Chem 155 Midterm Exam Page 1 of 10 Spring 2010 Terrill

Size: px
Start display at page:

Download "Chem 155 Midterm Exam Page 1 of 10 Spring 2010 Terrill"

Transcription

1 Chem 155 Midterm Exam Page 1 of 10 ame Signature 1. Mercury (Hg) is is believed to be hazardous to human neurological health at extremely low concentrations. Fortunately EPA Method 45.7 cold vapor atomic fluorescence spectroscopy (CVAAS) is up to the task. a. Your parameters are the following: i. CVAAS has a linear dynamic range of about 0 to 000 ppt (ng/l) Hg. ii. CVAAS requires about 100 ml of sample iii. You have 1000 ppm Hg as a primary standard solution. iv. Assume that you can pipet no less than 100 L and use no volume larger than 100 ml to minimize waste in the following: If necessary If necessary b. You expect the concentration of your environmental sample to be approximately 100 ng/l. Convert this number in to ppb and compare it to the EPA limit of ppb. Is it above or below the limit?. 1 ppb = 1 g/l = 1000 ng/l so 100 ng/l = 0.1 ppb 100 ng = 0.1 ppb c. Give the concentrations of calibration standards that would be appropriate for the analysis of such a sample. (If you don t know the answer to the above question assume 1000 ppb) e.g.: 0.0, 0.1, 0.5 ppb e.g.: 0, 100, 500 ppt d. Describe how you will prepare a diluted stock solution from the 1000 ppm [Hg] standard stock. This will be diluted below to make the calibration standards. 1 st dilution nd dilution rd dilution C1 V1 (pipet) V (vol flask) C unit Final 1000 ppm 0.1 ml 100 ml 1000 ppb 1000 ppb ppt diluted stock solution conc. 1 e. Describe how you will prepare the calibration standards from the 1000 ppm [Hg] standard stock. Target (final) calibration standard conc. / ppb Conc. Of soln. pipetted / ppb Volume pipetted / ml Final volume / ml

2 Chem 155 Midterm Exam Page of 10. Which is a larger interval, the 80% CI or the 95% CI and why? The 95% CI is larger because a larger interval is needed to generate higher confidence in the hypothesis that the true mean lies within the given interval. 4. The following set of measurements were made for determining the iron content of a vitamin tablet (mg per tablet): The expected value is exactly 18.0 mg per tablet. Is there evidence at the 95% confidence level that the iront content of the tablet tested differs from the labeled amount? In your answer, assume that the method is valid, i.e. it is free from significant sources of bias ( ) ( ) ( ) ( ) Yes, there is evidence of difference at 95% CI % confidence interval freedom

3 Chem 155 Midterm Exam Page of When is the method of standard additions helpful? Standard additions is applied when there are matrix effects matrix effects are a difference between the sensitivity of the instrument to the analyte in the sample matrix relative to the standard matrix. 5. What is an internal standard and when is it helpful? An internal standard is a chemical added in equal concentration to all samples and standards that is completely resolved by the instrument from the analyte and all interferants. The internal standard signal is used to monitor and correct for fluctuations in the instrumental sensitivity. 6. What is the function of a reagent blank? A reagent blank is prepared to see if any of the chemicals used in the sample preparation will give a significant signal for the analyte e.g. if there is contamination or interference from the sample preparation step. 7. What is the purpose of a spike recovery analysis? A spike recovery analysis tells you if the sample preparation step is responsible for the loss of analyte. For example, if during sample preparation some analyte is decomposed or lost through filtration or vaporization, a spike recovery analysis will show less than 100% recovery.

4 Chem 155 Midterm Exam Page 4 of Fill in the blanks below: LS = lower state US = upper state GS = ground state hν + US LS + hv stimulated emission gain hν + LS US spontaneous emission loss US LS + hν absorption loss 9. Draw an energy state diagram for the Kr, F and the KrF* excimer as pertains to it s function in the excimer laser. a. Identify the atoms or molecules in all four states. (1) b. Identify the two states involved in the stimulated emission process. (1) c. Draw an arrow indicating the transition that produces laser radiation. (1) Kr* + F Kr F* Upper State for Laser Radiation Produces Laser Radiation Kr + F Kr F Lower State for Laser Radiation 10. What is a population inversion and why is it necessary for gain in the laser?. A population inversion refers to the condition of there existing in the gain medium a larger concentration of upper states than lower states. This conditions ensures that the rate of stimulated emission exceeds that of absorption.

5 Chem 155 Midterm Exam Page 5 of Fill in the blanks: ame of EM regime: Wavelength Predominant Excitation xray 0.1 to 10 nm Core electron Ultraviolet Valence electronic Visible Valence electronic ame of Spectroscopy UV or UVVis Vis or UVVis Infrared.540 m vibrational IR or FTIR 4 Radiowave meter uclear spin MR 1. Draw a Jablonski diagram for an typical fluorescent / phosphorescent organic molecule and identify: a. the ground electronic state, S0 b. the first singlet excited state S1 c. the vibrational levels within S1 d. the triplet excited state T1 e. transitions for absorption of IR radiation f. transitions for absorption of UV radiation g. Fluorescent emission h. Phosphorescent emission 4

6 Chem 155 Midterm Exam Page 6 of 10 If a CzernyTurner monochromator has the following specifications: Holographicallyruled diffraction grating with 049 grooves per mm. 1 m focal length Grating position such that the diffracted angle is 45 degrees Operation in first order 10 6 nm mm mm d. What is the reciprocal linear dispersion effective bandwidth of this monochromator (use appropriate units)? cos( 45 deg) 1 1 m 1000 mm m 0.45 nm mm 0.05 nm 0.45 nm mm e. What slit width would be required to achieve a spectral bandwidth of 0.05 nm? 0.145mm 1. Give an example of a light source for the following: a. broadband UV D emission lamp or Xe arc lamp or Hg emission lamp b. Visible and near infrared Quartzhalogen or quartz tungsten halogen c. Monochromatic visible Laser or hollow cathode lamp

7 Chem 155 Midterm Exam Page 7 of Describe the operation of the PMT using words and a sketch. When a photon strikes the photocathode a photoelectron is emitted. This photoelectron is accelerated by an applied voltage to the first dynode. When the accelerated electron strikes the dynode it emits a cascade of secondary electrons. These secondary electrons in turn are accelerated into the next dynode and so on until a large and easily measurable pulse is generated. 15. Elaborate the acronym for PMT and CCD detector: P hoto M_ultiplier T_ube C_harge C_coupled D_device 16. Draw on the diagram below to indicate the sequence of events that leads to light detection in a CCD pixel. Fill in the boxes with explanatory text. 10V 10V 10V Al contact SiO nsi 1. e are repelled from Al contact, photon (hv) is absorbed in depletion region.. electron hole pair is generated. h+ accumulate at () biased Al contact and e are expelled

8 Chem 155 Midterm Exam Page 8 of 10 Spring 007 Terrill Statistics: lim x Mean : x Average: x avg Population Standard Deviation: Sample Standard Deviation: s x x x lim x x avg 1 Bias or absolute systematic error = x avg s Relative standard deviation = x avg Confidence limits: x±ts n x±z n

9 Chem 155 Midterm Exam Page 9 of 10 Spring 007 Terrill Propagation of Error: Addition/subtraction rule: If: a b± b c± c d± d Multiplication/division rule: If: a b± b c± c d± d Then: Signals: a b c d Then: a a b b c c d d S S b m C General transducer response S min S b Blank Minimum detectable signal Standard Additions: C x C min Blank m bc s mv x Detection Limit C x V s_0 C s V x V x = sample vol C x = sample conc. V s = spike vol C s = spike conc. V T = total vol V S_0 = xintercept Beer's Law: A b C log P P o C k P P o Beer's Law Absorption Emission Boltzmann Partition Function: i o g i g o e k T E k j K 1 Boltzmann Constant

10 Chem 155 Midterm Exam Page 10 of 10 Spring 007 Terrill Electromagnetic (EM) Radiation: Constants: h j s Plank Constant c m s 1 Speed of light in vacuum k j K 1 Boltzmann Constant 1 a mol Avogadro's umber To convert ev to Joules multiply by: J ev Equations: E h Photon Energy c Velocity of light in vacuum Interactions of EM Radiation with Matter: c medum n 1 sin 1 n sin I R I o n n 1 E e Diffraction and Monochromators: n n d ( sin( r) sin( i) ) D 1 h n n 1 d sin y c n medium max T 10 6 d cos( r) n F Effective bandwidth = w D 1 nm K Refractive index Snell's Law of Refraction Fresnel Formula for ormal Incidence Reflection Photoelectric effect Wien Displacement Law for Wien Blackbodies Displacement Law for Blackbodies Grating Equation normal incidence Grating Equation Reciprocal Linear Dispersion R f F d n Resolution Speed

Chem 155 Midterm Exam Page 1 of 10 Spring 2011 Terrill

Chem 155 Midterm Exam Page 1 of 10 Spring 2011 Terrill Chem 155 Midterm Exam Page 1 of 10 Spring 011 Terrill ame Signature Experimental design: 1. Selenium (Se) is toxic and teratogenic above about 100 μg / day. Yet vitamin tablets often list 100 μg of selenium

More information

Because light behaves like a wave, we can describe it in one of two ways by its wavelength or by its frequency.

Because light behaves like a wave, we can describe it in one of two ways by its wavelength or by its frequency. Light We can use different terms to describe light: Color Wavelength Frequency Light is composed of electromagnetic waves that travel through some medium. The properties of the medium determine how light

More information

Complete the following. Clearly mark your answers. YOU MUST SHOW YOUR WORK TO RECEIVE CREDIT.

Complete the following. Clearly mark your answers. YOU MUST SHOW YOUR WORK TO RECEIVE CREDIT. CHEM 322 Name Exam 3 Spring 2013 Complete the following. Clearly mark your answers. YOU MUST SHOW YOUR WORK TO RECEIVE CREDIT. Warm-up (3 points each). 1. In Raman Spectroscopy, molecules are promoted

More information

Lecture 0. NC State University

Lecture 0. NC State University Chemistry 736 Lecture 0 Overview NC State University Overview of Spectroscopy Electronic states and energies Transitions between states Absorption and emission Electronic spectroscopy Instrumentation Concepts

More information

Analytical Spectroscopy Review

Analytical Spectroscopy Review Analytical Spectroscopy Review λ = wavelength ν = frequency V = velocity = ν x λ = 2.998 x 10 8 m/sec = c (in a vacuum) ν is determined by source and does not change as wave propogates, but V can change

More information

25 Instruments for Optical Spectrometry

25 Instruments for Optical Spectrometry 25 Instruments for Optical Spectrometry 25A INSTRUMENT COMPONENTS (1) source of radiant energy (2) wavelength selector (3) sample container (4) detector (5) signal processor and readout (a) (b) (c) Fig.

More information

Instrumental Analysis: Spectrophotometric Methods

Instrumental Analysis: Spectrophotometric Methods Instrumental Analysis: Spectrophotometric Methods 2007 By the end of this part of the course, you should be able to: Understand interaction between light and matter (absorbance, excitation, emission, luminescence,fluorescence,

More information

Spectroscopy: Introduction. Required reading Chapter 18 (pages ) Chapter 20 (pages )

Spectroscopy: Introduction. Required reading Chapter 18 (pages ) Chapter 20 (pages ) Spectroscopy: Introduction Required reading Chapter 18 (pages 378-397) Chapter 20 (pages 424-449) Spectrophotometry is any procedure that uses light to measure chemical concentrations Properties of Light

More information

Introduction to Spectroscopic methods

Introduction to Spectroscopic methods Introduction to Spectroscopic methods Spectroscopy: Study of interaction between light* and matter. Spectrometry: Implies a quantitative measurement of intensity. * More generally speaking electromagnetic

More information

Reference literature. (See: CHEM 2470 notes, Module 8 Textbook 6th ed., Chapters )

Reference literature. (See: CHEM 2470 notes, Module 8 Textbook 6th ed., Chapters ) September 17, 2018 Reference literature (See: CHEM 2470 notes, Module 8 Textbook 6th ed., Chapters 13-14 ) Reference.: https://slideplayer.com/slide/8354408/ Spectroscopy Usual Wavelength Type of Quantum

More information

Course Details. Analytical Techniques Based on Optical Spectroscopy. Course Details. Textbook. SCCH 211: Analytical Chemistry I

Course Details. Analytical Techniques Based on Optical Spectroscopy. Course Details. Textbook. SCCH 211: Analytical Chemistry I SCCH 211: Analytical Chemistry I Analytical Techniques Based on Optical Spectroscopy Course Details September 22 October 10 September 22 November 7 November 17 December 1 Topic Period Introduction to Spectrometric

More information

II. Spectrophotometry (Chapters 17, 19, 20)

II. Spectrophotometry (Chapters 17, 19, 20) II. Spectrophotometry (Chapters 17, 19, 20) FUNDAMENTALS (Chapter 17) Spectrophotometry: any technique that uses light to measure concentrations (here: U and visible - ~190 800 nm) c = 2.99792 x 10 8 m/s

More information

Spectroscopy Problem Set February 22, 2018

Spectroscopy Problem Set February 22, 2018 Spectroscopy Problem Set February, 018 4 3 5 1 6 7 8 1. In the diagram above which of the following represent vibrational relaxations? 1. Which of the following represent an absorbance? 3. Which of following

More information

CHEM*3440. Photon Energy Units. Spectrum of Electromagnetic Radiation. Chemical Instrumentation. Spectroscopic Experimental Concept.

CHEM*3440. Photon Energy Units. Spectrum of Electromagnetic Radiation. Chemical Instrumentation. Spectroscopic Experimental Concept. Spectrum of Electromagnetic Radiation Electromagnetic radiation is light. Different energy light interacts with different motions in molecules. CHEM*344 Chemical Instrumentation Topic 7 Spectrometry Radiofrequency

More information

R O Y G B V. Spin States. Outer Shell Electrons. Molecular Rotations. Inner Shell Electrons. Molecular Vibrations. Nuclear Transitions

R O Y G B V. Spin States. Outer Shell Electrons. Molecular Rotations. Inner Shell Electrons. Molecular Vibrations. Nuclear Transitions Spin States Molecular Rotations Molecular Vibrations Outer Shell Electrons Inner Shell Electrons Nuclear Transitions NMR EPR Microwave Absorption Spectroscopy Infrared Absorption Spectroscopy UV-vis Absorption,

More information

Chemistry 311: Instrumentation Analysis Topic 2: Atomic Spectroscopy. Chemistry 311: Instrumentation Analysis Topic 2: Atomic Spectroscopy

Chemistry 311: Instrumentation Analysis Topic 2: Atomic Spectroscopy. Chemistry 311: Instrumentation Analysis Topic 2: Atomic Spectroscopy Topic 1: Atomic Spectroscopy Text: Chapter 12,13 & 14 Rouessac (~2 weeks) 1.0 Review basic concepts in Spectroscopy 2.0 Atomic Absorption and Graphite Furnace Instruments 3.0 Inductively Coupled Plasmas

More information

Chem 434 -Instrumental Analysis Hour Exam 1

Chem 434 -Instrumental Analysis Hour Exam 1 Do any 8 of the following 9 problems Name: Chem 434 -Instrumental Analysis Hour Exam 1 +2 1. A 25.0 ml sample containing Cu gave an instrument reading of 23.6 units (corrected for a blank). When exactly

More information

Absorption spectrometry summary

Absorption spectrometry summary Absorption spectrometry summary Rehearsal: Properties of light (electromagnetic radiation), dual nature light matter interactions (reflection, transmission, absorption, scattering) Absorption phenomena,

More information

2001 Spectrometers. Instrument Machinery. Movies from this presentation can be access at

2001 Spectrometers. Instrument Machinery. Movies from this presentation can be access at 2001 Spectrometers Instrument Machinery Movies from this presentation can be access at http://www.shsu.edu/~chm_tgc/sounds/sound.html Chp20: 1 Optical Instruments Instrument Components Components of various

More information

Ch 313 FINAL EXAM OUTLINE Spring 2010

Ch 313 FINAL EXAM OUTLINE Spring 2010 Ch 313 FINAL EXAM OUTLINE Spring 2010 NOTE: Use this outline at your own risk sometimes a topic is omitted that you are still responsible for. It is meant to be a study aid and is not meant to be a replacement

More information

Final Exam. Physical Constants and Conversion Factors. Equations

Final Exam. Physical Constants and Conversion Factors. Equations Final Exam Instructions: This exam is worth 100 points. Some questions allow a choice as to which parts are answered. Do not answer more parts than are requested. velocity of light in a vacuum: 3.0x10

More information

Spectroscopy. Page 1 of 8 L.Pillay (2012)

Spectroscopy. Page 1 of 8 L.Pillay (2012) Spectroscopy Electromagnetic radiation is widely used in analytical chemistry. The identification and quantification of samples using electromagnetic radiation (light) is called spectroscopy. Light has

More information

3 - Atomic Absorption Spectroscopy

3 - Atomic Absorption Spectroscopy 3 - Atomic Absorption Spectroscopy Introduction Atomic-absorption (AA) spectroscopy uses the absorption of light to measure the concentration of gas-phase atoms. Since samples are usually liquids or solids,

More information

Chem 310 rd. 3 Homework Set Answers

Chem 310 rd. 3 Homework Set Answers -1- Chem 310 rd 3 Homework Set Answers 1. A double line labeled S 0 represents the _ground electronic_ state and the _ground vibrational_ state of a molecule in an excitation state diagram. Light absorption

More information

Observation of Atomic Spectra

Observation of Atomic Spectra Observation of Atomic Spectra Introduction In this experiment you will observe and measure the wavelengths of different colors of light emitted by atoms. You will first observe light emitted from excited

More information

Skoog Chapter 6 Introduction to Spectrometric Methods

Skoog Chapter 6 Introduction to Spectrometric Methods Skoog Chapter 6 Introduction to Spectrometric Methods General Properties of Electromagnetic Radiation (EM) Wave Properties of EM Quantum Mechanical Properties of EM Quantitative Aspects of Spectrochemical

More information

Reflection = EM strikes a boundary between two media differing in η and bounces back

Reflection = EM strikes a boundary between two media differing in η and bounces back Reflection = EM strikes a boundary between two media differing in η and bounces back Incident ray θ 1 θ 2 Reflected ray Medium 1 (air) η = 1.00 Medium 2 (glass) η = 1.50 Specular reflection = situation

More information

n ( λ ) is observed. Further, the bandgap of the ZnTe semiconductor is

n ( λ ) is observed. Further, the bandgap of the ZnTe semiconductor is Optical Spectroscopy Lennon O Naraigh, 0000 Date of Submission: 0 th May 004 Abstract: This experiment is an exercise in the principles and practice of optical spectroscopy. The continuous emission spectrum

More information

10/2/2008. hc λ. νλ =c. proportional to frequency. Energy is inversely proportional to wavelength And is directly proportional to wavenumber

10/2/2008. hc λ. νλ =c. proportional to frequency. Energy is inversely proportional to wavelength And is directly proportional to wavenumber CH217 Fundamentals of Analytical Chemistry Module Leader: Dr. Alison Willows Electromagnetic spectrum Properties of electromagnetic radiation Many properties of electromagnetic radiation can be described

More information

Chemistry 311: Instrumentation Analysis Topic 2: Atomic Spectroscopy. Chemistry 311: Instrumentation Analysis Topic 2: Atomic Spectroscopy

Chemistry 311: Instrumentation Analysis Topic 2: Atomic Spectroscopy. Chemistry 311: Instrumentation Analysis Topic 2: Atomic Spectroscopy Topic 2b: X-ray Fluorescence Spectrometry Text: Chapter 12 Rouessac (1 week) 4.0 X-ray Fluorescence Download, read and understand EPA method 6010C ICP-OES Winter 2009 Page 1 Atomic X-ray Spectrometry Fundamental

More information

ADVANCED ANALYTICAL LAB TECH (Lecture) CHM

ADVANCED ANALYTICAL LAB TECH (Lecture) CHM ADVANCED ANALYTICAL LAB TECH (Lecture) CHM 4130-0001 Spring 2015 Professor Andres D. Campiglia Textbook: Principles of Instrumental Analysis Skoog, Holler and Crouch, 5 th Edition, 6 th Edition or newest

More information

Cork Institute of Technology. Summer 2005 Instrumental Analysis (Time: 3 Hours) Section A

Cork Institute of Technology. Summer 2005 Instrumental Analysis (Time: 3 Hours) Section A Cork Institute of Technology Higher Certificate in Science in Applied Biology Award (National Certificate in Science in Applied Biology Award) Answer FIVE questions; answer Section A, TWO questions from

More information

Overview of Spectroscopy

Overview of Spectroscopy Overview of Spectroscopy A. Definition: Interaction of EM Radiation with Matter We see objects because they remit some part of the light falling on them from a source. We function as reflection/ transmission

More information

Experiment objectives: measure the ratio of Planck s constant to the electron charge h/e using the photoelectric effect.

Experiment objectives: measure the ratio of Planck s constant to the electron charge h/e using the photoelectric effect. Chapter 1 Photoelectric Effect Experiment objectives: measure the ratio of Planck s constant to the electron charge h/e using the photoelectric effect. History The photoelectric effect and its understanding

More information

MOLECULAR AND ATOMIC SPECTROSCOPY

MOLECULAR AND ATOMIC SPECTROSCOPY MOLECULAR AND ATOMIC SPECTROSCOPY 1. General Background on Molecular Spectroscopy 3 1.1. Introduction 3 1.2. Beer s Law 5 1.3. Instrumental Setup of a Spectrophotometer 12 1.3.1. Radiation Sources 13 1.3.2.

More information

Chemistry 524--Final Exam--Keiderling May 4, :30 -?? pm SES

Chemistry 524--Final Exam--Keiderling May 4, :30 -?? pm SES Chemistry 524--Final Exam--Keiderling May 4, 2011 3:30 -?? pm -- 4286 SES Please answer all questions in the answer book provided. Calculators, rulers, pens and pencils are permitted. No open books or

More information

1 Electrons are emitted from a metal surface when it is illuminated with suitable electromagnetic radiation. ...[1]

1 Electrons are emitted from a metal surface when it is illuminated with suitable electromagnetic radiation. ...[1] 1 Electrons are emitted from a metal surface when it is illuminated with suitable electromagnetic radiation. 1 (a) (b) Name the effect described above....[1] The variation with frequency f of the maximum

More information

Chemistry Instrumental Analysis Lecture 19 Chapter 12. Chem 4631

Chemistry Instrumental Analysis Lecture 19 Chapter 12. Chem 4631 Chemistry 4631 Instrumental Analysis Lecture 19 Chapter 12 There are three major techniques used for elemental analysis: Optical spectrometry Mass spectrometry X-ray spectrometry X-ray Techniques include:

More information

Chemistry Instrumental Analysis Lecture 2. Chem 4631

Chemistry Instrumental Analysis Lecture 2. Chem 4631 Chemistry 4631 Instrumental Analysis Lecture 2 Electromagnetic Radiation Can be described by means of a classical sinusoidal wave model. Oscillating electric and magnetic field. (Wave model) wavelength,

More information

1) Introduction 2) Photo electric effect 3) Dual nature of matter 4) Bohr s atom model 5) LASERS

1) Introduction 2) Photo electric effect 3) Dual nature of matter 4) Bohr s atom model 5) LASERS 1) Introduction 2) Photo electric effect 3) Dual nature of matter 4) Bohr s atom model 5) LASERS 1. Introduction Types of electron emission, Dunnington s method, different types of spectra, Fraunhoffer

More information

Chemistry 155 Introduction to Instrumental Analytical Chemistry

Chemistry 155 Introduction to Instrumental Analytical Chemistry Chem 155 Unit 1 Page 1 of 316 Chemistry 155 Introduction to Instrumental Analytical Chemistry Unit 1 Spring 2010 San Jose State University Roger Terrill Page 1 of 316 Chem 155 Unit 1 Page 2 of 316 1 Overview

More information

Ultraviolet-Visible and Infrared Spectrophotometry

Ultraviolet-Visible and Infrared Spectrophotometry Ultraviolet-Visible and Infrared Spectrophotometry Ahmad Aqel Ifseisi Assistant Professor of Analytical Chemistry College of Science, Department of Chemistry King Saud University P.O. Box 2455 Riyadh 11451

More information

INTRODUCTION Atomic fluorescence spectroscopy ( AFS ) depends on the measurement of the emission ( fluorescence ) emitted from gasphase analyte atoms

INTRODUCTION Atomic fluorescence spectroscopy ( AFS ) depends on the measurement of the emission ( fluorescence ) emitted from gasphase analyte atoms INTRODUCTION Atomic fluorescence spectroscopy ( AFS ) depends on the measurement of the emission ( fluorescence ) emitted from gasphase analyte atoms that have been excited to higher energy levels by absorption

More information

Chem 321 Lecture 18 - Spectrophotometry 10/31/13

Chem 321 Lecture 18 - Spectrophotometry 10/31/13 Student Learning Objectives Chem 321 Lecture 18 - Spectrophotometry 10/31/13 In the lab you will use spectrophotometric techniques to determine the amount of iron, calcium and magnesium in unknowns. Although

More information

What is spectroscopy?

What is spectroscopy? Absorption Spectrum What is spectroscopy? Studying the properties of matter through its interaction with different frequency components of the electromagnetic spectrum. With light, you aren t looking directly

More information

Model Answer (Paper code: AR-7112) M. Sc. (Physics) IV Semester Paper I: Laser Physics and Spectroscopy

Model Answer (Paper code: AR-7112) M. Sc. (Physics) IV Semester Paper I: Laser Physics and Spectroscopy Model Answer (Paper code: AR-7112) M. Sc. (Physics) IV Semester Paper I: Laser Physics and Spectroscopy Section I Q1. Answer (i) (b) (ii) (d) (iii) (c) (iv) (c) (v) (a) (vi) (b) (vii) (b) (viii) (a) (ix)

More information

Chapter 17: Fundamentals of Spectrophotometry

Chapter 17: Fundamentals of Spectrophotometry Chapter 17: Fundamentals of Spectrophotometry Spectroscopy: the science that deals with interactions of matter with electromagnetic radiation or other forms energy acoustic waves, beams of particles such

More information

Properties of Electromagnetic Radiation Chapter 5. What is light? What is a wave? Radiation carries information

Properties of Electromagnetic Radiation Chapter 5. What is light? What is a wave? Radiation carries information Concepts: Properties of Electromagnetic Radiation Chapter 5 Electromagnetic waves Types of spectra Temperature Blackbody radiation Dual nature of radiation Atomic structure Interaction of light and matter

More information

MASTERING THE VCE 2014 UNIT 3 CHEMISTRY STUDENT SOLUTIONS

MASTERING THE VCE 2014 UNIT 3 CHEMISTRY STUDENT SOLUTIONS MASTERING THE VCE 2014 UNIT 3 CHEMISTRY STUDENT SOLUTIONS FOR ERRORS AND UPDATES, PLEASE VISIT WWW.TSFX.COM.AU/VCE-UPDATES QUESTION 45 QUESTION 46 Answer is A QUESTION 47 The number of protons in the element.

More information

Spectrochemical methods

Spectrochemical methods Spectrochemical methods G. Galbács The interactions of radiations and matter are the subject of spectroscopy py or spectrochemical methods (also called spectrometry). Spectrochemical methods usually measure

More information

PhysicsAndMathsTutor.com 1

PhysicsAndMathsTutor.com 1 Q1. When a clean metal surface in a vacuum is irradiated with ultraviolet radiation of a certain frequency, electrons are emitted from the metal. (a) Explain why the kinetic energy of the emitted electrons

More information

Chapter 17: Fundamentals of Spectrophotometry

Chapter 17: Fundamentals of Spectrophotometry Chapter 17: Fundamentals of Spectrophotometry Spectroscopy: the science that deals with interactions of matter with electromagnetic radiation or other forms energy acoustic waves, beams of particles such

More information

Chapters 28 and 29: Quantum Physics and Atoms Solutions

Chapters 28 and 29: Quantum Physics and Atoms Solutions Chapters 8 and 9: Quantum Physics and Atoms Solutions Chapter 8: Questions: 3, 8, 5 Exercises & Problems:, 6, 0, 9, 37, 40, 48, 6 Chapter 9: Questions, 6 Problems 3, 5, 8, 9 Q8.3: How does Einstein's explanation

More information

Photoelectric effect

Photoelectric effect Laboratory#3 Phys4480/5480 Dr. Cristian Bahrim Photoelectric effect In 1900, Planck postulated that light is emitted and absorbed in discrete but tiny bundles of energy, E = hν, called today photons. Here

More information

[2] (b) An electron is accelerated from rest through a potential difference of 300 V.

[2] (b) An electron is accelerated from rest through a potential difference of 300 V. 1 (a) In atomic physics electron energies are often stated in electronvolts (ev) Define the electronvolt. State its value in joule.. [2] (b) An electron is accelerated from rest through a potential difference

More information

The relationship between these aspects is described by the following equation: E = hν =

The relationship between these aspects is described by the following equation: E = hν = 1 Learning Outcomes EXPERIMENT A10: LINE SPECTRUM Upon completion of this lab, the student will be able to: 1) Examine the line spectrum of the hydrogen atom. 2) Calculate the frequency and energy of the

More information

FLAME PHOTOMETRY AIM INTRODUCTION

FLAME PHOTOMETRY AIM INTRODUCTION FLAME PHOTOMETRY AIM INTRODUCTION Atomic spectroscopy is based on the absorption, emission or fluorescence process of light by atoms or elementary ions. Information for atomic scale is obtained in two

More information

Outline of Recombinant DNA technology. Application of UV spectroscopy in recombinant DNA technology

Outline of Recombinant DNA technology. Application of UV spectroscopy in recombinant DNA technology NIKHIL.K.POTDUKHE Outline of UV spectrophotometer Outline of Recombinant DNA technology Application of UV spectroscopy in recombinant DNA technology References Lambert law: When a beam of light is allowed

More information

Chapter 3. Electromagnetic Theory, Photons. and Light. Lecture 7

Chapter 3. Electromagnetic Theory, Photons. and Light. Lecture 7 Lecture 7 Chapter 3 Electromagnetic Theory, Photons. and Light Sources of light Emission of light by atoms The electromagnetic spectrum see supplementary material posted on the course website Electric

More information

Lecture 3: Light absorbance

Lecture 3: Light absorbance Lecture 3: Light absorbance Perturbation Response 1 Light in Chemistry Light Response 0-3 Absorbance spectrum of benzene 2 Absorption Visible Light in Chemistry S 2 S 1 Fluorescence http://www.microscopyu.com

More information

2101 Atomic Spectroscopy

2101 Atomic Spectroscopy 2101 Atomic Spectroscopy Atomic identification Atomic spectroscopy refers to the absorption and emission of ultraviolet to visible light by atoms and monoatomic ions. It is best used to analyze metals.

More information

Explain how line spectra are produced. In your answer you should describe:

Explain how line spectra are produced. In your answer you should describe: The diagram below shows the line spectrum of a gas. Explain how line spectra are produced. In your answer you should describe: how the collisions of charged particles with gas atoms can cause the atoms

More information

The Emission Spectra of Light

The Emission Spectra of Light The Emission Spectra of Light Objectives: Theory: 1.... measured the wavelength limits of the color bands in the visible spectrum, 2.... measured the wavelengths of the emission lines of the hydrogen Balmer

More information

A Fluorometric Analysis of Quinine in Tonic Water

A Fluorometric Analysis of Quinine in Tonic Water A Fluorometric Analysis of Quinine in Tonic Water CHEM 329 Professor Vogt TA: Sam Rosolina Allison Poget Date Performed: March 29, 2016 Date Submitted: April 5, 2016 ABSTRACT In this experimental, various

More information

2 SPECTROSCOPIC ANALYSIS

2 SPECTROSCOPIC ANALYSIS 2 SPECTROSCOPIC ANALYSIS 2.1 Introduction Chemical analysis falls into two basic categories: qualitative what is present quantitative how much is present Spectroscopy is capable of both types of analysis,

More information

Chem Homework Set Answers

Chem Homework Set Answers Chem 310 th 4 Homework Set Answers 1. Cyclohexanone has a strong infrared absorption peak at a wavelength of 5.86 µm. (a) Convert the wavelength to wavenumber.!6!1 8* = 1/8 = (1/5.86 µm)(1 µm/10 m)(1 m/100

More information

Analytical Chemistry II

Analytical Chemistry II Analytical Chemistry II L4: Signal processing (selected slides) Computers in analytical chemistry Data acquisition Printing final results Data processing Data storage Graphical display https://www.creativecontrast.com/formal-revolution-of-computer.html

More information

ATMO/OPTI 656b Spring 2009

ATMO/OPTI 656b Spring 2009 Nomenclature and Definition of Radiation Quantities The various Radiation Quantities are defined in Table 2-1. Keeping them straight is difficult and the meanings may vary from textbook to textbook. I

More information

Photochemical principles

Photochemical principles Chapter 1 Photochemical principles Dr. Suzan A. Khayyat 1 Photochemistry Photochemistry is concerned with the absorption, excitation and emission of photons by atoms, atomic ions, molecules, molecular

More information

JABLONSKI DIAGRAM 2/15/16

JABLONSKI DIAGRAM 2/15/16 INDICATE THE EXCITED AND GROUND SINGLET AND TRIPLET STATES. INDICATE THE FOLLOWING TRANSITIONS: ABSORPTION, FLUORESCENCE, PHOSPHORESCENCE, NONRADIATIVE DECAY, INTERNAL CONVERSION AND INTERSYSTEM CROSSING.

More information

Wavelength λ Velocity v. Electric Field Strength Amplitude A. Time t or Distance x time for 1 λ to pass fixed point. # of λ passing per s ν= 1 p

Wavelength λ Velocity v. Electric Field Strength Amplitude A. Time t or Distance x time for 1 λ to pass fixed point. # of λ passing per s ν= 1 p Introduction to Spectroscopy (Chapter 6) Electromagnetic radiation (wave) description: Wavelength λ Velocity v Electric Field Strength 0 Amplitude A Time t or Distance x Period p Frequency ν time for 1

More information

high temp ( K) Chapter 20: Atomic Spectroscopy

high temp ( K) Chapter 20: Atomic Spectroscopy high temp (2000-6000K) Chapter 20: Atomic Spectroscopy 20-1. An Overview Most compounds Atoms in gas phase high temp (2000-6000K) (AES) (AAS) (AFS) sample Mass-to-charge (ICP-MS) Atomic Absorption experiment

More information

Chapter 6 Photoluminescence Spectroscopy

Chapter 6 Photoluminescence Spectroscopy Chapter 6 Photoluminescence Spectroscopy Course Code: SSCP 4473 Course Name: Spectroscopy & Materials Analysis Sib Krishna Ghoshal (PhD) Advanced Optical Materials Research Group Physics Department, Faculty

More information

ANALYSIS OF ZINC IN HAIR USING FLAME ATOMIC ABSORPTION SPECTROSCOPY

ANALYSIS OF ZINC IN HAIR USING FLAME ATOMIC ABSORPTION SPECTROSCOPY ANALYSIS OF ZINC IN HAIR USING FLAME ATOMIC ABSORPTION SPECTROSCOPY Introduction The purpose of this experiment is to determine the concentration of zinc in a sample of hair. You will use both the calibration

More information

Atomization. In Flame Emission

Atomization. In Flame Emission FLAME SPECTROSCOPY The concentration of an element in a solution is determined by measuring the absorption, emission or fluorescence of electromagnetic by its monatomic particles in gaseous state in the

More information

6. A solution of red Kool-Aid transmits light at a wavelength range of nm.

6. A solution of red Kool-Aid transmits light at a wavelength range of nm. I. Multiple Choice (15 pts) 1. FRET stands for a. Fluorescence Recovery Electron Transfer b. Fluorescence Resonance Energy Transfer c. Fluorescence Recovery Energy Transfer 2. Fluorescence involves the

More information

Reference. What is spectroscopy? What is Light? / EMR 11/15/2015. Principles of Spectroscopy. Processes in Spectroscopy

Reference. What is spectroscopy? What is Light? / EMR 11/15/2015. Principles of Spectroscopy. Processes in Spectroscopy Chapter 2 Principles of Spectroscopy EST 3203 Instrumental Analysis Rezaul Karim Environmental Science and Technology Jessore Science and Technology University Principles of Spectroscopy Electromagnetic

More information

Wavelength Frequency Measurements

Wavelength Frequency Measurements Wavelength Frequency Measurements Frequency: - unit to be measured most accurately in physics - frequency counters + frequency combs (gear wheels) - clocks for time-frequency Wavelength: - no longer fashionable

More information

24 Introduction to Spectrochemical Methods

24 Introduction to Spectrochemical Methods 24 Introduction to Spectrochemical Methods Spectroscopic method: based on measurement of the electromagnetic radiation produced or absorbed by analytes. electromagnetic radiation: include γ-ray, X-ray,

More information

Ch. 6: Introduction to Spectroscopic methods

Ch. 6: Introduction to Spectroscopic methods Ch. 6: Introduction to Spectroscopic methods Spectroscopy: A branch of science that studies the interaction between EM radiation and matter. Spectrometry and Spectrometric methods : Measurement of the

More information

The Fluorometric Determination of Acetylsalicylic Acid in an Aspirin Tablet

The Fluorometric Determination of Acetylsalicylic Acid in an Aspirin Tablet The Fluorometric Determination of Acetylsalicylic Acid in an Aspirin Tablet Introduction: Fluorescence is the emission of radiation from an atom or polyatomic species after the substance has been exposed

More information

2. Discrete means unique, that other states don t overlap it. 3. Electrons in the outer electron shells have greater potential energy.

2. Discrete means unique, that other states don t overlap it. 3. Electrons in the outer electron shells have greater potential energy. 30 Light Emission Answers and Solutions for Chapter 30 Reading Check Questions 1. At these high frequencies, ultraviolet light is emitted. 2. Discrete means unique, that other states don t overlap it.

More information

Homework Due by 5PM September 20 (next class) Does everyone have a topic that has been approved by the faculty?

Homework Due by 5PM September 20 (next class) Does everyone have a topic that has been approved by the faculty? Howdy Folks. Homework Due by 5PM September 20 (next class) 5-Problems Every Week due 1 week later. Does everyone have a topic that has been approved by the faculty? Practice your presentation as I will

More information

IR Spectrography - Absorption. Raman Spectrography - Scattering. n 0 n M - Raman n 0 - Rayleigh

IR Spectrography - Absorption. Raman Spectrography - Scattering. n 0 n M - Raman n 0 - Rayleigh RAMAN SPECTROSCOPY Scattering Mid-IR and NIR require absorption of radiation from a ground level to an excited state, requires matching of radiation from source with difference in energy states. Raman

More information

Lecture # 09: Technical Basis for Optical Instrumentation

Lecture # 09: Technical Basis for Optical Instrumentation AerE 344 Lecture Notes Lecture # 09: Technical Basis for Optical Instrumentation Dr. Hui Hu Department of Aerospace Engineering Iowa State University Ames, Iowa 50011, U.S.A The nature of light According

More information

Ultraviolet-Visible and Infrared Spectrophotometry

Ultraviolet-Visible and Infrared Spectrophotometry Ultraviolet-Visible and Infrared Spectrophotometry Ahmad Aqel Ifseisi Assistant Professor of Analytical Chemistry College of Science, Department of Chemistry King Saud University P.O. Box 2455 Riyadh 11451

More information

If you like us, please share us on social media. The latest UCD Hyperlibrary newsletter is now complete, check it out.

If you like us, please share us on social media. The latest UCD Hyperlibrary newsletter is now complete, check it out. Sign In Forgot Password Register username username password password Sign In If you like us, please share us on social media. The latest UCD Hyperlibrary newsletter is now complete, check it out. ChemWiki

More information

Physics 30: Chapter 5 Exam Wave Nature of Light

Physics 30: Chapter 5 Exam Wave Nature of Light Physics 30: Chapter 5 Exam Wave Nature of Light Name: Date: Mark: /33 Numeric Response. Place your answers to the numeric response questions, with units, in the blanks at the side of the page. (1 mark

More information

MS482 Materials Characterization ( 재료분석 ) Lecture Note 4: XRF

MS482 Materials Characterization ( 재료분석 ) Lecture Note 4: XRF 2016 Fall Semester MS482 Materials Characterization ( 재료분석 ) Lecture Note 4: XRF Byungha Shin Dept. of MSE, KAIST 1 Course Information Syllabus 1. Overview of various characterization techniques (1 lecture)

More information

An Introduction to Diffraction and Scattering. School of Chemistry The University of Sydney

An Introduction to Diffraction and Scattering. School of Chemistry The University of Sydney An Introduction to Diffraction and Scattering Brendan J. Kennedy School of Chemistry The University of Sydney 1) Strong forces 2) Weak forces Types of Forces 3) Electromagnetic forces 4) Gravity Types

More information

9/28/10. Visible and Ultraviolet Molecular Spectroscopy - (S-H-C Chapters 13-14) Valence Electronic Structure. n σ* transitions

9/28/10. Visible and Ultraviolet Molecular Spectroscopy - (S-H-C Chapters 13-14) Valence Electronic Structure. n σ* transitions Visible and Ultraviolet Molecular Spectroscopy - (S-H-C Chapters 13-14) Electromagnetic Spectrum - Molecular transitions Widely used in chemistry. Perhaps the most widely used in Biological Chemistry.

More information

Particles and Waves Particles Waves

Particles and Waves Particles Waves Particles and Waves Particles Discrete and occupy space Exist in only one location at a time Position and velocity can be determined with infinite accuracy Interact by collisions, scattering. Waves Extended,

More information

Chemistry 213 Practical Spectroscopy

Chemistry 213 Practical Spectroscopy Chemistry 213 Practical Spectroscopy Dave Berg djberg@uvic.ca Elliott 314 A course in determining structure by spectroscopic methods Different types of spectroscopy afford different information about molecules

More information

EXPERIMENT 18 THE PHOTOELECTRIC EFFECT

EXPERIMENT 18 THE PHOTOELECTRIC EFFECT 220 18-1 I. THEORY EXPERIMENT 18 THE PHOTOELECTRIC EFFECT When light or other electromagnetic waves of sufficiently high frequency fall on a metal surface, they cause electrons to be emitted by the surface.

More information

Photoelectron spectroscopy Instrumentation. Nanomaterials characterization 2

Photoelectron spectroscopy Instrumentation. Nanomaterials characterization 2 Photoelectron spectroscopy Instrumentation Nanomaterials characterization 2 RNDr. Věra V Vodičkov ková,, PhD. Photoelectron Spectroscopy general scheme Impact of X-ray emitted from source to the sample

More information

Chapter 9: Quantization of Light

Chapter 9: Quantization of Light Chapter 9: Quantization of Light Max Planck started the revolution of quantum theory by challenging the classical physics and the classical wave theory of light. He proposed the concept of quantization

More information

Electron temperature is the temperature that describes, through Maxwell's law, the kinetic energy distribution of the free electrons.

Electron temperature is the temperature that describes, through Maxwell's law, the kinetic energy distribution of the free electrons. 10.3.1.1 Excitation and radiation of spectra 10.3.1.1.1 Plasmas A plasma of the type occurring in spectrochemical radiation sources may be described as a gas which is at least partly ionized and contains

More information

Ultraviolet/ Visible Absorption Spectroscopy

Ultraviolet/ Visible Absorption Spectroscopy CHEM*3440 Ultraviolet/ Visible Absorption Spectroscopy Widely used in Chemistry. Perhaps the most widely used in Biological Chemistry. Easy to do. Very easy to do wrong. Understand your experiment. CHEM

More information

Spectroscopy Primer. for ultraviolet and visible absorbance spectroscopy. by Stephanie Myers Summer 2015

Spectroscopy Primer. for ultraviolet and visible absorbance spectroscopy. by Stephanie Myers Summer 2015 Spectroscopy Primer for ultraviolet and visible absorbance spectroscopy by Stephanie Myers Summer 2015 Abstract: An overview of uv vis absorbance spectroscopy including Beer s Law, calibration curves,

More information