SUPPORTING INFORMATION. Influence of plasmonic Au nanoparticles on the photoactivity of

Size: px
Start display at page:

Download "SUPPORTING INFORMATION. Influence of plasmonic Au nanoparticles on the photoactivity of"

Transcription

1 SUPPORTING INFORMATION Influence of plasmonic Au nanoparticles on the photoactivity of Fe 2 O 3 electrodes for water splitting Elijah Thimsen, Florian Le Formal, Michael Grätzel and Scott C. Warren* Interband Absorption. The goal here is to determine the functional form of the component in the absorbance spectrum arising from interband absorption, to subtract it from the measured uv-visible absorbance spectra and arrive at the absorbance from the surface plasmon resonance. The optical properties of a material can be described by its frequency dependent, complex dielectric function: (s1) Where Є 1 is the real component and Є 2 is the imaginary component. In free-electron metals, the dielectric function contains a component that arises from absorption by conduction electrons, resulting in an oscillation of the electron density at a resonance frequency, which is an intraband transition. In noble metals, the dielectric function also contains a component arising from the excitation of single electrons to an excited state above the Fermi level, which is an 1

2 interband transition. It is assumed here that the interband component is not size dependent, if the particle diameter is greater than 10 nm. 1 In Au, the frequencies of the intraband and interband transitions can partially overlap. 1 The total (experimental) complex dielectric function can be expressed in terms of its components from the two transitions: 2 (s2) (s3) (s4) Where Є f is the intraband component and δє b is the interband component. From equation (s2), it can be seen that once either component has been calculated, the other can be readily determined by simply subtracting from the experimental dielectric function. The intraband component can be calculated using the Drude-Lorentz-Sommerfeld model: 1 1 Γ 1 Γ Γ Γ (s5) Where is the Drude plasma frequency and 8.8 for Au, 2 Γ is the relaxation fequency, ν f = 1.39 x 10 6 m/s is the Fermi velocity, 3 and l = 42 x 10-9 m is the electron mean free path. 1 After calculation of the intraband component from equation (s5), the interband component is obtained from (s2) using experimental data from the literature. 4 The interband absorption is a function of the joint density of states of the Au band structure and the transition matrix. 5 If it is assumed that the transition matrix is constant, i.e. the transition probability is constant, then: 5 2

3 (s6) Where is the joint density of states and is the absorption cross section, which is proportional to the absorbance by the concentration and path length. The term is plotted as a function of photon wavelengthh along with the absorbance spectrum of the 48 nm Au nanoparticles on hematite in Figure S1. The term was adjusted using a linear scaling factor to set the two spectra equal at λ=350 nm, wheree the interband absorbance is expected to dominate the spectra. Figure S1: Measured absorbance spectrum for 48 nm Au nanoparticles on silicon-doped Fe 2 O 3 platelets taken from Figure 3 (black-solid) ); calculatedd interband absorbance spectrum using equation (s6) with rad s -1 as the frequency unit and a linear scaling factor of 2.2x10-33 (blue- dashed); difference spectrum ( dashed-red) between the measured spectrum and theoretical interband, which approximates the surface plasmon absorbance of the sample. 3

4 Calculation of the absorption and scattering cross sections of the Au nanoparticles. The ratio of the absorption to the scattering cross section can be used to estimate the probability of one process occurring over the other, with the larger cross section having a higher probability of occurrence. The absorption and scattering cross sections of spherical particles that are small with respect to the wavelength of light can be estimated by the following equations: 6 (s7) (s8) where k is the wave number, α is the complex particle polarizability, and Im{α} is the imaginary component of the complex polarizability. The complex polarizability can be calculated using the following equation: 6 4 (s9) where a is the particle radius, ε is the complex dielectric function for Au, and ε m is the dielectric constant of the embedding medium. The ratio of the absorption cross section to the scattering cross section is plotted in Figure S2 for embedding in air and Fe 2 O 3. In both cases it can be clearly seen that the absorption cross section is more than 10 times larger than the scattering cross section. 4

5 Figure S2: Ratio of the absorbance to the scattering cross sections for 48 nm diameter Au nanoparticles embedded in air and Fe 2 O 3. Comparison of nanoparticles in solution with those adsorbed onto an electrode Gold nanoparticles with a diameter of 50 nm were synthesized following literature protocols using a sodium citrate-driven growth to a 50 nm diameter. 7 UV-vis spectra were recorded between 380 nm and reduction to form seeds with a 20-nm followed by a hydroxylamine hydrochloride-driven 800 nm before and after adsorption of the gold particles onto platelet-type USP hematitee electrodes. Adsorption of the particles onto the hematite electrode was performed using electrophoretic deposition, as described below. 5

6 Figure S3: (a) uv-visible absorbance of the as-made hematite platelets and the hematite platelets modifiedd with 50-nm Au nanoparticles. (b) uv-visible absorbance: the blue line is the difference spectrum of the spectra in part (a) of the figure; the red line is for 50-nm gold nanoparticles in aqueous solution. Au nanoparticles deposited by electrophoresis. Citrate-stabili ized Au particles were synthesized following a procedure from the literature, 8 and had a mean size of 15.0 nm and standard deviation off 1.5 nm, as measured by TEM. The citrate-stabilized gold nanoparticles were deposited by electrophoretic deposition. A field of 30 V/cm was applied for 30 minutes to deposit the nanoparticles using a Pt counter electrodee held at negative potentials relative to the working electrodee (α-fe 2 O 3 nanoplatelet thin 6

7 film). After deposition, the particle size distribution had d broadened, with a mean particle size of 11.6 nm and a standard deviation of 3.8 nm as measured by SEM. Figure S4: SEM images of the hematite platelets (a) before and (b) after electrophorectic deposition of 15 nm Au nanoparticles; and (c) size distribution of Au nanoparticles measured from TEM images before deposition and SEM images after deposition onto the hematite platelets. 7

8 Figure S5: Current density as a function of electrode potential under (a) chopped simulated AM1.5 illumination at a frequency of 0.5 Hz (b) under continuous simulated AM1.5 illumination. 8

9 Figure S6: Spectral characteristi ics of the as-made (a) uv-visible absorbance, (b) IPCE measured at 1.4 V/RHE and (c) normalized IPCE measured at 1.4 V/RHE. The normalized IPCE in panel (c) was normalized with respect to the IPCE at 350 hematite platelets and hematite platelets modifiedd with 15 nm Au nanoparticles: nm. 9

10 Cited Literature. (1) Kreibig, U.; Vollmer, M. Optical properties of metal clusters; Springer: Berlin ; New York, (2) Cooper, B. R.; Ehrenrei.H; Philipp, H. R. Physical Review 1965, 138, A494. (3) Kittel, C. Introduction to solid state physics; 8th ed.; Wiley: Hoboken, NJ, (4) Johnson, P. B.; Christy, R. W. Physical Review B 1972, 6, (5) Christensen, N. E.; Seraphin, B. O. Physical Review B Solid State 1971, 4, (6) Bohren, C. F.; Huffman, D. R. Absorption and scattering of light by small particles; Wiley: New York, (7) Turkevich, J.; Stevenson, P. C.; Hillier, J. Discuss. Faraday Soc. 1951, 11, 55. (8) LizMarzan, L. M.; Giersig, M.; Mulvaney, P. Langmuir 1996, 12,

Optical and Photonic Glasses. Lecture 39. Non-Linear Optical Glasses III Metal Doped Nano-Glasses. Professor Rui Almeida

Optical and Photonic Glasses. Lecture 39. Non-Linear Optical Glasses III Metal Doped Nano-Glasses. Professor Rui Almeida Optical and Photonic Glasses : Non-Linear Optical Glasses III Metal Doped Nano-Glasses Professor Rui Almeida International Materials Institute For New Functionality in Glass Lehigh University Metal-doped

More information

Supporting Information

Supporting Information Supporting Information Improved Working Model for Interpreting the Excitation Wavelength- and Fluence-Dependent Response in Pulsed aser-induced Size Reduction of Aqueous Gold Nanoparticles Daniel Werner

More information

Supplementary Information

Supplementary Information Electrochemical Charging of Single Gold Nanorods Carolina Novo, Alison M. Funston, Ann K. Gooding, Paul Mulvaney* School of Chemistry & Bio21 Institute, University of Melbourne, Parkville, VIC, 3010, Australia

More information

One-step Solution Processing of Ag, Au and Hybrids for SERS

One-step Solution Processing of Ag, Au and Hybrids for SERS 1 2 3 Supplementary Information One-step Solution Processing of Ag, Au and Pd@MXene Hybrids for SERS 4 5 6 Elumalai Satheeshkumar 1, Taron Makaryan 2, Armen Melikyan 3, Hayk Minassian 4, Yury Gogotsi 2*

More information

7. Localized surface plasmons (Particle plasmons)

7. Localized surface plasmons (Particle plasmons) 7. Localized surface plasmons (Particle plasmons) ( Plasmons in metal nanostructures, Dissertation, University of Munich by Carsten Sonnichsen, 2001) Lycurgus cup, 4th century (now at the British Museum,

More information

Localized surface plasmons (Particle plasmons)

Localized surface plasmons (Particle plasmons) Localized surface plasmons (Particle plasmons) ( Plasmons in metal nanostructures, Dissertation, University of Munich by Carsten Sonnichsen, 2001) Lycurgus cup, 4th century (now at the British Museum,

More information

Supporting Online Material. Highly Sensitive Plasmonic Silver Nanorods

Supporting Online Material. Highly Sensitive Plasmonic Silver Nanorods Supporting Online Material Highly Sensitive Plasmonic Silver Nanorods Arpad Jakab, Christina Rosman, Yuriy Khalavka, Jan Becker, Andreas Trügler+, Ulrich Hohenester+, and Carsten Sönnichsen * MAINZ graduate

More information

Optical Properties of Solid from DFT

Optical Properties of Solid from DFT Optical Properties of Solid from DFT 1 Prof.P. Ravindran, Department of Physics, Central University of Tamil Nadu, India & Center for Materials Science and Nanotechnology, University of Oslo, Norway http://folk.uio.no/ravi/cmt15

More information

Fluorescent silver nanoparticles via exploding wire technique

Fluorescent silver nanoparticles via exploding wire technique PRAMANA c Indian Academy of Sciences Vol. 65, No. 5 journal of November 2005 physics pp. 815 819 Fluorescent silver nanoparticles via exploding wire technique ALQUDAMI ABDULLAH and S ANNAPOORNI Department

More information

Simulated Study of Plasmonic Coupling in Noble Bimetallic Alloy Nanosphere Arrays

Simulated Study of Plasmonic Coupling in Noble Bimetallic Alloy Nanosphere Arrays CHAPTER 4 Simulated Study of Plasmonic Coupling in Noble Bimetallic Alloy Nanosphere Arrays 4.1 Introduction In Chapter 3, the noble bimetallic alloy nanosphere (BANS) of Ag 1-x Cu x at a particular composition

More information

Optical properties of morphology-controlled gold nanoparticles

Optical properties of morphology-controlled gold nanoparticles Optical properties of morphology-controlled gold nanoparticles Qiguang Yang, 1* Jaetae Seo, 1* Wan-Joong Kim, SungSoo Jung, 3 Bagher Tabibi, 1 Justin Vazquez, 1 Jasmine Austin, 1 and Doyle Temple 1 1 Department

More information

Supplementary Information for. Vibrational Spectroscopy at Electrolyte Electrode Interfaces with Graphene Gratings

Supplementary Information for. Vibrational Spectroscopy at Electrolyte Electrode Interfaces with Graphene Gratings Supplementary Information for Vibrational Spectroscopy at Electrolyte Electrode Interfaces with Graphene Gratings Supplementary Figure 1. Simulated from pristine graphene gratings at different Fermi energy

More information

A Plasmonic Photocatalyst Consisting of Silver Nanoparticles Embedded in Titanium Dioxide. Ryan Huschka LANP Seminar February 19, 2008

A Plasmonic Photocatalyst Consisting of Silver Nanoparticles Embedded in Titanium Dioxide. Ryan Huschka LANP Seminar February 19, 2008 A Plasmonic Photocatalyst Consisting of Silver Nanoparticles Embedded in Titanium Dioxide Ryan Huschka LANP Seminar February 19, 2008 TiO 2 Applications White Pigment Photocatalyst Previous methods to

More information

Supporting Information

Supporting Information Supporting Information Remarkable Photothermal Effect of Interband Excitation on Nanosecond Laser-induced Reshaping and Size Reduction of Pseudo-spherical Gold Nanoparticles in Aqueous Solution Daniel

More information

Optical Properties of Semiconductors. Prof.P. Ravindran, Department of Physics, Central University of Tamil Nadu, India

Optical Properties of Semiconductors. Prof.P. Ravindran, Department of Physics, Central University of Tamil Nadu, India Optical Properties of Semiconductors 1 Prof.P. Ravindran, Department of Physics, Central University of Tamil Nadu, India http://folk.uio.no/ravi/semi2013 Light Matter Interaction Response to external electric

More information

Plasmonic properties and sizing of core-shell Cu-Cu 2 O nanoparticles fabricated by femtosecond laser ablation in liquids ABSTRACT

Plasmonic properties and sizing of core-shell Cu-Cu 2 O nanoparticles fabricated by femtosecond laser ablation in liquids ABSTRACT Plasmonic properties and sizing of core-shell Cu-Cu O nanoparticles fabricated by femtosecond laser ablation in liquids J. M. J. Santillán 1, F. A. Videla 1,, D. C. Schinca 1, and L. B. Scaffardi 1, 1

More information

Optical properties of spherical and anisotropic gold shell colloids

Optical properties of spherical and anisotropic gold shell colloids 8 Optical properties of spherical and anisotropic gold shell colloids Core/shell colloids consisting of a metal shell and a dielectric core are known for their special optical properties. The surface plasmon

More information

Enhanced Photonic Properties of Thin Opaline Films as a Consequence of Embedded Nanoparticles.

Enhanced Photonic Properties of Thin Opaline Films as a Consequence of Embedded Nanoparticles. Enhanced Photonic Properties of Thin Opaline Films as a Consequence of Embedded Nanoparticles. D E Whitehead, M Bardosova and M E Pemble Tyndall National Institute, University College Cork Ireland Introduction:

More information

HYPER-RAYLEIGH SCATTERING AND SURFACE-ENHANCED RAMAN SCATTERING STUDIES OF PLATINUM NANOPARTICLE SUSPENSIONS

HYPER-RAYLEIGH SCATTERING AND SURFACE-ENHANCED RAMAN SCATTERING STUDIES OF PLATINUM NANOPARTICLE SUSPENSIONS www.arpapress.com/volumes/vol19issue1/ijrras_19_1_06.pdf HYPER-RAYLEIGH SCATTERING AND SURFACE-ENHANCED RAMAN SCATTERING STUDIES OF PLATINUM NANOPARTICLE SUSPENSIONS M. Eslamifar Physics Department, BehbahanKhatamAl-Anbia

More information

Supplementary Figure S1 SEM and optical images of Si 0.6 H 0.4 colloids. a, SEM image of Si 0.6 H 0.4 colloids. b, The size distribution of Si 0.

Supplementary Figure S1 SEM and optical images of Si 0.6 H 0.4 colloids. a, SEM image of Si 0.6 H 0.4 colloids. b, The size distribution of Si 0. Supplementary Figure S1 SEM and optical images of Si 0.6 H 0.4 colloids. a, SEM image of Si 0.6 H 0.4 colloids. b, The size distribution of Si 0.6 H 0.4 colloids. The standard derivation is 4.4 %. Supplementary

More information

Simulation of Surface Plasmon Resonance on Different Size of a Single Gold Nanoparticle

Simulation of Surface Plasmon Resonance on Different Size of a Single Gold Nanoparticle Journal of Physics: Conference Series PAPER OPEN ACCESS Simulation of Surface Plasmon Resonance on Different Size of a Single Gold Nanoparticle To cite this article: Norsyahidah Md Saleh and A. Abdul Aziz

More information

Supplementary Figure 1

Supplementary Figure 1 Supplementary Figure 1 XRD patterns and TEM image of the SrNbO 3 film grown on LaAlO 3(001) substrate. The film was deposited under oxygen partial pressure of 5 10-6 Torr. (a) θ-2θ scan, where * indicates

More information

Observation of coupled plasmon-polariton modes of plasmon waveguides for electromagnetic energy transport below the diffraction limit

Observation of coupled plasmon-polariton modes of plasmon waveguides for electromagnetic energy transport below the diffraction limit Mat. Res. Soc. Symp. Proc. Vol. 722 2002 Materials Research Society Observation of coupled plasmon-polariton modes of plasmon waveguides for electromagnetic energy transport below the diffraction limit

More information

The effect of surface plasmon resonance on optical response in dielectric (core) metal (shell) nanoparticles

The effect of surface plasmon resonance on optical response in dielectric (core) metal (shell) nanoparticles PRAMANA c Indian Academy of Sciences Vol. 85, No. 6 journal of December 2015 physics pp. 1245 1255 The effect of surface plasmon resonance on optical response in dielectric (core) metal (shell) nanoparticles

More information

Nanoparticle-Doped Polydimethylsiloxane Elastomer Films

Nanoparticle-Doped Polydimethylsiloxane Elastomer Films Nanoparticle-Doped Polydimethylsiloxane Elastomer Films DE VIG Jorge Pérez-Juste, Luis M. Liz-Marzán, Isabel Pastoriza-Santos Departamento de Química Física Universidade de Vigo utline DE VIG Some Properties

More information

Make or Buy? The Economics of Gold Nanoparticle Manufacturing for Lateral Flow Assays

Make or Buy? The Economics of Gold Nanoparticle Manufacturing for Lateral Flow Assays TECHNICAL RESOURCE Lateral Flow Immunoassays Make or Buy? The Economics of Gold Nanoparticle Manufacturing for Lateral Flow Assays Introduction Price is an important factor in the commercial success of

More information

Optical Characteristics of ZnO Based Photodetectors Doped with Au Nanoparticles

Optical Characteristics of ZnO Based Photodetectors Doped with Au Nanoparticles nd International Conference on Mechanical and Electronics Engineering (ICMEE ) Optical Characteristics of ZnO Based Photodetectors Doped with Au Nanoparticles S. Mohammadnejad, S. G. Samani, and E. Rahimi

More information

Optical cavity modes in gold shell particles

Optical cavity modes in gold shell particles 9 Optical cavity modes in gold shell particles Gold (Au) shell particles with dimensions comparable to the wavelength of light exhibit a special resonance, with a tenfold field enhancement over almost

More information

Supplementary Figure S1 Anticrossing and mode exchange between D1 (Wood's anomaly)

Supplementary Figure S1 Anticrossing and mode exchange between D1 (Wood's anomaly) Supplementary Figure S1 Anticrossing and mode exchange between D1 (Wood's anomaly) and D3 (Fabry Pérot cavity mode). (a) Schematic (top) showing the reflectance measurement geometry and simulated angle-resolved

More information

Supplementary Figure 1. Extinction spectra of rhodium nanocubes. UV-vis spectra of the Rh nanocubes in ethanol solution (black) and on a porous Al2O3

Supplementary Figure 1. Extinction spectra of rhodium nanocubes. UV-vis spectra of the Rh nanocubes in ethanol solution (black) and on a porous Al2O3 Supplementary Figure 1. Extinction spectra of rhodium nanocubes. UV-vis spectra of the Rh nanocubes in ethanol solution (black) and on a porous Al2O3 support (blue). The Rh nanocubes in ethanol solution

More information

Natallia Strekal. Plasmonic films of noble metals for nanophotonics

Natallia Strekal. Plasmonic films of noble metals for nanophotonics Natallia Strekal Plasmonic films of noble metals for nanophotonics The aim of our investigation is the mechanisms of light interactions with nanostructure and High Tech application in the field of nanophotonics

More information

ABSTRACT 1. INTRODUCTION

ABSTRACT 1. INTRODUCTION Cascaded plasmon resonances multi-material nanoparticle trimers for extreme field enhancement S. Toroghi a, Chatdanai Lumdee a, and P. G. Kik* a CREOL, The College of Optics and Photonics, University of

More information

Physisorption of Antibodies using BioReady Bare Nanoparticles

Physisorption of Antibodies using BioReady Bare Nanoparticles TECHNICAL RESOURCE Lateral Flow Immunoassays Physisorption of Antibodies using BioReady Bare Nanoparticles Introduction For more than 20 years, lateral flow immunoassay diagnostic tests have provided a

More information

International Journal of Pure and Applied Sciences and Technology

International Journal of Pure and Applied Sciences and Technology Int. J. Pure Appl. Sci. Technol., 9(1) (2012), pp. 1-8 International Journal of Pure and Applied Sciences and Technology ISSN 2229-6107 Available online at www.ijopaasat.in Research Paper Preparation,

More information

are the eigenvalues of the permittivity tensor in Cartesian coordinates, written as, 3 " xx + i" xy ( , which gives

are the eigenvalues of the permittivity tensor in Cartesian coordinates, written as, 3  xx + i xy ( , which gives Supplemental Material for Faraday rotation enhancement of gold coated Fe2O3 nanoparticles: Comparison of experiment and theory Raj Kumar Dani, Hongwang Wang, Stefan H. Bossmann, Gary Wysin and Viktor Chikan,

More information

Nanophotonics: principle and application. Khai Q. Le Lecture 4 Light scattering by small particles

Nanophotonics: principle and application. Khai Q. Le Lecture 4 Light scattering by small particles Nanophotonics: principle and application Khai Q. Le Lecture 4 Light scattering by small particles Previous lecture Drude model, Drude-Sommerfeld model and Drude-Lorentz model for conducting media (metal):

More information

UV-vis Analysis of the Effect of Sodium Citrate on the Size and the Surface Plasmon Resonance of Au NPs. Eman Mousa Alhajji

UV-vis Analysis of the Effect of Sodium Citrate on the Size and the Surface Plasmon Resonance of Au NPs. Eman Mousa Alhajji UV-vis Analysis of the Effect of Sodium Citrate on the Size and the Surface Plasmon Resonance of Au NPs Eman Mousa Alhajji North Carolina State University Department of Materials Science and Engineering

More information

Supporting Information for. Shape Transformation of Gold Nanoplates and their Surface Plasmon. Characterization: Triangular to Hexagonal Nanoplates

Supporting Information for. Shape Transformation of Gold Nanoplates and their Surface Plasmon. Characterization: Triangular to Hexagonal Nanoplates 1 Supporting Information for Shape Transformation of Gold Nanoplates and their Surface Plasmon Characterization: Triangular to Hexagonal Nanoplates Soonchang Hong, Kevin L. Shuford *,, and Sungho Park

More information

Energy transport in metal nanoparticle plasmon waveguides

Energy transport in metal nanoparticle plasmon waveguides Energy transport in metal nanoparticle plasmon waveguides Stefan A. Maier, Pieter G. Kik, and Harry A. Atwater California Institute of Technology Thomas J. Watson Laboratory of Applied Physics, Pasadena,

More information

Plan of the lectures

Plan of the lectures Plan of the lectures 1. Introductory remarks on metallic nanostructures Relevant quantities and typical physical parameters Applications. Linear electron response: Mie theory and generalizations 3. Nonlinear

More information

Supplementary information for. plasmonic nanorods interacting with J-aggregates.

Supplementary information for. plasmonic nanorods interacting with J-aggregates. Supplementary information for Approaching the strong coupling limit in single plasmonic nanorods interacting with J-aggregates. by Gülis Zengin, Göran Johansson, Peter Johansson, Tomasz J. Antosiewicz,

More information

Surface-enhanced raman scattering from a layer of gold nanoparticles

Surface-enhanced raman scattering from a layer of gold nanoparticles VNU Journal of Science, Mathematics - Physics 26 (2010) 187-192 Surface-enhanced raman scattering from a layer of gold nanoparticles Nguyen The Binh *, Nguyen Thanh Dinh, Nguyen Quang Dong, Vu Thi Khanh

More information

Tunable plasmon resonance of a touching gold cylinder arrays

Tunable plasmon resonance of a touching gold cylinder arrays J. At. Mol. Sci. doi: 10.4208/jams.091511.101811a Vol. 3, No. 3, pp. 252-261 August 2012 Tunable plasmon resonance of a touching gold cylinder arrays Geng-Hua Yan a, Yan-Ying Xiao a, Su-Xia Xie b, and

More information

Size dependence of multipolar plasmon resonance frequencies and damping rates in simple metal spherical nanoparticles

Size dependence of multipolar plasmon resonance frequencies and damping rates in simple metal spherical nanoparticles The original publication is available at www.eurphysj.org: http://www.epjst-journal.org/index.php?option=article&access=standard&itemid=9&url= /articles/epjst/pdf/7/5/st44.pdf EPJ manuscript No. (will

More information

Rapid method to estimate the concentration of citrate capped silver nanoparticles from UV-visible light spectra

Rapid method to estimate the concentration of citrate capped silver nanoparticles from UV-visible light spectra Electronic Supplementary Material (ESI) for Analyst. This journal is The Royal Society of Chemistry 2014 Supplementary Information Rapid method to estimate the concentration of citrate capped silver nanoparticles

More information

Synthesis and characterization of silica gold core-shell (SiO nanoparticles

Synthesis and characterization of silica gold core-shell (SiO nanoparticles PRAMANA c Indian Academy of Sciences Vol. 69, No. 2 journal of August 2007 physics pp. 277 283 Synthesis and characterization of silica gold core-shell (SiO 2 @Au) nanoparticles DEEPIKA KANDPAL 1,, SUCHITA

More information

6. Plasmon coupling between a flat gold interface and gold nanoparticles.

6. Plasmon coupling between a flat gold interface and gold nanoparticles. 6. Plasmon coupling between a flat gold interface and gold nanoparticles. 6.1. Introduction In this outlook oriented chapter the applicability of the multilayered system used in chapter 4.1., for the study

More information

FREE-ELECTRON ANALYSIS OF OPTICAL PROPERTIES OF THERMALLY EVAPORATED GOLD FILMS N. EL-KA DRY

FREE-ELECTRON ANALYSIS OF OPTICAL PROPERTIES OF THERMALLY EVAPORATED GOLD FILMS N. EL-KA DRY Vol. 86 (1994) ACTA PHYSICA POLONICΛ Α No. 3 FREE-ELECTRON ANALYSIS OF OPTICAL PROPERTIES OF THERMALLY EVAPORATED GOLD FILMS N. EL-KA DRY Physics Department, Μinia University, El-Minia, Egypt (Received

More information

what happens if we make materials smaller?

what happens if we make materials smaller? what happens if we make materials smaller? IAP VI/10 ummer chool 2007 Couvin Prof. ns outline Introduction making materials smaller? ynthesis how do you make nanomaterials? Properties why would you make

More information

Triangulating Nucleic Acid Conformations Using Multicolor Surface Energy Transfer

Triangulating Nucleic Acid Conformations Using Multicolor Surface Energy Transfer Triangulating Nucleic cid Conformations Using Multicolor Surface Energy Transfer Supporting Information Ryan. Riskowski 1, Rachel E. rmstrong 2, Nancy L. Greenbaum 3, Geoffrey F. Strouse 1,2 * 1 Molecular

More information

Nano Optics Based on Coupled Metal Nanoparticles

Nano Optics Based on Coupled Metal Nanoparticles Nano Optics Based on Coupled Metal Nanoparticles Shangjr Gwo ( 果尚志 ) Department of Physics National Tsing-Hua University, Hsinchu 30013, Taiwan E-mail: gwo@phys.nthu.edu.tw NDHU-Phys (2010/03/01) Background

More information

II Theory Of Surface Plasmon Resonance (SPR)

II Theory Of Surface Plasmon Resonance (SPR) II Theory Of Surface Plasmon Resonance (SPR) II.1 Maxwell equations and dielectric constant of metals Surface Plasmons Polaritons (SPP) exist at the interface of a dielectric and a metal whose electrons

More information

Diffusion of silver in silicate glass and clustering in hydrogen atmosphere

Diffusion of silver in silicate glass and clustering in hydrogen atmosphere Defect and Diffusion Forum Vols. 7-4 (5) pp. 689-694 online at http://www.scientific.net 5 Trans Tech Publications, Switzerland Diffusion of silver in silicate glass and clustering in hydrogen atmosphere

More information

Supporting Information. Plasmon Ruler for Measuring Dielectric Thin Films

Supporting Information. Plasmon Ruler for Measuring Dielectric Thin Films Supporting Information Single Nanoparticle Based Hetero-Nanojunction as a Plasmon Ruler for Measuring Dielectric Thin Films Li Li, *a,b Tanya Hutter, c Wenwu Li d and Sumeet Mahajan *b a School of Chemistry

More information

Electronic Supplementary Information

Electronic Supplementary Information Electronic Supplementary Material (ESI) for Physical Chemistry Chemical Physics. This journal is the Owner Societies 2014 Electronic Supplementary Information CW-Laser-Induced Morphological Changes of

More information

Influence of dielectric core, embedding medium and size on the optical properties of gold nanoshells

Influence of dielectric core, embedding medium and size on the optical properties of gold nanoshells Solid State Communications 146 (008) 7 11 www.elsevier.com/locate/ssc Influence of dielectric core, embedding medium and size on the optical properties of gold nanoshells DaJian Wu a,b, XiaoDong Xu a,

More information

SUPPORTING INFORMATION. Plasmon Spectroscopy and Chemical Structure of Small Bimetallic Cu (1-x) Ag x clusters.

SUPPORTING INFORMATION. Plasmon Spectroscopy and Chemical Structure of Small Bimetallic Cu (1-x) Ag x clusters. SUPPORTING INFORMATION Plasmon Spectroscopy and Chemical Structure of Small Bimetallic (1-x) x clusters. Michel Pellarin a*, Inas Issa a, Cyril Langlois b, Marie-Ange Lebeault a, Julien Ramade a, Jean

More information

Gold-poly(N-isopropylacrylamide) core-shell colloids with homogeneous density profiles: A small angle scattering study

Gold-poly(N-isopropylacrylamide) core-shell colloids with homogeneous density profiles: A small angle scattering study Electronic Supplementary Material (ESI) for Physical Chemistry Chemical Physics. This journal is the Owner Societies 2014 Supporting Information Gold-poly(N-isopropylacrylamide) core-shell colloids with

More information

Supporting information for Metal-semiconductor. nanoparticle hybrids formed by self-organization: a platform to address exciton-plasmon coupling

Supporting information for Metal-semiconductor. nanoparticle hybrids formed by self-organization: a platform to address exciton-plasmon coupling Supporting information for Metal-semiconductor nanoparticle hybrids formed by self-organization: a platform to address exciton-plasmon coupling Christian Strelow, T. Sverre Theuerholz, Christian Schmidtke,

More information

Flexible Organic Photovoltaics Employ laser produced metal nanoparticles into the absorption layer 1. An Introduction

Flexible Organic Photovoltaics Employ laser produced metal nanoparticles into the absorption layer 1. An Introduction Flexible Organic Photovoltaics Employ laser produced metal nanoparticles into the absorption layer 1. An Introduction Among the renewable energy sources that are called to satisfy the continuously increased

More information

Very large plasmon band shift in strongly coupled metal nanoparticle chain arrays.

Very large plasmon band shift in strongly coupled metal nanoparticle chain arrays. Mat. Res. Soc. Symp. Proc. Vol. 797 2004 Materials Research Society W4.6.1 Very large plasmon band shift in strongly coupled metal nanoparticle chain arrays. L. A. Sweatlock 1, J. J. Penninkhof 2, S. A.

More information

Granular metal films on the surfaces of transparent dielectric materials studied and modified via optical means

Granular metal films on the surfaces of transparent dielectric materials studied and modified via optical means Invited Paper Granular metal films on the surfaces of transparent dielectric materials studied and modified via optical means Tigran A. Vartanyan*, Nikita B. Leonov, Valerii V. Khromov, Sergey G. Przhibelskii,

More information

Metal nanoparticle-doped coloured films on glass and polycarbonate substrates

Metal nanoparticle-doped coloured films on glass and polycarbonate substrates PRAMANA c Indian Academy of Sciences Vol. 65, No. 5 journal of November 2005 physics pp. 931 936 Metal nanoparticle-doped coloured films on glass and polycarbonate substrates S K MEDDA, M MITRA, S DE,

More information

Nanophysics: Main trends

Nanophysics: Main trends Nano-opto-electronics Nanophysics: Main trends Nanomechanics Main issues Light interaction with small structures Molecules Nanoparticles (semiconductor and metallic) Microparticles Photonic crystals Nanoplasmonics

More information

Supporting Information: Resonant non-plasmonic nanoparticles for. efficient temperature-feedback optical heating

Supporting Information: Resonant non-plasmonic nanoparticles for. efficient temperature-feedback optical heating Supporting Information: Resonant non-plasmonic nanoparticles for efficient temperature-feedback optical heating George P. Zograf, Mihail I. Petrov,,, Dmitry A. Zuev, Pavel A. Dmitriev, Valentin A. Milichko,

More information

Extinction properties of a sphere with negative permittivity and permeability

Extinction properties of a sphere with negative permittivity and permeability PERGAMON Solid State Communications 116 (2000) 411 415 www.elsevier.com/locate/ssc Extinction properties of a sphere with negative permittivity and permeability R. Ruppin* Department of Physics and Applied

More information

Electronic Supplementary Material (ESI) for: Unconventional co-existence of plasmon and thermoelectric activity in In:ZnO nanowires

Electronic Supplementary Material (ESI) for: Unconventional co-existence of plasmon and thermoelectric activity in In:ZnO nanowires Electronic Supplementary Material (ESI) for RSC Advances. This journal is The Royal Society of Chemistry 25 Electronic Supplementary Material (ESI) for: Unconventional co-existence of plasmon and thermoelectric

More information

Supporting Information: Time- and Size-Resolved Plasmonic Evolution with nm Resolution of Galvanic Replacement Reaction in AuAg Nanoshells Synthesis

Supporting Information: Time- and Size-Resolved Plasmonic Evolution with nm Resolution of Galvanic Replacement Reaction in AuAg Nanoshells Synthesis Supporting Information: Time- and Size-Resolved Plasmonic Evolution with nm Resolution of Galvanic Replacement Reaction in AuAg Nanoshells Synthesis Lorenzo Russo, Florind Merkoçi, Javier Patarroyo, Jordi

More information

Kinetically Controlled Seeded Growth Synthesis of Citrate Stabilized Gold. Nanoparticles up to 200 nm: Size Focusing versus.

Kinetically Controlled Seeded Growth Synthesis of Citrate Stabilized Gold. Nanoparticles up to 200 nm: Size Focusing versus. Kinetically Controlled Seeded Growth Synthesis of Citrate Stabilized Gold Nanoparticles up to 200 nm: Size Focusing versus. Ostwald Ripening Neus G. Bastús, Joan Comenge and Víctor Puntes Additional Results

More information

Small-Angle X-ray Scattering (SAXS)/X-ray Absorption Near Edge Spectroscopy (XANES).

Small-Angle X-ray Scattering (SAXS)/X-ray Absorption Near Edge Spectroscopy (XANES). S1 Small-Angle X-ray Scattering (SAXS)/X-ray Absorption Near Edge Spectroscopy (XANES). The combined SAXS/XANES measurements were carried out at the µspot beamline at BESSY II (Berlin, Germany). The beamline

More information

often display a deep green color due to where the SPR occurs (i.e., the wavelength of light that interacts with this specific morphology).

often display a deep green color due to where the SPR occurs (i.e., the wavelength of light that interacts with this specific morphology). Synthesis-Dependent Catalytic Properties of Gold Nanoparticles Nanoscience is the study of materials that have dimensions, intuitively, on the nanoscale, typically between 1 100 nm. This field has received

More information

Lecture 3: Optical Properties of Insulators, Semiconductors, and Metals. 5 nm

Lecture 3: Optical Properties of Insulators, Semiconductors, and Metals. 5 nm Metals Lecture 3: Optical Properties of Insulators, Semiconductors, and Metals 5 nm Course Info Next Week (Sept. 5 and 7) no classes First H/W is due Sept. 1 The Previous Lecture Origin frequency dependence

More information

Stepwise Preparation of Spherical Gold Nanoparticles Passivated with Cationic Amphiphiles

Stepwise Preparation of Spherical Gold Nanoparticles Passivated with Cationic Amphiphiles ANALYTICAL SCIENCES AUGUST 2016, VOL. 32 875 2016 The Japan Society for Analytical Chemistry Stepwise Preparation of Spherical Gold Nanoparticles Passivated with Cationic Amphiphiles Yuki INOUE,* Yo TSUTAMOTO,*

More information

Scattering cross-section (µm 2 )

Scattering cross-section (µm 2 ) Supplementary Figures Scattering cross-section (µm 2 ).16.14.12.1.8.6.4.2 Total scattering Electric dipole, a E (1,1) Magnetic dipole, a M (1,1) Magnetic quardupole, a M (2,1). 44 48 52 56 Wavelength (nm)

More information

Spring 2009 EE 710: Nanoscience and Engineering

Spring 2009 EE 710: Nanoscience and Engineering Spring 009 EE 710: Nanoscience and Engineering Part 10: Surface Plasmons in Metals Images and figures supplied from Hornyak, Dutta, Tibbals, and Rao, Introduction to Nanoscience, CRC Press Boca Raton,

More information

Plasmonic Photovoltaics Harry A. Atwater California Institute of Technology

Plasmonic Photovoltaics Harry A. Atwater California Institute of Technology Plasmonic Photovoltaics Harry A. Atwater California Institute of Technology Surface plasmon polaritons and localized surface plasmons Plasmon propagation and absorption at metal-semiconductor interfaces

More information

Giant Gating Tunability of Optical Refractive Index in Transition Metal Dichalcogenide Monolayers

Giant Gating Tunability of Optical Refractive Index in Transition Metal Dichalcogenide Monolayers Supporting Information Giant Gating Tunability of Optical Refractive Index in Transition Metal Dichalcogenide Monolayers Yiling Yu 1,2, Yifei Yu 1, Lujun Huang 1, Haowei Peng 3, Liwei Xiong 1,4 and Linyou

More information

Nanoengineering of optical resonances

Nanoengineering of optical resonances 22 May 1998 Ž. Chemical Physics Letters 288 1998 243 247 Nanoengineering of optical resonances S.J. Oldenburg, R.D. Averitt, S.L. Westcott, N.J. Halas Department of Electrical and Computer Engineering

More information

Supplemental Information for

Supplemental Information for Supplemental Information for Densely arranged two-dimensional silver nanoparticle assemblies with optical uniformity over vast areas as excellent surface-enhanced Raman scattering substrates Yoshimasa

More information

A Study on the Suitability of Indium Nitride for Terahertz Plasmonics

A Study on the Suitability of Indium Nitride for Terahertz Plasmonics A Study on the Suitability of Indium Nitride for Terahertz Plasmonics Arjun Shetty 1*, K. J. Vinoy 1, S. B. Krupanidhi 2 1 Electrical Communication Engineering, Indian Institute of Science, Bangalore,

More information

SCATTERING OF ELECTROMAGNETIC WAVES ON METAL NANOPARTICLES. Tomáš Váry, Juraj Chlpík, Peter Markoš

SCATTERING OF ELECTROMAGNETIC WAVES ON METAL NANOPARTICLES. Tomáš Váry, Juraj Chlpík, Peter Markoš SCATTERING OF ELECTROMAGNETIC WAVES ON METAL NANOPARTICLES Tomáš Váry, Juraj Chlpík, Peter Markoš ÚJFI, FEI STU, Bratislava E-mail: tomas.vary@stuba.sk Received xx April 2012; accepted xx May 2012. 1.

More information

Aluminum for nonlinear plasmonics: Methods Section

Aluminum for nonlinear plasmonics: Methods Section Aluminum for nonlinear plasmonics: Methods Section Marta Castro-Lopez, Daan Brinks, Riccardo Sapienza, and Niek F. van Hulst, ICFO - Institut de Ciencies Fotoniques, and ICREA - Institució Catalana de

More information

Blueshift of the silver plasmon band using controlled nanoparticle dissolution in aqueous solution

Blueshift of the silver plasmon band using controlled nanoparticle dissolution in aqueous solution Downloaded from orbit.dtu.dk on: Oct 23, 2018 Blueshift of the silver plasmon band using controlled nanoparticle dissolution in aqueous solution Mogensen, Klaus Bo; Kneipp, Katrin Published in: Proceedings

More information

Optimizing the performance of metal-semiconductor-metal photodetectors by embedding nanoparticles in the absorption layer

Optimizing the performance of metal-semiconductor-metal photodetectors by embedding nanoparticles in the absorption layer Journal of Electrical and Electronic Engineering 2015; 3(2-1): 78-82 Published online February 10, 2015 (http://www.sciencepublishinggroup.com/j/jeee) doi: 10.11648/j.jeee.s.2015030201.27 ISSN: 2329-1613

More information

Ultrafast Electron and Energy Transfer in Dye- -- SUPPLEMENTARY TABLE and FIGURES

Ultrafast Electron and Energy Transfer in Dye- -- SUPPLEMENTARY TABLE and FIGURES Ultrafast Electron and Energy Transfer in Dye- Sensitized Iron Oxide and Oxyhydroxide Nanoparticles -- SUPPLEMENTARY TABLE and FIGURES 1 Table S1. Summary of experimental determinations of the flatband

More information

Observation of coupled plasmon-polariton modes of plasmon waveguides for electromagnetic energy transport below the diffraction limit

Observation of coupled plasmon-polariton modes of plasmon waveguides for electromagnetic energy transport below the diffraction limit Observation of coupled plasmon-polariton modes of plasmon waveguides for electromagnetic energy transport below the diffraction limit Stefan A. Maier* a, Pieter G. Kik a, Harry A. Atwater a, Sheffer Meltzer

More information

Chapter 2 Optical Properties of Nanocomposites Containing Metal Nanoparticles

Chapter 2 Optical Properties of Nanocomposites Containing Metal Nanoparticles Chapter 2 Optical Properties of Nanocomposites Containing Metal Nanoparticles Interaction of light with nanocomposites reveals novel optical phenomena indicating unrivalled optical properties of these

More information

Supporting Information. Metallic Adhesion Layer Induced Plasmon Damping and Molecular Linker as a Non-Damping Alternative

Supporting Information. Metallic Adhesion Layer Induced Plasmon Damping and Molecular Linker as a Non-Damping Alternative Supporting Information Metallic Adhesion Layer Induced Plasmon Damping and Molecular Linker as a Non-Damping Alternative Terefe G. Habteyes, Scott Dhuey, Erin Wood, Daniel Gargas, Stefano Cabrini, P. James

More information

ULTRAFAST ELECTRON-PHONON COUPLING AT THE METAL-DIELECTRIC INTERFACE

ULTRAFAST ELECTRON-PHONON COUPLING AT THE METAL-DIELECTRIC INTERFACE Purdue University Purdue e-pubs Open Access Theses Theses and Dissertations January 2015 ULTRAFAST ELECTRON-PHONON COUPLING AT THE METAL-DIELECTRIC INTERFACE Qiaomu Yao Purdue University Follow this and

More information

Plasmonics: elementary excitation of a plasma (gas of free charges) nano-scale optics done with plasmons at metal interfaces

Plasmonics: elementary excitation of a plasma (gas of free charges) nano-scale optics done with plasmons at metal interfaces Plasmonics Plasmon: Plasmonics: elementary excitation of a plasma (gas of free charges) nano-scale optics done with plasmons at metal interfaces Femius Koenderink Center for Nanophotonics AMOLF, Amsterdam

More information

Enhanced Nonlinear Optical Response from Nano-Scale Composite Materials

Enhanced Nonlinear Optical Response from Nano-Scale Composite Materials Enhanced Nonlinear Optical Response from Nano-Scale Composite Materials Robert W. Boyd The Institute of Optics, University of Rochester, Rochester, NY 14627, USA with special thanks to: Nick Lepeshkin,

More information

of Gold Nanoparticles

of Gold Nanoparticles 2 Behaviour of Gold Nanoparticles The behaviour of matter at the nanoscale is often unexpected and can be completely different from that of bulk materials. This has stimulated the study and the development

More information

Construction of simple gold nanoparticle aggregates with controlled plasmon plasmon interactions

Construction of simple gold nanoparticle aggregates with controlled plasmon plasmon interactions 12 February 1999 Ž. Chemical Physics Letters 300 1999 651 655 Construction of simple gold nanoparticle aggregates with controlled plasmon plasmon interactions Sarah L. Westcott a, Steven J. Oldenburg a,

More information

Sacrifical Template-Free Strategy

Sacrifical Template-Free Strategy Supporting Information Core/Shell to Yolk/Shell Nanostructures by a Novel Sacrifical Template-Free Strategy Jie Han, Rong Chen and Rong Guo* School of Chemistry and Chemical Engineering, Yangzhou University,

More information

SCATTERING CROSS SECTION OF A META-SPHERE

SCATTERING CROSS SECTION OF A META-SPHERE Progress In Electromagnetics Research Letters, Vol. 9, 85 91, 009 SCATTERING CROSS SECTION OF A META-SPHERE A. Alexopoulos Electronic Warfare and Radar Division Defence Science and Technology Organisation

More information

ECE280: Nano-Plasmonics and Its Applications. Week8

ECE280: Nano-Plasmonics and Its Applications. Week8 ECE280: Nano-Plasmonics and Its Applications Week8 Surface Enhanced Raman Scattering (SERS) and Surface Plasmon Amplification by Stimulated Emission of Radiation (SPASER) Raman Scattering Chandrasekhara

More information

Photomodification of single Ag nanoparticles embedded in soda-lime glass

Photomodification of single Ag nanoparticles embedded in soda-lime glass Chapter 3. Photomodification of single Ag nanoparticles embedded in In the last two decades growth of the interest to research on synthesis of composite materials containing metal nanoparticles is motivated

More information

SUPPLEMENTARY INFORMATION

SUPPLEMENTARY INFORMATION doi:1.138/nature9829 Supplementary Information S1: Movie of the photo-induced phase transition: Figures 2b-e show four selected XUV ARPES snapshots illustrating the most pronounced changes in the course

More information

Lecture 10 Light-Matter Interaction Part 4 Surface Polaritons 2. EECS Winter 2006 Nanophotonics and Nano-scale Fabrication P.C.

Lecture 10 Light-Matter Interaction Part 4 Surface Polaritons 2. EECS Winter 2006 Nanophotonics and Nano-scale Fabrication P.C. Lecture 10 Light-Matter Interaction Part 4 Surface Polaritons 2 EECS 598-002 Winter 2006 Nanophotonics and Nano-scale Fabrication P.C.Ku Schedule for the rest of the semester Introduction to light-matter

More information

Fast and Slow Ligand Exchange at the Surface of Colloidal Gold Nanoparticles

Fast and Slow Ligand Exchange at the Surface of Colloidal Gold Nanoparticles Fast and Slow Ligand Exchange at the Surface of Colloidal Gold Nanoparticles Rebecca Dinkel 1, Björn Braunschweig 1,2 * and Wolfgang Peukert 1,2 1 Institute of Particle Technology (LFG), Friedrich-Alexander

More information