4 electron domains: 3 bonding and 1 non-bonding. 2 electron domains: 2 bonding and 0 non-bonding. 3 electron domains: 2 bonding and 1 non-bonding

Size: px
Start display at page:

Download "4 electron domains: 3 bonding and 1 non-bonding. 2 electron domains: 2 bonding and 0 non-bonding. 3 electron domains: 2 bonding and 1 non-bonding"

Transcription

1 [4.3D VSEPR] pg. 1 f 7 Curriculum The use f VSEPR thery t predict the electrn dmain gemetry and the mlecular gemetry fr species with tw, three and fur electrn dmains. Shapes f species are determined by the repulsin f electrn pairs accrding t VSEPR thery. Predictin f bnd angles frm mlecular gemetry and presence f nn- bnding pairs f electrns. Predictin f mlecular plarity frm bnd plarity and mlecular gemetry. A. Overview VSEPR: Valence Shell Electrn Pair Repulsin Thery Wrks fr mlecules where a central atm is surrunded by uter atms AX n, where A = central atm X = uter atm n = # f B atms Ex. CO 2, H 2O, BF 3, NH 3, CCl 4, CHCl 3 Accrding t VSEPR, in the valence shell f an atm, electrn pairs repel each ther, and want t get as far away frm each ther as pssible These electrn pairs can be bnding pairs r lne pairs B. Electrn Dmain Electrn lcatin in the valence shell Tw types: Bnding pair (can be single, duble r triple bnd, cunted as ne unit) Lne pair ie. electrn grups regins f high electrn density, s repel eachther Ex. Determine the number f electrn dmains: 4 electrn dmains: 3 bnding and 1 nn-bnding 2 electrn dmains: 2 bnding and 0 nn-bnding 3 electrn dmains: 2 bnding and 1 nn-bnding

2 [4.3D VSEPR] pg. 2 f 7 C. Gemetry Electrn dmain gemetry: arrangement f electrn dmains arund central atm Best arrangement has electrn dmains as far away frm each ther as pssible Minimizes repulsins Fund by cunting number f electrn dmains and cnsidering the arrangement that minimizes repulsins Mlecular gemetry: The arrangement in space f the atms in a mlecule r plyatmic in cnsequence f electrn dmain gemetry. Atms in the mlecules ccupy psitins arund the central atm that minimizes repulsin between all electrn dmains. Electrn dmain gemetry = mlecular gemetry if all electrn dmains are bnding dmains. D. Electrn pair repulsin Nn-bnding pairs (lne pairs): higher charge cncentratin than a bnding pair e- nt shared between tw atms cause slightly mre repulsin than bnding pairs. Repulsin decreases in the fllwing rder: lne pair lne pair > lne pair bnding pair > bnding pair bnding pair E. Species with tw electrn dmains Electrn dmain gemetry: Linear Electrn dmains psitined 180 t each ther Mlecular gemetry: Linear bnding dmains: 2 nn-bnding dmains: 0 CO 2 BeCl 2 C 2H 2

3 [4.3D VSEPR] pg. 3 f 7 F. Species with 3 electrn dmains Electrn dmain gemetry: triangular/trignal planar Electrn dmains 120 away frm eachther 1) Mlecular Gemetry: triangular/trignal planar (AX 3) bnding dmains: 3 nn-bnding dmains: 0 BF 3 HCHO 2) Mlecular Gemetry: bent (AX 2E) bnding dmains: 2 nn-bnding dmains: 1 ie. ne electrn dmain is a lne pair mlecular determined by psitin f bnding pairs lne pairs cause slightly mre repulsin than bnding pairs Ex. Ozne 3 electrn dmains Lne pair f electrns distrts, making angle 117 instead f 120 O 3 G. Species with 4 electrn dmains Electrn dmain gemetry: tetrahedral Electrn dmains away frm eachther 1) Mlecular Gemetry: tetrahedral (AX 4) bnding dmains: 4 nn-bnding dmains: 0 + Ex. CH 4 Ex. NH 4 2) Mlecular Gemetry: trignal pyramidal (AX 3E) bnding dmains: 3 nn-bnding dmains: 1

4 [4.3D VSEPR] pg. 4 f 7 bnd angles 107 Ex. NH 3 3) Mlecular Gemetry: Bent r V-d (AX 2E 2) bnding dmains: 2 nn-binding dmains: 2 bnd angles 105 Ex. H 2O Here is a summary f the steps used in determining the f a mlecule. 1) Draw the Lewis structure 2) Cunt the ttal number f electrn dmains n the central atm. 3) Determine the electrn dmain gemetry as fllws: a. 2 electrn dmains linear b. 3 electrn dmains triangular planar c. 4 electrn dmains tetrahedral 4) Always draw the Lewis structure befre 5) Determine the mlecular gemetry frm the number f bnding electrn dmains. 6) Cnsider the extra repulsin caused by the lne pairs and adjust the bnd angles accrdingly.

5 [4.3D VSEPR] pg. 5 f 7 H. VSEPR and plarity 1 Bnd plarity is nt as mlecular plarity Many mlecules are nnplar, but have plar bnds. A bnd is plar if the tw atms n either end are different. Exceptin #1 C-H behave as thugh nn-plar Exceptin #2 N-Cl, N & Cl have almst same electrnegativities, s N-Cl is essentially nn-plar Bnd plarity is based n charge separatin between tw bnded atms Mlecular plarity depends n: the plar bnds that it cntains; rientatin f the plar bnds Diples in a bnd 2 hypthetical mlecule AB. B is mre electrnegative and has the greater share f the electrns in the AB bnd. partial negative charge (-δ) n B and a partial psitive charge f equal magnitude (+δ) n A. Diple mment: μ (AB) = δ x d δ = charge magnitude d = bnd length μ measures degree f plarity μ = 1.03D measured in Debyes (D) value can give an idea f the plar character f a mlecule. vectr quantity, has directin and magnitude. Directin shwn by arrw pinting frm negative t psitive end Ex. HF = 1.91 D, HCl is 1.03 D (F is mre electrnegative than Cl). 3 Diples in a mlecule Diatmic Mlecules 2 atms jined by cvalent bnd Diple mment f bnd gives diple mment f mlecule Greater electrnegativity difference between atms = greater diple mment f mlecule Plyatmic Mlecules Mre than tw atms bnded by cvalent bnds. Idea f a diple can be applied t individual bnds within Bnd diple: diple mment f individual bnd in a plyatmic mlecule Diple mment f mlecule depends n rientatins f varius bnd diples. Diple mment f mlecule = vectr sum bnd diples If the vectr sum is zer, the mlecule is nn-plar Fr a mlecule t be plar, it must have plar bnds Cl 2 is nn-plar Hydrcarbns are nn-plar, ex. CH

6 [4.3D VSEPR] pg. 6 f 7 Plar Mlecules Bnds f different plarity Bnds are nt symmetrical, diples dn t cancel Fr a mlecule t be plar, it must have a psitive and negative end, like a magnet H 2O Side atms are Line test cannt SOCl 2 Side atms are Line test cannt Plar / Nn-Plar Plar / Nn-Plar Nn plar mlecules Bnds are f equal plarity Arranged symmetrically with respect t each ther, diples cancel What des it mean t be symmetric? There are tw cmpnents: 4 Mlecule must have symmetrical : linear, trignal planar, and tetrahedral AND All f the atms attached t the central atm must be When bth cnditins are present, electrns have unifrm distributin Lack f net diple weak intermlecular frces CO 2, C-O bnds identical in magnitude, ppsite in directin, vectr sum f zer. Side atms are Line test cannt Plar / Nn-Plar BF 3 resultant mment f any tw B- F diples is equal in magnitude but ppsite in directin t the mment f the third ne Side atms are Line test cannt Plar / Nn-Plar SO 3 Side atms are Line test cannt CH 4 Side atms are Line test cannt Plar / Nn-Plar Plar / Nn-Plar 4

7 [4.3D VSEPR] pg. 7 f 7 Steps fr finding mlecular diple mment: 1. Is the mlecule a hydrcarbn? a. Yes the mlecule is nn-plar b. Determine the mlecule s Lewis structure 2. Use the Lewis structure t determine the mlecule s a. Symmetric s: linear, trignal planar, and tetrahedral i. assciated with mlecules whse central atms have n lne pairs b. Unsymmetric s: bent and trignal pyramidal i. assciated with mlecules whse central atms have ne r mre lne pairs. ii. Will be plar even if all uter atms are, due t lne pairs giving uneven electrn distributin. 3. Is the symmetric? a. N: The mlecule is plar b. Yes: Examine the utside atms 4. If the is symmetric, are all the utside atms? a. N: The mlecule is plar b. Yes: the mlecule is nn-plar Mlecular Plarity Practice: a) draw the VSEPR structure fr each mlecule b) Determine if the mlecule is plar c) If pssible, draw the diples fr each bnd, and the resulting diple IBr CCl 4 PCl 3 H 2S C 2H 2 AsH 3 SO SO 3 NH 2Cl C 3H 8 NH 3 CH 3Cl BeF 2 HCN SiCl 4 I 2 N 2H 2 HNO SO 2 CH 2O

Chemistry 20 Lesson 11 Electronegativity, Polarity and Shapes

Chemistry 20 Lesson 11 Electronegativity, Polarity and Shapes Chemistry 20 Lessn 11 Electrnegativity, Plarity and Shapes In ur previus wrk we learned why atms frm cvalent bnds and hw t draw the resulting rganizatin f atms. In this lessn we will learn (a) hw the cmbinatin

More information

Chapter 8 Predicting Molecular Geometries

Chapter 8 Predicting Molecular Geometries Chapter 8 Predicting Mlecular Gemetries 8-1 Mlecular shape The Lewis diagram we learned t make in the last chapter are a way t find bnds between atms and lne pais f electrns n atms, but are nt intended

More information

ATOMIC ORBITAL MODEL OF THE ATOM Be able to draw rough sketches of s, p and d orbitals with different principal quantum numbers

ATOMIC ORBITAL MODEL OF THE ATOM Be able to draw rough sketches of s, p and d orbitals with different principal quantum numbers Chapter 7 Atmic Structure and Peridicity ATOMIC ORBITAL MODEL OF THE ATOM Be able t draw rugh sketches f s, p and d rbitals with different principal quantum numbers ELECTRONIC CONFIGURATIONS Knw the difference

More information

Name: Period: Date: BONDING NOTES ADVANCED CHEMISTRY

Name: Period: Date: BONDING NOTES ADVANCED CHEMISTRY Name: Perid: Date: BONDING NOTES ADVANCED CHEMISTRY Directins: This packet will serve as yur ntes fr this chapter. Fllw alng with the PwerPint presentatin and fill in the missing infrmatin. Imprtant terms

More information

Chem 115 POGIL Worksheet - Week 12 Molecular Shapes

Chem 115 POGIL Worksheet - Week 12 Molecular Shapes Chem 115 POGIL Wrksheet - Week 12 Mlecular Shapes Why? Cntrary t the impressin that Lewis structures may give, many mlecules have threedimensinal gemetries. These mlecular shapes are very imprtant t understanding

More information

Name: Period: Date: BONDING NOTES HONORS CHEMISTRY

Name: Period: Date: BONDING NOTES HONORS CHEMISTRY Name: Perid: Date: BONDING NOTES HONORS CHEMISTRY Directins: This packet will serve as yur ntes fr this chapter. Fllw alng with the PwerPint presentatin and fill in the missing infrmatin. Imprtant terms

More information

Name Honors Chemistry / /

Name Honors Chemistry / / Name Hnrs Chemistry / / Beynd Lewis Structures Exceptins t the Octet Rule Mdel Hydrgen is an exceptin t the ctet rule because it fills its uter energy level with nly 2 electrns. The secnd rw elements B

More information

Midterm Review Notes - Unit 1 Intro

Midterm Review Notes - Unit 1 Intro Midterm Review Ntes - Unit 1 Intr 3 States f Matter Slid definite shape, definite vlume, very little mlecular mvement Liquid definite vlume, takes shape f cntainer, mlecules mve faster Gas des nt have

More information

Trimester 2 Exam 3 Study Guide Honors Chemistry. Honors Chemistry Exam 3 Review

Trimester 2 Exam 3 Study Guide Honors Chemistry. Honors Chemistry Exam 3 Review Trimester 2 Exam 3 Study Guide Hnrs Chemistry BOND POLARITY Hnrs Chemistry Exam 3 Review Identify whether a bnd is plar r nnplar based ff difference in electrnegativity btwn 2 atms (electrnegativity values

More information

Name AP CHEM / / Chapter 8 Outline Bonding: General Concepts

Name AP CHEM / / Chapter 8 Outline Bonding: General Concepts Name AP CHEM / / Chapter 8 Outline Bnding: General Cncepts Types f Chemical Bnds Infrmatin abut the strength f a bnding interactin is btained by measuring the bnd energy, which is the energy required t

More information

Semester 1 Honors Chemistry Notebook (unit 1)

Semester 1 Honors Chemistry Notebook (unit 1) Semester 1 Hnrs Chemistry Ntebk (unit 1) Basic infrmatin Chemistry: study f matter Matter: has mass and takes up space Organized by using the peridic table cntains elements Prtns, neutrns, and electrns

More information

In the spaces provided, explain the meanings of the following terms. You may use an equation or diagram where appropriate.

In the spaces provided, explain the meanings of the following terms. You may use an equation or diagram where appropriate. CEM1405 2007-J-2 June 2007 In the spaces prvided, explain the meanings f the fllwing terms. Yu may use an equatin r diagram where apprpriate. 5 (a) hydrgen bnding An unusually strng diple-diple interactin

More information

Phys102 Second Major-102 Zero Version Coordinator: Al-Shukri Thursday, May 05, 2011 Page: 1

Phys102 Second Major-102 Zero Version Coordinator: Al-Shukri Thursday, May 05, 2011 Page: 1 Crdinatr: Al-Shukri Thursday, May 05, 2011 Page: 1 1. Particles A and B are electrically neutral and are separated by 5.0 μm. If 5.0 x 10 6 electrns are transferred frm particle A t particle B, the magnitude

More information

Principles of Organic Chemistry lecture 5, page 1

Principles of Organic Chemistry lecture 5, page 1 Principles f Organic Chemistry lecture 5, page 1 Bnding Mdels Fact: electrns hld mlecules tgether. Theries: mre than ne way t cnceptualize bnding. Let s fllw Carrll in the cnsideratin f tw theries f bnding.

More information

SCIENCE 10: CHEMISTRY,

SCIENCE 10: CHEMISTRY, , 1 Atmic Thery and Bnding The Nucleus - The particles that make up an atm are called subatmic particles - The three subatmic particles are prtns, neutrns and electrns. - Prtns, which have a +1 (psitive)

More information

State of matter characteristics solid Retains shape and volume

State of matter characteristics solid Retains shape and volume **See attachment fr graphs States f matter The fundamental difference between states f matter is the distance between particles Gas Ttal disrder Much empty space Particles have cmpletely freedm f mtin

More information

Chapter 2 GAUSS LAW Recommended Problems:

Chapter 2 GAUSS LAW Recommended Problems: Chapter GAUSS LAW Recmmended Prblems: 1,4,5,6,7,9,11,13,15,18,19,1,7,9,31,35,37,39,41,43,45,47,49,51,55,57,61,6,69. LCTRIC FLUX lectric flux is a measure f the number f electric filed lines penetrating

More information

General Chemistry II, Unit II: Study Guide (part 1)

General Chemistry II, Unit II: Study Guide (part 1) General Chemistry II, Unit II: Study Guide (part 1) CDS Chapter 21: Reactin Equilibrium in the Gas Phase General Chemistry II Unit II Part 1 1 Intrductin Sme chemical reactins have a significant amunt

More information

Q1. In figure 1, Q = 60 µc, q = 20 µc, a = 3.0 m, and b = 4.0 m. Calculate the total electric force on q due to the other 2 charges.

Q1. In figure 1, Q = 60 µc, q = 20 µc, a = 3.0 m, and b = 4.0 m. Calculate the total electric force on q due to the other 2 charges. Phys10 Secnd Majr-08 Zer Versin Crdinatr: Dr. I. M. Nasser Saturday, May 3, 009 Page: 1 Q1. In figure 1, Q = 60 µc, q = 0 µc, a = 3.0 m, and b = 4.0 m. Calculate the ttal electric frce n q due t the ther

More information

At the end of this lesson, students should be able to :

At the end of this lesson, students should be able to : At the end of this lesson, students should be able to : (a) Explain Valence Shell Electron Pair Repulsion theory (VSEPR) (b) Draw the basic molecular shapes: linear, planar, tetrahedral, and octahedral.

More information

where the small energy of the initial thermal neutron has been ignored. (m N denotes the nuclear mass.) Now

where the small energy of the initial thermal neutron has been ignored. (m N denotes the nuclear mass.) Now rd Internatinal Chemistry lympiad Preparatry Prblems where the small energy f the initial thermal neutrn has been ignred. (m dentes the nuclear mass.) w m ( 5 U) m ( 5 U) 9m e ignring the small electrnic

More information

B. (i), (iii), and (v) C. (iv) D. (i), (ii), (iii), and (v) E. (i), (iii), (iv), and (v) Answer: B. SO 3, and NO 3 - both have 24 VE and have Lewis

B. (i), (iii), and (v) C. (iv) D. (i), (ii), (iii), and (v) E. (i), (iii), (iv), and (v) Answer: B. SO 3, and NO 3 - both have 24 VE and have Lewis SCCH 161 Homework 3 1. Give the number of lone pairs around the central atom and the molecular geometry of CBr 4. Answer: Carbon has 4 valence electrons and bonds to four bromine atoms (each has 7 VE s).

More information

Chapter 9 Molecular Geometries. and Bonding Theories

Chapter 9 Molecular Geometries. and Bonding Theories Chapter 9 Molecular Geometries and Bonding Theories Coverage of Chapter 9 9.1 All 9.2 All 9.3 All 9.4 All 9.5 Omit Hybridization Involving d Orbitals 9.6 All 9.7 and 9.8 Omit ALL MOLECULAR SHAPES The shape

More information

ELECTROSTATIC FIELDS IN MATERIAL MEDIA

ELECTROSTATIC FIELDS IN MATERIAL MEDIA MF LCTROSTATIC FILDS IN MATRIAL MDIA 3/4/07 LCTURS Materials media may be classified in terms f their cnductivity σ (S/m) as: Cnductrs The cnductivity usually depends n temperature and frequency A material

More information

Types of Reactions 1. Acid-base: Transfer of protons, H+ 2. Substitution 3. Addition 4. Elimination 5. Oxidation and reduction: Loss and gain of O/H

Types of Reactions 1. Acid-base: Transfer of protons, H+ 2. Substitution 3. Addition 4. Elimination 5. Oxidation and reduction: Loss and gain of O/H Types f Reactins 1. Acid-base: Transfer f prtns, H+ 2. Substitutin 3. Additin 4. Eliminatin 5. Oxidatin and reductin: Lss and gain f O/H Acid-Base Reactins - Acids: Prtn dnrs, e- pair acceptr HA + H2O

More information

Chapter 17 Free Energy and Thermodynamics

Chapter 17 Free Energy and Thermodynamics Chemistry: A Mlecular Apprach, 1 st Ed. Nivald Tr Chapter 17 Free Energy and Thermdynamics Ry Kennedy Massachusetts Bay Cmmunity Cllege Wellesley Hills, MA 2008, Prentice Hall First Law f Thermdynamics

More information

Chem 116 POGIL Worksheet - Week 3 - Solutions Intermolecular Forces, Liquids, Solids, and Solutions

Chem 116 POGIL Worksheet - Week 3 - Solutions Intermolecular Forces, Liquids, Solids, and Solutions Chem 116 POGIL Wrksheet - Week 3 - Slutins Intermlecular Frces, Liquids, Slids, and Slutins Key Questins 1. Is the average kinetic energy f mlecules greater r lesser than the energy f intermlecular frces

More information

A. Lattice Enthalpies Combining equations for the first ionization energy and first electron affinity:

A. Lattice Enthalpies Combining equations for the first ionization energy and first electron affinity: [15.1B Energy Cycles Lattice Enthalpy] pg. 1 f 5 CURRICULUM Representative equatins (eg M+(g) M+(aq)) can be used fr enthalpy/energy f hydratin, inizatin, atmizatin, electrn affinity, lattice, cvalent

More information

4.2.7 & Shapes, and bond angles for molecules with two, three and four negative charge centers

4.2.7 & Shapes, and bond angles for molecules with two, three and four negative charge centers 4.2.7 & 4.2.8 Shapes, and bond angles for molecules with two, three and four negative charge centers The shape of a molecule has an important part to play in determining its chemical (e.g. reactivity and

More information

GAUSS' LAW E. A. surface

GAUSS' LAW E. A. surface Prf. Dr. I. M. A. Nasser GAUSS' LAW 08.11.017 GAUSS' LAW Intrductin: The electric field f a given charge distributin can in principle be calculated using Culmb's law. The examples discussed in electric

More information

Q1. A) 48 m/s B) 17 m/s C) 22 m/s D) 66 m/s E) 53 m/s. Ans: = 84.0 Q2.

Q1. A) 48 m/s B) 17 m/s C) 22 m/s D) 66 m/s E) 53 m/s. Ans: = 84.0 Q2. Phys10 Final-133 Zer Versin Crdinatr: A.A.Naqvi Wednesday, August 13, 014 Page: 1 Q1. A string, f length 0.75 m and fixed at bth ends, is vibrating in its fundamental mde. The maximum transverse speed

More information

+ Charge attraction between a

+ Charge attraction between a 1 Types f Intermlecular Frces: Strength Interactin Picture Descriptin est Lndn Dispersin Frces (induced dipleinduced diple) + + + + + + Attractin between temprary induced diples in nn-plar mlecules. Diple-Diple

More information

Lewis structures show the number and type of bonds between atoms in a molecule or polyatomic ion.

Lewis structures show the number and type of bonds between atoms in a molecule or polyatomic ion. VSEPR & Geometry Lewis structures show the number and type of bonds between atoms in a molecule or polyatomic ion. Lewis structures are not intended to show the 3-dimensional structure (i.e. shape or geometry)

More information

CHEM 115 Course Review, Second Half

CHEM 115 Course Review, Second Half CEM 115 Curse Review, Secnd alf Lecture Slides May 10, 2007 Prf. Sevian Agenda Thermchemistry (ch. 5) Electrnic structure f atms (ch. 6) Peridic prperties (ch. 7) Chemical bnding basics (ch. 8) Mlecular

More information

Adapted from CHM 130 Maricopa County, AZ Molecular Geometry and Lewis Dot Formulas Introduction

Adapted from CHM 130 Maricopa County, AZ Molecular Geometry and Lewis Dot Formulas Introduction Adapted from CHM 130 Maricopa County, AZ Molecular Geometry and Lewis Dot Formulas Introduction A chemical bond is an intramolecular (within the molecule) force holding two or more atoms together. Covalent

More information

Phys102 Final-061 Zero Version Coordinator: Nasser Wednesday, January 24, 2007 Page: 1

Phys102 Final-061 Zero Version Coordinator: Nasser Wednesday, January 24, 2007 Page: 1 Crdinatr: Nasser Wednesday, January 4, 007 Page: 1 Q1. Tw transmitters, S 1 and S shwn in the figure, emit identical sund waves f wavelength λ. The transmitters are separated by a distance λ /. Cnsider

More information

Sodium D-line doublet. Lectures 5-6: Magnetic dipole moments. Orbital magnetic dipole moments. Orbital magnetic dipole moments

Sodium D-line doublet. Lectures 5-6: Magnetic dipole moments. Orbital magnetic dipole moments. Orbital magnetic dipole moments Lectures 5-6: Magnetic diple mments Sdium D-line dublet Orbital diple mments. Orbital precessin. Grtrian diagram fr dublet states f neutral sdium shwing permitted transitins, including Na D-line transitin

More information

MANIPAL INSTITUTE OF TECHNOLOGY

MANIPAL INSTITUTE OF TECHNOLOGY MANIPAL INSTITUTE OF TECHNOLOGY MANIPAL UNIVERSITY, MANIPAL SECOND SEMESTER B.Tech. END-SEMESTER EXAMINATION - MAY 013 SUBJECT: ENGINEERING PHYSICS (PHY101/10) Time: 3 Hrs. Max. Marks: 50 Nte: Answer any

More information

Chem 111 Summer 2013 Key III Whelan

Chem 111 Summer 2013 Key III Whelan Chem 111 Summer 2013 Key III Whelan Questin 1 6 Pints Classify each f the fllwing mlecules as plar r nnplar? a) NO + : c) CH 2 Cl 2 : b) XeF 4 : Questin 2 The hypthetical mlecule PY 3 Z 2 has the general

More information

Molecular Geometry. Valence Shell Electron Pair. What Determines the Shape of a Molecule? Repulsion Theory (VSEPR) Localized Electron Model

Molecular Geometry. Valence Shell Electron Pair. What Determines the Shape of a Molecule? Repulsion Theory (VSEPR) Localized Electron Model Molecular Geometry Learn Shapes you will Because the physical and chemical properties of compounds are tied to their structures, the importance of molecular geometry can not be overstated. Localized Electron

More information

CHAPTER Read Chapter 17, sections 1,2,3. End of Chapter problems: 25

CHAPTER Read Chapter 17, sections 1,2,3. End of Chapter problems: 25 CHAPTER 17 1. Read Chapter 17, sectins 1,2,3. End f Chapter prblems: 25 2. Suppse yu are playing a game that uses tw dice. If yu cunt the dts n the dice, yu culd have anywhere frm 2 t 12. The ways f prducing

More information

Nuggets of Knowledge for Chapter 10 Alkenes (I) Chem alkenes hydrocarbons containing a C=C (not in a benzene ring)

Nuggets of Knowledge for Chapter 10 Alkenes (I) Chem alkenes hydrocarbons containing a C=C (not in a benzene ring) I. Intrductin t Alkenes Classifying Alkenes Nuggets f Knwledge fr Chapter 10 Alkenes (I) Chem 2310 There are several categries that can be used t describe cmpunds cntaining carbn-carbn duble bnds. alkenes

More information

Subtopic 4.2 MOLECULAR SHAPE AND POLARITY

Subtopic 4.2 MOLECULAR SHAPE AND POLARITY Subtopic 4.2 MOLECULAR SHAPE AND POLARITY 1 LEARNING OUTCOMES (covalent bonding) 1. Draw the Lewis structure of covalent molecules (octet rule such as NH 3, CCl 4, H 2 O, CO 2, N 2 O 4, and exception to

More information

15.0 g Cr = 21.9 g Cr O g Cr 4 mol Cr mol Cr O

15.0 g Cr = 21.9 g Cr O g Cr 4 mol Cr mol Cr O WYSE Academic Challenge Sectinal Chemistry Exam 2008 SOLUTION SET 1. Crrect answer: B. Use PV = nrt t get: PV = nrt 2. Crrect answer: A. (2.18 atm)(25.0 L) = n(0.08206 L atm/ml K)(23+273) n = 2.24 ml Assume

More information

VSEPR. Valence Shell Electron Pair Repulsion Theory

VSEPR. Valence Shell Electron Pair Repulsion Theory VSEPR Valence Shell Electron Pair Repulsion Theory Vocabulary: domain = any electron pair or bond (single, double or triple) is considered one domain. bonding pair = shared pair = any electron pair that

More information

Topic 9 Nitrogen compounds Revision Notes

Topic 9 Nitrogen compounds Revision Notes Tpic 9 Nitrgen cmpunds Revisin Ntes 1) Amines - intrductin In primary amines, a nitrgen atm is attached t ne alkyl grup and tw hydrgen atms. The general frmula fr a primary amine is RNH2 The simplest amine

More information

lecture 5: Nucleophilic Substitution Reactions

lecture 5: Nucleophilic Substitution Reactions lecture 5: Nuclephilic Substitutin Reactins Substitutin unimlecular (SN1): substitutin nuclephilic, unimlecular. It is first rder. The rate is dependent upn ne mlecule, that is the substrate, t frm the

More information

Chapter 9 Chemical Reactions NOTES

Chapter 9 Chemical Reactions NOTES Chapter 9 Chemical Reactins NOTES Chemical Reactins Chemical reactin: Chemical change 4 Indicatrs f Chemical Change: (1) (2) (3) (4) Cnsist f reactants (starting materials) and prducts (substances frmed)

More information

NOTES. Name: Date: Topic: Periodic Table & Atoms Notes. Period: Matter

NOTES. Name: Date: Topic: Periodic Table & Atoms Notes. Period: Matter NOTES Unit: Tpic: Peridic Table & Atms Ntes Name: Date: Perid: Matter Atmic Structure The term matter describes all f the physical substances arund us. Matter is anything that has mass and takes up space.

More information

CHEM 1001 Problem Set #3: Entropy and Free Energy

CHEM 1001 Problem Set #3: Entropy and Free Energy CHEM 1001 Prblem Set #3: Entry and Free Energy 19.7 (a) Negative; A liquid (mderate entry) cmbines with a slid t frm anther slid. (b)psitive; One mle f high entry gas frms where n gas was resent befre.

More information

Name: Period: Date: What Is VSEPR? Now explore the Compare Two Structures link. Try changing the display to explore different combinations.

Name: Period: Date: What Is VSEPR? Now explore the Compare Two Structures link. Try changing the display to explore different combinations. Name: Period: Date: What Is VSEPR? Exploring The Valence Shell Electron Pair Repulsion (VSEPR) model. Go to the Purdue University website to explore VSEPR theory. http://www.chem.purdue.edu/gchelp/vsepr/structur2.html

More information

Electrochemistry. Reduction: the gaining of electrons. Reducing agent (reductant): species that donates electrons to reduce another reagent.

Electrochemistry. Reduction: the gaining of electrons. Reducing agent (reductant): species that donates electrons to reduce another reagent. Electrchemistry Review: Reductin: the gaining f electrns Oxidatin: the lss f electrns Reducing agent (reductant): species that dnates electrns t reduce anther reagent. Oxidizing agent (xidant): species

More information

Guide to Using the Rubric to Score the Klf4 PREBUILD Model for Science Olympiad National Competitions

Guide to Using the Rubric to Score the Klf4 PREBUILD Model for Science Olympiad National Competitions Guide t Using the Rubric t Scre the Klf4 PREBUILD Mdel fr Science Olympiad 2010-2011 Natinal Cmpetitins These instructins are t help the event supervisr and scring judges use the rubric develped by the

More information

I. Analytical Potential and Field of a Uniform Rod. V E d. The definition of electric potential difference is

I. Analytical Potential and Field of a Uniform Rod. V E d. The definition of electric potential difference is Length L>>a,b,c Phys 232 Lab 4 Ch 17 Electric Ptential Difference Materials: whitebards & pens, cmputers with VPythn, pwer supply & cables, multimeter, crkbard, thumbtacks, individual prbes and jined prbes,

More information

Phys101 Final Code: 1 Term: 132 Wednesday, May 21, 2014 Page: 1

Phys101 Final Code: 1 Term: 132 Wednesday, May 21, 2014 Page: 1 Phys101 Final Cde: 1 Term: 1 Wednesday, May 1, 014 Page: 1 Q1. A car accelerates at.0 m/s alng a straight rad. It passes tw marks that are 0 m apart at times t = 4.0 s and t = 5.0 s. Find the car s velcity

More information

Recitation 06. n total = P total V/RT = (0.425 atm * 10.5 L) / ( L atm mol -1 K -1 * 338 K) = mol

Recitation 06. n total = P total V/RT = (0.425 atm * 10.5 L) / ( L atm mol -1 K -1 * 338 K) = mol Recitatin 06 Mixture f Ideal Gases 1. Chapter 5: Exercise: 69 The partial pressure f CH 4 (g) is 0.175 atm and that f O 2 (g) is 0.250 atm in a mixture f the tw gases. a. What is the mle fractin f each

More information

Molecular Geometry. Objectives N H H. The objectives of this laboratory are to:

Molecular Geometry. Objectives N H H. The objectives of this laboratory are to: Objectives The objectives of this laboratory are to: Molecular Geometry Write Lewis structure representations of the bonding and valence electrons in molecules. Use the VSEPR model to predict the molecular

More information

To get you thinking...

To get you thinking... T get yu thinking... 1.) What is an element? Give at least 4 examples f elements. 2.) What is the atmic number f hydrgen? What des a neutral hydrgen atm cnsist f? Describe its "mtin". 3.) Hw des an atm

More information

Q1. A string of length L is fixed at both ends. Which one of the following is NOT a possible wavelength for standing waves on this string?

Q1. A string of length L is fixed at both ends. Which one of the following is NOT a possible wavelength for standing waves on this string? Term: 111 Thursday, January 05, 2012 Page: 1 Q1. A string f length L is fixed at bth ends. Which ne f the fllwing is NOT a pssible wavelength fr standing waves n this string? Q2. λ n = 2L n = A) 4L B)

More information

QCE Chemistry. Year 2015 Mark 0.00 Pages 20 Published Jan 31, Chemistry: Revision Notes. By Sophie (1 ATAR)

QCE Chemistry. Year 2015 Mark 0.00 Pages 20 Published Jan 31, Chemistry: Revision Notes. By Sophie (1 ATAR) QCE Chemistry Year 2015 Mark 0.00 Pages 20 Published Jan 31, 2017 11 Chemistry: Revisin Ntes By Sphie (1 ATAR) Pwered by TCPDF (www.tcpdf.rg) Yur ntes authr, Sphie. Sphie achieved an ATAR f 1 in 2016 while

More information

Chapter 6. Dielectrics and Capacitance

Chapter 6. Dielectrics and Capacitance Chapter 6. Dielectrics and Capacitance Hayt; //009; 6- Dielectrics are insulating materials with n free charges. All charges are bund at mlecules by Culmb frce. An applied electric field displaces charges

More information

Lecture 5: Equilibrium and Oscillations

Lecture 5: Equilibrium and Oscillations Lecture 5: Equilibrium and Oscillatins Energy and Mtin Last time, we fund that fr a system with energy cnserved, v = ± E U m ( ) ( ) One result we see immediately is that there is n slutin fr velcity if

More information

Regents Chemistry Period Unit 3: Atomic Structure. Unit 3 Vocabulary..Due: Test Day

Regents Chemistry Period Unit 3: Atomic Structure. Unit 3 Vocabulary..Due: Test Day Name Skills: 1. Interpreting Mdels f the Atm 2. Determining the number f subatmic particles 3. Determine P, e-, n fr ins 4. Distinguish istpes frm ther atms/ins Regents Chemistry Perid Unit 3: Atmic Structure

More information

Shapes of Molecules. Lewis structures are useful but don t allow prediction of the shape of a molecule.

Shapes of Molecules. Lewis structures are useful but don t allow prediction of the shape of a molecule. Shapes of Molecules Lewis structures are useful but don t allow prediction of the shape of a molecule. H O H H O H Can use a simple theory based on electron repulsion to predict structure (for non-transition

More information

Lewis Dot Structures for Methane, CH 4 The central C atom is bonded by single bonds (-) to 4 individual H atoms

Lewis Dot Structures for Methane, CH 4 The central C atom is bonded by single bonds (-) to 4 individual H atoms Chapter 10 (Hill/Petrucci/McCreary/Perry Bonding Theory and Molecular Structure This chapter deals with two additional approaches chemists use to describe chemical bonding: valence-shell electron pair

More information

O C S polar - greater force. H polar greater force. H polar. polar H-bond

O C S polar - greater force. H polar greater force. H polar. polar H-bond hapter 10 : 29, 30, 31, 33, 36, 40, 46, 48, 50, 72, 87, 91, 93, 110 29. a. Lndn e. Lndn b. diple-diple f. diple-diple c. -bnding g. in-in d. in-in 30. a. in-in e. -bnding b. Lndn f. diple-diple c. Lndn

More information

ENGI 4430 Parametric Vector Functions Page 2-01

ENGI 4430 Parametric Vector Functions Page 2-01 ENGI 4430 Parametric Vectr Functins Page -01. Parametric Vectr Functins (cntinued) Any nn-zer vectr r can be decmpsed int its magnitude r and its directin: r rrˆ, where r r 0 Tangent Vectr: dx dy dz dr

More information

UNIT 12 Chemical Bonding

UNIT 12 Chemical Bonding Name Perid CRHS Academic Chemistry UNIT 12 Chemical Bnding Practice Prblems Due Date Assignment On-Time (1) Late (7) 12.1 12.2 12.3 12.4 12.5 Warm'ÿ Up C Ntes, Hmewrk, xam Reviews and Their KYS lcated

More information

Module 4: General Formulation of Electric Circuit Theory

Module 4: General Formulation of Electric Circuit Theory Mdule 4: General Frmulatin f Electric Circuit Thery 4. General Frmulatin f Electric Circuit Thery All electrmagnetic phenmena are described at a fundamental level by Maxwell's equatins and the assciated

More information

Fill in the chart below to determine the valence electrons of elements 3-10

Fill in the chart below to determine the valence electrons of elements 3-10 Chemistry 11 Atomic Theory IV Name: Date: Block: 1. Lewis Diagrams 2. VSEPR Lewis Diagrams Lewis diagrams show the bonding between atoms of a molecule. Only the outermost electrons of an atom (called electrons)

More information

LCAO APPROXIMATIONS OF ORGANIC Pi MO SYSTEMS The allyl system (cation, anion or radical).

LCAO APPROXIMATIONS OF ORGANIC Pi MO SYSTEMS The allyl system (cation, anion or radical). Principles f Organic Chemistry lecture 5, page LCAO APPROIMATIONS OF ORGANIC Pi MO SYSTEMS The allyl system (catin, anin r radical).. Draw mlecule and set up determinant. 2 3 0 3 C C 2 = 0 C 2 3 0 = -

More information

Chemical Bonding II: Molecular Geometry and Hybridization of Atomic Orbitals Chapter 10

Chemical Bonding II: Molecular Geometry and Hybridization of Atomic Orbitals Chapter 10 Chemical Bonding II: Molecular Geometry and Hybridization of Atomic Orbitals Chapter 10 Linear Trigonal 180 o planar 120 o Tetrahedral 109.5 o Trigonal Bipyramidal 120 and 90 o Octahedral 90 o linear Linear

More information

Chemical Bonding and Molecular Models

Chemical Bonding and Molecular Models 25 Chemical Bonding and Molecular Models A chemical bond is a force that holds groups of two or more atoms together and makes them function as a unit. Bonding involves only the valence (outer shell) electrons

More information

Surface and Contact Stress

Surface and Contact Stress Surface and Cntact Stress The cncept f the frce is fundamental t mechanics and many imprtant prblems can be cast in terms f frces nly, fr example the prblems cnsidered in Chapter. Hwever, mre sphisticated

More information

Intermolecular forces Intermolecular Forces van der Waals forces Ion-dipole forces Dipole-dipole forces

Intermolecular forces Intermolecular Forces van der Waals forces Ion-dipole forces Dipole-dipole forces Intermlecular frces frces that exist between mlecules determines many f the physical prperties f mlecular liquids and slids lead t deviatins frm ideal gas behavir as well Mlecular Cmparisns f Liquids and

More information

Building to Transformations on Coordinate Axis Grade 5: Geometry Graph points on the coordinate plane to solve real-world and mathematical problems.

Building to Transformations on Coordinate Axis Grade 5: Geometry Graph points on the coordinate plane to solve real-world and mathematical problems. Building t Transfrmatins n Crdinate Axis Grade 5: Gemetry Graph pints n the crdinate plane t slve real-wrld and mathematical prblems. 5.G.1. Use a pair f perpendicular number lines, called axes, t define

More information

Unit 9: The Mole- Guided Notes What is a Mole?

Unit 9: The Mole- Guided Notes What is a Mole? Unit 9: The Mle- Guided Ntes What is a Mle? A mle is a name fr a specific f things Similar t a r a One mle is equal t 602 602,000,000,000,000,000,000,000 That s 602 with zers A mle is NOT an abbreviatin

More information

Kinematic transformation of mechanical behavior Neville Hogan

Kinematic transformation of mechanical behavior Neville Hogan inematic transfrmatin f mechanical behavir Neville Hgan Generalized crdinates are fundamental If we assume that a linkage may accurately be described as a cllectin f linked rigid bdies, their generalized

More information

Lewis Structure. Lewis Structures & VSEPR. Octet & Duet Rules. Steps for drawing Lewis Structures

Lewis Structure. Lewis Structures & VSEPR. Octet & Duet Rules. Steps for drawing Lewis Structures Lewis Structure Lewis Structures & VSEPR Lewis Structures shows how the are arranged among the atoms of a molecule There are rules for Lewis Structures that are based on the formation of a Atoms want to

More information

Chapter 9. Lewis Theory-VSEPR Valence Bond Theory Molecular Orbital Theory

Chapter 9. Lewis Theory-VSEPR Valence Bond Theory Molecular Orbital Theory Chapter 9 Lewis Theory-VSEPR Valence Bond Theory Molecular Orbital Theory Problems with Lewis Theory Lewis theory generally predicts trends in properties, but does not give good numerical predictions.

More information

Chemical Bonding II: Molecular Geometry and Hybridization of Atomic Orbitals Chapter 1

Chemical Bonding II: Molecular Geometry and Hybridization of Atomic Orbitals Chapter 1 Chemical Bonding II: Molecular Geometry and Hybridization of Atomic Orbitals Chapter 1 Copyright The McGraw-Hill Companies, Inc. Permission required for reproduction or display. How to get the book of

More information

AP CHEMISTRY CHAPTER 6 NOTES THERMOCHEMISTRY

AP CHEMISTRY CHAPTER 6 NOTES THERMOCHEMISTRY AP CHEMISTRY CHAPTER 6 NOTES THERMOCHEMISTRY Energy- the capacity t d wrk r t prduce heat 1 st Law f Thermdynamics: Law f Cnservatin f Energy- energy can be cnverted frm ne frm t anther but it can be neither

More information

MOLECULAR MODELS OBJECTIVES

MOLECULAR MODELS OBJECTIVES MOLECULAR MODELS OBJECTIVES 1. To learn to draw Lewis structures for common compounds 2. To identify electron pairs as bonding pairs or lone pairs 3. To use electron pair repulsion theory to predict electronic

More information

Move salts to after ionic

Move salts to after ionic Move salts to after ionic BNDING Ahem-I mean, Chemical Bonding n 1. Chemical bond attraction between atoms in a compound or a molecule Forming a bond n a. When a chemical bond is formed, ENERGY is. RELEASED

More information

Guide to Using the Rubric to Score the Caspase-3 Pre-Build Model for Science Olympiad National Competition

Guide to Using the Rubric to Score the Caspase-3 Pre-Build Model for Science Olympiad National Competition Guide t Using the Rubric t Scre the Caspase-3 Pre-Build Mdel fr Science Olympiad 2011-2012 Natinal Cmpetitin These instructins are t help the event supervisr and scring judges use the rubric develped by

More information

Plan o o. I(t) Divide problem into sub-problems Modify schematic and coordinate system (if needed) Write general equations

Plan o o. I(t) Divide problem into sub-problems Modify schematic and coordinate system (if needed) Write general equations STAPLE Physics 201 Name Final Exam May 14, 2013 This is a clsed bk examinatin but during the exam yu may refer t a 5 x7 nte card with wrds f wisdm yu have written n it. There is extra scratch paper available.

More information

Molecular Geometry and Chemical Bonding Theory

Molecular Geometry and Chemical Bonding Theory Molecular Geometry and Chemical Bonding Theory The Valence -Shell Electron -Pair Repulsion (VSEPR) Model predicts the shapes of the molecules and ions by assuming that the valence shell electron pairs

More information

Lewis Dot Formulas and Molecular Shapes

Lewis Dot Formulas and Molecular Shapes Lewis Dot Formulas and Molecular Shapes Introduction A chemical bond is an intramolecular (within the molecule) force holding two or more atoms together. Covalent chemical bonds are formed by valence electrons

More information

Equilibrium of Stress

Equilibrium of Stress Equilibrium f Stress Cnsider tw perpendicular planes passing thrugh a pint p. The stress cmpnents acting n these planes are as shwn in ig. 3.4.1a. These stresses are usuall shwn tgether acting n a small

More information

Chapter 19. Electric Potential Energy and the Electric Potential

Chapter 19. Electric Potential Energy and the Electric Potential Chapter 19 Electric Ptential Energy and the Electric Ptential 19.1 Ptential Energy W mgh mgh GPE GPE 19.1 Ptential Energy 19.1 Ptential Energy W EPE EPE 19. The Electric Ptential Difference W q EPE q EPE

More information

Shapes of Molecules and Hybridization

Shapes of Molecules and Hybridization Shapes of Molecules and Hybridization A. Molecular Geometry Lewis structures provide us with the number and types of bonds around a central atom, as well as any NB electron pairs. They do not tell us the

More information

10-1. The Shapes of Molecules, chapter 10

10-1. The Shapes of Molecules, chapter 10 10-1 The Shapes of Molecules, chapter 10 The Shapes of Molecules; Goals 10.1 Depicting Molecules and Ions with Lewis Structures 10.2 Valence-Shell Electron-Pair Repulsion (VSEPR) Theory 10.3 Molecular

More information

CHAPTER 9 MODELS OF CHEMICAL BONDING

CHAPTER 9 MODELS OF CHEMICAL BONDING CAPTER 9 MODELS OF CEMICAL BONDING 9.1 a) Larger inizatin energy decreases metallic character. b) Larger atmic radius increases metallic character. c) Larger number f uter electrns decreases metallic character.

More information

Find this material useful? You can help our team to keep this site up and bring you even more content consider donating via the link on our site.

Find this material useful? You can help our team to keep this site up and bring you even more content consider donating via the link on our site. Find this material useful? Yu can help ur team t keep this site up and bring yu even mre cntent cnsider dnating via the link n ur site. Still having truble understanding the material? Check ut ur Tutring

More information

Course/ Subject: Chemistry I Grade: Teacher: Hill Oberto Month: September/October (6-8 weeks)

Course/ Subject: Chemistry I Grade: Teacher: Hill Oberto Month: September/October (6-8 weeks) Curse/ Subject: Chemistry I Grade: 11-12 Teacher: Hill Obert Mnth: September/Octber (6-8 weeks) Natinal Benchmark being addressed State Standards Skills/Cmpetencies Assessment Matter Unit I.All matter

More information

Interference is when two (or more) sets of waves meet and combine to produce a new pattern.

Interference is when two (or more) sets of waves meet and combine to produce a new pattern. Interference Interference is when tw (r mre) sets f waves meet and cmbine t prduce a new pattern. This pattern can vary depending n the riginal wave directin, wavelength, amplitude, etc. The tw mst extreme

More information

Chapter 9 Molecular Geometry. Lewis Theory-VSEPR Valence Bond Theory Molecular Orbital Theory

Chapter 9 Molecular Geometry. Lewis Theory-VSEPR Valence Bond Theory Molecular Orbital Theory Chapter 9 Molecular Geometry Lewis Theory-VSEPR Valence Bond Theory Molecular Orbital Theory Sulfanilamide Lewis Structures and the Real 3D-Shape of Molecules Lewis Theory of Molecular Shape and Polarity

More information

Molecular Spectroscopy

Molecular Spectroscopy Prf. Dr. I. Nasser Atmic and mlecular physics -55 (T-) April 0, 0 Mlecular Spectrscpy Fr mlecules (e.g. diatmic), the ttal energy f mlecule is a cntributin f the fllwing: Translatin kinetic energy, E FOR

More information

Chapter 14 GAUSS'S LAW

Chapter 14 GAUSS'S LAW Ch. 14--Gauss's Law Chapter 14 GAU' LAW A.) Flux: 1.) The wrd flux dentes a passage f smething thrugh a bundary r acrss a brder (an influx f immigrants means immigrants are passing ver a cuntry's brders).

More information

AP Physics. Summer Assignment 2012 Date. Name. F m = = + What is due the first day of school? a. T. b. = ( )( ) =

AP Physics. Summer Assignment 2012 Date. Name. F m = = + What is due the first day of school? a. T. b. = ( )( ) = P Physics Name Summer ssignment 0 Date I. The P curriculum is extensive!! This means we have t wrk at a fast pace. This summer hmewrk will allw us t start n new Physics subject matter immediately when

More information