Supporting Information:

Size: px
Start display at page:

Download "Supporting Information:"

Transcription

1 Supporting Information: Achieving Strong Field Enhancement and Light Absorption Simultaneously with Plasmonic Nanoantennas Exploiting Film-Coupled Triangular Nanodisks Yang Li, Dezhao Li, Cheng Chi, and Baoling Huang* Department of Mechanical and Aerospace Engineering, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong. The Hong Kong University of Science and Technology Shenzhen Research Institute, Shenzhen, China. These authors contributed equally to this work. *Corresponding Author Dr. Baoling Huang Phone: S1

2 Geometric parameters optimization In this study, we optimized the Ag disk thickness t disk and Al 2 O 3 spacer thickness t spacer, which mainly determined the plasmon coupling strength between two metal layers. As shown in Figure S1(a), with the increase of t spacer, the resonant wavelengths of all the PNs significantly blue-shifted due to the decrease of the effective index of the resonance mode in Al 2 O 3 spacer, while the absorption first increased until reaching near 100%, and then decreased. For thicker spacer, the resonance coupling effect is relatively weak, thereby the absorption of the structures is imperfect. For thinner spacer, the excitation of resonance within the spacer is inadequate. Therefore, the spacer thickness t spacer =10 nm is chosen as an optimal value for the NIR PN with triangular disks. Figure S1: Simulated absorbance spectra of PN-T as a function of (a) spacer thickness t spacer and (b) disk thickness t disk, respectively. The array period P and the edge length L t is 400 nm and 269 nm, respectively. Regarding the disk thickness t disk, there is a trade-off between strong light confinement along vertical direction using thicker disk and efficient coupling of light into the horizontal spacer layer using thinner disk. Dependence of PNs properties on the disk thickness t disk are shown in Figure S1(b). As the t disk increases, the resonant wavelength quite blue-shifts to short wavelength region, and subsequently became stable at around 1.62 µm. The absorption increases significantly with the blue-shifting of resonant S2

3 wavelength, reaching maximum when the wavelength is stable. According to the simulated results, a critical disk thickness t disk of 70 nm is chosen. Consequently, in this study, the optimal Ag disk thickness t disk of 70 nm and Al 2 O 3 spacer thickness t spacer of 10 nm are used in all the PNs. Figure S2: (a) Simulated absorption spectra for PN-T as a function of incident angle and wavelength. (b) Measured absorption spectra for PN-T as a function of polarization angle and wavelength. The array period P and the edge length L t is 400 nm and 269 nm, respectively. Absorbance spectra in visible and NIR regions S3

4 Figure S3. (a) Simulated and (b) measured absorbance spectra in 0.55 µm to 2.0 µm of PNs with different shaped disks at normal incidence. Magnetic field distributions at the third order mode for PN-T under (c) TM and (d) TE polarizations, and (e) PN-S under TM polarization. The color bars show the enhancement factors. Field enhancement in isolated triangular nanodisk and bowtie-shaped nanodisk As shown in Figure S4, the maximum local electric field enhancement E loc / E 0 of the uncoupled single triangular nanodisk is 43, while the maximum E loc / E 0 for the bowtie-shaped nanodisk reach provided by the in-plane near-field coupling. The gap size between the two tip-to-tip triangular nanodisks is 20 nm. In this study, for the film-coupled nanodisk system, the spacer thickness (the gap size between nanodisks and the metallic film) is 10 nm. According to the mechanism for out-of-plane coupling between the nanodisks and its image charges in the metallic film, 1-2 the effective gap size is twice of the spacer thickness (i.e., 20 nm). Consequently, the effective gap size for the out-of-plane near-field coupling in PN-T we consider in the manuscript is equal to that for the in-plane coupling in bowtie-shaped nanodisk here. Despite the identical effective gap size, PN-T shows a 1.34 times larger E loc / E 0 than that of the bowtie-shaped nanodisk with the same edge length and thickness. Figure S4: Electric distributions in x-y plane of (a) uncoupled single triangular nanodisk and (b) typical bowtie-shaped nanodisk with gap size of 20 nm under TE polarization. The edge-length and thickness of each single nanodisk is 269 nm and 70 nm, respectively. S4

5 Figure S5: Electric field distributions for MIM structured PNs of bowtie-shaped nanodisk under TE polarization. Electric field distribution in (a) x-y plane and (c) y-z plane, the gap size between two triangular nanodisks is 20 nm. Electric field distribution in (b) x-y plane and (d) y-z plane, the gap size between two triangular nanodisks is 10 nm. The edge-length and thickness of each single nanodisk is 269 nm and 70 nm, respectively. We investigate the film-coupled bowtie-shaped nanodisks, which combine the in-plane coupling in bowtie-shaped nanodisks with the out-of-plane coupling between the nanodisk and its image charges in the metallic film. Figure S4(a) and (c) show the electric field distributions of the PNs with the same in-plane and out-of-plane gap size of 20 nm. The electric field is strongly confined in both the in-plane and the out-of-plane gap; however, the stronger confinement locates at the out-of-plane gap with a maximum E loc / E 0 of 133, which is slightly lower than that for PN-T of the same single disk s size. When the in-plane gap between the two disks decreases to 10 nm, the in-plane near-field coupling becomes stronger as evidenced by the higher field enhancement in the in-plane gap. Interestingly, the highest E loc / E 0 still S5

6 appears at the out-of-plane gap despite the larger effective out-of-plane gap size (20 nm). Due to the increase of the in-plane field confinement, the highest E loc / E 0 for in-plane gap size of 10 nm (116) is smaller than that for 20 nm. Effect of oxidation on the optical properties of PN-T with Ag nanodisks Although Ag nanodisks have the advantages of low cost and strong local field enhancement over their Au counterparts, the chemical tarnishing of Ag nanodisks, such as oxidation under ambient conditions, is an issue that has to be considered in practical applications. There have already been several previous works on studying the oxidation process of Ag nanoparticles. 3-7 Qi et al. studied the effect of size on the oxidation process of Ag nanoparticles, demonstrating that nanoparticles with a diameter of 20 nm fabricated by electroless plating showed a faster oxidation process than those with a diameter of 35 nm produced by e-beam evaporation. 7 They attributed this dependence to the larger surface to volume ratio, and the resulted higher surface energy of smaller particles. Similarly, several recent studies also proved that small Ag nanoparticles (typically less than 50 nm) are prone to form an Ag 2 O layer (typically 0-2 nm) when exposed to atmosphere. 3-6 In this study, the edge-length of the smallest triangular nanodisks is 135 nm (P = 200 nm), which is much larger than those small particles discussed in previous works. Here we investigate the effect of oxide layer on the absorbance and field enhancement of PN-T with the smallest triangular nanodisks (P = 200 nm, L t = 135 nm), which has the largest possibility to be oxidized. Figure S6a shows the simulated absorbance spectra of PN-T covered with Ag 2 O (thickness of 0, 1, and 2 nm). The mesh sizes along x, y, and z directions are all set to 1 nm during the simulation. It should be noted here that the thickness of Ag 2 O on the bottom side of Ag nanodisks is set to zero because Ag nanodisks are directly placed on an Al 2 O 3 layer. Interestingly, both the resonant wavelength and the peak absorbance exhibit negligible dependence on the Ag 2 O thickness, while the absorption bandwidth is slightly broadened by adding 1 or 2 nm Ag 2 O. From the wavelength-dependent refractive index of Ag 2 O, one can observe that Ag 2 O is almost a dielectric materials (n real ~2.4, n imag ~0) in the wavelength above 0.5 µm. 5-6 As a result, the thin layer of Ag 2 O probably acts as an antireflection reflection coating, whose reflective index is between that of PN-T and air, to expand the absorption bandwidth. Regarding the local electric field enhancement, the 2 nm Ag 2 O do has S6

7 Fig an influence on the highest E loc / E 0 of PN-T, resulting a reduction by 13% from 211 to 183. Fortunately, several effective strategies have been proposed to prevent the Ag nanoparticle from oxidation, one of which is to introduce a monolayer protective barrier, such as thiols 7-8 and Al 2 O 3. 3 Figure S6. (a) The simulated absorbance spectra of PN-T (P = 200 nm) with Ag 2 O layer. The electric field distribution in x-y plane of PN-T (b) without Ag 2 O and (c) with 2-nm-thick Ag 2 O. REFERENCES (1) Mock, J. J.; Hill, R. T.; Degiron, A.; Zauscher, S.; Chilkoti, A.; Smith, D. R. Distance-Dependent Plasmon Resonant Coupling between a Gold Nanoparticle and Gold Film. Nano Lett. 2008, 8, (2) Nordlander, P.; Prodan, E. Plasmon Hybridization in Nanoparticles near Metallic Surfaces. Nano Lett. 2004, 4, (3) Baraldi, G.; Carrada, M.; Toudert, J.; Ferrer, F. J.; Arbouet, A.; Paillard, V.; Gonzalo, J. Preventing the Degradation of Ag Nanoparticles Using an Ultrathin a-al 2o3 Layer as Protective Barrier. J. Phys. Chem. C 2013, 117, (4) Han, Y.; Lupitskyy, R.; Chou, T. M.; Stafford, C. M.; Du, H.; Sukhishvili, S. Effect of Oxidation on Surface-Enhanced Raman Scattering Activity of Silver Nanoparticles: A Quantitative Correlation. Anal. Chem 2011, 83, (5) Kuzma, A.; Weis, M.; Flickyngerova, S.; Jakabovic, J.; Satka, A.; Dobrocka, E.; Chlpik, J.; Cirak, J.; Donoval, M.; Telek, P., et al. Influence of Surface Oxidation on Plasmon Resonance in Monolayer of Gold and Silver Nanoparticles. J. Appl. Phys. 2012, 112, (6) Yin, Y.; Li, Z. Y.; Zhong, Z.; Gates, B.; Xia, Y.; Venkateswaran, S. Synthesis and Characterization of Stable Aqueous Dispersions of Silver Nanoparticles through the Tollens Process. J. Mater. Chem. 2002, 12, (7) Qi, H.; Alexson, D.; Glembocki, O.; Prokes, S. M. The Effect of Size and Size Distribution on the S7

8 Oxidation Kinetics and Plasmonics of Nanoscale Ag Particles. Nanotechnology 2010, 21, (8) Scuderi, M.; Esposito, M.; Todisco, F.; Simeone, D.; Tarantini, I.; De Marco, L.; De Giorgi, M.; Nicotra, G.; Carbone, L.; Sanvitto, D., et al. Nanoscale Study of the Tarnishing Process in Electron Beam Lithography-Fabricated Silver Nanoparticles for Plasmonic Applications. J. Phys. Chem. C 2016, 120, S8

Supplementary Information

Supplementary Information Electronic Supplementary Material (ESI) for Nanoscale. This journal is The Royal Society of Chemistry 2014 Supplementary Information Large-scale lithography-free metasurface with spectrally tunable super

More information

Invited Paper ABSTRACT 1. INTRODUCTION

Invited Paper ABSTRACT 1. INTRODUCTION Invited Paper Numerical Prediction of the Effect of Nanoscale Surface Roughness on Film-coupled Nanoparticle Plasmon Resonances Chatdanai Lumdee and Pieter G. Kik *,, CREOL, the College of Optics and Photonics;

More information

Supplementary Figure S1 Anticrossing and mode exchange between D1 (Wood's anomaly)

Supplementary Figure S1 Anticrossing and mode exchange between D1 (Wood's anomaly) Supplementary Figure S1 Anticrossing and mode exchange between D1 (Wood's anomaly) and D3 (Fabry Pérot cavity mode). (a) Schematic (top) showing the reflectance measurement geometry and simulated angle-resolved

More information

Surface Plasmon Resonance in Metallic Nanoparticles and Nanostructures

Surface Plasmon Resonance in Metallic Nanoparticles and Nanostructures Surface Plasmon Resonance in Metallic Nanoparticles and Nanostructures Zhi-Yuan Li Optical Physics Laboratory, Institute of Physics, CAS Beijing 18, China January 5-9, 7, Fudan University, Shanghai Challenges

More information

A. Optimizing the growth conditions of large-scale graphene films

A. Optimizing the growth conditions of large-scale graphene films 1 A. Optimizing the growth conditions of large-scale graphene films Figure S1. Optical microscope images of graphene films transferred on 300 nm SiO 2 /Si substrates. a, Images of the graphene films grown

More information

Symmetry Breaking in Oligomer Surface Plasmon Lattice Resonances

Symmetry Breaking in Oligomer Surface Plasmon Lattice Resonances Supporting Information Symmetry Breaking in Oligomer Surface Plasmon Lattice Resonances Marco Esposito 1, Francesco Todisco 2, Said Bakhti 3, Adriana Passaseo* 1, Iolena Tarantini 4, Massimo Cuscunà 1,

More information

Strong plasmon coupling between two gold nanospheres on a gold slab

Strong plasmon coupling between two gold nanospheres on a gold slab Strong plasmon coupling between two gold nanospheres on a gold slab H. Liu 1, *, J. Ng 2, S. B. Wang 2, Z. H. Hang 2, C. T. Chan 2 and S. N. Zhu 1 1 National Laboratory of Solid State Microstructures and

More information

sgsp agsp W=20nm W=50nm Re(n eff (e) } Re{E z Im{E x Supplementary Figure 1: Gap surface plasmon modes in MIM waveguides.

sgsp agsp W=20nm W=50nm Re(n eff (e) } Re{E z Im{E x Supplementary Figure 1: Gap surface plasmon modes in MIM waveguides. (a) 2.4 (b) (c) W Au y Electric field (a.u) x SiO 2 (d) y Au sgsp x Energy (ev) 2. 1.6 agsp W=5nm W=5nm 1.2 1 2 3 4.1.1 1 1 Re(n eff ) -1-5 5 1 x (nm) W = 2nm E = 2eV Im{E x } Re{E z } sgsp Electric field

More information

Supplementary Figure 1: Power dependence of hot-electrons reduction of 4-NTP to 4-ATP. a) SERS spectra of the hot-electron reduction reaction using

Supplementary Figure 1: Power dependence of hot-electrons reduction of 4-NTP to 4-ATP. a) SERS spectra of the hot-electron reduction reaction using Supplementary Figure 1: Power dependence of hot-electrons reduction of 4-NTP to 4-ATP. a) SERS spectra of the hot-electron reduction reaction using 633 nm laser excitation at different powers and b) the

More information

Dielectric Meta-Reflectarray for Broadband Linear Polarization Conversion and Optical Vortex Generation

Dielectric Meta-Reflectarray for Broadband Linear Polarization Conversion and Optical Vortex Generation Supporting Information Dielectric Meta-Reflectarray for Broadband Linear Polarization Conversion and Optical Vortex Generation Yuanmu Yang, Wenyi Wang, Parikshit Moitra, Ivan I. Kravchenko, Dayrl P. Briggs,

More information

Full-color Subwavelength Printing with Gapplasmonic

Full-color Subwavelength Printing with Gapplasmonic Supporting information for Full-color Subwavelength Printing with Gapplasmonic Optical Antennas Masashi Miyata, Hideaki Hatada, and Junichi Takahara *,, Graduate School of Engineering, Osaka University,

More information

Spatial Coherence Properties of Organic Molecules Coupled to Plasmonic Surface Lattice Resonances in the Weak and Strong Coupling Regimes

Spatial Coherence Properties of Organic Molecules Coupled to Plasmonic Surface Lattice Resonances in the Weak and Strong Coupling Regimes Spatial Coherence Properties of Organic Molecules Coupled to Plasmonic Surface Lattice Resonances in the Weak and Strong Coupling Regimes Supplemental Material L. Shi, T. K. Hakala, H. T. Rekola, J. -P.

More information

Plasmonic Photovoltaics Harry A. Atwater California Institute of Technology

Plasmonic Photovoltaics Harry A. Atwater California Institute of Technology Plasmonic Photovoltaics Harry A. Atwater California Institute of Technology Surface plasmon polaritons and localized surface plasmons Plasmon propagation and absorption at metal-semiconductor interfaces

More information

Large-Area and Uniform Surface-Enhanced Raman. Saturation

Large-Area and Uniform Surface-Enhanced Raman. Saturation Supporting Information Large-Area and Uniform Surface-Enhanced Raman Spectroscopy Substrate Optimized by Enhancement Saturation Daejong Yang 1, Hyunjun Cho 2, Sukmo Koo 1, Sagar R. Vaidyanathan 2, Kelly

More information

Simulated Study of Plasmonic Coupling in Noble Bimetallic Alloy Nanosphere Arrays

Simulated Study of Plasmonic Coupling in Noble Bimetallic Alloy Nanosphere Arrays CHAPTER 4 Simulated Study of Plasmonic Coupling in Noble Bimetallic Alloy Nanosphere Arrays 4.1 Introduction In Chapter 3, the noble bimetallic alloy nanosphere (BANS) of Ag 1-x Cu x at a particular composition

More information

Nano Optics Based on Coupled Metal Nanoparticles

Nano Optics Based on Coupled Metal Nanoparticles Nano Optics Based on Coupled Metal Nanoparticles Shangjr Gwo ( 果尚志 ) Department of Physics National Tsing-Hua University, Hsinchu 30013, Taiwan E-mail: gwo@phys.nthu.edu.tw NDHU-Phys (2010/03/01) Background

More information

Sensitive and Recyclable Substrates of Surface-enhanced Raman Scattering

Sensitive and Recyclable Substrates of Surface-enhanced Raman Scattering Supporting Information Cyclic Electroplating and Stripping of Silver on Au@SiO 2 Core/Shell Nanoparticles for Sensitive and Recyclable Substrates of Surface-enhanced Raman Scattering Dan Li a, Da-Wei Li

More information

SUPPLEMENTARY INFORMATION

SUPPLEMENTARY INFORMATION SUPPLEMENTARY INFORMATION doi: 10.1038/nnano.2011.72 Tunable Subradiant Lattice Plasmons by Out-of-plane Dipolar Interactions Wei Zhou and Teri W. Odom Optical measurements. The gold nanoparticle arrays

More information

Subcell misalignment in vertically cascaded metamaterial absorbers

Subcell misalignment in vertically cascaded metamaterial absorbers Subcell misalignment in vertically cascaded metamaterial absorbers Qin Chen, 1,2,* Fuhe Sun, 1 and Shichao Song 1 1 Key Laboratory of Nanodevices and Applications, Suzhou Institute of Nano-Tech and Nano-Bionics,

More information

Study of Surface Plasmon Excitation on Different Structures of Gold and Silver

Study of Surface Plasmon Excitation on Different Structures of Gold and Silver Nanoscience and Nanotechnology 2015, 5(4): 71-81 DOI: 10.5923/j.nn.20150504.01 Study of Surface Plasmon Excitation on Different Structures of Gold and Silver Anchu Ashok 1,*, Arya Arackal 1, George Jacob

More information

Nanjing , China ABSTRACT 1. INTRODUCTION

Nanjing , China ABSTRACT 1. INTRODUCTION Optical Characteristic and Numerical Study of Gold Nanoparticles on Al 2 O 3 coated Gold Film for Tunable Plasmonic Sensing Platforms Chatdanai Lumdee, Binfeng Yun,,ǁ and Pieter G. Kik *,, CREOL, the College

More information

Supporting Information for. Shape Transformation of Gold Nanoplates and their Surface Plasmon. Characterization: Triangular to Hexagonal Nanoplates

Supporting Information for. Shape Transformation of Gold Nanoplates and their Surface Plasmon. Characterization: Triangular to Hexagonal Nanoplates 1 Supporting Information for Shape Transformation of Gold Nanoplates and their Surface Plasmon Characterization: Triangular to Hexagonal Nanoplates Soonchang Hong, Kevin L. Shuford *,, and Sungho Park

More information

Supporting Information

Supporting Information Supporting Information Highly Sensitive, Reproducible, and Stable SERS Sensors Based on Well-Controlled Silver Nanoparticles Decorated Silicon Nanowire Building Blocks Xue Mei Han, Hui Wang, Xue Mei Ou,

More information

Supplementary Figure S1. AFM characterizations and topographical defects of h- BN films on silica substrates. (a) (c) show the AFM height

Supplementary Figure S1. AFM characterizations and topographical defects of h- BN films on silica substrates. (a) (c) show the AFM height Supplementary Figure S1. AFM characterizations and topographical defects of h- BN films on silica substrates. (a) (c) show the AFM height topographies of h-bn film in a size of ~1.5µm 1.5µm, 30µm 30µm

More information

Self-assembled nanostructures for antireflection optical coatings

Self-assembled nanostructures for antireflection optical coatings Self-assembled nanostructures for antireflection optical coatings Yang Zhao 1, Guangzhao Mao 2, and Jinsong Wang 1 1. Deaprtment of Electrical and Computer Engineering 2. Departmentof Chemical Engineering

More information

Broadband Plasmonic Couplers for Light Trapping and Waveguiding

Broadband Plasmonic Couplers for Light Trapping and Waveguiding Broadband Plasmonic Couplers for Light Trapping and Waveguiding F. Djidjeli* a, E. Jaberansary a, H. M. H. Chong a, and D. M. Bagnall a a Nano Research Group, School of Electronics and Computer Science,

More information

The deposition of these three layers was achieved without breaking the vacuum. 30 nm Ni

The deposition of these three layers was achieved without breaking the vacuum. 30 nm Ni Transfer-free Growth of Atomically Thin Transition Metal Disulfides using a Solution Precursor by a Laser Irradiation Process and their Application in Low-power Photodetectors Chi-Chih Huang 1, Henry Medina

More information

Multicolor Graphene Nanoribbon/Semiconductor Nanowire. Heterojunction Light-Emitting Diodes

Multicolor Graphene Nanoribbon/Semiconductor Nanowire. Heterojunction Light-Emitting Diodes Multicolor Graphene Nanoribbon/Semiconductor Nanowire Heterojunction Light-Emitting Diodes Yu Ye, a Lin Gan, b Lun Dai, *a Hu Meng, a Feng Wei, a Yu Dai, a Zujin Shi, b Bin Yu, a Xuefeng Guo, b and Guogang

More information

Printing Colour at the Optical Diffraction Limit

Printing Colour at the Optical Diffraction Limit SUPPLEMENTARY INFORMATION DOI: 10.1038/NNANO.2012.128 Printing Colour at the Optical Diffraction Limit Karthik Kumar 1,#, Huigao Duan 1,#, Ravi S. Hegde 2, Samuel C.W. Koh 1, Jennifer N. Wei 1 and Joel

More information

Highly stable silver nanoparticles for SERS applications

Highly stable silver nanoparticles for SERS applications Journal of Physics: Conference Series PAPER OPEN ACCESS Highly stable silver nanoparticles for SERS applications To cite this article: S M Novikov et al 2018 J. Phys.: Conf. Ser. 1092 012098 View the article

More information

A Novel Electroless Method for the Deposition of Single-Crystalline Platinum Nanoparticle Films On

A Novel Electroless Method for the Deposition of Single-Crystalline Platinum Nanoparticle Films On Supplementary Information A Novel Electroless Method for the Deposition of Single-Crystalline Platinum Nanoparticle Films On an Organic Solid Matrix in the Presence of Gold Single Crystals Khaleda Banu,,,*

More information

Heterodimer nanostructures induced energy focusing on metal

Heterodimer nanostructures induced energy focusing on metal Heterodimer nanostructures induced energy focusing on metal film Ting Liu a, Jingjing Hao a, Yingzhou Huang*,a, Xun Su a, Li Hu a and Yurui Fang*,b a Soft Matter and Interdisciplinary Research Center,

More information

Enhanced Transmission by Periodic Hole. Arrays in Metal Films

Enhanced Transmission by Periodic Hole. Arrays in Metal Films Enhanced Transmission by Periodic Hole Arrays in Metal Films K. Milliman University of Florida July 30, 2008 Abstract Three different square periodic hole arrays were manufactured on a silver film in order

More information

Bidirectional Plasmonic Coloration with Gold Nanoparticles by Wavelength-Switched Photoredox

Bidirectional Plasmonic Coloration with Gold Nanoparticles by Wavelength-Switched Photoredox Electronic Supplementary Material (ESI) for Nanoscale. This journal is The Royal Society of Chemistry 2018 Electronic Supplementary Material (ESI) for Nanoscale. This journal is The Royal Society of Chemistry

More information

Supporting Information. Plasmon Ruler for Measuring Dielectric Thin Films

Supporting Information. Plasmon Ruler for Measuring Dielectric Thin Films Supporting Information Single Nanoparticle Based Hetero-Nanojunction as a Plasmon Ruler for Measuring Dielectric Thin Films Li Li, *a,b Tanya Hutter, c Wenwu Li d and Sumeet Mahajan *b a School of Chemistry

More information

The use of diagrams is good and the enhancement factors seen are reasonable but not in the league of gold or silver nanoparticles.

The use of diagrams is good and the enhancement factors seen are reasonable but not in the league of gold or silver nanoparticles. Reviewers' comments: Reviewer #1 (Remarks to the Author): This is a very interesting article and should be published. The authors demonstrate a method to produce metallic MoO2 nano-dumbbells as SERS substrate

More information

Shell-isolated nanoparticle-enhanced Raman spectroscopy

Shell-isolated nanoparticle-enhanced Raman spectroscopy Shell-isolated nanoparticle-enhanced Raman spectroscopy Jian Feng Li, Yi Fan Huang, Yong Ding, Zhi Lin Yang, Song Bo Li, Xiao Shun Zhou, Feng Ru Fan, Wei Zhang, Zhi You Zhou, De Yin Wu, Bin Ren, Zhong

More information

Optical and Photonic Glasses. Lecture 39. Non-Linear Optical Glasses III Metal Doped Nano-Glasses. Professor Rui Almeida

Optical and Photonic Glasses. Lecture 39. Non-Linear Optical Glasses III Metal Doped Nano-Glasses. Professor Rui Almeida Optical and Photonic Glasses : Non-Linear Optical Glasses III Metal Doped Nano-Glasses Professor Rui Almeida International Materials Institute For New Functionality in Glass Lehigh University Metal-doped

More information

Collective effects in second-harmonic generation from plasmonic oligomers

Collective effects in second-harmonic generation from plasmonic oligomers Supporting Information Collective effects in second-harmonic generation from plasmonic oligomers Godofredo Bautista,, *, Christoph Dreser,,, Xiaorun Zang, Dieter P. Kern,, Martti Kauranen, and Monika Fleischer,,*

More information

Effects of Ultraviolet Light on Silver Nanoparticle Mobility and Dissolution

Effects of Ultraviolet Light on Silver Nanoparticle Mobility and Dissolution Electronic Supplementary Material (ESI) for Environmental Science: Nano. This journal is The Royal Society of Chemistry 215 Electronic Supplementary Information Effects of Ultraviolet Light on Silver Nanoparticle

More information

Supplementary Information. "Enhanced light-matter interactions in. graphene-covered gold nanovoid arrays"

Supplementary Information. Enhanced light-matter interactions in. graphene-covered gold nanovoid arrays Supplementary Information "Enhanced light-matter interactions in graphene-covered gold nanovoid arrays" Xiaolong Zhu,, Lei Shi, Michael S. Schmidt, Anja Boisen, Ole Hansen,, Jian Zi, Sanshui Xiao,,, and

More information

Nanosphere Lithography

Nanosphere Lithography Nanosphere Lithography Derec Ciafre 1, Lingyun Miao 2, and Keita Oka 1 1 Institute of Optics / 2 ECE Dept. University of Rochester Abstract Nanosphere Lithography is quickly emerging as an efficient, low

More information

SUPPLEMENTARY INFORMATION

SUPPLEMENTARY INFORMATION Ultra-sparse metasurface for high reflection of low-frequency sound based on artificial Mie resonances Y. Cheng, 1,2 C. Zhou, 1 B.G. Yuan, 1 D.J. Wu, 3 Q. Wei, 1 X.J. Liu 1,2* 1 Key Laboratory of Modern

More information

Terahertz antireflection coating enabled by a subwavelength metallic mesh capped with a thin dielectric film

Terahertz antireflection coating enabled by a subwavelength metallic mesh capped with a thin dielectric film Invited Paper Terahertz antireflection coating enabled by a subwavelength metallic mesh capped with a thin dielectric film Li Huang 1*, Beibei Zeng 2, Chun-Chieh Chang 2 and Hou-Tong Chen 2* 1 Physics

More information

Localized surface plasmons (Particle plasmons)

Localized surface plasmons (Particle plasmons) Localized surface plasmons (Particle plasmons) ( Plasmons in metal nanostructures, Dissertation, University of Munich by Carsten Sonnichsen, 2001) Lycurgus cup, 4th century (now at the British Museum,

More information

Embedded metallic nanopatterns for enhanced optical absorption

Embedded metallic nanopatterns for enhanced optical absorption Embedded metallic nanopatterns for enhanced optical absorption Fan Ye, Michael J. Burns, Michael J. Naughton* Department of Physics, Boston College, Chestnut Hill MA 02467 ABSTRACT Novel metallic nanopatterns

More information

Taking cascaded plasmonic field enhancement to the ultimate limit in silver nanoparticle dimers S. Toroghi* a, P. G. Kik a,b

Taking cascaded plasmonic field enhancement to the ultimate limit in silver nanoparticle dimers S. Toroghi* a, P. G. Kik a,b Taking cascaded plasmonic field enhancement to the ultimate limit in silver nanoparticle dimers S. Toroghi* a, P. G. Kik a,b a CREOL, The College of Optics and Photonics, University of Central Florida,

More information

Optimizing the performance of metal-semiconductor-metal photodetectors by embedding nanoparticles in the absorption layer

Optimizing the performance of metal-semiconductor-metal photodetectors by embedding nanoparticles in the absorption layer Journal of Electrical and Electronic Engineering 2015; 3(2-1): 78-82 Published online February 10, 2015 (http://www.sciencepublishinggroup.com/j/jeee) doi: 10.11648/j.jeee.s.2015030201.27 ISSN: 2329-1613

More information

Design and Characterization of a Dual-Band Metamaterial Absorber Based on Destructive Interferences

Design and Characterization of a Dual-Band Metamaterial Absorber Based on Destructive Interferences Progress In Electromagnetics Research C, Vol. 47, 95, 24 Design and Characterization of a Dual-Band Metamaterial Absorber Based on Destructive Interferences Saeid Jamilan, *, Mohammad N. Azarmanesh, and

More information

Electronic Supplementary Information for

Electronic Supplementary Information for Electronic Supplementary Material (ESI) for Journal of Materials Chemistry C. This journal is The Royal Society of Chemistry 018 Electronic Supplementary Information for Broadband Photoresponse Based on

More information

Optical properties of spherical and anisotropic gold shell colloids

Optical properties of spherical and anisotropic gold shell colloids 8 Optical properties of spherical and anisotropic gold shell colloids Core/shell colloids consisting of a metal shell and a dielectric core are known for their special optical properties. The surface plasmon

More information

Supplementary Information (ESI) Synthesis of Ultrathin Platinum Nanoplates for Enhanced Oxygen Reduction Activity

Supplementary Information (ESI) Synthesis of Ultrathin Platinum Nanoplates for Enhanced Oxygen Reduction Activity Electronic Supplementary Material (ESI) for Chemical Science. This journal is The Royal Society of Chemistry 2017 Supplementary Information (ESI) Synthesis of Ultrathin Platinum Nanoplates for Enhanced

More information

Plasmon enhancement of optical absorption in ultra-thin film solar cells by rear located aluminum nanodisk arrays

Plasmon enhancement of optical absorption in ultra-thin film solar cells by rear located aluminum nanodisk arrays Opt Quant Electron (2017)49:161 DOI 10.1007/s11082-017-0930-x Plasmon enhancement of optical absorption in ultra-thin film solar cells by rear located aluminum nanodisk arrays Debao Zhang 1 Yawei Kuang

More information

U-Shaped Nano-Apertures for Enhanced Optical Transmission and Resolution

U-Shaped Nano-Apertures for Enhanced Optical Transmission and Resolution U-Shaped Nano-Apertures for Enhanced Optical Transmission and Resolution Mustafa Turkmen 1,2,3, Serap Aksu 3,4, A. Engin Çetin 2,3, Ahmet A. Yanik 2,3, Alp Artar 2,3, Hatice Altug 2,3,4, * 1 Electrical

More information

Supporting information for the communication Label-Free Aptasensor. Based on Ultrathin-Linker-Mediated Hot-Spot Assembly to Induce

Supporting information for the communication Label-Free Aptasensor. Based on Ultrathin-Linker-Mediated Hot-Spot Assembly to Induce Supporting information for the communication Label-Free Aptasensor Based on Ultrathin-Linker-Mediated Hot-Spot Assembly to Induce Strong Directional Fluorescence. Shuo-Hui Cao 1, Wei-Peng Cai 1, Qian Liu

More information

A nano-plasmonic chip for simultaneous sensing with dual-resonance surface-enhanced Raman scattering and localized surface plasmon resonance

A nano-plasmonic chip for simultaneous sensing with dual-resonance surface-enhanced Raman scattering and localized surface plasmon resonance Laser Photonics Rev. 8, No. 4, 610 616 (2014) / DOI 10.1002/lpor.201400029 ORIGINAL Abstract A dual-resonance surface-enhanced Raman scattering (SERS) chip which also serves as a localized surface plasmon

More information

ABSTRACT 1. INTRODUCTION

ABSTRACT 1. INTRODUCTION Cascaded plasmon resonances multi-material nanoparticle trimers for extreme field enhancement S. Toroghi a, Chatdanai Lumdee a, and P. G. Kik* a CREOL, The College of Optics and Photonics, University of

More information

7. Localized surface plasmons (Particle plasmons)

7. Localized surface plasmons (Particle plasmons) 7. Localized surface plasmons (Particle plasmons) ( Plasmons in metal nanostructures, Dissertation, University of Munich by Carsten Sonnichsen, 2001) Lycurgus cup, 4th century (now at the British Museum,

More information

Chapter - 9 CORE-SHELL NANOPARTICLES

Chapter - 9 CORE-SHELL NANOPARTICLES Chapter - 9 CORE-SHELL NANOPARTICLES Fig. 9.1: Transmission electron micrographs of silica coated gold nanoparticles. The shell thicknesses are (a) 10 nm, (b) 23 nm, (c) 58 nm, and (d) 83 nm. Reprinted

More information

Nanomaterial based Environmental Sensing. Sung Ik Yang Kyung Hee University

Nanomaterial based Environmental Sensing. Sung Ik Yang Kyung Hee University Nanomaterial based Environmental Sensing Sung Ik Yang Kyung Hee University What is Nanotechnology? - understanding and control of matter at dimensions less than 100 nanometers- unique phenomena enable

More information

Understanding Nanoplasmonics. Greg Sun University of Massachusetts Boston

Understanding Nanoplasmonics. Greg Sun University of Massachusetts Boston Understanding Nanoplasmonics Greg Sun University of Massachusetts Boston Nanoplasmonics Space 100pm 1nm 10nm 100nm 1μm 10μm 100μm 1ns 100ps 10ps Photonics 1ps 100fs 10fs 1fs Time Surface Plasmons Surface

More information

Supporting Information Available:

Supporting Information Available: Supporting Information Available: Photoresponsive and Gas Sensing Field-Effect Transistors based on Multilayer WS 2 Nanoflakes Nengjie Huo 1, Shengxue Yang 1, Zhongming Wei 2, Shu-Shen Li 1, Jian-Bai Xia

More information

Optics and Spectroscopy

Optics and Spectroscopy Introduction to Optics and Spectroscopy beyond the diffraction limit Chi Chen 陳祺 Research Center for Applied Science, Academia Sinica 2015Apr09 1 Light and Optics 2 Light as Wave Application 3 Electromagnetic

More information

l* = 109 nm Glycerol Clean Water Glycerol l = 108 nm Wavelength (nm)

l* = 109 nm Glycerol Clean Water Glycerol l = 108 nm Wavelength (nm) 1/ (rad -1 ) Normalized extinction a Clean 0.8 Water l* = 109 nm 0.6 Glycerol b 2.0 1.5 500 600 700 800 900 Clean Water 0.5 Glycerol l = 108 nm 630 660 690 720 750 Supplementary Figure 1. Refractive index

More information

Supporting Information

Supporting Information Supporting Information A rigorous and accurate contrast spectroscopy for ultimate thickness determination of micrometre-sized graphene on gold and molecular sensing Joel M. Katzen, Matěj Velický, Yuefeng

More information

A Broadband Flexible Metamaterial Absorber Based on Double Resonance

A Broadband Flexible Metamaterial Absorber Based on Double Resonance Progress In Electromagnetics Research Letters, Vol. 46, 73 78, 2014 A Broadband Flexible Metamaterial Absorber Based on Double Resonance ong-min Lee* Abstract We present a broadband microwave metamaterial

More information

arxiv: v1 [cond-mat.mes-hall] 16 Nov 2011

arxiv: v1 [cond-mat.mes-hall] 16 Nov 2011 EXPLORING THE PARAMETER SPACE OF DISC SHAPED SILVER NANOPARTICLES FOR THIN FILM SILICON PHOTOVOLTAICS arxiv:.379v [cond-mat.mes-hall] 6 Nov 2 BRUNO FIGEYS, OUNSI EL DAIF IMEC VZW, LEUVEN, BELGIUM Abstract.

More information

6. Plasmon coupling between a flat gold interface and gold nanoparticles.

6. Plasmon coupling between a flat gold interface and gold nanoparticles. 6. Plasmon coupling between a flat gold interface and gold nanoparticles. 6.1. Introduction In this outlook oriented chapter the applicability of the multilayered system used in chapter 4.1., for the study

More information

Supporting Information. 1T-Phase MoS 2 Nanosheets on TiO 2 Nanorod Arrays: 3D Photoanode with Extraordinary Catalytic Performance

Supporting Information. 1T-Phase MoS 2 Nanosheets on TiO 2 Nanorod Arrays: 3D Photoanode with Extraordinary Catalytic Performance Supporting Information 1T-Phase MoS 2 Nanosheets on Nanorod Arrays: 3D Photoanode with Extraordinary Catalytic Performance Yuxi Pi, Zhen Li, Danyun Xu, Jiapeng Liu, Yang Li, Fengbao Zhang, Guoliang Zhang,

More information

Efficient Hydrogen Evolution. University of Central Florida, 4000 Central Florida Blvd. Orlando, Florida, 32816,

Efficient Hydrogen Evolution. University of Central Florida, 4000 Central Florida Blvd. Orlando, Florida, 32816, Electronic Supplementary Material (ESI) for Energy & Environmental Science. This journal is The Royal Society of Chemistry 2017 MoS 2 /TiO 2 Heterostructures as Nonmetal Plasmonic Photocatalysts for Highly

More information

Effect of Paired Apertures in a Periodic Hole Array on Higher Order Plasmon Modes

Effect of Paired Apertures in a Periodic Hole Array on Higher Order Plasmon Modes From the SelectedWorks of Fang-Tzu Chuang Winter November, 2012 Effect of Paired Apertures in a Periodic Hole Array on Higher Order Plasmon Modes Fang-Tzu Chuang, National Taiwan University Available at:

More information

transmission reflection absorption

transmission reflection absorption Optical Cages V. Kumar*, J. P. Walker* and H. Grebel The Electronic Imaging Center and the ECE department at NJIT, Newark, NJ 0702. grebel@njit.edu * Contributed equally Faraday Cage [], a hollow structure

More information

Analysis of Modified Bowtie Nanoantennas in the Excitation and Emission Regimes

Analysis of Modified Bowtie Nanoantennas in the Excitation and Emission Regimes 232 Analysis of Modified Bowtie Nanoantennas in the Excitation and Emission Regimes Karlo Q. da Costa, Victor A. Dmitriev, Federal University of Para, Belém-PA, Brazil, e-mails: karlo@ufpa.br, victor@ufpa.br

More information

Spring 2009 EE 710: Nanoscience and Engineering

Spring 2009 EE 710: Nanoscience and Engineering Spring 009 EE 710: Nanoscience and Engineering Part 10: Surface Plasmons in Metals Images and figures supplied from Hornyak, Dutta, Tibbals, and Rao, Introduction to Nanoscience, CRC Press Boca Raton,

More information

Magnetoplasmonics: fundamentals and applications

Magnetoplasmonics: fundamentals and applications Antonio García-Martín http://www.imm-cnm.csic.es/magnetoplasmonics Instituto de Microelectrónica de Madrid Consejo Superior de Investigaciones Científicas Magnetoplasmonics: fundamentals and applications

More information

Johnson, N.P. and Khokhar, A.Z. and Chong, H.M.H. and De La Rue, R.M. and McMeekin, S. (2006) Characterisation at infrared wavelengths of metamaterials formed by thin-film metallic split-ring resonator

More information

SUPPLEMENTARY INFORMATION

SUPPLEMENTARY INFORMATION In the format provided by the authors and unedited. DOI: 10.1038/NPHOTON.2016.254 Measurement of non-monotonic Casimir forces between silicon nanostructures Supplementary information L. Tang 1, M. Wang

More information

Light-Controlled Shrinkage of Large-Area Gold Nanoparticles Monolayer Film for Tunable SERS Activity

Light-Controlled Shrinkage of Large-Area Gold Nanoparticles Monolayer Film for Tunable SERS Activity Light-Controlled Shrinkage of Large-Area Gold Nanoparticles Monolayer Film for Tunable SERS Activity Xuefei Lu a,b, Youju Huang b,c,d, *, Baoqing Liu a,b, Lei Zhang b,c, Liping Song b,c, Jiawei Zhang b,c,

More information

Supporting Information. Hydroxyl Radical Attack on Reduced Graphene Oxide

Supporting Information. Hydroxyl Radical Attack on Reduced Graphene Oxide Supporting Information Making Graphene Holey. Gold Nanoparticle-Mediated Hydroxyl Radical Attack on Reduced Graphene Oxide James G. Radich, 1,3 Prashant V. Kamat *1,2,3 Radiation Laboratory Department

More information

Lithography-Free Broadband Ultrathin Film. Photovoltaics

Lithography-Free Broadband Ultrathin Film. Photovoltaics Supporting Information Lithography-Free Broadband Ultrathin Film Absorbers with Gap Plasmon Resonance for Organic Photovoltaics Minjung Choi 1, Gumin Kang 1, Dongheok Shin 1, Nilesh Barange 2, Chang-Won

More information

Graphene is a single, two-dimensional nanosheet of aromatic sp 2 hybridized carbons that

Graphene is a single, two-dimensional nanosheet of aromatic sp 2 hybridized carbons that Chemical Identity and Applications of Graphene-Titanium Dioxide Graphene is a single, two-dimensional nanosheet of aromatic sp 2 hybridized carbons that enhances the performance of photocatalysts. 1 The

More information

NANOSCIENCE: TECHNOLOGY AND ADVANCED MATERIALS

NANOSCIENCE: TECHNOLOGY AND ADVANCED MATERIALS UNIVERSITY OF SOUTHAMPTON PHYS6014W1 SEMESTER 2 EXAMINATIONS 2012-2013 NANOSCIENCE: TECHNOLOGY AND ADVANCED MATERIALS DURATION 120 MINS (2 Hours) This paper contains 8 questions Answer ALL questions in

More information

Visualizing the bi-directional electron transfer in a Schottky junction consisted of single CdS nanoparticles and a planar gold film

Visualizing the bi-directional electron transfer in a Schottky junction consisted of single CdS nanoparticles and a planar gold film Electronic Supplementary Material (ESI) for Chemical Science. This journal is The Royal Society of Chemistry 2017 Electronic Supplementary Information Visualizing the bi-directional electron transfer in

More information

Nanomaterials and their Optical Applications

Nanomaterials and their Optical Applications Nanomaterials and their Optical Applications Winter Semester 2013 Lecture 02 rachel.grange@uni-jena.de http://www.iap.uni-jena.de/multiphoton Lecture 2: outline 2 Introduction to Nanophotonics Theoretical

More information

Prediction and Optimization of Surface-Enhanced Raman Scattering Geometries using COMSOL Multiphysics

Prediction and Optimization of Surface-Enhanced Raman Scattering Geometries using COMSOL Multiphysics Excerpt from the Proceedings of the COMSOL Conference 2008 Hannover Prediction and Optimization of Surface-Enhanced Raman Scattering Geometries using COMSOL Multiphysics I. Knorr 1, K. Christou,2, J. Meinertz

More information

Nanoscale optical circuits: controlling light using localized surface plasmon resonances

Nanoscale optical circuits: controlling light using localized surface plasmon resonances Nanoscale optical circuits: controlling light using localized surface plasmon resonances T. J. Davis, D. E. Gómez and K. C. Vernon CSIRO Materials Science and Engineering Localized surface plasmon (LSP)

More information

Superlattice Plasmons in Hierarchical Au Nanoparticle Arrays

Superlattice Plasmons in Hierarchical Au Nanoparticle Arrays SUPPLEMENTAL INFORMATION Superlattice Plasmons in Hierarchical Au Nanoparticle Arrays Danqing Wang 1, Ankun Yang 2, Alexander J. Hryn 2, George C. Schatz 1,3 and Teri W. Odom 1,2,3 1 Graduate Program in

More information

Effects of vertex truncation of polyhedral nanostructures on localized surface plasmon resonance

Effects of vertex truncation of polyhedral nanostructures on localized surface plasmon resonance Effects of vertex truncation of polyhedral nanostructures on localized surface plasmon resonance W. Y. Ma 1, J. Yao 1*, H. Yang 1, J. Y. Liu 1, F. Li 1, J. P. Hilton 2 and Q. Lin 2 1 State Key Lab of Optical

More information

Research Article Si Substrate-Based Metamaterials for Ultrabroadband Perfect Absorption in Visible Regime

Research Article Si Substrate-Based Metamaterials for Ultrabroadband Perfect Absorption in Visible Regime Nanomaterials, Article ID 893202, 5 pages http://dx.doi.org/0.55/204/893202 Research Article Si Substrate-Based Metamaterials for Ultrabroadband Perfect in Visible Regime Qi Han, Lei Jin, Yongqi Fu, and

More information

Nanocomposite photonic crystal devices

Nanocomposite photonic crystal devices Nanocomposite photonic crystal devices Xiaoyong Hu, Cuicui Lu, Yulan Fu, Yu Zhu, Yingbo Zhang, Hong Yang, Qihuang Gong Department of Physics, Peking University, Beijing, P. R. China Contents Motivation

More information

UV-vis Analysis of the Effect of Sodium Citrate on the Size and the Surface Plasmon Resonance of Au NPs. Eman Mousa Alhajji

UV-vis Analysis of the Effect of Sodium Citrate on the Size and the Surface Plasmon Resonance of Au NPs. Eman Mousa Alhajji UV-vis Analysis of the Effect of Sodium Citrate on the Size and the Surface Plasmon Resonance of Au NPs Eman Mousa Alhajji North Carolina State University Department of Materials Science and Engineering

More information

International Journal of Pure and Applied Sciences and Technology

International Journal of Pure and Applied Sciences and Technology Int. J. Pure Appl. Sci. Technol., 9(1) (2012), pp. 1-8 International Journal of Pure and Applied Sciences and Technology ISSN 2229-6107 Available online at www.ijopaasat.in Research Paper Preparation,

More information

Photovoltaic Enhancement Due to Surface-Plasmon Assisted Visible-Light. Absorption at the Inartificial Surface of Lead Zirconate-Titanate Film

Photovoltaic Enhancement Due to Surface-Plasmon Assisted Visible-Light. Absorption at the Inartificial Surface of Lead Zirconate-Titanate Film Photovoltaic Enhancement Due to Surface-Plasmon Assisted Visible-Light Absorption at the Inartificial Surface of Lead Zirconate-Titanate Film Fengang Zheng, a,b, * Peng Zhang, a Xiaofeng Wang, a Wen Huang,

More information

TRANSVERSE SPIN TRANSPORT IN GRAPHENE

TRANSVERSE SPIN TRANSPORT IN GRAPHENE International Journal of Modern Physics B Vol. 23, Nos. 12 & 13 (2009) 2641 2646 World Scientific Publishing Company TRANSVERSE SPIN TRANSPORT IN GRAPHENE TARIQ M. G. MOHIUDDIN, A. A. ZHUKOV, D. C. ELIAS,

More information

Supporting Information

Supporting Information Copyright WILEY VCH Verlag GmbH & Co. KGaA,69469 Weinheim,Germany,2011 Supporting Information for Small,DOI: 10.1002/ smll.201100371 Lithographically Fabricated Optical Antennas with Gaps Well Below 10

More information

Lecture 10 Light-Matter Interaction Part 4 Surface Polaritons 2. EECS Winter 2006 Nanophotonics and Nano-scale Fabrication P.C.

Lecture 10 Light-Matter Interaction Part 4 Surface Polaritons 2. EECS Winter 2006 Nanophotonics and Nano-scale Fabrication P.C. Lecture 10 Light-Matter Interaction Part 4 Surface Polaritons 2 EECS 598-002 Winter 2006 Nanophotonics and Nano-scale Fabrication P.C.Ku Schedule for the rest of the semester Introduction to light-matter

More information

Localized and Propagating Surface Plasmon Co-Enhanced Raman Spectroscopy Based on Evanescent Field Excitation

Localized and Propagating Surface Plasmon Co-Enhanced Raman Spectroscopy Based on Evanescent Field Excitation Supplementary Information Localized and Propagating Surface Plasmon Co-Enhanced Raman Spectroscopy Based on Evanescent Field Excitation Yu Liu, Shuping Xu, Haibo Li, Xiaoguang Jian, Weiqing Xu* State Key

More information

Optical cavity modes in gold shell particles

Optical cavity modes in gold shell particles 9 Optical cavity modes in gold shell particles Gold (Au) shell particles with dimensions comparable to the wavelength of light exhibit a special resonance, with a tenfold field enhancement over almost

More information

Backscattering enhancement of light by nanoparticles positioned in localized optical intensity peaks

Backscattering enhancement of light by nanoparticles positioned in localized optical intensity peaks Backscattering enhancement of light by nanoparticles positioned in localized optical intensity peaks Zhigang Chen, Xu Li, Allen Taflove, and Vadim Backman We report what we believe to be a novel backscattering

More information

Supplementary Information

Supplementary Information Supplementary Information Thermal camouflage based on the phase-changing material GST Yurui Qu, Qiang Li*, Lu Cai, Meiyan Pan, Pintu Ghosh, Kaikai Du and Min Qiu State Key Laboratory of Modern Optical

More information