Supporting information for the communication Label-Free Aptasensor. Based on Ultrathin-Linker-Mediated Hot-Spot Assembly to Induce

Size: px
Start display at page:

Download "Supporting information for the communication Label-Free Aptasensor. Based on Ultrathin-Linker-Mediated Hot-Spot Assembly to Induce"

Transcription

1 Supporting information for the communication Label-Free Aptasensor Based on Ultrathin-Linker-Mediated Hot-Spot Assembly to Induce Strong Directional Fluorescence. Shuo-Hui Cao 1, Wei-Peng Cai 1, Qian Liu 1, Kai-Xin Xie 1, Yu-Hua Weng 1, Si-Xin Huo 1, Zhong-Qun Tian 2 and Yao-Qun Li 1 * 1 Department of Chemistry and the MOE Key Laboratory of Spectrochemical Analysis & Instrumentation, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, , China. 2 State Key Laboratory of Physical Chemistry of Solid Surfaces, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, , China. *yaoqunli@xmu.edu.cn The quantity of PAH to compose the ultrathin linker was tested. The optimized situation should be that the biosensor does not respond to the control sample, but gives intense signal with responding to target sample. Figure S1a shows that when the concentration of PAH was below 1 μg/ml, no SPCE response was observed in the control experiment. The result means false positive signal was effectively suppressed. And Figure S1b shows that PAH with the concentration of 1 μg/ml displayed higher SPCE response in the sensing of thrombin, which indicates that PAH can expose charges efficiently to capture AgNPs after sensing. Therefore, the appropriate concentration of PAH was checked as 1 μg/ml in the experiment. S1

2 Figure S1. The effects of PAH concentration on the increase in sensing signal. The sensing of control sample (a) and 10 nm thrombin (b) was tested. The sample incubation time was tested. Figure S2 shows that the highest increase in signal was obtained after 30 min with the incubation of thrombin. The shorter time is not enough for the interaction with targets. On the contrary, the incubation time more than 30 min may cause some problems: the desorbed aptamers may interact with the surface again or the targets may lose the activity. As a result, 30 min was taken as the appropriate incubation time. S2

3 Figure S2. The effects of sample incubation time on the increase in sensing signal. The sample of 10 nm thrombin was tested. The signal of ultrathin-linker-mediated hot-spot SPCE observed through the prism was highly p polarized (Figure S3), demonstrating that the emission has the properties of both the fluorophore and the surface plasmon. Figure S3 Polarized emission spectra of the ultrathin-linker-mediated hot-spot SPCE. S3

4 The SPCE signal observed through the prism shows around 10-fold enhancement compared to the isotropic free space emission (FSE) observed from the air side of the gold film (Figure S4), demonstrating that SPCE is a more efficient way to utilize the hot-spot coupling. Figure S4. Spectra of SPCE observed through the prism at the defined angle and isotropic free space emission (FSE) observed from the air side of the gold film. The sensor surface after the incubation of thrombin was tested by AFM. A small section on the surface was scratched by AFM. And then the scratched area was used to determine the thickness of the linking layer on the surface through being compared to the undamaged area. As shown in Figure S5, the thickness of the layer was no greater than 2 nm, which served as the ultrathin linker between NPs and film to warrant the strong plasmonic coupling. S4

5 Figure S5. Height (a) and phase (b) AFM images of ultrathin linker modified gold surface after mechanical removal of a square section (~ 1 μm 1 μm). The extrusive edges are the deposition of scratched materials. (c) Depth analysis of the area shown in part (a) indicated by line. The electromagnetic response of metal nanostructures was simulated by the FDTD method with a commercial software package (Recom XFDTD). The 532 nm light was illuminated perpendicularly to the metal surface following the experimental configuration, with the polarization parallel to the metal surface. The mesh unit was nm 3. The dielectric constants of gold and silver were from John and Christy (Johnson, P. B.; Christy, R. W. Optical Constants of the Noble Metals. Phys. Rev. B 1972, 6, ). S5

6 Figure S6. FDTD simulation of electric field distribution (E 2 ) for the system of a silver nanoparticle on gold film with a gap of 2 nm. The diameters of silver nanoparticle are 100 nm (a), 50 nm (b), and 20 nm (c). Figure S7 FDTD simulation of electric field distribution (E 2 ) for the system of a 100 nm silver nanoparticle on gold film. The gaps are 2 nm (a), 10 nm (b), and 30 nm (c). S6

Shell-isolated nanoparticle-enhanced Raman spectroscopy

Shell-isolated nanoparticle-enhanced Raman spectroscopy Shell-isolated nanoparticle-enhanced Raman spectroscopy Jian Feng Li, Yi Fan Huang, Yong Ding, Zhi Lin Yang, Song Bo Li, Xiao Shun Zhou, Feng Ru Fan, Wei Zhang, Zhi You Zhou, De Yin Wu, Bin Ren, Zhong

More information

Natallia Strekal. Plasmonic films of noble metals for nanophotonics

Natallia Strekal. Plasmonic films of noble metals for nanophotonics Natallia Strekal Plasmonic films of noble metals for nanophotonics The aim of our investigation is the mechanisms of light interactions with nanostructure and High Tech application in the field of nanophotonics

More information

Controlling the Composition of Plasmonic Nanoparticle Arrays via Galvanic Displacement Reactions on Block Copolymer Nanotemplates

Controlling the Composition of Plasmonic Nanoparticle Arrays via Galvanic Displacement Reactions on Block Copolymer Nanotemplates Supporting Information Controlling the Composition of Plasmonic Nanoparticle Arrays via Galvanic Displacement Reactions on Block Copolymer Nanotemplates Ji Yong Lee, a Jieun Lee, a Yu Jin Jang, a Juyon

More information

6. Plasmon coupling between a flat gold interface and gold nanoparticles.

6. Plasmon coupling between a flat gold interface and gold nanoparticles. 6. Plasmon coupling between a flat gold interface and gold nanoparticles. 6.1. Introduction In this outlook oriented chapter the applicability of the multilayered system used in chapter 4.1., for the study

More information

Supplemental Information for

Supplemental Information for Supplemental Information for Densely arranged two-dimensional silver nanoparticle assemblies with optical uniformity over vast areas as excellent surface-enhanced Raman scattering substrates Yoshimasa

More information

Sensitive and Recyclable Substrates of Surface-enhanced Raman Scattering

Sensitive and Recyclable Substrates of Surface-enhanced Raman Scattering Supporting Information Cyclic Electroplating and Stripping of Silver on Au@SiO 2 Core/Shell Nanoparticles for Sensitive and Recyclable Substrates of Surface-enhanced Raman Scattering Dan Li a, Da-Wei Li

More information

Large-Area and Uniform Surface-Enhanced Raman. Saturation

Large-Area and Uniform Surface-Enhanced Raman. Saturation Supporting Information Large-Area and Uniform Surface-Enhanced Raman Spectroscopy Substrate Optimized by Enhancement Saturation Daejong Yang 1, Hyunjun Cho 2, Sukmo Koo 1, Sagar R. Vaidyanathan 2, Kelly

More information

Supplementary Information

Supplementary Information Electronic Supplementary Material (ESI) for Nanoscale. This journal is The Royal Society of Chemistry 2014 Supplementary Information Large-scale lithography-free metasurface with spectrally tunable super

More information

Supporting Information. Plasmon Ruler for Measuring Dielectric Thin Films

Supporting Information. Plasmon Ruler for Measuring Dielectric Thin Films Supporting Information Single Nanoparticle Based Hetero-Nanojunction as a Plasmon Ruler for Measuring Dielectric Thin Films Li Li, *a,b Tanya Hutter, c Wenwu Li d and Sumeet Mahajan *b a School of Chemistry

More information

Superlattice Plasmons in Hierarchical Au Nanoparticle Arrays

Superlattice Plasmons in Hierarchical Au Nanoparticle Arrays SUPPLEMENTAL INFORMATION Superlattice Plasmons in Hierarchical Au Nanoparticle Arrays Danqing Wang 1, Ankun Yang 2, Alexander J. Hryn 2, George C. Schatz 1,3 and Teri W. Odom 1,2,3 1 Graduate Program in

More information

Invited Paper ABSTRACT 1. INTRODUCTION

Invited Paper ABSTRACT 1. INTRODUCTION Invited Paper Numerical Prediction of the Effect of Nanoscale Surface Roughness on Film-coupled Nanoparticle Plasmon Resonances Chatdanai Lumdee and Pieter G. Kik *,, CREOL, the College of Optics and Photonics;

More information

SUPPLEMENTARY INFORMATION

SUPPLEMENTARY INFORMATION SUPPLEMENTARY INFORMATION doi: 10.1038/nnano.2011.72 Tunable Subradiant Lattice Plasmons by Out-of-plane Dipolar Interactions Wei Zhou and Teri W. Odom Optical measurements. The gold nanoparticle arrays

More information

transmission reflection absorption

transmission reflection absorption Optical Cages V. Kumar*, J. P. Walker* and H. Grebel The Electronic Imaging Center and the ECE department at NJIT, Newark, NJ 0702. grebel@njit.edu * Contributed equally Faraday Cage [], a hollow structure

More information

Supporting Information:

Supporting Information: Supporting Information: Achieving Strong Field Enhancement and Light Absorption Simultaneously with Plasmonic Nanoantennas Exploiting Film-Coupled Triangular Nanodisks Yang Li, Dezhao Li, Cheng Chi, and

More information

Aluminum for nonlinear plasmonics: Methods Section

Aluminum for nonlinear plasmonics: Methods Section Aluminum for nonlinear plasmonics: Methods Section Marta Castro-Lopez, Daan Brinks, Riccardo Sapienza, and Niek F. van Hulst, ICFO - Institut de Ciencies Fotoniques, and ICREA - Institució Catalana de

More information

ECE280: Nano-Plasmonics and Its Applications. Week8

ECE280: Nano-Plasmonics and Its Applications. Week8 ECE280: Nano-Plasmonics and Its Applications Week8 Surface Enhanced Raman Scattering (SERS) and Surface Plasmon Amplification by Stimulated Emission of Radiation (SPASER) Raman Scattering Chandrasekhara

More information

Supplementary Information

Supplementary Information Electronic Supplementary Material (ESI) for Nanoscale. This journal is The Royal Society of Chemistry 2017 Supplementary Information Coupling Effects in 3D Plasmonic Structures Templated by Morpho Butterfly

More information

Supporting Information

Supporting Information Supporting Information Capping Agent-Free Gold Nanostars Show Greatly Increased Versatility And Sensitivity For Biosensing Debrina Jana, Carlos Matti, Jie He, and Laura Sagle* Department of Chemistry,

More information

ABSTRACT 1. INTRODUCTION

ABSTRACT 1. INTRODUCTION Cascaded plasmon resonances multi-material nanoparticle trimers for extreme field enhancement S. Toroghi a, Chatdanai Lumdee a, and P. G. Kik* a CREOL, The College of Optics and Photonics, University of

More information

Flexible, Transparent and Highly Sensitive SERS. Substrates with Cross-nanoporous Structures for

Flexible, Transparent and Highly Sensitive SERS. Substrates with Cross-nanoporous Structures for Electronic Supplementary Material (ESI) for Nanoscale. This journal is The Royal Society of Chemistry 2018 supplementary information Flexible, Transparent and Highly Sensitive SERS Substrates with Cross-nanoporous

More information

B.-Y. Lin et al., Opt. Express 17, (2009).

B.-Y. Lin et al., Opt. Express 17, (2009). !!!! The Ag nanoparticle array can be considered Ag nanorods arranged in hexagonal pattern with an inter-nanorod gap (W). The rod diameter (D) is 25 nm and the rod length (L) is 100 nm. A series of curved

More information

Supporting Information

Supporting Information Supporting Information Highly Sensitive, Reproducible, and Stable SERS Sensors Based on Well-Controlled Silver Nanoparticles Decorated Silicon Nanowire Building Blocks Xue Mei Han, Hui Wang, Xue Mei Ou,

More information

Supporting Information

Supporting Information Supporting Information Molecular Orbital Gating Surface-Enhanced Raman Scattering Chenyang Guo, 1, Xing Chen, 2, Song-Yuan Ding, 3, Dirk Mayer, 4 Qingling Wang, 1 Zhikai Zhao, 1,5 Lifa Ni, 1,6 Haitao Liu,

More information

Novel Nanoparticles for Ultrasensitive Detection and Spectroscopy

Novel Nanoparticles for Ultrasensitive Detection and Spectroscopy Final Technical Report (DOE-FG02-98ER14873) Project Officer: Dr. Richard Gordon / Dr. John Miller Novel Nanoparticles for Ultrasensitive Detection and Spectroscopy Shuming Nie Indiana University P. 0.

More information

Supporting Information. Single-Particle Absorption Spectroscopy by. Photothermal Contrast

Supporting Information. Single-Particle Absorption Spectroscopy by. Photothermal Contrast Supporting Information Single-Particle Absorption Spectroscopy by Photothermal Contrast Mustafa Yorulmaz 1,, Sara Nizzero 2, 3,, Anneli Hoggard 1, Lin-Yung Wang 1, Yi-Yu Cai 1, Man-Nung Su 1, Wei-Shun

More information

Localized and Propagating Surface Plasmon Co-Enhanced Raman Spectroscopy Based on Evanescent Field Excitation

Localized and Propagating Surface Plasmon Co-Enhanced Raman Spectroscopy Based on Evanescent Field Excitation Supplementary Information Localized and Propagating Surface Plasmon Co-Enhanced Raman Spectroscopy Based on Evanescent Field Excitation Yu Liu, Shuping Xu, Haibo Li, Xiaoguang Jian, Weiqing Xu* State Key

More information

Optimizing the performance of metal-semiconductor-metal photodetectors by embedding nanoparticles in the absorption layer

Optimizing the performance of metal-semiconductor-metal photodetectors by embedding nanoparticles in the absorption layer Journal of Electrical and Electronic Engineering 2015; 3(2-1): 78-82 Published online February 10, 2015 (http://www.sciencepublishinggroup.com/j/jeee) doi: 10.11648/j.jeee.s.2015030201.27 ISSN: 2329-1613

More information

Electronic Supplementary Information. Au/Ag Core-shell Nanocuboids for High-efficiency Organic Solar Cells with Broadband Plasmonic Enhancement

Electronic Supplementary Information. Au/Ag Core-shell Nanocuboids for High-efficiency Organic Solar Cells with Broadband Plasmonic Enhancement Electronic Supplementary Material (ESI) for Energy & Environmental Science. This journal is The Royal Society of Chemistry 2016 Electronic Supplementary Information Au/Ag Core-shell Nanocuboids for High-efficiency

More information

Label-free SERS Selective Detection of Dopamine and Serotonin. Using Graphene-Au Nanopyramid Heterostructure

Label-free SERS Selective Detection of Dopamine and Serotonin. Using Graphene-Au Nanopyramid Heterostructure Supporting nformation for Label-free Selective Detection of Dopamine and Serotonin Using Graphene-Au Nanopyramid Heterostructure Pu Wang 1, Ming Xia 1, Owen Liang 1, Ke Sun 1,2, Aaron F. Cipriano 3, Thomas

More information

Taking cascaded plasmonic field enhancement to the ultimate limit in silver nanoparticle dimers S. Toroghi* a, P. G. Kik a,b

Taking cascaded plasmonic field enhancement to the ultimate limit in silver nanoparticle dimers S. Toroghi* a, P. G. Kik a,b Taking cascaded plasmonic field enhancement to the ultimate limit in silver nanoparticle dimers S. Toroghi* a, P. G. Kik a,b a CREOL, The College of Optics and Photonics, University of Central Florida,

More information

Supporting Information

Supporting Information Supporting Information Polarization-dependent Surface Enhanced Raman Scattering Activity of Anisotropic Plasmonic Nanorattles Keng-Ku Liu, Sirimuvva Tadepalli, Gayatri Kumari, Progna Banerjee, Limei Tian,

More information

Bidirectional Plasmonic Coloration with Gold Nanoparticles by Wavelength-Switched Photoredox

Bidirectional Plasmonic Coloration with Gold Nanoparticles by Wavelength-Switched Photoredox Electronic Supplementary Material (ESI) for Nanoscale. This journal is The Royal Society of Chemistry 2018 Electronic Supplementary Material (ESI) for Nanoscale. This journal is The Royal Society of Chemistry

More information

Supporting Information

Supporting Information Supporting Information Ultrasensitive Label-Free Resonance Rayleigh Scattering Aptasensor for Hg 2+ Using Hg 2+ -Triggered Exonuclease III-Assisted Target Recycling and Growth of G-Wires for Signal Amplification

More information

Supplementary Figure S1 Anticrossing and mode exchange between D1 (Wood's anomaly)

Supplementary Figure S1 Anticrossing and mode exchange between D1 (Wood's anomaly) Supplementary Figure S1 Anticrossing and mode exchange between D1 (Wood's anomaly) and D3 (Fabry Pérot cavity mode). (a) Schematic (top) showing the reflectance measurement geometry and simulated angle-resolved

More information

Nanojet and Surface Enhanced Raman Spectroscopy (NASERS) for Highly Reproducible and Controllable Single Molecule Detection

Nanojet and Surface Enhanced Raman Spectroscopy (NASERS) for Highly Reproducible and Controllable Single Molecule Detection Nanojet and Surface Enhanced Raman Spectroscopy (NASERS) for Highly Reproducible and Controllable Single Molecule Detection Te-Wei Chang, Manas Ranjan Gartia and Gang Logan Liu Department of Electrical

More information

Supplementary Figure 1: Power dependence of hot-electrons reduction of 4-NTP to 4-ATP. a) SERS spectra of the hot-electron reduction reaction using

Supplementary Figure 1: Power dependence of hot-electrons reduction of 4-NTP to 4-ATP. a) SERS spectra of the hot-electron reduction reaction using Supplementary Figure 1: Power dependence of hot-electrons reduction of 4-NTP to 4-ATP. a) SERS spectra of the hot-electron reduction reaction using 633 nm laser excitation at different powers and b) the

More information

Simulation of Surface Plasmon Resonance on Different Size of a Single Gold Nanoparticle

Simulation of Surface Plasmon Resonance on Different Size of a Single Gold Nanoparticle Journal of Physics: Conference Series PAPER OPEN ACCESS Simulation of Surface Plasmon Resonance on Different Size of a Single Gold Nanoparticle To cite this article: Norsyahidah Md Saleh and A. Abdul Aziz

More information

Biosensing based on slow plasmon nanocavities

Biosensing based on slow plasmon nanocavities iosensing based on slow plasmon nanocavities. Sepulveda, 1, Y. Alaverdyan,. rian, M. Käll 1 Nanobiosensors and Molecular Nanobiophysics Group Research Center on Nanoscience and Nanotechnolog (CIN)CSIC-ICN

More information

Supporting Information. Fluorescence Regulation of Copper Nanoclusters via DNA Template. Manipulation toward Design of a High Signal-to-Noise Ratio

Supporting Information. Fluorescence Regulation of Copper Nanoclusters via DNA Template. Manipulation toward Design of a High Signal-to-Noise Ratio Supporting Information Fluorescence Regulation of Copper Nanoclusters via DNA Template Manipulation toward Design of a High Signal-to-Noise Ratio Biosensor Junyao Li, Wenxin Fu, Jianchun Bao, Zhaoyin Wang*,

More information

Plasmonic Nanosnowmen with a Conductive. and Sensitive, Quantitative and Multiplexable. Surface-Enhanced Raman Scattering Probes

Plasmonic Nanosnowmen with a Conductive. and Sensitive, Quantitative and Multiplexable. Surface-Enhanced Raman Scattering Probes Supporting Information Plasmonic Nanosnowmen with a Conductive Junction as Highly Tunable Nanoantenna Structures and Sensitive, Quantitative and Multiplexable Surface-Enhanced Raman Scattering Probes Jung-Hoon

More information

Optical cavity modes in gold shell particles

Optical cavity modes in gold shell particles 9 Optical cavity modes in gold shell particles Gold (Au) shell particles with dimensions comparable to the wavelength of light exhibit a special resonance, with a tenfold field enhancement over almost

More information

Electronic Supplementary Information for

Electronic Supplementary Information for Electronic Supplementary Material (ESI) for Journal of Materials Chemistry C. This journal is The Royal Society of Chemistry 018 Electronic Supplementary Information for Broadband Photoresponse Based on

More information

Supporting Information

Supporting Information Supporting Information Design and Fabrication of Random Silver Films as substrate for SERS based Nano-Stress sensing of Proteins Jayakumar Perumal b, 1, Kien Voon Kong b, 1, U. S. Dinish b, Reuben M. Bakker

More information

Nano Optics Based on Coupled Metal Nanoparticles

Nano Optics Based on Coupled Metal Nanoparticles Nano Optics Based on Coupled Metal Nanoparticles Shangjr Gwo ( 果尚志 ) Department of Physics National Tsing-Hua University, Hsinchu 30013, Taiwan E-mail: gwo@phys.nthu.edu.tw NDHU-Phys (2010/03/01) Background

More information

Tunable plasmon resonance of a touching gold cylinder arrays

Tunable plasmon resonance of a touching gold cylinder arrays J. At. Mol. Sci. doi: 10.4208/jams.091511.101811a Vol. 3, No. 3, pp. 252-261 August 2012 Tunable plasmon resonance of a touching gold cylinder arrays Geng-Hua Yan a, Yan-Ying Xiao a, Su-Xia Xie b, and

More information

The use of diagrams is good and the enhancement factors seen are reasonable but not in the league of gold or silver nanoparticles.

The use of diagrams is good and the enhancement factors seen are reasonable but not in the league of gold or silver nanoparticles. Reviewers' comments: Reviewer #1 (Remarks to the Author): This is a very interesting article and should be published. The authors demonstrate a method to produce metallic MoO2 nano-dumbbells as SERS substrate

More information

Supporting Information

Supporting Information Copyright WILEY VCH Verlag GmbH & Co. KGaA,69469 Weinheim,Germany,2011 Supporting Information for Small,DOI: 10.1002/ smll.201100371 Lithographically Fabricated Optical Antennas with Gaps Well Below 10

More information

Nanomaterials for Plasmonic Devices. Lih J. Chen

Nanomaterials for Plasmonic Devices. Lih J. Chen Nanomaterials for Plasmonic Devices Lih J. Chen Department of Materials Science and Engineering, National Tsing Hua University, Hsinchu, Taiwan Papers on Plasmon: 75,000 (6/25/2018) Papers on Plasmonics:

More information

SUPPORTING INFORMATION. Preparation of colloidal photonic crystal containing CuO nanoparticles with. tunable structural colors

SUPPORTING INFORMATION. Preparation of colloidal photonic crystal containing CuO nanoparticles with. tunable structural colors Electronic Supplementary Material (ESI) for RSC Advances. This journal is The Royal Society of Chemistry 215 SUPPORTING INFORMATION Preparation of colloidal photonic crystal containing CuO nanoparticles

More information

A nano-plasmonic chip for simultaneous sensing with dual-resonance surface-enhanced Raman scattering and localized surface plasmon resonance

A nano-plasmonic chip for simultaneous sensing with dual-resonance surface-enhanced Raman scattering and localized surface plasmon resonance Laser Photonics Rev. 8, No. 4, 610 616 (2014) / DOI 10.1002/lpor.201400029 ORIGINAL Abstract A dual-resonance surface-enhanced Raman scattering (SERS) chip which also serves as a localized surface plasmon

More information

Enhancing Localized Evaporation through Separated Light Absorbing Centers and Scattering Centers

Enhancing Localized Evaporation through Separated Light Absorbing Centers and Scattering Centers 1 Supporting information for: Enhancing Localized Evaporation through Separated Light Absorbing Centers and Scattering Centers Dengwu Zhao, 1 Haoze Duan, 1 Shengtao Yu, 1 Yao Zhang, 1 Jiaqing He, 1 Xiaojun

More information

Supporting Information

Supporting Information Supporting Information Applying arbon Dots-Metal Ions Ensembles as a Multichannel Fluorescent Sensor Array: Detection and Discrimination of Phosphate Anions Shan Sun,, Kai Jiang, Sihua Qian, Yuhui Wang,

More information

Single Gold Nanoparticles as Real-Time Optical Probes for the Detection of NADH-Dependent Intracellular Metabolic Enzymatic Pathways

Single Gold Nanoparticles as Real-Time Optical Probes for the Detection of NADH-Dependent Intracellular Metabolic Enzymatic Pathways Single Gold Nanoparticles as Real-Time Optical Probes for the Detection of NADH-Dependent Intracellular Metabolic Enzymatic Pathways Lei Zhang, Yang Li, Da-Wei Li, Chao Jing,Xiaoyuan Chen, Min Lv, Qing

More information

Optical properties of silver nanoprisms and their influences on fluorescence of europium complex

Optical properties of silver nanoprisms and their influences on fluorescence of europium complex Optical properties of silver nanoprisms and their influences on fluorescence of europium complex Qingru Wang, 1,2 Feng Song, 1,2,* Shangxin Lin, 3 Jiadong Liu, 1,2 Hongyan Zhao, 1 Chao Zhang, 1 Chengguo

More information

Lithography-Free Broadband Ultrathin Film. Photovoltaics

Lithography-Free Broadband Ultrathin Film. Photovoltaics Supporting Information Lithography-Free Broadband Ultrathin Film Absorbers with Gap Plasmon Resonance for Organic Photovoltaics Minjung Choi 1, Gumin Kang 1, Dongheok Shin 1, Nilesh Barange 2, Chang-Won

More information

Collective effects in second-harmonic generation from plasmonic oligomers

Collective effects in second-harmonic generation from plasmonic oligomers Supporting Information Collective effects in second-harmonic generation from plasmonic oligomers Godofredo Bautista,, *, Christoph Dreser,,, Xiaorun Zang, Dieter P. Kern,, Martti Kauranen, and Monika Fleischer,,*

More information

SUPPLEMENTARY INFORMATION

SUPPLEMENTARY INFORMATION Supplementary Information for Biocompatible and Functionalized Silk Opals Sunghwan Kim, Alexander N. Mitropoulos, Joshua D. Spitzberg, Hu Tao, David L. Kaplan, and Fiorenzo G. Omenetto (*) (*) To whom

More information

Shell-isolated nanoparticleenhanced Raman spectroscopy: Insight from COMSOL simulations

Shell-isolated nanoparticleenhanced Raman spectroscopy: Insight from COMSOL simulations Shell-isolated nanoparticleenhanced Raman spectroscopy: Insight from COMSOL simulations Song-Yuan Ding, Jun Yi, En-Ming You, and Zhong-Qun Tian 2016-11-03, Shanghai Excerpt from the Proceedings of the

More information

Plasmonic fractals: ultrabroadband light trapping in thin film solar cells by a Sierpinski nanocarpet

Plasmonic fractals: ultrabroadband light trapping in thin film solar cells by a Sierpinski nanocarpet Plasmonic fractals: ultrabroadband light trapping in thin film solar cells by a Sierpinski nanocarpet Hanif Kazerooni 1, Amin Khavasi, 2,* 1. Chemical Engineering Faculty, Amirkabir University of Technology

More information

SUPPLEMENTARY INFORMATION

SUPPLEMENTARY INFORMATION Trapping light by mimicking gravitational lensing C. Sheng 1, H. Liu 1, Y. Wang 1, S. N. Zhu 1, and D. A. Genov 2 1 National Laboratory of Solid State Microstructures & Department of Physics, Nanjing University,

More information

Supplementary Information

Supplementary Information Electronic Supplementary Material (ESI) for Faraday Discussions. This journal is The Royal Society of Chemistry 2017 Supplementary Information Monitoring plasmon coupling and SERS enhancement through in

More information

Broadband Plasmonic Couplers for Light Trapping and Waveguiding

Broadband Plasmonic Couplers for Light Trapping and Waveguiding Broadband Plasmonic Couplers for Light Trapping and Waveguiding F. Djidjeli* a, E. Jaberansary a, H. M. H. Chong a, and D. M. Bagnall a a Nano Research Group, School of Electronics and Computer Science,

More information

Supporting Information to Thermoplasmonic Semitransparent Nanohole Electrodes

Supporting Information to Thermoplasmonic Semitransparent Nanohole Electrodes Supporting Information to Thermoplasmonic Semitransparent Nanohole Electrodes Daniel Tordera, Dan Zhao, Anton V. Volkov, Xavier Crispin, Magnus P. Jonsson* Laboratory of Organic Electronics, Linköping

More information

Active Plasmonic Nanostructures in Biosensing and Imaging. Bjoern M. Reinhard Department of Chemistry

Active Plasmonic Nanostructures in Biosensing and Imaging. Bjoern M. Reinhard Department of Chemistry Active Plasmonic Nanostructures in Biosensing and Imaging Bjoern M. Reinhard Department of Chemistry Noble Metal Nanoparticles Light The alternating surface charges effectively form an oscillating dipole,

More information

Supplementary Note 1: Dark field measurements and Scattering properties of NPoM geometries

Supplementary Note 1: Dark field measurements and Scattering properties of NPoM geometries Supplementary Note 1: Dark field measurements and Scattering properties of NPoM geometries Supplementary Figure 1: Dark field scattering properties of individual nanoparticle on mirror geometries separated

More information

Supplementary Figure 1 Detailed illustration on the fabrication process of templatestripped

Supplementary Figure 1 Detailed illustration on the fabrication process of templatestripped Supplementary Figure 1 Detailed illustration on the fabrication process of templatestripped gold substrate. (a) Spin coating of hydrogen silsesquioxane (HSQ) resist onto the silicon substrate with a thickness

More information

In Situ Gelation-Induced Death of Cancer Cells Based on Proteinosomes

In Situ Gelation-Induced Death of Cancer Cells Based on Proteinosomes Supporting information for In Situ Gelation-Induced Death of Cancer Cells Based on Proteinosomes Yuting Zhou, Jianmin Song, Lei Wang*, Xuting Xue, Xiaoman Liu, Hui Xie*, and Xin Huang* MIIT Key Laboratory

More information

Fundamentals of nanoscience

Fundamentals of nanoscience Fundamentals of nanoscience Spectroscopy of nano-objects Mika Pettersson 1. Non-spatially resolved spectroscopy Traditionally, in spectroscopy, one is interested in obtaining information on the energy

More information

Surface Plasmon Resonance in Metallic Nanoparticles and Nanostructures

Surface Plasmon Resonance in Metallic Nanoparticles and Nanostructures Surface Plasmon Resonance in Metallic Nanoparticles and Nanostructures Zhi-Yuan Li Optical Physics Laboratory, Institute of Physics, CAS Beijing 18, China January 5-9, 7, Fudan University, Shanghai Challenges

More information

Supporting Information

Supporting Information Supporting Information Surfactant-Free Preparation of Au@Resveratrol Hollow Nanoparticles with Photothermal Performance and Antioxidant Activity Wenjing Wang, Qi Tang, Tianrong Yu, Xing Li, Yang Gao, Jing

More information

Full-color Subwavelength Printing with Gapplasmonic

Full-color Subwavelength Printing with Gapplasmonic Supporting information for Full-color Subwavelength Printing with Gapplasmonic Optical Antennas Masashi Miyata, Hideaki Hatada, and Junichi Takahara *,, Graduate School of Engineering, Osaka University,

More information

Fluorescence Enhancement on Silver Nanoplate at the. Single- and Sub-Nanoparticle Level

Fluorescence Enhancement on Silver Nanoplate at the. Single- and Sub-Nanoparticle Level Electronic Supplementary Material (ESI) for Nanoscale. This journal is The Royal Society of Chemistry Supporting 2015 Information Fluorescence Enhancement on Silver Nanoplate at the Single- and Sub-Nanoparticle

More information

Visualizing the bi-directional electron transfer in a Schottky junction consisted of single CdS nanoparticles and a planar gold film

Visualizing the bi-directional electron transfer in a Schottky junction consisted of single CdS nanoparticles and a planar gold film Electronic Supplementary Material (ESI) for Chemical Science. This journal is The Royal Society of Chemistry 2017 Electronic Supplementary Information Visualizing the bi-directional electron transfer in

More information

Research Article Synthesis of Dendritic Silver Nanoparticles and Their Applications as SERS Substrates

Research Article Synthesis of Dendritic Silver Nanoparticles and Their Applications as SERS Substrates Advances in Materials Science and Engineering Volume 2013, Article ID 519294, 4 pages http://dx.doi.org/10.1155/2013/519294 Research Article Synthesis of Dendritic Silver Nanoparticles and Their Applications

More information

Supplementary Figure S1 SEM and optical images of Si 0.6 H 0.4 colloids. a, SEM image of Si 0.6 H 0.4 colloids. b, The size distribution of Si 0.

Supplementary Figure S1 SEM and optical images of Si 0.6 H 0.4 colloids. a, SEM image of Si 0.6 H 0.4 colloids. b, The size distribution of Si 0. Supplementary Figure S1 SEM and optical images of Si 0.6 H 0.4 colloids. a, SEM image of Si 0.6 H 0.4 colloids. b, The size distribution of Si 0.6 H 0.4 colloids. The standard derivation is 4.4 %. Supplementary

More information

Numerical analysis of the spectral response of an NSOM measurement

Numerical analysis of the spectral response of an NSOM measurement Birck Nanotechnology Center Birck and NCN Publications Purdue Libraries Year 2008 Numerical analysis of the spectral response of an NSOM measurement Edward C. Kinzel Xianfan Xu Purdue University, kinzele@purdue.edu

More information

Supporting information

Supporting information Electronic Supplementary Material (ESI) for anoscale. This journal is The Royal Society of Chemistry 2014 Supporting information On-demand shape and size purification of nanoparticle based on surface area

More information

Starting solution. Hydrolysis reaction under thermostatic conditions. Check of viscosity and deposition test SOL. Deposition by spin coating

Starting solution. Hydrolysis reaction under thermostatic conditions. Check of viscosity and deposition test SOL. Deposition by spin coating Supplementary Figures Tetramethyl orthosilicate (TMOS) Tetrahydrofuran anhydrous (THF) Trimethyl methoxy silane (TMMS) Trimethyl silil acetate (TMSA) Starting solution Hydrolysis reaction under thermostatic

More information

Antifouling performance and mechanism of elastic graphenesilicone

Antifouling performance and mechanism of elastic graphenesilicone Electronic Supplementary Material (ESI) for Journal of Materials Chemistry B. This journal is The Royal Society of Chemistry 2018 2019 Antifouling performance and mechanism of elastic graphenesilicone

More information

Nanophysics: Main trends

Nanophysics: Main trends Nano-opto-electronics Nanophysics: Main trends Nanomechanics Main issues Light interaction with small structures Molecules Nanoparticles (semiconductor and metallic) Microparticles Photonic crystals Nanoplasmonics

More information

Monolayer Black Phosphorus

Monolayer Black Phosphorus Supporting Information: Localized Surface Plasmons in Nanostructured Monolayer Black Phosphorus Zizhuo Liu and Koray Aydin* Department of Electrical Engineering and Computer Science, Northwestern University,

More information

Nanoscale optical circuits: controlling light using localized surface plasmon resonances

Nanoscale optical circuits: controlling light using localized surface plasmon resonances Nanoscale optical circuits: controlling light using localized surface plasmon resonances T. J. Davis, D. E. Gómez and K. C. Vernon CSIRO Materials Science and Engineering Localized surface plasmon (LSP)

More information

ULTRATHIN ORGANIC FILMS

ULTRATHIN ORGANIC FILMS An Introduction to ULTRATHIN ORGANIC FILMS From Langmuir-Blodgett to Self-Assembly Abraham Ulman Corporate Research Laboratories Eastman Kodak Company Rochester, New York Academic Press San Diego New York

More information

Aggregation-Induced Red-NIR Emission Organic Nanoparticles as Effective and Photostable

Aggregation-Induced Red-NIR Emission Organic Nanoparticles as Effective and Photostable Aggregation-Induced Red-NIR Emission Organic Nanoparticles as Effective and Photostable Fluorescent Probe for Bioimaging By Qiuli Zhao, Kai Li, Sijie Chen, Anjun Qin, Dan Ding, Shuang Zhang, Yi Liu, Jing

More information

Supporting Information

Supporting Information Electronic Supplementary Material (ESI) for ChemComm. This journal is The Royal Society of Chemistry 2018 Supporting Information In situ and real-time ToF-SIMS analysis of light-induced chemical changes

More information

Mixed Dimer Double-Resonance Substrates for Surface-Enhanced Raman Spectroscopy

Mixed Dimer Double-Resonance Substrates for Surface-Enhanced Raman Spectroscopy Mixed Dimer Double-Resonance Substrates for Surface-Enhanced Raman Spectroscopy Mohamad G. Banaee* and Kenneth B. Crozier* School of Engineering and Applied Sciences, Harvard University, Cambridge, Massachusetts

More information

Supporting Information

Supporting Information Supporting Information Superstructural Raman Nanosensors with Integrated Dual Functions for Ultrasensitive Detection and Tunable Release of Molecules Jing Liu #, Jianhe Guo #, Guowen Meng and Donglei Fan*

More information

Photovoltaic Enhancement Due to Surface-Plasmon Assisted Visible-Light. Absorption at the Inartificial Surface of Lead Zirconate-Titanate Film

Photovoltaic Enhancement Due to Surface-Plasmon Assisted Visible-Light. Absorption at the Inartificial Surface of Lead Zirconate-Titanate Film Photovoltaic Enhancement Due to Surface-Plasmon Assisted Visible-Light Absorption at the Inartificial Surface of Lead Zirconate-Titanate Film Fengang Zheng, a,b, * Peng Zhang, a Xiaofeng Wang, a Wen Huang,

More information

Supplementary Figure S1. AFM characterizations and topographical defects of h- BN films on silica substrates. (a) (c) show the AFM height

Supplementary Figure S1. AFM characterizations and topographical defects of h- BN films on silica substrates. (a) (c) show the AFM height Supplementary Figure S1. AFM characterizations and topographical defects of h- BN films on silica substrates. (a) (c) show the AFM height topographies of h-bn film in a size of ~1.5µm 1.5µm, 30µm 30µm

More information

Supplementary information

Supplementary information Supplementary information Improving the Working Efficiency of a Triboelectric Nanogenerator by the Semimetallic PEDOT:PSS Hole Transport Layer and its Application in Self- Powered Active Acetylene Gas

More information

Study of Surface Plasmon Excitation on Different Structures of Gold and Silver

Study of Surface Plasmon Excitation on Different Structures of Gold and Silver Nanoscience and Nanotechnology 2015, 5(4): 71-81 DOI: 10.5923/j.nn.20150504.01 Study of Surface Plasmon Excitation on Different Structures of Gold and Silver Anchu Ashok 1,*, Arya Arackal 1, George Jacob

More information

Bringing optics into the nanoscale a double-scanner AFM brings advanced optical experiments within reach

Bringing optics into the nanoscale a double-scanner AFM brings advanced optical experiments within reach Bringing optics into the nanoscale a double-scanner AFM brings advanced optical experiments within reach Beyond the diffraction limit The resolution of optical microscopy is generally limited by the diffraction

More information

NSF EPSCoR Kansas Center for Solar Energy Research Annual Program Review June 12-14, 2011

NSF EPSCoR Kansas Center for Solar Energy Research Annual Program Review June 12-14, 2011 NSF EPSCoR Kansas Center for Solar Energy Research Annual Program Review June 12-14, 2011 Plasmonic and Photonic Photovoltaics based on graphene and other carbon nanostructures Fengli Wang, Guowei Xu,

More information

Bincy Jose, Colm T. Mallon, Robert J. Forster & Tia E. Keyes School of Chemical Sciences, Dublin City University, Dublin 9, Ireland

Bincy Jose, Colm T. Mallon, Robert J. Forster & Tia E. Keyes School of Chemical Sciences, Dublin City University, Dublin 9, Ireland Supplementary material for The Application of Selective Surface Modification of Nanocavities Arrays to Compare Surface vs Cavity Plasmons in SERS enhancement Bincy Jose, Colm T. Mallon, Robert J. Forster

More information

SUPPLEMENTARY INFORMATION

SUPPLEMENTARY INFORMATION Topological insulator nanostructures for near-infrared transparent flexible electrodes Hailin Peng 1*, Wenhui Dang 1, Jie Cao 1, Yulin Chen 2,3, Di Wu 1, Wenshan Zheng 1, Hui Li 1, Zhi-Xun Shen 3,4, Zhongfan

More information

Seminars in Nanosystems - I

Seminars in Nanosystems - I Seminars in Nanosystems - I Winter Semester 2011/2012 Dr. Emanuela Margapoti Emanuela.Margapoti@wsi.tum.de Dr. Gregor Koblmüller Gregor.Koblmueller@wsi.tum.de Seminar Room at ZNN 1 floor Topics of the

More information

Quantitative Surface-Enhanced Raman Spectroscopy through the Interface-Assisted Self-Assembly of Three- Dimensional Silver Nanorod Substrates

Quantitative Surface-Enhanced Raman Spectroscopy through the Interface-Assisted Self-Assembly of Three- Dimensional Silver Nanorod Substrates SUPPORTING INFORMATION Quantitative Surface-Enhanced Raman Spectroscopy through the Interface-Assisted Self-Assembly of Three- Dimensional Silver Nanorod Substrates Si-Ying Liu,, Xiang-Dong Tian, *,, Yun

More information

Enhanced Photonic Properties of Thin Opaline Films as a Consequence of Embedded Nanoparticles.

Enhanced Photonic Properties of Thin Opaline Films as a Consequence of Embedded Nanoparticles. Enhanced Photonic Properties of Thin Opaline Films as a Consequence of Embedded Nanoparticles. D E Whitehead, M Bardosova and M E Pemble Tyndall National Institute, University College Cork Ireland Introduction:

More information

Very large plasmon band shift in strongly coupled metal nanoparticle chain arrays.

Very large plasmon band shift in strongly coupled metal nanoparticle chain arrays. Mat. Res. Soc. Symp. Proc. Vol. 797 2004 Materials Research Society W4.6.1 Very large plasmon band shift in strongly coupled metal nanoparticle chain arrays. L. A. Sweatlock 1, J. J. Penninkhof 2, S. A.

More information

Blueshift of the silver plasmon band using controlled nanoparticle dissolution in aqueous solution

Blueshift of the silver plasmon band using controlled nanoparticle dissolution in aqueous solution Downloaded from orbit.dtu.dk on: Oct 23, 2018 Blueshift of the silver plasmon band using controlled nanoparticle dissolution in aqueous solution Mogensen, Klaus Bo; Kneipp, Katrin Published in: Proceedings

More information