemical shifts for (a) H a, (b) H b and (c) H c using 1:1 binding model. 34

35 TCY NaBPh4 + TBABr_2 Species Log beta TCY037 + Na TBABr 1 3, refine 2 5, refine Species concentrations/mol dm 3 Point T(TCY037 + Na) T(TBABr) F(TCY037 + Na) F(TBABr) species 1 species 2 1 2,4790e 03 0,0000e00 2,4790e 03 1,2424e 90 6,5237e 90 3,8793e ,4741e 03 2,4973e 04 2,1804e 03 3,1086e 05 1,4356e 04 7,5083e ,4692e 03 4,9847e 04 1,9091e 03 7,2290e 05 2,9231e 04 1,3386e ,4643e 03 7,4621e 04 1,6664e 03 1,2562e 04 4,4337e 04 1,7723e ,4594e 03 9,9298e 04 1,4525e 03 1,9287e 04 5,9337e 04 2,0674e ,4545e 03 1,2388e 03 1,2667e 03 2,7540e 04 7,3887e 04 2,2449e ,4497e 03 1,4836e 03 1,1071e 03 3,7391e 04 8,7681e 04 2,3285e ,4400e 03 1,9703e 03 8,5704e 04 6,1796e 04 1,1218e 03 2,3061e ,4304e 03 2,4532e 03 6,7950e 04 9,1752e 04 1,3205e 03 2,1522e ,4209e 03 2,9324e 03 5,5303e 04 1,2603e 03 1,4763e 03 1,9583e ,4115e 03 3,4078e 03 4,6131e 04 1,6343e 03 1,5968e 03 1,7669e ,4022e 03 3,8795e 03 3,9314e 04 2,0299e 03 1,6903e 03 1,5939e ,3837e 03 4,8121e 03 3,0054e 04 2,8602e 03 1,8207e 03 1,3125e ,3610e 03 5,9579e 03 2,3032e 04 3,9332e 03 1,9187e 03 1,0600e ,3387e 03 7,0820e 03 1,8598e 04 5,0174e 03 1,9764e 03 8,8167e ,2954e 03 9,2678e 03 1,3374e 04 7,1713e 03 2,0314e 03 6,5164e ,2134e 03 1,3405e 02 8,5281e 05 1,1319e 02 2,0445e 03 4,1822e ,0659e 03 2,0853e 02 4,9317e 05 1,8859e 02 1,9700e 03 2,3303e 05 Measured chemical shifts Point U1 U2 C1 1 9,0477e00 7,6053e00 6,8774e00 2 9,0832e00 7,6363e00 6,8982e00 3 9,1180e00 7,6666e00 6,9189e00 4 9,1525e00 7,6966e00 6,9396e00 5 9,1836e00 7,7235e00 6,9577e00 6 9,2120e00 7,7481e00 6,9747e00 7 9,2393e00 7,7716e00 6,9907e00 8 9,2834e00 7,8096e00 7,0169e00 9 9,3168e00 7,8381e00 7,0366e ,3427e00 7,8603e00 7,0519e ,3624e00 7,8768e00 7,0631e ,3777e00 7,8896e00 7,0717e ,4003e00 7,9083e00 7,0843e ,4191e00 7,9236e00 7,0947e ,4313e00 7,9330e00 7,1009e ,4476e00 7,9456e00 7,1092e ,4615e00 7,9540e00 7,1131e ,4728e00 7,9600e00 7,1160e00 Calculated chemical shifts Point U1 U2 C1 1 9,0481e00 7,6040e00 6,8757e00 2 9,0839e00 7,6365e00 6,8983e00 3 9,1186e00 7,6676e00 6,9198e00 4 9,1516e00 7,6968e00 6,9400e00 5 9,1827e00 7,7240e00 6,9587e00 6 9,2115e00 7,7489e00 6,9758e00 7 9,2377e00 7,7714e00 6,9911e00 8 9,2822e00 7,8091e00 7,0168e00 9 9,3169e00 7,8380e00 7,0364e ,3434e00 7,8600e00 7,0512e ,3638e00 7,8768e00 7,0625e ,3797e00 7,8897e00 7,0712e ,4023e00 7,9081e00 7,0835e ,4203e00 7,9226e00 7,0932e00 35

36 15 9,4320e00 7,9321e00 7,0995e ,4464e00 7,9436e00 7,1072e ,4602e00 7,9546e00 7,1145e ,4707e00 7,9630e00 7,1201e00 Chemical shifts for each nucleus species U1 U2 C1 TCY037 + Na 9,0481e00 7,6040e00 6,8757e00 (TCY037 + Na)Br 9,4872e00 7,9762e00 7,1289e00 (TCY037 + Na)2Br 9,2183e00 7,7835e00 7,0062e00 Converged in 6 iterations with sigma = 1, standard value deviation Comments 1 log beta((tcy037 + Na)Br) (4) 2 log beta((tcy037 + Na)2Br) (1) Correlation coefficients between stability constants. Numbering as above logk = ± (a) (b) (c) (d) Fig. S22 R 1 + NaBPh 4 + TBABr titration. Observed and calculated chemical shifts for (a) H a, (b) H b and (c) H c using simultaneous 1:1 and 2:1 binding models. (d) Species distribution as function of guest concentration. 36

37 H NMR titration of R 1 + NaBPh 4 + TBAI TCY NaBPh4 + TBAI_3 Species Log beta TCY037 + Na TBAI 1 2, refine Species concentrations/mol dm 3 Point T(TCY037 + Na) T(TBAI) F(TCY037 + Na) F(TBAI) species 1 1 2,4790e 03 0,0000e00 2,4790e 03 2,6129e 90 2,6179e ,4741e 03 2,4966e 04 2,3524e 03 1,2798e 04 1,2168e ,4692e 03 4,9832e 04 2,2328e 03 2,6194e 04 2,3637e ,4643e 03 7,4599e 04 2,1200e 03 4,0176e 04 3,4423e ,4594e 03 9,9268e 04 2,0139e 03 5,4725e 04 4,4543e ,4545e 03 1,2384e 03 1,9143e 03 6,9821e 04 5,4019e ,4497e 03 1,4831e 03 1,8209e 03 8,5438e 04 6,2876e ,4400e 03 1,9697e 03 1,6515e 03 1,1813e 03 7,8846e ,4304e 03 2,4525e 03 1,5035e 03 1,5255e 03 9,2697e ,4209e 03 2,9315e 03 1,3742e 03 1,8848e 03 1,0468e ,4115e 03 3,4068e 03 1,2613e 03 2,2565e 03 1,1503e ,4022e 03 3,8784e 03 1,1625e 03 2,6387e 03 1,2397e ,3837e 03 4,8107e 03 9,9953e 04 3,4265e 03 1,3842e ,3610e 03 5,9561e 03 8,4490e 04 4,4400e 03 1,5161e ,3387e 03 7,0799e 03 7,2845e 04 5,4696e 03 1,6103e ,2954e 03 9,2650e 03 5,6732e 04 7,5369e 03 1,7281e ,2134e 03 1,3401e 02 3,8975e 04 1,1578e 02 1,8237e ,0659e 03 2,0846e 02 2,3783e 04 1,9018e 02 1,8280e 03 Measured chemical shifts Point H a H b H c 1 9,0557e00 7,6148e00 6,8808e00 2 9,0643e00 7,6223e00 6,8869e00 3 9,0725e00 7,6301e00 6,8923e00 4 9,0792e00 7,6363e00 6,8967e00 5 9,0859e00 7,6418e00 6,9005e00 6 9,0914e00 7,6472e00 6,9041e00 7 9,0968e00 7,6519e00 6,9074e00 8 9,1054e00 7,6598e00 6,9134e00 9 9,1137e00 7,6672e00 6,9190e ,1203e00 7,6732e00 6,9244e ,1260e00 7,6785e00 6,9278e ,1308e00 7,6829e00 6,9307e ,1395e00 7,6898e00 6,9361e ,1481e00 7,6977e00 6,9411e ,1546e00 7,7033e00 6,9454e ,1649e00 7,7122e00 6,9519e ,1777e00 7,7237e00 6,9602e ,1898e00 7,7244e00 6,9669e00 Calculated chemical shifts Point H a H b H c 1 9,0581e00 7,6183e00 6,8829e00 2 9,0652e00 7,6244e00 6,8875e00 3 9,0719e00 7,6302e00 6,8918e00 4 9,0782e00 7,6357e00 6,8959e00 5 9,0842e00 7,6409e00 6,8998e00 6 9,0898e00 7,6457e00 6,9034e00 7 9,0950e00 7,6503e00 6,9068e00 37

38 8 9,1046e00 7,6586e00 6,9130e00 9 9,1130e00 7,6658e00 6,9184e ,1203e00 7,6722e00 6,9232e ,1267e00 7,6777e00 6,9273e ,1323e00 7,6826e00 6,9310e ,1416e00 7,6907e00 6,9370e ,1505e00 7,6983e00 6,9427e ,1571e00 7,7041e00 6,9470e ,1664e00 7,7121e00 6,9530e ,1766e00 7,7210e00 6,9596e ,1854e00 7,7285e00 6,9653e00 Chemical shifts for each nucleus species H a H b H c TCY037 + Na 9,0581e00 7,6183e00 6,8829e00 (TCY037 + Na)TBAI 9,2019e00 7,7429e00 6,9760e00 Converged in 6 iterations with sigma = 1, standard value deviation Comments 1 log beta((tcy037 + Na)TBAI) (2) (a) (b) (c) Fig. S23 R 1 + NaBPh 4 + TBAI titration. Observed and calculated chemical shifts for (a) H a, (b) H b and (c) H c using 1:1 binding model. 38

39 H NMR titration of R 1 + KBPh 4 + TBACl TCY KBPh4 + TBACl_4 Species Log beta TCY037 + K TBACl 1 3, refine Species concentrations/mol dm 3 Point T(TCY037 + K) T(TBACl) F(TCY037 + K) F(TBACl) species 1 1 2,5101e 03 0,0000e00 2,5101e 03 5,6462e 91 1,2625e ,5051e 03 2,5137e 04 2,2656e 03 1,1867e 05 2,3950e ,5001e 03 5,0174e 04 2,0247e 03 2,6357e 05 4,7538e ,4951e 03 7,5111e 04 1,7884e 03 4,4364e 05 7,0675e ,4902e 03 9,9949e 04 1,5579e 03 6,7182e 05 9,3231e ,4853e 03 1,2469e 03 1,3351e 03 9,6713e 05 1,1502e ,4804e 03 1,4933e 03 1,1228e 03 1,3574e 04 1,3576e ,4706e 03 1,9832e 03 7,4658e 04 2,5924e 04 1,7240e ,4599e 03 2,5177e 03 4,4731e 04 5,0511e 04 2,0126e ,4503e 03 2,9996e 03 2,8929e 04 8,3861e 04 2,1610e ,4408e 03 3,4778e 03 2,0267e 04 1,2397e 03 2,2381e ,4313e 03 3,9523e 03 1,5282e 04 1,6738e 03 2,2785e ,4126e 03 4,8902e 03 1,0067e 04 2,5783e 03 2,3120e ,3897e 03 6,0426e 03 6,9949e 05 3,7229e 03 2,3197e ,3671e 03 7,1733e 03 5,3449e 05 4,8596e 03 2,3137e ,3233e 03 9,3718e 03 3,6240e 05 7,0847e 03 2,2871e ,2404e 03 1,3533e 02 2,2009e 05 1,1315e 02 2,2184e ,0911e 03 2,1024e 02 1,2318e 05 1,8946e 02 2,0787e 03 Measured chemical shifts Point H a H b H c 1 9,0559e00 7,6414e00 6,9281e00 2 9,1132e00 7,7008e00 6,9608e00 3 9,1724e00 7,7624e00 6,9948e00 4 9,2283e00 7,8194e00 7,0256e00 5 9,2834e00 7,8771e00 7,0577e00 6 9,3391e00 7,9345e00 7,0891e00 7 9,3870e00 7,9842e00 7,1164e00 8 9,4796e00 8,0808e00 7,1701e00 9 9,5548e00 8,1593e00 7,2136e ,5951e00 8,2008e00 7,2363e ,6182e00 8,2242e00 7,2489e ,6316e00 8,2373e00 7,2561e ,6454e00 8,2507e00 7,2621e ,6546e00 8,2588e00 7,2656e ,6593e00 8,2620e00 7,2666e ,6644e00 8,2651e00 7,2673e ,6683e00 8,2649e00 7,2653e ,6701e00 8,2595e00 7,2600e00 Calculated chemical shifts Point H a H b H c 1 9,0532e00 7,6406e00 6,9287e00 2 9,1123e00 7,7012e00 6,9617e00 3 9,1707e00 7,7611e00 6,9943e00 4 9,2282e00 7,8200e00 7,0264e00 5 9,2845e00 7,8778e00 7,0579e00 6 9,3391e00 7,9338e00 7,0884e00 7 9,3913e00 7,9873e00 7,1175e00 39

40 8 9,4843e00 8,0826e00 7,1694e00 9 9,5586e00 8,1589e00 7,2110e ,5980e00 8,1993e00 7,2330e ,6197e00 8,2214e00 7,2451e ,6321e00 8,2342e00 7,2520e ,6452e00 8,2476e00 7,2593e ,6529e00 8,2555e00 7,2636e ,6570e00 8,2597e00 7,2659e ,6613e00 8,2642e00 7,2683e ,6649e00 8,2678e00 7,2703e ,6673e00 8,2703e00 7,2717e00 Chemical shifts for each nucleus species H a H b H c TCY037 + K 9,0532e00 7,6406e00 6,9287e00 (TCY037 + K)TBACl 9,6710e00 8,2740e00 7,2737e00 Converged in 5 iterations with sigma = 3, standard value deviation Comments 1 log beta((tcy037 + K)TBACl) (1) (a) (b) (c) Fig. S24 R 1 + KBPh 4 + TBACl titration. Observed and calculated chemical shifts for (a) H a, (b) H b and (c) H c using 1:1 binding model. 40

41 H NMR titration of R 1 + KBPh 4 + TBABr TCY KBPh4 + TBABr_6 Species Log beta TCY037 + K TBABr 1 3, refine Species concentrations/mol dm 3 Point T(TCY037 + K) T(TBABr) F(TCY037 + K) F(TBABr) species 1 1 2,5101e 03 0,0000e00 2,5101e 03 1,5384e 90 5,9826e ,5051e 03 2,4890e 04 2,3106e 03 5,4351e 05 1,9455e ,5001e 03 4,9682e 04 2,1193e 03 1,1599e 04 3,8083e ,4951e 03 7,4374e 04 1,9373e 03 1,8588e 04 5,5787e ,4877e 03 1,1123e 03 1,6837e 03 3,0825e 04 8,0405e ,4828e 03 1,3568e 03 1,5288e 03 4,0279e 04 9,5400e ,4779e 03 1,6003e 03 1,3861e 03 5,0847e 04 1,0918e ,4682e 03 2,0845e 03 1,1381e 03 7,5439e 04 1,3301e ,4585e 03 2,5649e 03 9,3870e 04 1,0451e 03 1,5198e ,4489e 03 3,0415e 03 7,8236e 04 1,3750e 03 1,6665e ,4394e 03 3,5144e 03 6,6113e 04 1,7362e 03 1,7782e ,4299e 03 3,9837e 03 5,6701e 04 2,1208e 03 1,8629e ,4113e 03 4,9114e 03 4,3472e 04 2,9348e 03 1,9765e ,3883e 03 6,0511e 03 3,3221e 04 3,9950e 03 2,0561e ,3658e 03 7,1694e 03 2,6715e 04 5,0708e 03 2,0987e ,3220e 03 9,3439e 03 1,9074e 04 7,2126e 03 2,1313e ,2392e 03 1,3460e 02 1,2058e 04 1,1342e 02 2,1186e ,0900e 03 2,0870e 02 6,9202e 05 1,8849e 02 2,0208e 03 Measured chemical shifts Point H a H b H c 1 9,0580e00 7,6431e00 6,9296e00 2 9,0919e00 7,6727e00 6,9491e00 3 9,1235e00 7,7005e00 6,9683e00 4 9,1534e00 7,7265e00 6,9859e00 5 9,1945e00 7,7622e00 7,0106e00 6 9,2278e00 7,7919e00 7,0304e00 7 9,2510e00 7,8121e00 7,0440e00 8 9,2945e00 7,8502e00 7,0701e00 9 9,3276e00 7,8792e00 7,0895e ,3492e00 7,8981e00 7,1023e ,3734e00 7,9189e00 7,1161e ,3910e00 7,9340e00 7,1262e ,4118e00 7,9518e00 7,1380e ,4307e00 7,9678e00 7,1487e ,4429e00 7,9779e00 7,1553e ,4584e00 7,9904e00 7,1631e ,4730e00 8,0013e00 7,1696e ,4835e00 8,0072e00 7,1719e00 Calculated chemical shifts Point H a H b H c 1 9,0570e00 7,6436e00 6,9305e00 2 9,0909e00 7,6729e00 6,9502e00 3 9,1235e00 7,7011e00 6,9691e00 4 9,1546e00 7,7280e00 6,9872e00 5 9,1981e00 7,7656e00 7,0124e00 6 9,2247e00 7,7886e00 7,0279e00 7 9,2493e00 7,8099e00 7,0422e00 41

42 8 9,2922e00 7,8470e00 7,0671e00 9 9,3268e00 7,8770e00 7,0872e ,3540e00 7,9005e00 7,1030e ,3752e00 7,9188e00 7,1153e ,3916e00 7,9330e00 7,1249e ,4148e00 7,9531e00 7,1383e ,4327e00 7,9686e00 7,1488e ,4442e00 7,9785e00 7,1554e ,4576e00 7,9901e00 7,1632e ,4699e00 8,0008e00 7,1704e ,4790e00 8,0086e00 7,1756e00 Chemical shifts for each nucleus species H a H b H c TCY037 + K 9,0570e00 7,6436e00 6,9305e00 (TCY037 + K)TBABr 9,4934e00 8,0211e00 7,1840e00 Converged in 4 iterations with sigma = 2, standard value deviation Comments 1 log beta((tcy037 + K)TBABr) (8) (a) (b) (c) Fig. S25 R 1 + KBPh 4 + TBABr titration. Observed and calculated chemical shifts for (a) H a, (b) H b and (c) H c using 1:1 binding model. 42

43 TCY KBPh4 + TBABr_6 Species Log beta TCY037 + K TBABr 1 3, refine 2 5, refine Species concentrations/mol dm 3 Point T(TCY037 + K) T(TBABr) F(TCY037 + K) F(TBABr) species 1 species 2 1 2,5101e 03 0,0000e00 2,5101e 03 1,2540e 90 6,7756e 90 3,1798e ,5051e 03 2,4890e 04 2,2245e 03 3,1993e 05 1,5320e 04 6,3714e ,5001e 03 4,9682e 04 1,9629e 03 7,3319e 05 3,0980e 04 1,1370e ,4951e 03 7,4374e 04 1,7263e 03 1,2573e 04 4,6722e 04 1,5080e ,4877e 03 1,1123e 03 1,4188e 03 2,2866e 04 6,9838e 04 1,8526e ,4828e 03 1,3568e 03 1,2447e 03 3,1532e 04 8,4486e 04 1,9661e ,4779e 03 1,6003e 03 1,0939e 03 4,1716e 04 9,8226e 04 2,0089e ,4682e 03 2,0845e 03 8,5394e 04 6,6561e 04 1,2235e 03 1,9534e ,4585e 03 2,5649e 03 6,8061e 04 9,6732e 04 1,4172e 03 1,8034e ,4489e 03 3,0415e 03 5,5553e 04 1,3110e 03 1,5677e 03 1,6283e ,4394e 03 3,5144e 03 4,6404e 04 1,6851e 03 1,6833e 03 1,4604e ,4299e 03 3,9837e 03 3,9568e 04 2,0805e 03 1,7721e 03 1,3109e ,4113e 03 4,9114e 03 3,0247e 04 2,9097e 03 1,8945e 03 1,0714e ,3883e 03 6,0511e 03 2,3164e 04 3,9804e 03 1,9848e 03 8,5957e ,3658e 03 7,1694e 03 1,8691e 04 5,0617e 03 2,0366e 03 7,1169e ,3220e 03 9,3439e 03 1,3425e 04 7,2084e 03 2,0832e 03 5,2290e ,2392e 03 1,3460e 02 8,5496e 05 1,1340e 02 2,0870e 03 3,3359e ,0900e 03 2,0870e 02 4,9385e 05 1,8848e 02 2,0036e 03 1,8500e 05 Measured chemical shifts Point U1 U2 C1 1 9,0580e00 7,6431e00 6,9296e00 2 9,0919e00 7,6727e00 6,9491e00 3 9,1235e00 7,7005e00 6,9683e00 4 9,1534e00 7,7265e00 6,9859e00 5 9,1945e00 7,7622e00 7,0106e00 6 9,2278e00 7,7919e00 7,0304e00 7 9,2510e00 7,8121e00 7,0440e00 8 9,2945e00 7,8502e00 7,0701e00 9 9,3276e00 7,8792e00 7,0895e ,3492e00 7,8981e00 7,1023e ,3734e00 7,9189e00 7,1161e ,3910e00 7,9340e00 7,1262e ,4118e00 7,9518e00 7,1380e ,4307e00 7,9678e00 7,1487e ,4429e00 7,9779e00 7,1553e ,4584e00 7,9904e00 7,1631e ,4730e00 8,0013e00 7,1696e ,4835e00 8,0072e00 7,1719e00 Calculated chemical shifts Point U1 U2 C1 1 9,0592e00 7,6430e00 6,9287e00 2 9,0912e00 7,6718e00 6,9487e00 3 9,1227e00 7,7001e00 6,9682e00 4 9,1535e00 7,7275e00 6,9870e00 5 9,1974e00 7,7661e00 7,0134e00 6 9,2245e00 7,7898e00 7,0294e00 7 9,2495e00 7,8116e00 7,0441e00 8 9,2928e00 7,8490e00 7,0692e00 9 9,3271e00 7,8784e00 7,0889e ,3537e00 7,9012e00 7,1040e ,3743e00 7,9187e00 7,1156e ,3904e00 7,9324e00 7,1246e ,4132e00 7,9518e00 7,1374e ,4315e00 7,9672e00 7,1476e00 43

44 15 9,4434e00 7,9772e00 7,1542e ,4578e00 7,9894e00 7,1622e ,4716e00 8,0010e00 7,1698e ,4821e00 8,0098e00 7,1755e00 Chemical shifts for each nucleus species U1 U2 C1 TCY037 + K 9,0592e00 7,6430e00 6,9287e00 (TCY037 + K)Br 9,4985e00 8,0236e00 7,1846e00 (TCY037 + K)2Br 9,1589e00 7,7522e00 7,0151e00 Converged in 5 iterations with sigma = 1, standard value deviation Comments 1 log beta((tcy037 + K)Br) (4) 2 log beta((tcy037 + K)2Br) (2) Correlation coefficients between stability constants. Numbering as above logk = ± (a) (b) (c) (d) Fig. S26 R 1 + KBPh 4 + TBABr titration. Observed and calculated chemical shifts for (a) H a, (b) H b and (c) H c using simultaneous 1:1 and 2:1 binding models. (d) Species distribution as function of guest concentration. 44

45 H NMR titration of R 1 + KBPh 4 + TBAI TCY KBPh4 + TBAI_2 Species Log beta TCY037 + K TBAI 1 2, refine Species concentrations/mol dm 3 Point T(TCY037 + K) T(TBAI) F(TCY037 + K) F(TBAI) species 1 1 2,5101e 03 0,0000e00 2,5101e 03 2,7273e 90 2,5589e ,5051e 03 2,4786e 04 2,3882e 03 1,3095e 04 1,1690e ,5001e 03 4,9472e 04 2,2729e 03 2,6748e 04 2,2725e ,4951e 03 7,4061e 04 2,1640e 03 4,0943e 04 3,3118e ,4902e 03 9,8552e 04 2,0613e 03 5,5663e 04 4,2889e ,4853e 03 1,2295e 03 1,9647e 03 7,0887e 04 5,2059e ,4799e 03 1,4967e 03 1,8651e 03 8,8188e 04 6,1480e ,4701e 03 1,9796e 03 1,7007e 03 1,2102e 03 7,6936e ,4604e 03 2,4587e 03 1,5562e 03 1,5545e 03 9,0422e ,4508e 03 2,9340e 03 1,4292e 03 1,9124e 03 1,0216e ,4413e 03 3,4057e 03 1,3175e 03 2,2819e 03 1,1238e ,4295e 03 3,9902e 03 1,1964e 03 2,7571e 03 1,2330e ,4108e 03 4,9136e 03 1,0376e 03 3,5404e 03 1,3732e ,3879e 03 6,0481e 03 8,8475e 04 4,5450e 03 1,5031e ,3654e 03 7,1613e 03 7,6803e 04 5,5639e 03 1,5973e ,3216e 03 9,3258e 03 6,0397e 04 7,6082e 03 1,7176e ,2388e 03 1,3423e 02 4,1945e 04 1,1604e 02 1,8193e ,0897e 03 2,0799e 02 2,5830e 04 1,8968e 02 1,8314e 03 Measured chemical shifts Point H a H b H c 1 9,0578e00 7,6431e00 6,9300e00 2 9,0666e00 7,6510e00 6,9351e00 3 9,0736e00 7,6575e00 6,9396e00 4 9,0809e00 7,6642e00 6,9443e00 5 9,0875e00 7,6701e00 6,9481e00 6 9,0941e00 7,6761e00 6,9526e00 7 9,1000e00 7,6817e00 6,9567e00 8 9,1096e00 7,6904e00 6,9630e00 9 9,1171e00 7,6973e00 6,9683e ,1246e00 7,7040e00 6,9728e ,1304e00 7,7093e00 6,9766e ,1369e00 7,7153e00 6,9810e ,1450e00 7,7224e00 6,9860e ,1536e00 7,7302e00 6,9917e ,1605e00 7,7395e00 6,9966e ,1711e00 7,7454e00 7,0018e ,1836e00 7,7563e00 7,0103e ,1976e00 7,7681e00 7,0177e00 Calculated chemical shifts Point H a H b H c 1 9,0604e00 7,6457e00 6,9314e00 2 9,0674e00 7,6522e00 6,9359e00 3 9,0742e00 7,6582e00 6,9402e00 4 9,0805e00 7,6640e00 6,9443e00 5 9,0865e00 7,6694e00 6,9481e00 6 9,0922e00 7,6745e00 6,9518e00 7 9,0980e00 7,6798e00 6,9555e00 45

46 8 9,1077e00 7,6885e00 6,9617e00 9 9,1162e00 7,6962e00 6,9672e ,1237e00 7,7030e00 6,9720e ,1303e00 7,7090e00 6,9762e ,1375e00 7,7155e00 6,9808e ,1469e00 7,7240e00 6,9868e ,1560e00 7,7322e00 6,9927e ,1630e00 7,7385e00 6,9971e ,1728e00 7,7474e00 7,0034e ,1838e00 7,7574e00 7,0105e ,1935e00 7,7662e00 7,0167e00 Chemical shifts for each nucleus species H a H b H c TCY037 + K 9,0604e00 7,6457e00 6,9314e00 (TCY037 + K)TBAI 9,2123e00 7,7832e00 7,0287e00 Converged in 6 iterations with sigma = 1, standard value deviation Comments 1 log beta((tcy037 + K)TBAI) (1) (a) (b) (c) Fig. S27 R 1 + KBPh 4 + TBAI titration. Observed and calculated chemical shifts for (a) H a, (b) H b and (c) H c using 1:1 binding model. 46

47 TCY KBPh4 + TBAI_2 Species Log beta TCY037 + K TBAI 1 2, refine 2 5, refine Species concentrations/mol dm 3 Point T(TCY037 + K) T(TBAI) F(TCY037 + K) F(TBAI) species 1 species 2 1 2,5101e 03 0,0000e00 2,5101e 03 2,1244e 90 2,4827e 90 2,5066e ,5051e 03 2,4786e 04 2,2608e 03 8,2351e 05 8,6681e 05 7,8823e ,5001e 03 4,9472e 04 2,0447e 03 1,8089e 04 1,7220e 04 1,4162e ,4951e 03 7,4061e 04 1,8586e 03 2,9480e 04 2,5510e 04 1,9071e ,4902e 03 9,8552e 04 1,6989e 03 4,2270e 04 3,3435e 04 2,2847e ,4853e 03 1,2295e 03 1,5617e 03 5,6299e 04 4,0934e 04 2,5713e ,4799e 03 1,4967e 03 1,4325e 03 7,2966e 04 4,8663e 04 2,8038e ,4701e 03 1,9796e 03 1,2433e 03 1,0595e 03 6,1333e 04 3,0672e ,4604e 03 2,4587e 03 1,0978e 03 1,4156e 03 7,2356e 04 3,1951e ,4508e 03 2,9340e 03 9,8313e 04 1,7904e 03 8,1953e 04 3,2407e ,4413e 03 3,4057e 03 8,9062e 04 2,1787e 03 9,0340e 04 3,2363e ,4295e 03 3,9902e 03 7,9755e 04 2,6771e 03 9,9410e 04 3,1890e ,4108e 03 4,9136e 03 6,8444e 04 3,4937e 03 1,1133e 03 3,0650e ,3879e 03 6,0481e 03 5,8265e 04 4,5310e 03 1,2291e 03 2,8805e ,3654e 03 7,1613e 03 5,0808e 04 5,5734e 03 1,3184e 03 2,6943e ,3216e 03 9,3258e 03 4,0576e 04 7,6457e 03 1,4444e 03 2,3573e ,2388e 03 1,3423e 02 2,9080e 04 1,1660e 02 1,5787e 03 1,8465e ,0897e 03 2,0799e 02 1,8680e 04 1,9021e 02 1,6543e 03 1,2430e 04 Measured chemical shifts Point U1 U2 C1 1 9,0578e00 7,6431e00 6,9300e00 2 9,0666e00 7,6510e00 6,9351e00 3 9,0736e00 7,6575e00 6,9396e00 4 9,0809e00 7,6642e00 6,9443e00 5 9,0875e00 7,6701e00 6,9481e00 6 9,0941e00 7,6761e00 6,9526e00 7 9,1000e00 7,6817e00 6,9567e00 8 9,1096e00 7,6904e00 6,9630e00 9 9,1171e00 7,6973e00 6,9683e ,1246e00 7,7040e00 6,9728e ,1304e00 7,7093e00 6,9766e ,1369e00 7,7153e00 6,9810e ,1450e00 7,7224e00 6,9860e ,1536e00 7,7302e00 6,9917e ,1605e00 7,7395e00 6,9966e ,1711e00 7,7454e00 7,0018e ,1836e00 7,7563e00 7,0103e ,1976e00 7,7681e00 7,0177e00 Calculated chemical shifts Point U1 U2 C1 1 9,0582e00 7,6430e00 6,9294e00 2 9,0663e00 7,6506e00 6,9349e00 3 9,0739e00 7,6578e00 6,9399e00 4 9,0810e00 7,6644e00 6,9446e00 5 9,0875e00 7,6704e00 6,9489e00 6 9,0935e00 7,6759e00 6,9528e00 7 9,0995e00 7,6815e00 6,9567e00 8 9,1091e00 7,6903e00 6,9629e00 9 9,1173e00 7,6977e00 6,9682e ,1243e00 7,7040e00 6,9727e ,1304e00 7,7095e00 6,9765e ,1370e00 7,7154e00 6,9807e ,1456e00 7,7231e00 6,9862e ,1541e00 7,7307e00 6,9916e00 47

48 15 9,1609e00 7,7367e00 6,9958e ,1710e00 7,7457e00 7,0021e ,1838e00 7,7569e00 7,0101e ,1968e00 7,7684e00 7,0182e00 Chemical shifts for each nucleus species U1 U2 C1 TCY037 + K 9,0582e00 7,6430e00 6,9294e00 (TCY037 + K)I 9,2280e00 7,7957e00 7,0376e00 (TCY037 + K)2I 9,0935e00 7,6807e00 6,9562e00 standard value deviation Comments 1 log beta((tcy037 + K)I) (7) 2 log beta((tcy037 + K)2I) excessive relative error on beta = 43% Correlation coefficients between stability constants. Numbering as above logk = ± (a) (b) (c) (d) Fig. S28 R 1 + KBPh 4 + TBAI titration. Observed and calculated chemical shifts for (a) H a, (b) H b and (c) H c using simultaneous 1:1 and 2:1 binding models. (d) Species distribution as function of guest concentration. 48

49 H NMR titration of R 1 + RbBPh 4 + TBACl TCY RbBPh4 + TBACl_1 Species Log beta TCY037 + Rb TBACl 1 3, refine Species concentrations/mol dm 3 Point T(TCY037 + Rb) T(TBACl) F(TCY037 + Rb) F(TBACl) species 1 1 2,4977e 03 0,0000e00 2,4977e 03 6,7483e 91 1,1374e ,4927e 03 2,4897e 04 2,2591e 03 1,5327e 05 2,3365e ,4877e 03 4,9696e 04 2,0247e 03 3,3892e 05 4,6306e ,4818e 03 7,9323e 04 1,7505e 03 6,1910e 05 7,3132e ,4769e 03 1,0391e 03 1,5296e 03 9,1772e 05 9,4728e ,4720e 03 1,2839e 03 1,3179e 03 1,2978e 04 1,1541e ,4671e 03 1,5278e 03 1,1181e 03 1,7879e 04 1,3490e ,4574e 03 2,0127e 03 7,6967e 04 3,2494e 04 1,6877e ,4478e 03 2,4937e 03 5,1296e 04 5,5894e 04 1,9348e ,4382e 03 2,9711e 03 3,5032e 04 8,8319e 04 2,0879e ,4287e 03 3,4447e 03 2,5382e 04 1,2698e 03 2,1749e ,4193e 03 3,9146e 03 1,9500e 04 1,6903e 03 2,2243e ,4007e 03 4,8437e 03 1,3070e 04 2,5737e 03 2,2700e ,3778e 03 5,9850e 03 9,1595e 05 3,6988e 03 2,2863e ,3554e 03 7,1049e 03 7,0259e 05 4,8198e 03 2,2852e ,3118e 03 9,2825e 03 4,7802e 05 7,0184e 03 2,2640e ,2293e 03 1,3404e 02 2,9100e 05 1,1204e 02 2,2002e ,0807e 03 2,0824e 02 1,6307e 05 1,8760e 02 2,0644e 03 Measured chemical shifts Point H a H b H c 1 9,0503e00 7,6324e00 6,9120e00 2 9,1002e00 7,6846e00 6,9425e00 3 9,1512e00 7,7367e00 6,9708e00 4 9,2131e00 7,7999e00 7,0050e00 5 9,2692e00 7,8575e00 7,0363e00 6 9,3240e00 7,9140e00 7,0673e00 7 9,3741e00 7,9650e00 7,0948e00 8 9,4640e00 8,0584e00 7,1465e00 9 9,5324e00 8,1293e00 7,1857e ,5764e00 8,1745e00 7,2102e ,6034e00 8,2018e00 7,2251e ,6194e00 8,2175e00 7,2332e ,6369e00 8,2342e00 7,2419e ,6473e00 8,2434e00 7,2462e ,6527e00 8,2469e00 7,2471e ,6558e00 8,2500e00 7,2477e ,6633e00 8,2494e00 7,2454e ,6665e00 8,2450e00 7,2395e00 Calculated chemical shifts Point H a H b H c 1 9,0349e00 7,6194e00 6,9071e00 2 9,0943e00 7,6797e00 6,9398e00 3 9,1528e00 7,7391e00 6,9720e00 4 9,2215e00 7,8090e00 7,0099e00 5 9,2771e00 7,8654e00 7,0405e00 6 9,3306e00 7,9198e00 7,0699e00 7 9,3812e00 7,9712e00 7,0978e00 49

50 8 9,4699e00 8,0613e00 7,1466e00 9 9,5356e00 8,1279e00 7,1828e ,5773e00 8,1703e00 7,2057e ,6021e00 8,1955e00 7,2194e ,6172e00 8,2109e00 7,2277e ,6338e00 8,2278e00 7,2369e ,6439e00 8,2380e00 7,2424e ,6494e00 8,2436e00 7,2454e ,6552e00 8,2495e00 7,2486e ,6600e00 8,2544e00 7,2513e ,6633e00 8,2577e00 7,2531e00 Chemical shifts for each nucleus species H a H b H c TCY037 + Rb 9,0349e00 7,6194e00 6,9071e00 (TCY037 + Rb)TBACl 9,6683e00 8,2628e00 7,2559e00 Converged in 5 iterations with sigma = 6, standard value deviation Comments 1 log beta((tcy037 + Rb)TBACl) (2) (a) (b) (c) Fig. S29 R 1 + RbBPh 4 + TBACl titration. Observed and calculated chemical shifts for (a) H a, (b) H b and (c) H c using 1:1 binding model. 50

51 H NMR titration of R 1 + RbBPh 4 + TBABr TCY RbBPh4 + TBABr_2 Species Log beta TCY037 + Rb TBABr 1 3, refine Species concentrations/mol dm 3 Point T(TCY037 + Rb) T(TBABr) F(TCY037 + Rb) F(TBABr) species 1 1 2,4977e 03 0,0000e00 2,4977e 03 1,4149e 90 6,5841e ,4927e 03 2,4973e 04 2,2904e 03 4,7411e 05 2,0232e ,4877e 03 4,9847e 04 2,0911e 03 1,0181e 04 3,9665e ,4828e 03 7,4621e 04 1,9009e 03 1,6431e 04 5,8191e ,4779e 03 9,9298e 04 1,7210e 03 2,3606e 04 7,5691e ,4730e 03 1,2388e 03 1,5524e 03 3,1825e 04 9,2051e ,4681e 03 1,4836e 03 1,3964e 03 4,1191e 04 1,0717e ,4584e 03 1,9703e 03 1,1246e 03 6,3655e 04 1,3338e ,4487e 03 2,4532e 03 9,0731e 04 9,1183e 04 1,5414e ,4391e 03 2,9324e 03 7,3976e 04 1,2330e 03 1,6994e ,4297e 03 3,4078e 03 6,1288e 04 1,5910e 03 1,8168e ,4202e 03 3,8795e 03 5,1693e 04 1,9762e 03 1,9033e ,4016e 03 4,8121e 03 3,8664e 04 2,7971e 03 2,0150e ,3788e 03 5,9579e 03 2,8980e 04 3,8689e 03 2,0890e ,3563e 03 7,0820e 03 2,3025e 04 4,9559e 03 2,1261e ,3127e 03 9,2678e 03 1,6217e 04 7,1173e 03 2,1505e ,2301e 03 1,3405e 02 1,0132e 04 1,1276e 02 2,1288e ,0814e 03 2,0853e 02 5,7688e 05 1,8829e 02 2,0237e 03 Measured chemical shifts Point H a H b H c 1 9,0592e00 7,6453e00 6,9263e00 2 9,0954e00 7,6777e00 6,9487e00 3 9,1305e00 7,7091e00 6,9693e00 4 9,1648e00 7,7394e00 6,9893e00 5 9,1979e00 7,7692e00 7,0092e00 6 9,2272e00 7,7951e00 7,0268e00 7 9,2508e00 7,8159e00 7,0403e00 8 9,2937e00 7,8540e00 7,0658e00 9 9,3280e00 7,8843e00 7,0860e ,3565e00 7,9097e00 7,1031e ,3764e00 7,9273e00 7,1149e ,3935e00 7,9418e00 7,1240e ,4160e00 7,9614e00 7,1371e ,4335e00 7,9763e00 7,1468e ,4450e00 7,9854e00 7,1524e ,4596e00 7,9967e00 7,1591e ,4725e00 8,0059e00 7,1647e ,4820e00 8,0101e00 7,1654e00 Calculated chemical shifts Point H a H b H c 1 9,0632e00 7,6510e00 6,9311e00 2 9,0977e00 7,6811e00 6,9510e00 3 9,1309e00 7,7102e00 6,9703e00 4 9,1627e00 7,7380e00 6,9887e00 5 9,1929e00 7,7644e00 7,0061e00 6 9,2213e00 7,7892e00 7,0225e00 51

52 7 9,2476e00 7,8122e00 7,0377e00 8 9,2936e00 7,8525e00 7,0643e00 9 9,3305e00 7,8848e00 7,0856e ,3591e00 7,9097e00 7,1021e ,3808e00 7,9287e00 7,1147e ,3972e00 7,9431e00 7,1242e ,4195e00 7,9626e00 7,1371e ,4362e00 7,9771e00 7,1467e ,4464e00 7,9861e00 7,1526e ,4581e00 7,9963e00 7,1594e ,4686e00 8,0055e00 7,1654e ,4761e00 8,0121e00 7,1698e00 Chemical shifts for each nucleus species H a H b H c TCY037 + Rb 9,0632e00 7,6510e00 6,9311e00 (TCY037 + Rb)TBABr 9,4879e00 8,0224e00 7,1766e00 Converged in 5 iterations with sigma = 3, standard value deviation Comments 1 log beta((tcy037 + Rb)TBABr) (1) (a) (b) (c) Fig. S30 R 1 + RbBPh 4 + TBABr titration. Observed and calculated chemical shifts for (a) H a, (b) H b and (c) H c using 1:1 binding model. 52

53 H NMR titration of R 1 + RbBPh 4 + TBAI TCY RbBPh4 + TBAI_3 Species Log beta TCY037 + Rb TBAI 1 2, refine Species concentrations/mol dm 3 Point T(TCY037 + Rb) T(TBAI) F(TCY037 + Rb) F(TBAI) species 1 1 2,4977e 03 0,0000e00 2,4977e 03 2,8344e 90 2,3214e ,4927e 03 2,5002e 04 2,3830e 03 1,4035e 04 1,0967e ,4877e 03 4,9904e 04 2,2745e 03 2,8584e 04 2,1319e ,4828e 03 7,4707e 04 2,1720e 03 4,3631e 04 3,1075e ,4779e 03 9,9411e 04 2,0753e 03 5,9156e 04 4,0256e ,4730e 03 1,2402e 03 1,9841e 03 7,5135e 04 4,8883e ,4681e 03 1,4853e 03 1,8983e 03 9,1545e 04 5,6982e ,4584e 03 1,9726e 03 1,7414e 03 1,2556e 03 7,1696e ,4487e 03 2,4560e 03 1,6026e 03 1,6100e 03 8,4607e ,4391e 03 2,9357e 03 1,4800e 03 1,9765e 03 9,5919e ,4297e 03 3,4117e 03 1,3714e 03 2,3534e 03 1,0583e ,4202e 03 3,8840e 03 1,2751e 03 2,7388e 03 1,1451e ,4016e 03 4,8176e 03 1,1133e 03 3,5293e 03 1,2884e ,3788e 03 5,9647e 03 9,5563e 04 4,5415e 03 1,4231e ,3563e 03 7,0901e 03 8,3390e 04 5,5677e 03 1,5224e ,3127e 03 9,2784e 03 6,6063e 04 7,6263e 03 1,6520e ,2301e 03 1,3421e 02 4,6257e 04 1,1653e 02 1,7675e ,0814e 03 2,0876e 02 2,8681e 04 1,9082e 02 1,7946e 03 Measured chemical shifts Point H a H b H c 1 9,0555e00 7,6404e00 6,9216e00 2 9,0637e00 7,6481e00 6,9268e00 3 9,0706e00 7,6547e00 6,9314e00 4 9,0776e00 7,6613e00 6,9359e00 5 9,0843e00 7,6675e00 6,9401e00 6 9,0900e00 7,6731e00 6,9438e00 7 9,0954e00 7,6779e00 6,9470e00 8 9,1044e00 7,6866e00 6,9532e00 9 9,1114e00 7,6932e00 6,9578e ,1191e00 7,7005e00 6,9633e ,1253e00 7,7064e00 6,9678e ,1289e00 7,7095e00 6,9688e ,1368e00 7,7171e00 6,9745e ,1467e00 7,7268e00 6,9820e ,1522e00 7,7349e00 6,9852e ,1637e00 7,7421e00 6,9913e ,1777e00 7,7553e00 7,0009e ,1921e00 7,7681e00 7,0086e00 Calculated chemical shifts Point H a H b H c 1 9,0584e00 7,6433e00 6,9236e00 2 9,0651e00 7,6495e00 6,9278e00 3 9,0713e00 7,6554e00 6,9319e00 4 9,0773e00 7,6610e00 6,9358e00 5 9,0829e00 7,6663e00 6,9394e00 6 9,0882e00 7,6713e00 6,9428e00 53

54 7 9,0932e00 7,6760e00 6,9461e00 8 9,1023e00 7,6847e00 6,9520e00 9 9,1104e00 7,6923e00 6,9572e ,1176e00 7,6991e00 6,9619e ,1240e00 7,7051e00 6,9660e ,1296e00 7,7105e00 6,9697e ,1392e00 7,7194e00 6,9758e ,1485e00 7,7282e00 6,9819e ,1557e00 7,7350e00 6,9865e ,1659e00 7,7447e00 6,9932e ,1777e00 7,7558e00 7,0008e ,1882e00 7,7657e00 7,0076e00 Chemical shifts for each nucleus species H a H b H c TCY037 + Rb 9,0584e00 7,6433e00 6,9236e00 (TCY037 + Rb)TBAI 9,2089e00 7,7853e00 7,0210e00 Converged in 6 iterations with sigma = 1, standard value deviation Comments 1 log beta((tcy037 + Rb)TBAI) (2) (a) (b) (c) Fig. S31 R 1 + RbBPh 4 + TBAI titration. Observed and calculated chemical shifts for (a) H a, (b) H b and (c) H c using 1:1 binding model. 54

55 TCY RbBPh4 + TBAI_3 Species Log beta TCY037 + Rb TBAI 1 2, refine 2 5, refine Species concentrations/mol dm 3 Point T(TCY037 + Rb) T(TBAI) F(TCY037 + Rb) F(TBAI) species 1 species 2 1 2,4977e 03 0,0000e00 2,4977e 03 2,1808e 90 2,1510e 90 2,6064e ,4927e 03 2,5002e 04 2,2457e 03 8,7634e 05 7,7716e 05 8,4667e ,4877e 03 4,9904e 04 2,0294e 03 1,9265e 04 1,5439e 04 1,5200e ,4828e 03 7,4707e 04 1,8449e 03 3,1381e 04 2,2863e 04 2,0463e ,4779e 03 9,9411e 04 1,6879e 03 4,4935e 04 2,9951e 04 2,4525e ,4730e 03 1,2402e 03 1,5538e 03 5,9734e 04 3,6654e 04 2,7630e ,4681e 03 1,4853e 03 1,4389e 03 7,5591e 04 4,2953e 04 2,9983e ,4584e 03 1,9726e 03 1,2535e 03 1,0983e 03 5,4367e 04 3,3060e ,4487e 03 2,4560e 03 1,1115e 03 1,4657e 03 6,4337e 04 3,4692e ,4391e 03 2,9357e 03 9,9974e 04 1,8507e 03 7,3066e 04 3,5437e ,4297e 03 3,4117e 03 9,0959e 04 2,2479e 03 8,0746e 04 3,5631e ,4202e 03 3,8840e 03 8,3532e 04 2,6538e 03 8,7542e 04 3,5475e ,4016e 03 4,8176e 03 7,2001e 04 3,4818e 03 9,9000e 04 3,4581e ,3788e 03 5,9647e 03 6,1628e 04 4,5320e 03 1,1030e 03 3,2976e ,3563e 03 7,0901e 03 5,4016e 04 5,5862e 03 1,1916e 03 3,1226e ,3127e 03 9,2784e 03 4,3525e 04 7,6797e 03 1,3200e 03 2,7872e ,2301e 03 1,3421e 02 3,1615e 04 1,1731e 02 1,4646e 03 2,2464e ,0814e 03 2,0876e 02 2,0647e 04 1,9158e 02 1,5620e 03 1,5646e 04 Measured chemical shifts Point U1 U2 C1 1 9,0555e00 7,6404e00 6,9216e00 2 9,0637e00 7,6481e00 6,9268e00 3 9,0706e00 7,6547e00 6,9314e00 4 9,0776e00 7,6613e00 6,9359e00 5 9,0843e00 7,6675e00 6,9401e00 6 9,0900e00 7,6731e00 6,9438e00 7 9,0954e00 7,6779e00 6,9470e00 8 9,1044e00 7,6866e00 6,9532e00 9 9,1114e00 7,6932e00 6,9578e ,1191e00 7,7005e00 6,9633e ,1253e00 7,7064e00 6,9678e ,1289e00 7,7095e00 6,9688e ,1368e00 7,7171e00 6,9745e ,1467e00 7,7268e00 6,9820e ,1522e00 7,7349e00 6,9852e ,1637e00 7,7421e00 6,9913e ,1777e00 7,7553e00 7,0009e ,1921e00 7,7681e00 7,0086e00 Calculated chemical shifts Point U1 U2 C1 1 9,0557e00 7,6403e00 6,9213e00 2 9,0636e00 7,6479e00 6,9266e00 3 9,0710e00 7,6550e00 6,9316e00 4 9,0778e00 7,6615e00 6,9361e00 5 9,0840e00 7,6675e00 6,9402e00 6 9,0897e00 7,6729e00 6,9440e00 7 9,0949e00 7,6778e00 6,9474e00 8 9,1041e00 7,6865e00 6,9534e00 9 9,1118e00 7,6939e00 6,9584e ,1185e00 7,7001e00 6,9627e ,1243e00 7,7056e00 6,9665e ,1294e00 7,7104e00 6,9697e ,1380e00 7,7185e00 6,9752e ,1465e00 7,7265e00 6,9807e ,1534e00 7,7329e00 6,9851e00 55

56 16 9,1638e00 7,7426e00 6,9917e ,1773e00 7,7552e00 7,0002e ,1917e00 7,7685e00 7,0093e00 Chemical shifts for each nucleus species U1 U2 C1 TCY037 + Rb 9,0557e00 7,6403e00 6,9213e00 (TCY037 + Rb)I 9,2295e00 7,8037e00 7,0331e00 (TCY037 + Rb)2I 9,0926e00 7,6779e00 6,9486e00 standard value deviation Comments 1 log beta((tcy037 + Rb)I) (1) 2 log beta((tcy037 + Rb)2I) (2) Correlation coefficients between stability constants. Numbering as above logk = ± (a) (b) (c) (d) Fig. S32 R 1 + RbBPh 4 + TBAI titration. Observed and calculated chemical shifts for (a) H a, (b) H b and (c) H c using simultaneous 1:1 and 2:1 binding models. (d) Species distribution as function of guest concentration. 56

57 3.3 1 H NMR experiment of R 1 + TBABPh 4 Fig. S33 1 H NMR spectra of R 1 (below) and R eq TBABPh 4 (above) in 9:1 CDCl 3 /DMSO. The comparison shows that there is no interaction between R 1 and BPh 4 anion (*) or TBAcation (**). 57

58 4. Single crystal structures 4.1 General All single crystal X ray data were collected with Agilent SuperNova, equipped with multilayer optics monochromated dual source (Cu and Mo) and Atlas detector, using Cu Kα (λ = Å) radiation at temperature 123 K. Data acquisitions, reductions, and analytical face index based or multi scan absorption corrections were made using the program CrysAlisPRO [3]. The structures were solved with either ShelXS [4] or Superflip [5] programs and refined on F 2 by full matrix least squares techniques with ShelXL [4] program in Olex2 (v.1.2) [6] program package. The non H atoms were refined anisotropically and all hydrogen positions were calculated using a riding atom model with ShelXL [4] default parameters. 4.2 Crystal data Crystal data for 2: Crystals were grown by slow evaporation of diethyl ether solution. C 16 H 22 N 2 O 10, M = , yellow block, 0.30 x 0.15 x 0.10 mm 3, monoclinic, space group P2 1 /n, a = (13) Å, b = (14) Å, c = (4) Å, α = 90, β = (14), γ = 90, V = (5) Å 3, Z = 4, D c = g/cm 3, F000 = 848.0, µ = mm 1, T = 123.0(1) K, 2θ max = , 3252 reflections used, 2947 with I o > 2σ(I o ), R int =0.0171, 253 parameters, 0 restraints, GoF = 1.030, R = [I o > 2σ(I o )], wr = (all reflections), 0.25 < ρ < 0.23 e/å 3. CCDC Crystal data for 3: Crystals were grown by vapor diffusion of diethyl ether into chloroform solution. C 32 H 52 N 4 O 12, M = , light violet block, 0.20 x 0.20 x 0.10 mm 3, monoclinic, space group P2 1 /c, a = (2) Å, b = (18) Å, c = (5) Å, α = 90, β = (3), γ = 90, V = (3) Å 3, Z = 4, D c = g/cm 3, F000 = 1472, µ = mm 1, T = 123.0(1) K, 2θ max = , 5784 reflections used, 5128 with I o > 2σ(I o ), R int = , 465 parameters, 0 restraints, GoF = 1.056, R = [I o > 2σ(I o )], wr = (all reflections), 0.19 < ρ < 0.30 e/å 3. CCDC Crystal data for R 1 : R 1 MeOH. Crystals were grown by vapor diffusion of methanol into DMF solution. C 30.5 H 36 N 6 O 12.5, M = , yellow plate, 0.51 x 0.34 x 0.07 mm 3, monoclinic, space group P2 1 /a, a = (2) Å, b = (19) Å, c = (3) Å, α = 90, β = (14), γ = 90, V = (9) Å 3, Z = 4, D c = g/cm 3, F000 = 1444, µ = mm 1, T = 123.0(1) K, 2θ max = , 5984 reflections used, 5533 with I o > 2σ(I o ), R int = , 543 parameters, 100 restraints, GoF = 1.164, R = [I o > 2σ(I o )], wr = (all reflections), 0.93 < ρ < e/å 3. CCDC Crystal data for R 1 KF: 2R 1 2KF 2MeOH. Crystals were grown by slow evaporation of acetone solution. C 31 H 38 N 6 O 13 K 1 F 1, M =760.77, yellow block, 0.33 x 0.20 x 0.08 mm 3, monoclinic, space group P2 1 /c, a = (5) Å, b = (5) Å, c = (4) Å, α = 90, β = 58

59 (3), γ = 90, V = (3) Å 3, Z = 8, D c = g/cm 3, F000 = 3184, µ = mm 1, T = 123.0(1) K, 2θ max = , reflections used, 9344 with I o > 2σ(I o ), R int = , 953 parameters, 1 restraint, GoF = 1.227, R = [I o > 2σ(I o )], wr = (all reflections), < ρ < e/å 3. CCDC Crystal data for R 1 KCl: 2R 1 2KCl 3MeOH. Crystals were grown by vapor diffusion of diethyl ether into methanol solution. C 63 H 80 N 12 O 27 K 2 Cl 2, M = , yellow block, 0.28 x 0.21 x 0.11 mm 3, monoclinic, space group P2 1 /n, a = (16) Å, b = (19) Å, c = (2) Å, α = 90, β = (11), γ = 90, V = (13) Å 3, Z = 4, D c = g/cm 3, F000 = 3320, µ = mm 1, T = (10) K, 2θ max = , reflections used, with I o > 2σ(I o ), R int = , 988 parameters, 0 restraints, GoF = 1.018, R = [I o > 2σ(I o )], wr = (all reflections), < ρ < e/å 3. CCDC Crystal data for R 1 KBr_1: 2R 1 2KBr 3MeOH. Crystals were grown by vapor diffusion of diethyl ether into methanol solution. C 63 H 80 N 12 O 27 K 2 Br 2, M = , yellow block, 0.32 x 0.19 x 0.10 mm 3, monoclinic, space group P2 1 /n, a = (16) Å, b = (2) Å, c = (19) Å, α = 90, β = (10), γ = 90, V = (13) Å 3, Z = 4, D c = g/cm 3, F000 = 3464, µ = mm 1, T = (10) K, 2θ max = , reflections used, with I o > 2σ(I o ), R int = , 1015 parameters, 1 restraints, GoF = 1.026, R = [I o > 2σ(I o )], wr = (all reflections), < ρ < e/å 3. CCDC Crystal data for R 1 KBr_2: R 1 KBr. Crystals were grown by vapor diffusion of diethyl ether into acetone solution. C 30 H 34 N 6 O 12 K 1 Br 1, M =789.64, yellow block, 0.18 x 0.12 x 0.05 mm 3, monoclinic, space group P2 1 /c, a = (3) Å, b = (2) Å, c = (10) Å, α = 90, β = (3), γ = 90, V = (15) Å 3, Z = 4, D c = g/cm 3, F000 = 1624, µ = mm 1, T = (10) K, 2θ max = , 5887 reflections used, 5230 with I o > 2σ(I o ), R int = , 481 parameters, 0 restraints, GoF = 1.121, R = [I o > 2σ(I o )], wr = (all reflections), < ρ < 0.771e/Å 3. CCDC Crystal data for R 1 KI: R 1 KI. Crystals were grown by vapor diffusion of diethyl ether into methanol/acetone solution. C 30 H 34 N 6 O 12 K 1 I 1, M = , yellow plate, 0.47 x 0.12 x 0.02 mm 3, monoclinic, space group P2 1 /c, a = (14) Å, b = (10) Å, c = (4) Å, α = 90, β = (11), γ = 90, V = (7) Å 3, Z = 4, D c = g/cm 3, F000 = 1696, µ = mm 1, T = (10) K, 2θ max = , 6011 reflections used, 5566 with I o > 2σ(I o ), R int = , 451 parameters, 0 restraints, GoF = 1.044, R = [I o > 2σ(I o )], wr = (all reflections), < ρ < e/å 3. CCDC Crystal data for R 1 RbCl: R 1 RbCl. Crystals were grown by vapor diffusion of diethyl ether into acetone solution. C 30 H 34 N 6 O 12 Rb 1 Cl 1, M = , yellow block, 0.12 x 0.11 x 0.07 mm 3, monoclinic, space group P2 1 /c, a = (19) Å, b = (16) Å, c = (6) Å, α = 90, β = (16), γ = 90, V = (10) Å 3, Z = 4, D c = g/cm 3, F000 = 1616, µ = mm 1, T = (10) K, 2θ max = , 5844 reflections used, 5298 with I o > 2σ(I o ), 59

60 R int = , 463 parameters, 0 restraints, GoF = 1.104, R = [I o > 2σ(I o )], wr= (all reflections), < ρ < e/å 3. CCDC Crystal data for R 1 NH 4 Cl: R 1 NH 4 Cl. Crystals were grown by vapor diffusion of diethyl ether into methanol/dmf solution. C 30 H 38 N 6 O 12 Cl 1, M =724.12, yellow block, 0.22 x 0.16 x 0.08 mm 3, monoclinic, space group P2 1 /c, a = (16) Å, b = (13) Å, c = (4) Å, α = 90, β = (11), γ = 90, V = (8) Å 3, Z = 4, D c = g/cm 3, F000 = 1520, µ = mm 1, T = (10) K, 2θ max = , 5821 reflections used, 5293 with I o > 2σ(I o ), R int = , 467 parameters, 1 restraint, GoF = 1.041, R = [I o > 2σ(I o )], wr = (all reflections), < ρ < e/å 3. CCDC Crystal data for R 1 NH 4 Br: R 1 NH 4 Br. Crystals were grown by vapor diffusion of diethyl ether into methanol/dmf solution. C 30 H 38 N 6 O 12 Br 1, M = , yellow plate, 0.35 x 0.15 x 0.07 mm 3, monoclinic, space group P2 1 /c, a = (17) Å, b = (14) Å, c = (4) Å, α = 90, β = (13), γ = 90, V = (8) Å 3, Z = 4, D c = g/cm 3, F000 = 1592, µ = mm 1, T = (10) K, 2θ max = , 5845 reflections used, 5467 with I o > 2σ(I o ), R int = , 467 parameters, 0 restraints, GoF = 1.050, R = [I o > 2σ(I o )], wr= (all reflections), < ρ < e/å 3. CCDC Crystal data for R 1 KAcO: R 1 KAcO. Crystals were grown by vapor diffusion of diethyl ether into methanol/acetone solution. C 32 H 37 N 6 O 14 K 1, M = , yellow block, 0.26 x 0.09 x 0.05 mm 3, monoclinic, space group C2/c, a = (6) Å, b = (6) Å, c = (4) Å, α = 90, β = (3), γ = 90, V = (4) Å 3, Z = 8, D c = g/cm 3, F000 = 3216, µ = mm 1, T = (10) K, 2θ max = , 6139 reflections used, 5149 with I o > 2σ(I o ), R int = , 479 parameters, 0 restraints, GoF = 1.024, R = [I o > 2σ(I o )], wr = (all reflections), < ρ < e/å 3. CCDC Crystal data for R 1 K 2 CO 3 : 2R 1 K 2 CO 3 3DMF 0.6H 2 O. Crystals were grown by slow evaporation of DMF solution with excess KF present in the solution. C 70 H 90.2 N 15 O 30.6 K 2, M = , red block, 0.20 x 0.20 x 0.15 mm 3, monoclinic, space group P2 1 /n, a = (14) Å, b = (7) Å, c = (3) Å, α = 90, β = (14), γ = 90, V = (2) Å 3, Z =4, D c = g/cm 3, F000 = 3592, µ = mm 1, T = (10) K, 2θ max = , reflections used, with I o > 2σ(I o ), R int = , 1117 parameters, 6 restraints, GoF = 1.030, R = [I o > 2σ(I o )], wr= (all reflections), < ρ < e/å 3. CCDC Crystal data for R 1 K 2 SO 4 : 4R 1 K 2 SO 4 DMF. Crystals were grown by vapor diffusion of diethyl ether into methanol/dmf solution. C 123 H 143 N 25 O 57 K 4 S 2, M = , yellow plate, 0.22 x 0.15 x 0.05 mm 3, triclinic, space group P 1, a = (5) Å, b = (9) Å, c = (7) Å, α = (3), β = (2), γ = (4), V = (5) Å 3, Z = 2, D c = g/cm 3, F000 = 3240, µ = mm 1, T = (10) K, 2θ max = , reflections used, with I o > 2σ(I o ), R int = , 2061 parameters, 171 restraints, GoF = 1.092, R =.0736 [I o > 2σ(I o )], wr= (all reflections), < ρ < e/å 3. CCDC

61 These data [CCDC ] can be obtained free of charge from The Cambridge Crystallographic Data Centre via Single crystal structure of R 1 KF The complex was crystallized by slow evaporation of acetone solution of the complex. The selected bond lengths are: K1 O(crown ether) 2.628(3) 3.013(4) Å; K1 O2A 2.673(4) Å; K1 O6B 2.796(4) Å; K2 O(crown ether) 2.697(4) 2.842(4) Å; K2 O1B 2.644(4) Å; K2 O4A 2.970(4) Å; F1 N1A 2.785(6) Å; F1 N2A 2.720(5) Å; F1 N1B 2.856(6) Å; F1 N2B 2.699(5) Å; F1 O (6) Å; F2 N3A 2.741(6) Å; F2 N3B 2.790(6) Å; F2 N4B 2.684(6) Å; F2 O (6) Å. The hydrogen bond angles are: N1A H F1 152 o ; N2A H F1 156 o ; N1B H F1 134 o ; N2B H F1 160 o ; O13 H F1 158 o ; N3A H F2 171 o ; N3B H F2 148 o ; N4B H F2 155 o ; O14 H F2 169 o ; N4A H O o. 61

62 (a) (b) (c) Fig. S34 X ray structure of R 1 KF. (a) Ball and stick model of the dimer formed by R 1 molecules by coordinative bonds between K1 and O6B and K2 and O4A forming a ureaproton coated binding site for fluoride anions. Fluoride anions are further hydrogen bonded to methanol molecules. Hydrogen bonds are shown in dashed lines. (b) CPK model of the complex. (c) Detailed figure of the hydrogen bonding interactions. 4.4 Single crystal structure of R 1 KBr_1 The complex was crystallized by slow diffusion Et 2 O into CH 3 OH solution of the complex. The selected bond lengths are: K1 O(crown ether) 2.664(2) 2.830(2) Å; K1 O2B 2.650(2) Å; K1 O4B 2.757(2) Å; K2 O(crown ether) 2.683(2) 2.759(3) Å; K2 O1A 2.636(2) Å; Br1 N1A 3.395(3) Å; Br1 N2A 3.369(3) Å; Br1 N1B 3.334(2) Å; Br1 N2B 3.442(2) Å; Br1 O (2) Å; Br2 N3A 3.447(2) Å; Br2 N4A 3.282(2) Å; Br2 N4B 3.367(2) Å; Br2 O (3) Å. 62

63 The hydrogen bond angles are: N1A H Br1 158 o ; N2A H Br1 164 o ; N1B H Br1 165 o ; N2B H Br1 158 o ; O13 H Br1 170 o ; N3A H Br2 156 o ; N4A H Br2 163 o ; N4B H Br2 173 o ; O14 H Br2 155 o. (a) (b) (c) Fig. S35 Single crystal structure of R 1 KBr_1. (a) Ball and stick model of the dimer formed by R 1 molecules by coordinative bonds between K1 and O4B forming a urea proton coated binding site for bromide anions. Each bromide anion hydrogen bonds to a methanol molecule. Hydrogen bonds are shown in dashed lines. (b) CPK model of the complex. (c) Detailed figure of the hydrogen bonding interactions. 63

64 4.5 Single crystal structure of R 1 KI The complex was crystallized by slow diffusion Et 2 O into acetone/ch 3 OH solution of the complex. The selected bond lengths are: K1 O(crown ether) 2.816(2) 2.927(2) Å; K1 O (3) Å; K1 I (8) Å; N1 I (2) Å; N2 I (2) Å; N3 O (3) Å; N4 O (3) Å. The hydrogen bond angles are: N1 H I1 148 o ; N2 H I1 147 o ; N3 H O2 152 o ; N4 H O2 153 o. Fig. S36 X ray structure of R 1 KI. The hydrogen bonding interactions and contact ion pair formed between receptor R 1 with KI and hydrogen bonds to adjacent molecules. Hydrogen bonds are shown in dashed lines. 64

65 4.6 Single crystal structure of R 1 RbCl The complex was crystallized by slow diffusion Et 2 O into acetone solution of the complex. The selected bond lengths are: Rb1 O(crown ether) 2.840(3) 3.147(3) Å; Rb1 O (3) Å; Rb1 Cl (1) Å; N1 Cl (2) Å; N2 Cl (3) Å; N3 O (3) Å; N4 O (3) Å. The hydrogen bond angles are: N1 H Cl1 148 o ; N2 H Cl1 155 o ; N3 H O2 158 o ; N4 H O2 151 o. Fig. S37 X ray structure of R 1 RbCl. The hydrogen bonding interactions and contact ion pair formed between receptor R 1 with RbCl and hydrogen bonds to adjacent molecules are shown. Hydrogen bonds are shown in dashed lines. 65

66 4.7 Single crystal structure of R 1 NH 4 Br The complex was crystallized by slow diffusion Et 2 O into CH 3 OH/DMF solution of the complex. The selected bond lengths are: N7 O (2) Å; N7 O (2) Å; N7 O (2) Å; N7 Br (2) Å; N1 Br (1) Å; N2 Br (2) Å; N7 O (2) Å; N3 O (2) Å; N4 O (2) Å. The hydrogen bond angles are: N7 H O8 177 o ; N7 H O o ; N7 H O o ; N7 H Br1 162 o ; N1 H Br1 148 o ; N2 H Br1 156 o ; N3 H O2 158 o ; N4 H O2 151 o. Fig. S38 X ray structure of R 1 NH 4 Br. Hydrogen bonds formed between the ammonium cation and R 1 and bromide anions and hydrogen bonds to adjacent receptors are shown. Ammonium cation N7 forms an ion pair with bromide Br1.Hydrogen bonds are shown in dashed lines. 66

67 4.8 Single crystal structure of R 1 K 2 CO 3 Hydrogen bond lengths and angles formed with CO 3 2 (Fig. 9c and Fig. S11a): N1A O (3) Å; N2A O (3) Å; N3A O (2) Å; N4A O (3) Å; N1B O (3) Å; N2B O (3) Å; N4A O (2) Å; N1B O (3) Å; N3B O (2) Å; O18 O (4) Å; N2A O (3) Å; N4B O (3) Å; O18 O (4) Å. N1A H O o ; N2A H O o ; N3A H O o ; N4A H O o ; N1B H O o ; N2B H O o ; N4A H O o ; N1B H O o ; N3B H O o ; O18 H O o ; N2A H O o ; N4B H O o ; O18 H O o. (a) (b) Fig. S39 (a) Hydrogen bonding interactions involved in carbonate binding by molecules A and B and a water molecule O18. (b) Centrosymmetric dimer of R 1 and R 1 (2 x, 1 y, z) is formed through cation π interactions between potassium K1 and aromatic ring formed by carbons C2A C7A. 67

68 4.9 Single crystal structure of R 1 K 2 SO 4 Hydrogen bond lengths and angles formed with two SO 4 2 anions (Fig. 7c and Fig. S12): N3B O (6) Å; N4B O (8) Å; N1A O (6) Å; N2B O (6) Å; N1B O (5) Å; N2B O (7) Å; N3C O (8) Å; N2A O (7) Å; N4C O (1) Å; N3A O35 # 2.899(6) Å; N3D O35 # 2.914(5) Å; N4D O35 # 2.865(4) Å; N4A O36 # 2.963(7) Å; N2C O36 # 2.833(8) Å; N1C O37 # 2.912(6) Å; N1D O38 # 2.833(8) Å; N2D O38 # 2.768(5) Å. N3B H O o ; N4B H O o ; N1A H O o ; N2B H O o ; N1B H O o ; N2B H O o ; N3C H O o ; N2A H O o ; N4C H O o ; N3A H O35 # 170 o ; N3D H O35 # 146 o ; N4D H O35 # 142 o ; N3A H O36 # 152 o ; N2C H O36 # 152 o ; N1C H O37 # 165 o ; N1D H O38 # 154 o ; N2D H O38 # 158 o. Fig. S40 The hydrogen bonding interactions between receptors A, B, C and D and two sulphate anions in tetrameric assembly in structure R 1 K 2 SO 4. 68

An Efficient Total Synthesis and Absolute Configuration. Determination of Varitriol

An Efficient Total Synthesis and Absolute Configuration. Determination of Varitriol An Efficient Total Synthesis and Absolute Configuration Determination of Varitriol Ryan T. Clemens and Michael P. Jennings * Department of Chemistry, University of Alabama, 500 Campus Dr. Tuscaloosa, AL

More information

Supporting Information for: Tuning the Binding Properties of a New Heteroditopic Salt Receptor Through Embedding in a Polymeric System

Supporting Information for: Tuning the Binding Properties of a New Heteroditopic Salt Receptor Through Embedding in a Polymeric System Supporting Information for: Tuning the Binding Properties of a ew Heteroditopic Salt Receptor Through Embedding in a Polymeric System Jan Romanski* and Piotr Piątek* Department of Chemistry, University

More information

Supporting Information for

Supporting Information for Page of 0 0 0 0 Submitted to The Journal of Organic Chemistry S Supporting Information for Syntheses and Spectral Properties of Functionalized, Water-soluble BODIPY Derivatives Lingling Li, Junyan Han,

More information

Supporting Information

Supporting Information Supporting Information Calix[4, 5]tetrolarenes: A New Family of Macrocycles Yossi Zafrani* and Yoram Cohen* School of Chemistry, The Sackler Faculty of Exact Sciences, Tel Aviv University, Ramat Aviv 69978,

More information

Supporting Information. Rhodium, iridium and nickel complexes with a. 1,3,5-triphenylbenzene tris-mic ligand. Study of

Supporting Information. Rhodium, iridium and nickel complexes with a. 1,3,5-triphenylbenzene tris-mic ligand. Study of Supporting Information for Rhodium, iridium and nickel complexes with a 1,3,5-triphenylbenzene tris-mic ligand. Study of the electronic properties and catalytic activities Carmen Mejuto 1, Beatriz Royo

More information

Red Color CPL Emission of Chiral 1,2-DACH-based Polymers via. Chiral Transfer of the Conjugated Chain Backbone Structure

Red Color CPL Emission of Chiral 1,2-DACH-based Polymers via. Chiral Transfer of the Conjugated Chain Backbone Structure Electronic Supplementary Material (ESI) for Polymer Chemistry. This journal is The Royal Society of Chemistry 2015 Red Color CPL Emission of Chiral 1,2-DACH-based Polymers via Chiral Transfer of the Conjugated

More information

Supplementary Information

Supplementary Information Supplementary Information C aryl -C alkyl bond formation from Cu(ClO 4 ) 2 -mediated oxidative cross coupling reaction between arenes and alkyllithium reagents through structurally well-defined Ar-Cu(III)

More information

Supporting Information for

Supporting Information for Electronic Supplementary Material (ESI) for New Journal of Chemistry. This journal is The Royal Society of Chemistry and the Centre National de la Recherche Scientifique 2017 Supporting Information for

More information

Supporting Text Synthesis of (2 S ,3 S )-2,3-bis(3-bromophenoxy)butane (3). Synthesis of (2 S ,3 S

Supporting Text Synthesis of (2 S ,3 S )-2,3-bis(3-bromophenoxy)butane (3). Synthesis of (2 S ,3 S Supporting Text Synthesis of (2S,3S)-2,3-bis(3-bromophenoxy)butane (3). Under N 2 atmosphere and at room temperature, a mixture of 3-bromophenol (0.746 g, 4.3 mmol) and Cs 2 C 3 (2.81 g, 8.6 mmol) in DMS

More information

How to build and race a fast nanocar Synthesis Information

How to build and race a fast nanocar Synthesis Information How to build and race a fast nanocar Synthesis Information Grant Simpson, Victor Garcia-Lopez, Phillip Petemeier, Leonhard Grill*, and James M. Tour*, Department of Physical Chemistry, University of Graz,

More information

Anion recognition in water by a rotaxane containing a secondary rim functionalised cyclodextrin stoppered axle

Anion recognition in water by a rotaxane containing a secondary rim functionalised cyclodextrin stoppered axle Electronic Supplementary Material (ESI) for ChemComm. This journal is The Royal Society of Chemistry 2015 Supplementary Information: Anion recognition in water by a rotaxane containing a secondary rim

More information

Controlling microenvironments and modifying anion binding. selectivities using core functionalised hyperbranched polymers

Controlling microenvironments and modifying anion binding. selectivities using core functionalised hyperbranched polymers Electronic Supplementary Material (ESI) for ChemComm. This journal is The Royal Society of Chemistry 2016 Controlling microenvironments and modifying anion binding selectivities using core functionalised

More information

Influence of photo-isomerisation on host-guest interaction in poly(azocalix[4]arene)s

Influence of photo-isomerisation on host-guest interaction in poly(azocalix[4]arene)s Electronic Supplementary Information Influence of photo-isomerisation on host-guest interaction in poly(azocalix[4]arene)s Szymon Wiktorowicz, Heikki Tenhu and Vladimir Aseyev *, Department of Chemistry,

More information

Effect of Conjugation and Aromaticity of 3,6 Di-substituted Carbazole On Triplet Energy

Effect of Conjugation and Aromaticity of 3,6 Di-substituted Carbazole On Triplet Energy Electronic Supplementary Material (ESI) for RSC Advances. This journal is The Royal Society of Chemistry 2018 Electronic Supporting Information (ESI) for Effect of Conjugation and Aromaticity of 3,6 Di-substituted

More information

Anion binding vs. sulfonamide deprotonation in functionalised ureas

Anion binding vs. sulfonamide deprotonation in functionalised ureas S Anion binding vs. sulfonamide deprotonation in functionalised ureas Claudia Caltagirone, Gareth W. Bates, Philip A. Gale* and Mark E. Light Supplementary information Experimental Section General remarks:

More information

Supporting Information

Supporting Information Electronic Supplementary Material (ESI) for CrystEngComm. This journal is The Royal Society of Chemistry 2015 A rare case of a dye co-crystal showing better dyeing performance Hui-Fen Qian, Yin-Ge Wang,

More information

SUPPLEMENTARY INFORMATION

SUPPLEMENTARY INFORMATION Synthetic chemistry ML5 and ML4 were identified as K P.(TREK-) activators using a combination of fluorescence-based thallium flux and automated patch-clamp assays. ML5, ML4, and ML5a were synthesized using

More information

Light-Controlled Switching of a Non- Photoresponsive Molecular Shuttle

Light-Controlled Switching of a Non- Photoresponsive Molecular Shuttle Supporting Information Light-Controlled Switching of a Non- Photoresponsive Molecular Shuttle Liu-Pan Yang, a,b Fei Jia, a Jie-Shun Cui, a Song-Bo Lu, a and Wei Jiang* a a Department of Chemistry, South

More information

Electronic Supplementary Information

Electronic Supplementary Information Electronic Supplementary Information Effect of polymer chain conformation on field-effect transistor performance: synthesis and properties of two arylene imide based D-A copolymers Dugang Chen, a Yan Zhao,

More information

Electronic Supplementary Material

Electronic Supplementary Material Electronic Supplementary Material (ESI) for RSC Advances. This journal is The Royal Society of Chemistry 2016 Electronic Supplementary Material A Novel Functionalized Pillar[5]arene: Synthesis, Assembly

More information

Supporting Information for Synthesis of C(3) Benzofuran Derived Bis-Aryl Quaternary Centers: Approaches to Diazonamide A

Supporting Information for Synthesis of C(3) Benzofuran Derived Bis-Aryl Quaternary Centers: Approaches to Diazonamide A Fuerst et al. Synthesis of C(3) Benzofuran Derived Bis-Aryl Quaternary Centers: Approaches to Diazonamide A S1 Supporting Information for Synthesis of C(3) Benzofuran Derived Bis-Aryl Quaternary Centers:

More information

Supporting Information

Supporting Information Electronic Supplementary Material (ESI) for RSC Advances. This journal is The Royal Society of Chemistry 2016 Supporting Information TEMPO-catalyzed Synthesis of 5-Substituted Isoxazoles from Propargylic

More information

Electronic Supporting Information for

Electronic Supporting Information for Electronic Supporting Information for An efficient long fluorescence lifetime polymer-based sensor based on europium complex as chromophore for the specific detection of F -, CH 3 COO - -, and H 2 PO 4

More information

Electronic Supplementary Information

Electronic Supplementary Information Electronic Supplementary Information Proof of Principle for a Molecular 1:2 Demultiplexer to Function as an Autonomously Switching Theranostic Device Sundus Erbas-Cakmak, Ozgur Altan Bozdemir, Yusuf Cakmak,

More information

Supporting Information. for A Water-Soluble Switching on Fluorescent Chemosensor of. Selectivity to Cd 2+

Supporting Information. for A Water-Soluble Switching on Fluorescent Chemosensor of. Selectivity to Cd 2+ Supporting Information for A Water-Soluble Switching on Fluorescent Chemosensor of Selectivity to Cd 2+ Weimin Liu, a Liwei Xu, a Ruilong Sheng, a Pengfei Wang,*,a Huaping Li*,b and Shikang Wu a a Laboratory

More information

Molecular Imaging of Labile Iron(II) Pools in Living Cells with a Turn-on Fluorescent Probe

Molecular Imaging of Labile Iron(II) Pools in Living Cells with a Turn-on Fluorescent Probe Supporting Information for Molecular Imaging of Labile Iron(II) Pools in Living Cells with a Turn-on Fluorescent Probe Ho Yu Au-Yeung, Jefferson Chan, Teera Chantarojsiri and Christopher J. Chang* Departments

More information

Photooxidations of 2-(γ,ε-dihydroxyalkyl) furans in Water: Synthesis of DE-Bicycles of the Pectenotoxins

Photooxidations of 2-(γ,ε-dihydroxyalkyl) furans in Water: Synthesis of DE-Bicycles of the Pectenotoxins S1 Photooxidations of 2-(γ,ε-dihydroxyalkyl) furans in Water: Synthesis of DE-Bicycles of the Pectenotoxins Antonia Kouridaki, Tamsyn Montagnon, Maria Tofi and Georgios Vassilikogiannakis* Department of

More information

An unexpected highly selective mononuclear zinc complex for adenosine diphosphate (ADP)

An unexpected highly selective mononuclear zinc complex for adenosine diphosphate (ADP) This journal is The Royal Society of Chemistry 213 Supplementary Information for An unexpected highly selective mononuclear zinc complex for adenosine diphosphate (ADP) Lei Shi, Ping Hu, Yanliang Ren and

More information

Selective Reduction of Carboxylic acids to Aldehydes Catalyzed by B(C 6 F 5 ) 3

Selective Reduction of Carboxylic acids to Aldehydes Catalyzed by B(C 6 F 5 ) 3 S1 Selective Reduction of Carboxylic acids to Aldehydes Catalyzed by B(C 6 F 5 ) 3 David Bézier, Sehoon Park and Maurice Brookhart* Department of Chemistry, University of North Carolina at Chapel Hill,

More information

Fluorescent Chemosensor for Selective Detection of Ag + in an. Aqueous Medium

Fluorescent Chemosensor for Selective Detection of Ag + in an. Aqueous Medium Electronic supplementary information For A Heptamethine cyanine -Based Colorimetric and Ratiometric Fluorescent Chemosensor for Selective Detection of Ag + in an Aqueous Medium Hong Zheng *, Min Yan, Xiao-Xing

More information

Supporting Information

Supporting Information Supporting Information for Macromol. Chem. Phys, DOI: 10.1002/macp.201700302 Phase Segregation in Supramolecular Polymers Based on Telechelics Synthesized via Multicomponent Reactions Ansgar Sehlinger,

More information

Supporting Information

Supporting Information Electronic Supplementary Material (ESI) for Dalton Transactions. This journal is The Royal Society of Chemistry 2017 ROS-mediated Carbon Monoxide and Drug Release from Drug-conjugated Carboxyboranes Theppawut

More information

Supporting Information. for. Angew. Chem. Int. Ed. Z Wiley-VCH 2003

Supporting Information. for. Angew. Chem. Int. Ed. Z Wiley-VCH 2003 Supporting Information for Angew. Chem. Int. Ed. Z53001 Wiley-VCH 2003 69451 Weinheim, Germany 1 Ordered Self-Assembly and Electronic Behavior of C 60 -Anthrylphenylacetylene Hybrid ** Seok Ho Kang 1,

More information

Halogen halogen interactions in diiodo-xylenes

Halogen halogen interactions in diiodo-xylenes Electronic Supplementary Material (ESI) for CrystEngComm. This journal is The Royal Society of Chemistry 2016 Electronic Supplementary Information (ESI) for CrystEngComm. This journal is The Royal Society

More information

Electronic Supporting Information

Electronic Supporting Information Electronic Supplementary Material (ESI) for New Journal of Chemistry. This journal is The Royal Society of Chemistry and the Centre National de la Recherche Scientifique 2014 Electronic Supporting Information

More information

Tetrahydrofuran (THF) was distilled from benzophenone ketyl radical under an argon

Tetrahydrofuran (THF) was distilled from benzophenone ketyl radical under an argon SUPPLEMENTARY METHODS Solvents, reagents and synthetic procedures All reactions were carried out under an argon atmosphere unless otherwise specified. Tetrahydrofuran (THF) was distilled from benzophenone

More information

Supporting Information for. an Equatorial Diadduct: Evidence for an Electrophilic Carbanion

Supporting Information for. an Equatorial Diadduct: Evidence for an Electrophilic Carbanion Supporting Information for Controlled Synthesis of C 70 Equatorial Multiadducts with Mixed Addends from an Equatorial Diadduct: Evidence for an Electrophilic Carbanion Shu-Hui Li, Zong-Jun Li,* Wei-Wei

More information

Electronic Supplementary Information

Electronic Supplementary Information Electronic Supplementary Information Squaramide-based tripodal receptors for selective recognition of sulfate anion Can Jin, Man Zhang, Lin Wu, Yangfan Guan, Yi Pan, Juli Jiang,* Chen Lin* and Leyong Wang

More information

Supporting Information

Supporting Information Supporting Information Towards Singlet Oxygen Delivery at a Measured Rate: A Selfreporting Photosensitizer Sundus Erbas-Cakmak #, Engin U. Akkaya # * # UNAM-National Nanotechnology Research Center, Bilkent

More information

Supporting Information

Supporting Information Supporting Information for Dual-stimuli responsive fluorescent supramolecular polymer based on a diselenium-bridged pillar[5]arene dimer and an AIE-active tetraphenylethylene guest Yan Wang, Ming-Zhe Lv,

More information

Supplementary Information (Manuscript C005066K)

Supplementary Information (Manuscript C005066K) Supplementary Information (Manuscript C005066K) 1) Experimental procedures and spectroscopic data for compounds 6-12, 16-19 and 21-29 described in the paper are given in the supporting information. 2)

More information

Electronic Supplementary Information

Electronic Supplementary Information Electronic Supplementary Information Novel [2]pseudorotaxanes constructed by self-assembly of bis-urea-functionalized pillar[5]arene and linear alkyl dicarboxylates Qunpeng Duan, Wei Xia, Xiaoyu Hu, Mengfei

More information

Synthesis of Secondary and Tertiary Amine- Containing MOFs: C-N Bond Cleavage during MOF Synthesis

Synthesis of Secondary and Tertiary Amine- Containing MOFs: C-N Bond Cleavage during MOF Synthesis Electronic Supplementary Material (ESI) for CrystEngComm. This journal is The Royal Society of Chemistry 2015 Supporting Information Synthesis of Secondary and Tertiary Amine- Containing MFs: C-N Bond

More information

Electronic Supplementary Information

Electronic Supplementary Information Electronic Supplementary Material (ESI) for Journal of Materials Chemistry A. This journal is The Royal Society of Chemistry 2014 Electronic Supplementary Information Micro- and mesoporous poly(schiff-base)s

More information

Electronic Supplementary Information for. A Redox-Nucleophilic Dual-Reactable Probe for Highly Selective

Electronic Supplementary Information for. A Redox-Nucleophilic Dual-Reactable Probe for Highly Selective Electronic Supplementary Information for A Redox-Nucleophilic Dual-Reactable Probe for Highly Selective and Sensitive Detection of H 2 S: Synthesis, Spectra and Bioimaging Changyu Zhang, 1 Runyu Wang,

More information

Significant improvement of dye-sensitized solar cell. performance by a slim phenothiazine based dyes

Significant improvement of dye-sensitized solar cell. performance by a slim phenothiazine based dyes Significant improvement of dye-sensitized solar cell performance by a slim phenothiazine based dyes Yong Hua, a Shuai Chang, b Dandan Huang, c Xuan Zhou, a Xunjin Zhu, *a,d Jianzhang Zhao, c Tao Chen,

More information

Supplementary Information. chemical-shift change upon binding of calcium ion

Supplementary Information. chemical-shift change upon binding of calcium ion Electronic Supplementary Material (ESI) for ChemComm. This journal is The Royal Society of Chemistry 2015 Supplementary Information for Design of a hyperpolarized 15 N NMR probe that induces a large chemical-shift

More information

Supplementary Material. Ionic liquid iodinating reagent for mild and efficient iodination of. aromatic and heteroaromatic amines and terminal alkynes

Supplementary Material. Ionic liquid iodinating reagent for mild and efficient iodination of. aromatic and heteroaromatic amines and terminal alkynes Supplementary Material onic liquid iodinating reagent for mild and efficient iodination of aromatic and heteroaromatic amines and terminal alkynes Mahboobe Nouzarian 1, Rahman Hosseinzadeh 1,*, and Hamid

More information

Supporting Information

Supporting Information Supporting Information Direct transformation of 5 hydroxymethylfurfural to the building blocks 2,5 dihydroxymethylfurfural (DHMF) and 5 hydroxymethyl furanoic acid (HMFA) via Cannizzaro reaction Sowmiah

More information

SUPPLEMENTARY INFORMATION

SUPPLEMENTARY INFORMATION Supplementary Method Synthesis of 2-alkyl-MPT(R) General information (R) enantiomer of 2-alkyl (18:1) MPT (hereafter designated as 2-alkyl- MPT(R)), was synthesized as previously described 1, with some

More information

Reduction-free synthesis of stable acetylide cobalamins. Table of Contents. General information. Preparation of compound 1

Reduction-free synthesis of stable acetylide cobalamins. Table of Contents. General information. Preparation of compound 1 Electronic Supporting Information Reduction-free synthesis of stable acetylide cobalamins Mikołaj Chromiński, a Agnieszka Lewalska a and Dorota Gryko* a Table of Contents General information Numbering

More information

Facile Multistep Synthesis of Isotruxene and Isotruxenone

Facile Multistep Synthesis of Isotruxene and Isotruxenone Facile Multistep Synthesis of Isotruxene and Isotruxenone Jye-Shane Yang*, Hsin-Hau Huang, and Shih-Hsun Lin Department of Chemistry, National Taiwan University, Taipei, Taiwan 10617 jsyang@ntu.edu.tw

More information

Highly Luminescent -Conjugated Dithienometalloles: Photophysical Properties and Application to Organic Light-Emitting Diodes

Highly Luminescent -Conjugated Dithienometalloles: Photophysical Properties and Application to Organic Light-Emitting Diodes Electronic Supplementary Information (ESI) Highly Luminescent -Conjugated Dithienometalloles: Photophysical Properties and Application to Organic Light-Emitting Diodes Ryosuke Kondo, a Takuma Yasuda,*

More information

Supporting Information For:

Supporting Information For: Supporting Information For: Highly Fluorinated Ir(III)- 2,2 :6,2 -Terpyridine -Phenylpyridine-X Complexes via Selective C-F Activation: Robust Photocatalysts for Solar Fuel Generation and Photoredox Catalysis

More information

Supplemental Information. Nano-sized I 12 L 6 Molecular Capsules. Based on the [N,,,I +,,,N] Halogen Bond

Supplemental Information. Nano-sized I 12 L 6 Molecular Capsules. Based on the [N,,,I +,,,N] Halogen Bond Chem, Volume 3 Supplemental Information Nano-sized I 12 L 6 Molecular Capsules Based on the [N,,,I +,,,N] Halogen Bond Lotta Turunen, Ulrike Warzok, Christoph A. Schalley, and Kari Rissanen 1. General

More information

Electronic Supporting Information

Electronic Supporting Information Electronic Supplementary Material (ESI) for RSC Advances. This journal is The Royal Society of Chemistry 2015 Electronic Supporting Information A fast and selective probe for detection of CN - and F -

More information

Supporting Information

Supporting Information Electronic Supplementary Material (ESI) for RSC Advances. This journal is The Royal Society of Chemistry 214 Supporting Information Rapid and sensitive detection of acrylic acid using a novel fluorescence

More information

Supplementary Materials

Supplementary Materials Supplementary Materials ORTHOGOALLY POSITIOED DIAMIO PYRROLE- AD IMIDAZOLE- COTAIIG POLYAMIDES: SYTHESIS OF 1-(3-SUBSTITUTED-PROPYL)-4- ITROPYRROLE-2-CARBOXYLIC ACID AD 1-(3-CHLOROPROPYL)-4- ITROIMIDAZOLE-2-CARBOXYLIC

More information

Simplified platensimycin analogues as antibacterial agents

Simplified platensimycin analogues as antibacterial agents Simplified platensimycin analogues as antibacterial agents Dragan Krsta, a Caron Ka, a Ian T. Crosby, a Ben Capuano a and David T. Manallack a * a Medicinal Chemistry and Drug Action, Monash Institute

More information

Biasing hydrogen bond donating host systems towards chemical

Biasing hydrogen bond donating host systems towards chemical Electronic Supplementary Material (ESI) for Organic & Biomolecular Chemistry. This journal is The Royal Society of Chemistry 2016 Biasing hydrogen bond donating host systems towards chemical warfare agent

More information

The First Asymmetric Total Syntheses and. Determination of Absolute Configurations of. Xestodecalactones B and C

The First Asymmetric Total Syntheses and. Determination of Absolute Configurations of. Xestodecalactones B and C Supporting Information The First Asymmetric Total Syntheses and Determination of Absolute Configurations of Xestodecalactones B and C Qiren Liang, Jiyong Zhang, Weiguo Quan, Yongquan Sun, Xuegong She*,,

More information

1G (bottom) with the phase-transition temperatures in C and associated enthalpy changes (in

1G (bottom) with the phase-transition temperatures in C and associated enthalpy changes (in Supplementary Figure 1. Optical properties of 1 in various solvents. UV/Vis (left axis) and fluorescence spectra (right axis, ex = 420 nm) of 1 in hexane (blue lines), toluene (green lines), THF (yellow

More information

Supporting Information

Supporting Information Supporting Information Copyright Wiley-VCH Verlag GmbH & Co. KGaA, 69451 Weinheim, 2012 Subcellular Localization and Activity of Gambogic Acid Gianni Guizzunti,* [b] Ayse Batova, [a] Oraphin Chantarasriwong,

More information

Disubstituted Imidazolium-2-Carboxylates as Efficient Precursors to N-Heterocylic Carbene Complexes of Rh, Ir and Pd

Disubstituted Imidazolium-2-Carboxylates as Efficient Precursors to N-Heterocylic Carbene Complexes of Rh, Ir and Pd J. Am. Chem. Soc. Supporting Information Page S1 Disubstituted Imidazolium-2-Carboxylates as Efficient Precursors to N-Heterocylic Carbene Complexes of Rh, Ir and Pd Adelina Voutchkova, Leah N. Appelhans,

More information

2017 Reaction of cinnamic acid chloride with ammonia to cinnamic acid amide

2017 Reaction of cinnamic acid chloride with ammonia to cinnamic acid amide 217 Reaction of cinnamic acid chloride with ammonia to cinnamic acid amide O O Cl NH 3 NH 2 C 9 H 7 ClO (166.6) (17.) C 9 H 9 NO (147.2) Classification Reaction types and substance classes reaction of

More information

Electronic Supplementary Information. Jiani Wang, Lei Zhang, Qiong Qi, Shunhua Li* and Yunbao Jiang

Electronic Supplementary Information. Jiani Wang, Lei Zhang, Qiong Qi, Shunhua Li* and Yunbao Jiang Electronic Supplementary Information Specific ratiometric fluorescent sensing of Hg 2+ via the formation of mercury(ii) barbiturate coordination polymers Jiani Wang, Lei Zhang, Qiong Qi, Shunhua Li* and

More information

Supporting Information

Supporting Information Supporting Information Highly Selective Colorimetric Chemosensor for Co 2+ Debabrata Maity and T. Govindaraju* Bioorganic Chemistry Laboratory, New Chemistry Unit, Jawaharlal Nehru Centre for Advanced

More information

Supporting Information For:

Supporting Information For: Supporting Information For: Peptidic α-ketocarboxylic Acids and Sulfonamides as Inhibitors of Protein Tyrosine Phosphatases Yen Ting Chen, Jian Xie, and Christopher T. Seto* Department of Chemistry, Brown

More information

Structure-activity effects in peptide self-assembly and gelation Dendritic versus linear architectures

Structure-activity effects in peptide self-assembly and gelation Dendritic versus linear architectures Structure-activity effects in peptide self-assembly and gelation Dendritic versus linear architectures Cecile A. Lagadec a and David K. Smith*,a SUPPLEMETARY IFRMATI Contents 1 General Experimental Methods

More information

Kinetics experiments were carried out at ambient temperature (24 o -26 o C) on a 250 MHz Bruker

Kinetics experiments were carried out at ambient temperature (24 o -26 o C) on a 250 MHz Bruker Experimental Materials and Methods. All 31 P NMR and 1 H NMR spectra were recorded on 250 MHz Bruker or DRX 500 MHz instruments. All 31 P NMR spectra were acquired using broadband gated decoupling. 31

More information

4023 Synthesis of cyclopentanone-2-carboxylic acid ethyl ester from adipic acid diethyl ester

4023 Synthesis of cyclopentanone-2-carboxylic acid ethyl ester from adipic acid diethyl ester NP 4023 Synthesis of cyclopentanone-2-carboxylic acid ethyl ester from adipic acid diethyl ester NaEt C 10 H 18 4 Na C 2 H 6 C 8 H 12 3 (202.2) (23.0) (46.1) (156.2) Classification Reaction types and substance

More information

A dual-model and on off fluorescent Al 3+ /Cu 2+ - chemosensor and the detection of F /Al 3+ with in situ prepared Al 3+ /Cu 2+ complex

A dual-model and on off fluorescent Al 3+ /Cu 2+ - chemosensor and the detection of F /Al 3+ with in situ prepared Al 3+ /Cu 2+ complex Supporting Information (SI) A dual-model and on off fluorescent Al 3+ /Cu 2+ - chemosensor and the detection of F /Al 3+ with in situ prepared Al 3+ /Cu 2+ complex Xiaoya Li, Mingming Yu, Faliu Yang, Xingjiang

More information

Supporting Information

Supporting Information Cyclo[4]carbazole, An Iodide Anion Macrocyclic Receptor Huangtianzhi Zhu, a Bingbing Shi, a Kexian Chen, b Peifa Wei, a Danyu Xia, a Julfikar Hassan Mondal, a and Feihe Huang* a a State Key Laboratory

More information

Electronic Supplementary Information

Electronic Supplementary Information Electronic Supplementary Material (ESI) for Organic & Biomolecular Chemistry. This journal is The Royal Society of Chemistry 2014 pk a Modulation in Rhodamine Based Probes for Colorimetric Detection of

More information

SYNTHESIS OF A 3-THIOMANNOSIDE

SYNTHESIS OF A 3-THIOMANNOSIDE Supporting Information SYNTHESIS OF A 3-THIOMANNOSIDE María B Comba, Alejandra G Suárez, Ariel M Sarotti, María I Mangione* and Rolando A Spanevello and Enrique D V Giordano Instituto de Química Rosario,

More information

One polymer for all: Benzotriazole Containing Donor-Acceptor Type Polymer as a Multi-Purpose Material

One polymer for all: Benzotriazole Containing Donor-Acceptor Type Polymer as a Multi-Purpose Material One polymer for all: Benzotriazole Containing Donor-Acceptor Type Polymer as a Multi-Purpose Material Abidin Balan a, Derya Baran a, Gorkem Gunbas a,b, Asuman Durmus a,b, Funda Ozyurt a and Levent Toppare

More information

Supporting Information

Supporting Information Electronic Supplementary Material (ESI) for ChemComm. This journal is The Royal Society of Chemistry 2014 Supporting Information Synthesis of Poly(dihydroxystyrene-block-styrene) (PDHSt-b-PSt) by the RAFT

More information

Supporting Information

Supporting Information Supporting Information SmI 2 -Mediated Carbon-Carbon Bond Fragmentation in α-aminomethyl Malonates Qiongfeng Xu,, Bin Cheng, $, Xinshan Ye,*, and Hongbin Zhai*,,,$ The State Key Laboratory of Natural and

More information

A Facile and General Approach to 3-((Trifluoromethyl)thio)- 4H-chromen-4-one

A Facile and General Approach to 3-((Trifluoromethyl)thio)- 4H-chromen-4-one A Facile and General Approach to 3-((Trifluoromethyl)thio)- 4H-chromen-4-one Haoyue Xiang and Chunhao Yang* State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy

More information

A Mild, Catalytic and Highly Selective Method for the Oxidation of α,β- Enones to 1,4-Enediones. Jin-Quan Yu, a and E. J.

A Mild, Catalytic and Highly Selective Method for the Oxidation of α,β- Enones to 1,4-Enediones. Jin-Quan Yu, a and E. J. A Mild, Catalytic and Highly Selective Method for the Oxidation of α,β- Enones to 1,4-Enediones Jin-Quan Yu, a and E. J. Corey b * a Department of Chemistry, Cambridge University, Cambridge CB2 1EW, United

More information

A Visible Near-Infrared Chemosensor for Mercury Ion

A Visible Near-Infrared Chemosensor for Mercury Ion A Visible Near-Infrared Chemosensor for Mercury Ion Mei Zhu, Mingjian Yuan, Xiaofeng Liu, Jialiang Xu, Jing Lv, Changshui Huang Huibiao Liu, Yuliang Li,* Shu Wang, Daoben Zhu Beijing National Laboratory

More information

A non-symmetric pillar[5]arene-based selective anion receptor for fluoride. Electronic Supplementary Information

A non-symmetric pillar[5]arene-based selective anion receptor for fluoride. Electronic Supplementary Information A non-symmetric pillar[5]arene-based selective anion receptor for fluoride Guocan Yu, a Zibin Zhang, a hengyou an, a Min Xue, a Qizhong Zhou,* b and Feihe uang* a Department of hemistry, Zhejiang University,

More information

SUPPORTING INFORMATION

SUPPORTING INFORMATION A Novel Copper Containing Photoinitiator, Copper (II) Acylphosphinate, and Its Application in Both the Photomediated CuAAC Reaction and in Atom Transfer Radical Polymerization Tao Gong, Brian J. Adzima

More information

Supporting Information

Supporting Information Supporting Information Incorporation of a Sugar Unit into a C C N Pincer Pd Complex Using Click Chemistry and Its Dynamic Behavior in Solution and Catalytic Ability toward the Suzuki Miyaura Coupling in

More information

Supplementary Information

Supplementary Information Supplementary Information (1) Synthesis and Characterization Figure S1. 1 H-NMR of 3 (400 MHz; CDCl3; rt). Figure S2. 13 C-NMR of 3 (100 MHz; CDCl3; rt). S2 8000 7500 7000 6500 6000 5500 5000 4500 4000

More information

Stoichiometric Reductions of Alkyl-Substituted Ketones and Aldehydes to Borinic Esters Lauren E. Longobardi, Connie Tang, and Douglas W.

Stoichiometric Reductions of Alkyl-Substituted Ketones and Aldehydes to Borinic Esters Lauren E. Longobardi, Connie Tang, and Douglas W. Electronic Supplementary Material (ESI) for Dalton Transactions. This journal is The Royal Society of Chemistry 2014 Supplementary Data for: Stoichiometric Reductions of Alkyl-Substituted Ketones and Aldehydes

More information

Block: Synthesis, Aggregation-Induced Emission, Two-Photon. Absorption, Light Refraction, and Explosive Detection

Block: Synthesis, Aggregation-Induced Emission, Two-Photon. Absorption, Light Refraction, and Explosive Detection Electronic Supplementary Information (ESI) Luminogenic Materials Constructed from Tetraphenylethene Building Block: Synthesis, Aggregation-Induced Emission, Two-Photon Absorption, Light Refraction, and

More information

Supporting Information. Sandmeyer Cyanation of Arenediazonium Tetrafluoroborate Using Acetonitrile as Cyanide Source

Supporting Information. Sandmeyer Cyanation of Arenediazonium Tetrafluoroborate Using Acetonitrile as Cyanide Source Electronic Supplementary Material (ESI) for Organic Chemistry Frontiers. This journal is the Partner Organisations 2015 Supporting Information Sandmeyer Cyanation of Arenediazonium Tetrafluoroborate Using

More information

Total Synthesis of (±)-Vibsanin E. Brett D. Schwartz, Justin R. Denton, Huw M. L. Davies and Craig. M. Williams. Supporting Information

Total Synthesis of (±)-Vibsanin E. Brett D. Schwartz, Justin R. Denton, Huw M. L. Davies and Craig. M. Williams. Supporting Information Total Synthesis of (±)-Vibsanin E. Brett D. Schwartz, Justin R. Denton, Huw M. L. Davies and Craig M. Williams Supporting Information General Methods S-2 Experimental S-2 1 H and 13 C NMR Spectra S-7 Comparison:

More information

Selective total encapsulation of the sulfate anion by neutral nano-jars

Selective total encapsulation of the sulfate anion by neutral nano-jars Supporting Information for Selective total encapsulation of the sulfate anion by neutral nano-jars Isurika R. Fernando, Stuart A. Surmann, Alexander A. Urech, Alexander M. Poulsen and Gellert Mezei* Department

More information

Supplementary Note 1 : Chemical synthesis of (E/Z)-4,8-dimethylnona-2,7-dien-4-ol (4)

Supplementary Note 1 : Chemical synthesis of (E/Z)-4,8-dimethylnona-2,7-dien-4-ol (4) Supplementary Note 1 : Chemical synthesis of (E/Z)-4,8-dimethylnona-2,7-dien-4-ol (4) A solution of propenyl magnesium bromide in THF (17.5 mmol) under nitrogen atmosphere was cooled in an ice bath and

More information

Supporting Information

Supporting Information Supporting Information Linear Photophysics and Femtosecond Nonlinear Spectroscopy of a Star-Shaped Squaraine Derivative with Efficient Two-Photon Absorption Taihong Liu, 1 Mykhailo V. Bondar, 2 Kevin D.

More information

Supporting Information

Supporting Information Supporting Information (Tetrahedron. Lett.) Cavitands with Inwardly and Outwardly Directed Functional Groups Mao Kanaura a, Kouhei Ito a, Michael P. Schramm b, Dariush Ajami c, and Tetsuo Iwasawa a * a

More information

Supporting Information for

Supporting Information for Electronic Supplementary Material (ES) for New Journal of Chemistry. This journal is The Royal Society of Chemistry and the Centre National de la Recherche Scientifique 2016 Supporting nformation for BODPY-Containing

More information

Maksim A. Kolosov*, Olesia G. Kulyk, Elena G. Shvets, Valeriy D. Orlov

Maksim A. Kolosov*, Olesia G. Kulyk, Elena G. Shvets, Valeriy D. Orlov 1 Synthesis of 5-cinnamoyl-3,4-dihydropyrimidine-2(1H)-ones Supplementary Information Maksim A. Kolosov*, lesia G. Kulyk, Elena G. Shvets, Valeriy D. rlov Department of organic chemistry, V.N.Karazin Kharkiv

More information

Supporting Material. 2-Oxo-tetrahydro-1,8-naphthyridine-Based Protein Farnesyltransferase Inhibitors as Antimalarials

Supporting Material. 2-Oxo-tetrahydro-1,8-naphthyridine-Based Protein Farnesyltransferase Inhibitors as Antimalarials Supporting Material 2-Oxo-tetrahydro-1,8-naphthyridine-Based Protein Farnesyltransferase Inhibitors as Antimalarials Srinivas Olepu a, Praveen Kumar Suryadevara a, Kasey Rivas b, Christophe L. M. J. Verlinde

More information

Figure S1 - Enzymatic titration of HNE and GS-HNE.

Figure S1 - Enzymatic titration of HNE and GS-HNE. Figure S1 - Enzymatic titration of HNE and GS-HNE. Solutions of HNE and GS-HNE were titrated through their reduction to the corresponding alchools catalyzed by AR, monitoring the decrease in absorbance

More information

Experimental Section

Experimental Section White Light Emitting Lanthanide Metallogels with Tunable Luminescence and Reversible Stimuli-Responsive Properties Pangkuan Chen, Qiaochu Li, Scott Grindy, and Niels Holten-Andersen* Department of Materials

More information

Supplementary Material (ESI) for Chemical Communications This journal is (c) The Royal Society of Chemistry 2011

Supplementary Material (ESI) for Chemical Communications This journal is (c) The Royal Society of Chemistry 2011 Supporting Information Experimental General procedures The product distribution of the reaction of PCl 3 for the synthesis of chlorophosphoramidites was examined in situ by 31 P NMR and 1 H- 31 P coupled

More information

Supporting Information:

Supporting Information: Electronic Supplementary Material (ESI) for Green Chemistry. This journal is The Royal Society of Chemistry 2016 Supporting Information: A metal free reduction of aryl-n-nitrosamines to corresponding hydrazines

More information