Kinetic analysis of oxidation of dopamine by sodium N-chlorobenzenesulphonamide in perchloric acid medium: A mechanistic approach

Size: px
Start display at page:

Download "Kinetic analysis of oxidation of dopamine by sodium N-chlorobenzenesulphonamide in perchloric acid medium: A mechanistic approach"

Transcription

1 Indian Journal of Chemistry Vol. 40A, May 2001, pp Kinetic analysis of oxidation of dopamine by sodium N-chlorobenzenesulphonamide in perchloric acid medium: A mechanistic approach Puttas wamy* & T M Anuradha Department of Post-Graduate Studies in Chemi stry, Central College, Bangalore Uni versity, Bangalore I, Indi a and K L Mahadevappa Department of Biochemi stry, Kempe Gowda Institute of Medical Sciences, Bangalore , India Receil'ed II Septe111ber 2000; revised 7 Dece111ber 2000 Kinetics of ox idation of dopamine (DPM) by sodium N chlorobenzenesulpho namide (chloramine-b or CAB) in perchl oric acid medium has been studied at 40 C. The rate shows first order dependence in [CABlo. fractional order in [DPM] 0, and in verse fractional order in [H+j. The effects of dielectric constant and solvent isotope have been studied. Michaeli s-menten type of kineti cs have been proposed and activation parameters for the rate determining step have been computed. A mechanism consistent with the observed kinetics is proposed and di scussed. The kinetics and mechanism of oxidation by sodium salts of N-ary 1-N-halosulphonamides have attracted the chemists' attention due to their diverse properties to act as halonium cations, hypohalites and N-anions. The important compound of this group is chloramine T (CAT) and the mechanistic aspects of many of these reactions have been documented 1 The benzene analogue, chloramine-b (C 6 H 5 S0 2 NCINa.J.5H 2 0; CAB) is becoming important as a mild oxidant. Although the oxidation of organic substrates with CAB has been studied 2, no attention has been focused on reactions of CAB with pharmaceuticals, particularly with respect to neurotransmitters like catecholamines. The drug, dopamine (DPM, 3-hydroxytyramine) is one of the naturally occuring catecholamines and the lowered level of this in the brain is known to cause the neurological disorder-parkinson's disease. Dopamine hydrochloride is widely used in the treatment of shocks and in acute congestive failure. Hence, it was found important and interesting to investigate the oxidative behaviour of CAB towards dopamine. The present report is the first one _, discussing the detailed oxidation kinetics of dopamine by CAB in acid medium for elucidating the mechanism of oxidation of this drug. Experimental Chloramine-B was prepared by the method reported in literature 3 and its purity checked by elemental analysis, iodometric estimation of its active chlorine content, IR and NMR spectral data. Dopamine hydrochloride (E. Merck) and other chemicals of analytical grade were used. The ionic strength of the system was maintained at a constant high value (1=0.50 mol dm- 3 ) using a concentrated solution of sodium perchlorate. Solvent isotope studies were made with heavy water (D 2 0, 99.4% isotopic purity, BARC, Mumbai, India). Permittivity of the reaction mixture was altered by the addition of methanol in varying proportions (v/v) and values of permittivity of methanol -water mixtures reported in literature 4 were employed. Triply distilled water was used in preparing all aqueous solutions throughout the studies. Kinetic measurements Kinetic runs were performed under pseudo-first order conditions with excess of the INH over the oxidant at 40 C. The reaction was carried out in stoppered pyrex boiling glass tubes whose outer surfaces were coated black to eliminate photochemical effects. For each run, requisite amount of solutions of substrate, HCI0 4, NaCI0 4 and water (to maintain a constant total volume) were measured and thermally equilibrated at 40 C. A measured amount of the oxidant solution, also equilibrated at the same temperature, was rapidly ad.ded to the mixture in the boiling tube with stirring. The progress of the reaction was monitored by iodometric determination of the unreacted oxidant in measured aliquots of the reaction mixture withdrawn at different intervals of time. The course of the reaction was studied for at least two half-lives. The pseudo - first order rate constants, fl. calculated from the linear plots of log[oxidant] versus time were reproducible within ±3%. Regression analysis of the experimental data was can ied out on an EC-75 statistical calculator to obtain the regression coefficient, r.

2 NOTES 515 Table!-Effects of variation of [CAB], [DPM] and [H+] on the rate of reaction 1=0.50 mol dm 3 ; Temp.=313 K 10 4 [CAB] [DPM] [HCI0 4 ] nlk' (mol dm. 3 ) (mol dm- 3 ) (mol dm- 3 ) (s.') Stoichiometry Varying ratios of oxidant and dopamine, under conditions([cab]>>[dpm]) in the presence of 0.04 mol dm- 3 HCI04. were kept at 40 C for 24h. The unchanged oxidant in the reaction mixture was determined by iodometric titrations. The analysis showed that one mole of DPM reacted with one mole of oxidant. The observed stoichiometry is shown m Eq. (1): CsH 11 N02+PhS0 2 NCINa.. CsH9N0 2+PhS02NH2+Na + +Br"... (l) Product analysis The reduction product of CAB, benzenesulphonamide (PhS02NH 2 ), was detected 5 by thin layer chromatography, using light petroleum-chloroformbutan-1-ol (2:2: I v/v/v) as the solvent and iodine as the detecting agent (Rr=0.88). The reported Rr value is consistent with the literature value 5. The oxidation product of dopamine, 2-(3 1,4 1,-benzoquinone) ethylamine, an orange red solution was detected by IR and it polymerizes to a brown gel like solid. Results and discussion The kinetics of oxidation of dopamine by CAB was investigated at several initial concentrations of the reactants in acid medium. With the substrate in excess, at constant [HC104], [DPM], and temperature, plots of log[cab]o versus time were linear (r>0.9936) indicating a first order dependence on [CAB]o. The pseudo-first order rate constants (k) calculated from these plots are given in Table 1. Further the values of J! calculated from these plots are unaltered with variation of [CAB]o confirming the first order dependence on [oxidant] 0 The rate increased with increase in [DPM]o (Table 1 ). A plot of log J! versus log[dpm]o was linear (r=0.9985) with a slope of 0.42, thus indicating a fractional order dependence of the rate on [DPM] 0 Increase in [HCI04] decreased the rate of reaction (Table 1) and a plot of log J! versus log[hci04] was linear (r=0.9991) with a negative slope of 0.56 indicating an inverse fractional order in [H+]. Addition of the reaction product, benzenesulphonamide (5.0x 10-4"4.0x l0-3 mol dm. 3 ) or variation of ionic strength of the medium ( mol dm. 3 ) had no significant effect on the rate. Addition of cr or Br" ions (5.0x x10-3 mol dm- 3 ) in the form of NaCI or NaBr had no effect on the rate. The effect of dieletric constant (D) on the reaction rate was studied by adding various proportions of methanol to the reacting system. It was observed that an increase in methanol composition in the reacting system decreased the reaction rate and a plot of log J! versus lid was linear (r=0.9901) with a negative slope. Blank experiments showed that the oxidation of methanol by CAB during the experimental duration was negligible (<2%). This was takeri into account in the calculation of net reaction rate constant for the oxidation of DPM each time. The reaction was studied at different temperatures ( K) and from linear Arrhenius plot of log J! versus 1/T (r=0.9998), values of activation parameters were computed. These values are presented in Table 2. A study of rate in medium showed that while J! (H20) is 2.94x l0 4 s 1, J! (D20)=2.48xl0-4 s 1, giving a solvent isotope effect, k(h20)/k(d20)= Alkene monomers such as acrylonitrile and a freshly prepared 10% acrylamide solution, under N2 atmosphere, were added to initiate polymerization in the presence of free radicals. A Jack of polymerization indicated the absence of free radicals in the reaction mixture. Proper control experiments were also run. Chloramine-B is analogous to chloramine-t and exhibits similar equilibria in aqueous acidic and basic solutions 6 8. In general, CAB undergoes a two electron

3 516 INDIAN 1 CHEM. SEC. A, MAY 2001 Table 2-Temperature dependen~e and activation parameters for the oxidation of dopamine by CAB in acid medium [CAB] 0 =6.0xl0-4 mol dm-'; [DPM] 0 = 6.0xl0-3 mol dm 3 ; [HCI04]=4.0 X I o- 2 mol dm- 3 ; 1=0.50 mol dm- 3 Temperature l0 4 k 1 s ' Activation Parameters (K) (10 4 k 3 s ') Parameter Value (2.38) Ea (kj mol" 1 ) 55.3 (59.0) (3.33) t:;.j-11 (kj mol" 1 ) 52.7 ± 0.1(56.4 ± 0.2) ( 4.35) t:;.s' (JK 1 mol" 1 ) ± 0.2( ± 0.4) (6.68) t:;.d (kj mol" 1 ) 97.7 ± 0.2(95.5 ± 0.5) (10.1) (13.8) Values in parenthesis are the decomposition constants and activation parameters for the rate determining step. change in its reactions. The reduction product of CAB/ PhS0 2 NH 2 is ph-dependent and decreases with increase in ph of the medium (values are 1.14V at ph 0.65 and 0.50V at ph 12 for CAT). Depending on the ph of the medium, CAB furnishes different types of reactive species in solution, such as PhS02NHCI, PhS02NCI2, HOC! and H20CI+ in acidic solutions 6 8. PhS0 2 NCINa PhS02NCr+W 2PhS02NHCI PhS02NCb+H20 PhS02NHCI+H20 HOC! ::;;r:~ PhS0 2 NCI-+Na+ PhS0 2 NHCI PhS02N H2+PhS02NCI2 PhS02NHCI+HOCI PhS02NH2+HOCI... (2)... (3)... (4)... (5)... (6)... (7)... (8) Therefore, the probable oxidizing species in acid solution of CAB are PhS02NHCI, PhS02NCb, HOC! and H20CI+. The first order dependence of rate on [CAB] and the addition of benzenesulphonamide (PhS0 2 NH2) having no effect on the reaction rate, both indicate that PhS0 2 NCh and HOC! may not be the reactive species [(4) and (6)] and, that these species are present in very low concentrations 8 at the experimental conditions employed. The absence of ionic strength effects indicates the involvement of a neutral species in the rate determining step(rds). Hence, the effective oxidizing species in the rate determining step could be the conjugate acid, PhS0 2 NHCI. Further, protonation of monochloramines (RNHCI) at ph< 2 according to (9) has been 9 10 reported. K RNHCI+H+ =:::>RNH2CI+... (9) Here, when R=p-CH 3 C 6 H4S02, K=1.02x l 0 2 at 25 C, while with R=C 6 H 5 S02, K= 6 1±5 at 25 C for CAT and CAB respectively. Hence, it is likely that PhS02NHCl is further protonated in acid media. In view of these facts, Scheme I can be proposed to account the observed kinetics for the oxidation of dopamine by CAB in acid medium. A detailed mechanistic interpretation of the reaction is presented (Scheme I), in which the structures of the complex intermediate species X and X 1 are given. The total effective concentration of the oxidant CAB is [CABL then [CAB],=[PhS02NH2Cn+[PhS02NHCI]+[X] which leads to the following rate law: -d[cab] Rate = dt K 1 K 2 k 3 [CAB], [DPM] = --'--=---=-----'---- [H +] + K 1 {I+ K 2 [DPM]}... (10)... ( I I ) Rate law (11) is in agreement with the experimental results, wherein a first order dependence of rate on [CAB], a fractional order dependence of rate on [DPM] and an inverse fractional order in [H+] have been noted. Since, rate=k[cab]" Eq. (11) can be transformed as:... (1 2) Based on rate law (12), plots of 1/k' versus 1/[DPM] and llk' versus [H+] were found to be linear

4 NOTES 517 e PhS02 NHCI + H HCI + H2N CH2 CH 2 -Q=o 0 [2- (3' 4'- benzoquinone )ethylamine] Scheme 1 (r > ) and from the slopes and intercepts of which the values of formation constants K1and K2 and decomposition constant k3 were calculated. They are found to be K1=1.08x l0-3 mol dm- 3, K2=4.33x10 3 dm 3 mor' and k3=6.68xl0-4 s-'. Since a fractional order was noticed in [OPM], Michaelis-Menten kinetics" were adopted and [DPM] was varied at different temperatures ( K). From the linear plots of 111! versus 1/[0PM] at each temperature (r >0.9890) and using Eq. (12), values of decomposition constants k 3 were calculated. Activation parameters for the rate determining step were also evaluated using the Arrhenius plot of log k 3 versus lit (r=0.9985). These data are reported in Table 2. Addition of halide ions had no effect on the rate indicating that no interhalogen compound or free chlorine was formed. The reaction product (PhS02NH2) had no influence on the rate showing that it was not involved in a rate pre-equilibrium. The change in the ionic strength of the medium did not alter the rate indicating that non -ionic species were involved in the rate determining step. For a reaction involving a fast pre-equilibrium H+ or OR ion transfer, the rate increase in medium since and oo-are a stronger acid and a stronger base (-2 to 3 times greater) respectively, than H and OR ions 12. The reverse holds for reactions involving retardation by H+ or OR ions. Hence, the proposed mechanism is supported by the decrease in rate in 0 20 medium, indicating retardation by H+. The magnitude, however, is small in the present case (t! (H20)/ 1!(020)=1.18) which can be attributed to the fractional order dependence on [H+]. Several approaches have been put forward to explain quantitatively the effect of the dielectric constant of the medium on the rates of reactions in solution. For the limiting case of zero angle of approach between two dipoles Amis 13 has shown that a plot of logk 0 versus lid is linear with a negative slope, i.e,... ( 13) where k 0 and k~ are the rate constants in media of dielectric constant D and oo, respectively, kb is the Boltzman constant, J..1.1 and J..1.2 are the permanent moments on the dipoles, r is the distance of approach for the dipole, and T the absolu te temperature. The present experimental observations, i.e, decrease in the rate with decrease in dielectric constant of the medium (by changing the MeOH-H20 composition), are in agreement with dipolar molecule-dipolar molecule interactions and the reaction pathways suggested to explain the kinetic results. The proposed mechanism is also supported by the moderate values of kinetic and thermodynamic parameters. The low energy of activation and high free energy of activation support the formation of highly solvated transition state. The large negative entropy of activation suggests the formation of the compact activated complex with fewer degrees of freedom. References I Campbell M M & Johnson G, Chem Rev, 78 (1978) 65: Banerji K K, Jayaram B & Mahadevappa D S, 1 Sci ind Res. 46 ( 1983) 65; Puttaswamy, Mahadevappa D S & Rangappa K S, Bull chem Soc Japan, 62 ( 1989) 3343; :1.aghavendra M

5 518 INDIAN J CHEM. SEC. A, MAY 2001 P, Mahadevappa D S, Rai K M L & Rangappa K S, J Carbohydr Chem, 16 (1997) Iyengar T A, Puttaswamy & Mahadevappa D S. Carbohydr Res, 204 (1990) 197; Venkatesha B M. Ananda S & Mahadevappa D S, J phys org Chem, 5 (1992) 373; Puttaswamy & Mahadevappa D S, Proc Nat Acad Sci India, 65A (1995) 253; Rangappa K S. Raghavendra M P & Mahadevappa D S, J carbohydr Chem, 16 ( 1997) Chrzaszezewska A, Chem Abstr, 49 ( 1955) AkerloffG, JAm chem Soc, 54 (1932) Rangappa K S, Mahadevappa D S, Ramachandra H & Gowda N M M, lnt J chem Kine!, 28( 1996) Hardy F F & Johnston J P, J chem Soc Perkin Trans 2. ( 1973) Morris J C, Salazar J A & Wineman A, JAm chem, Soc, 70 ( 1948) Bishop E & Jennings V J. Talanta, I ( 1958) Narayan S S & Rao V R S, Radiochimica Acta, 32 ( 1983) Subashini M, Subramanian M & Rao V R S, Talanta, 32( 1985) I 082. II Laidler K J, Chemical kinetics (Tata-McGraw Hill, Mumbai). (1965) Collins C J & Bowman N S, Isotope effects in chemical reactions (Van Nostrand-Reinhold, New York) (1970) Amis E S, Solvent effects on reaction rates & mechanism (Academic Press, New York) ( 1966).

Kinetics of oxidation of acidic amino acids by sodium N-bromobenzenesulphonamide in acid medium: A mechanistic approach

Kinetics of oxidation of acidic amino acids by sodium N-bromobenzenesulphonamide in acid medium: A mechanistic approach Proc. Indian Acad. Sci. (Chem. Sci.), Vol. 113, No. 4, August 2001, pp 325 332 Indian Academy of Sciences Kinetics of oxidation of acidic amino acids by sodium N-bromobenzenesulphonamide in acid medium:

More information

Oxidation of Some Primary Amines by Bromamine-T in Alkaline Medium: A Kinetic and Mechanistic Study

Oxidation of Some Primary Amines by Bromamine-T in Alkaline Medium: A Kinetic and Mechanistic Study Transactions of the Illinois State Academy of Science received 7/10/98 (2000), Volume 93, #1, pp. 25-38 accepted 12/16/98 Oxidation of Some Primary Amines by Bromamine-T in Alkaline Medium: A Kinetic and

More information

Kinetics of Oxidation of Pantothenic Acid by Chloramine-T in Perchloric Acid and in Alkaline Medium Catalyzed by OsO 4 : A Mechanistic Approach

Kinetics of Oxidation of Pantothenic Acid by Chloramine-T in Perchloric Acid and in Alkaline Medium Catalyzed by OsO 4 : A Mechanistic Approach Kinetics of Oxidation of Pantothenic Acid by Chloramine-T in Perchloric Acid and in Alkaline Medium Catalyzed by OsO 4 : A Mechanistic Approach PUTTASWAMY, R. V. JAGADEESH Department of Post-Graduate Studies

More information

Volume III, Issue VII, July 2014 IJLTEMAS ISSN

Volume III, Issue VII, July 2014 IJLTEMAS ISSN xidation of Amylocaine ydrochloride by hloramine-b in Acid Medium: Kinetic and Mechanistic Approach J.P. Shubha 1*, M. Dinamani 2, P.. Paramesh 3, Puttaswamy 4 1 Department of hemistry, Don Bosco Institute

More information

Kinetics and mechanism of oxidation of benzyl alcohol by Oxone catalyzed by Keggin type 12-tungstocobaltate(II)

Kinetics and mechanism of oxidation of benzyl alcohol by Oxone catalyzed by Keggin type 12-tungstocobaltate(II) Available online at www.scholarsresearchlibrary.com Archives of Applied Science Research, 2014, 6 (3):133-137 (http://scholarsresearchlibrary.com/archive.html) ISSN 0975-508X CODEN (USA) AASRC9 Kinetics

More information

Kinetics of Nitrite ION Catalysed Oxidation of Indigo carmine by Chloramine-T in Acidic Buffer (PH 5.8) Medium

Kinetics of Nitrite ION Catalysed Oxidation of Indigo carmine by Chloramine-T in Acidic Buffer (PH 5.8) Medium RESEARCH ARTICLE OPEN ACCESS Kinetics of Nitrite ION Catalysed Oxidation of Indigo carmine by Chloramine-T in Acidic Buffer (PH 5.8) Medium Sayaji Rao 1,G. Poornachandra Rao 2 Department of chemistry,

More information

Oxidative decolorization of methyl red dye with chloramine-t Kinetic and mechanistic chemistry

Oxidative decolorization of methyl red dye with chloramine-t Kinetic and mechanistic chemistry Indian Journal of Chemical Technology Vol. 20, November 2013, pp. 416-422 Oxidative decolorization of methyl red dye with chloramine-t Kinetic and mechanistic chemistry A S Manjunatha, Anu Sukhdev & Puttaswamy*

More information

Results. Keywords: isonicotinic acid hydrazide, kinetics, thallium(iii), oxidation

Results. Keywords: isonicotinic acid hydrazide, kinetics, thallium(iii), oxidation International Journal of ChemTech Research CDEN( USA): IJCRGG ISSN : 09744290 Vol.1, No.2, pp 270274, AprilJune 2009 Kinetic and Mechanistic study of oxidation of isonicotinic acid hydrazide by Thallium

More information

Organic Catalysis in Oxidation of Isopropyl Alcohol by Pyridinium Flourochromate - A Kinetic and Mechanistic Study

Organic Catalysis in Oxidation of Isopropyl Alcohol by Pyridinium Flourochromate - A Kinetic and Mechanistic Study http://www.e-journals.in Chemical Science Transactions DOI:10.7598/cst2015.1023 2015, 4(2), 559-569 RESEARCH ARTICLE Organic Catalysis in Oxidation of Isopropyl Alcohol by Pyridinium Flourochromate - A

More information

Kinetic and Mechanistic Studies of Oxidation of an Antiallergic Drug with Bromamine-T in Acid and Alkaline Media

Kinetic and Mechanistic Studies of Oxidation of an Antiallergic Drug with Bromamine-T in Acid and Alkaline Media 3544 Bull. orean Chem. Soc. 202, Vol. 33, No. Puttaswamy and Anu Sukhdev http://dx.doi.org/0.502/bkcs.202.33..3544 inetic and Mechanistic Studies of Oxidation of an Antiallergic Drug with Bromamine-T in

More information

Journal of Chemical and Pharmaceutical Research

Journal of Chemical and Pharmaceutical Research Available on line www.jocpr.com Journal of Chemical and Pharmaceutical Research ISSN No: 0975-7384 CODEN(USA): JCPRC5 J. Chem. Pharm. Res., 2011, 3(1):529-535 Oxidation of Amino acids by Manganese (III)

More information

I J P A C Global Research Publications

I J P A C Global Research Publications I J P A C Global Research Publications International Journal of Pure & Applied Chemistry Vol. 6 No. April-June 0 pp. 39-43 Mechanistic Investigation of Pd(II) Catalyzed Oxidation of D-Galactose and D-

More information

Kinetics and Mechanism of the Selective Oxidation of Benzyl Alcohols by Acidified Dichromate in Aqueous Acetic Acid Medium

Kinetics and Mechanism of the Selective Oxidation of Benzyl Alcohols by Acidified Dichromate in Aqueous Acetic Acid Medium ORIENTAL JOURNAL OF CHEMISTRY An International Open Free Access, Peer Reviewed Research Journal www.orientjchem.org ISSN: 0970-020 X CODEN: OJCHEG 2014, Vol. 30, No. (3): Pg. 1391-1396 Kinetics and Mechanism

More information

Mechanism of oxidation of L-methionine by iron(iii)-1,10-phenanthroline complex A kinetic study

Mechanism of oxidation of L-methionine by iron(iii)-1,10-phenanthroline complex A kinetic study Proc. Indian Acad. Sci. (Chem. Sci.), Vol. 113, No. 4, August 001, pp 351 359 Indian Academy of Sciences Mechanism of oxidation of L-methionine by iron(iii)-1,10-phenanthroline complex A kinetic study

More information

Kinetics and Mechanism of Oxidation of Benzyl Alcohol by Benzimidazolium Fluorochromate

Kinetics and Mechanism of Oxidation of Benzyl Alcohol by Benzimidazolium Fluorochromate ISSN: 0973-4945; CODEN ECJHAO E- Chemistry http://www.e-journals.net Vol. 5, No.4, pp. 754-760, October 2008 Kinetics and Mechanism of Oxidation of Benzyl Alcohol by Benzimidazolium Fluorochromate J. DHARMARAJA,

More information

Pelagia Research Library

Pelagia Research Library Available online at www.pelagiaresearchlibrary.com Der Chemica Sinica, 2013, 4(1):100-104 ISSN: 0976-8505 CODEN (USA) CSHIA5 Oxidation of S-phenylmercaptoacetic acid by quinoxalinium dichromate K. G. Sekar*

More information

KINETICS AND MECHANISM OF KEGGIN TYPE 12-TUNGSTOCOBALTATE (II) CATALYZED POTASSIUM IODIDE OXIDATION BY PERBORATE

KINETICS AND MECHANISM OF KEGGIN TYPE 12-TUNGSTOCOBALTATE (II) CATALYZED POTASSIUM IODIDE OXIDATION BY PERBORATE Int. J. Chem. Sci.: 12(1), 2014, 145-154 ISSN 0972-768X www.sadgurupublications.com KINETICS AND MECHANISM OF KEGGIN TYPE 12-TUNGSTOCOBALTATE (II) CATALYZED POTASSIUM IODIDE OXIDATION BY PERBORATE D. S.

More information

IJRPC 2017, 7(2), Subba Rao Tanguturu et al. ISSN: INTERNATIONAL JOURNAL OF RESEARCH IN PHARMACY AND CHEMISTRY

IJRPC 2017, 7(2), Subba Rao Tanguturu et al. ISSN: INTERNATIONAL JOURNAL OF RESEARCH IN PHARMACY AND CHEMISTRY INTERNATIONAL JOURNAL OF RESEARCH IN PHARACY AND CHEISTRY Available online at www.ijrpc.com Research Article KINETICS OF ECHANIS OF OXIDATION OF DIACETYL BY VARIETY OF N-HALO COPOUNDS LIKE TRICHLORO ISOCYANURIC

More information

Kinetics and mechanism of oxidation of mandelic acid by N-bromoanisamide

Kinetics and mechanism of oxidation of mandelic acid by N-bromoanisamide International Journal of Scientific and Research Publications, Volume 3, Issue 9, September 203 ISSN 2250-353 Kinetics and mechanism of oxidation of mandelic acid by N-bromoanisamide L. N. Malviya Department

More information

Kinetics and mechanism of oxidation of hydroxylaminehydrochloride by vanadium (V) in the presence of sodium lauryl sulphate

Kinetics and mechanism of oxidation of hydroxylaminehydrochloride by vanadium (V) in the presence of sodium lauryl sulphate Indian Journal of Chemistry Vol. 40A, November 2001, pp. 1191-1195 Kinetics and mechanism of oxidation of hydroxylaminehydrochloride by vanadium (V) in the presence of sodium lauryl sulphate Rajendra Swain

More information

Mechanistic Aspects of Oxidation of 1- Phenylethanol by N-Bromophthalimide in Aqueous Acetic acid A Kinetic Study

Mechanistic Aspects of Oxidation of 1- Phenylethanol by N-Bromophthalimide in Aqueous Acetic acid A Kinetic Study International Journal of ChemTech Research CDEN( USA): IJCRGG ISSN : 0974-4290 Vol.2, No.4, pp 2150-2155, ct-dec 2010 Mechanistic Aspects of xidation of 1- Phenylethanol by N-Bromophthalimide in Aqueous

More information

Oxidation of Aromatic Monoethers by N-Chloronicotinamide in Aqueous Acetic Acid Medium A Kinetic Approach

Oxidation of Aromatic Monoethers by N-Chloronicotinamide in Aqueous Acetic Acid Medium A Kinetic Approach 6 Oxidation of Aromatic Monoethers by N-Chloronicotinamide in Aqueous Acetic Acid Medium A Kinetic Approach V. Priya, PG and Research Department of Chemistry, Holy Cross College, Tiruchirappalli, Tamil

More information

Journal of Chemical and Pharmaceutical Research, 2017, 9(12): Research Article

Journal of Chemical and Pharmaceutical Research, 2017, 9(12): Research Article Available online www.jocpr.com Journal of Chemical and Pharmaceutical Research, 2017, 9(12):143-147 Research Article ISSN : 0975-7384 CODEN(USA) : JCPRC5 A Kinetic Study of Oxidation of Cetirizine Hydrochloride

More information

Research Article. Kinetics and mechanism of oxidation of ketoacids by N-bromophthalimide in aqueous acetic acid medium

Research Article. Kinetics and mechanism of oxidation of ketoacids by N-bromophthalimide in aqueous acetic acid medium Available online www.jocpr.com Journal of Chemical and Pharmaceutical Research, 2015, 7(8):267-272 Research Article ISSN : 0975-7384 CDEN(USA) : JCPRC5 Kinetics and mechanism of oxidation of ketoacids

More information

Kinetic Study of Oxidation of n-hexanol by Tetramethyl ammonium Fluorochromate

Kinetic Study of Oxidation of n-hexanol by Tetramethyl ammonium Fluorochromate Kinetic Study of Oxidation of n-hexanol by Tetramethyl ammonium Fluorochromate Sayyed Hussain 1 and Syed Yousuf Hussain 2* 1-P.G. Department of Chemistry, Sir Sayyed College Aurangabad 2-Department of

More information

Oxidation of L-Valine by Manganese(III) in Pyrophosphate Medium: Kinetics and Mechanism

Oxidation of L-Valine by Manganese(III) in Pyrophosphate Medium: Kinetics and Mechanism American Journal of rganic Chemistry 2012, 2(2): 21-25 DI: 1923/j.ajoc.20120204 idation of L-Valine by Manganese(III) in Pyrophosphate Medium: Kinetics and Mechanism C. S. Chidan Kumar 1, S. Chandraju

More information

Mechanistic chemistry of oxidation of balsalazide with acidic chloramine-t and bromamine-t: A comparative spectrophotometric kinetic study

Mechanistic chemistry of oxidation of balsalazide with acidic chloramine-t and bromamine-t: A comparative spectrophotometric kinetic study J. Chem. Sci. Vol. 26, o. 6, ovember 204, pp. 655 664. c Indian Academy of Sciences. Mechanistic chemistry of oxidation of balsalazide with acidic chloramine-t and bromamine-t: A comparative spectrophotometric

More information

Oxidation of l Alanine and l Leucine by 1,3-Dichloro-5,5- Dimethylhydantoin in Aqueous Acetic Acid Medium : A Kinetic Study

Oxidation of l Alanine and l Leucine by 1,3-Dichloro-5,5- Dimethylhydantoin in Aqueous Acetic Acid Medium : A Kinetic Study International Journal of Advanced esearch in hemical Science (IJAS) Volume 5, Issue 8, 2018, PP 19-23 ISS o. (nline) 2349-0403 DI: http://dx.doi.org/10.20431/2349-0403.0508004 www.arcjournals.org xidation

More information

CHAPTER - V MECHANISM OF OXIDATION OF AMINO ACIDS BY NBN

CHAPTER - V MECHANISM OF OXIDATION OF AMINO ACIDS BY NBN 37 CHAPTER - V MECHANISM OF OXIDATION OF AMINO ACIDS BY NBN Before proposing a probable mechanism for the oxidation of amino acids by NBN, the inetic results of the present investigation are summed up

More information

Kinetics and Mechnism of Oxidation of Benzhydrol by 4-Methyl Pyridinium Di Chromate in Acetic Acid Water Medium

Kinetics and Mechnism of Oxidation of Benzhydrol by 4-Methyl Pyridinium Di Chromate in Acetic Acid Water Medium International Journal of Chemistry and Applications. ISSN 0974-3111 Volume 5, Number 1 (2013), pp. 45-53 International Research Publication House http://www.irphouse.com Kinetics and Mechnism of Oxidation

More information

Kinetic Study of Oxidation of Acettyl Acetone by Nicotinium Dichromate

Kinetic Study of Oxidation of Acettyl Acetone by Nicotinium Dichromate Nano Vision, Vol.3 (2), 70-74 (2013) Kinetic Study of Oxidation of Acettyl Acetone by Nicotinium Dichromate S.K. NIGAM #, PRIYANKA PATEL *, AKS TIWARI # and ANITA TIWARI # * Guest Lecturer, Govt. Tilak

More information

A COMPARATIVE STUDY OF THE OXIDATION RATES OF PERFUMERY PHENOLS USING INORGANIC OXIDANTS

A COMPARATIVE STUDY OF THE OXIDATION RATES OF PERFUMERY PHENOLS USING INORGANIC OXIDANTS ISSN: 0974-1496 e-issn: 0976-0083 CODEN: RJCABP http://www.rasayanjournal.com http://www.rasayanjournal.co.in A COMPARATIVE STUDY OF THE OXIDATION RATES OF D.V. Prabhu* and Chetana Rana Department of Chemistry,

More information

Kinetics and mechanism of the oxidation of formic and oxalic acids by quinolinium fluorochromate

Kinetics and mechanism of the oxidation of formic and oxalic acids by quinolinium fluorochromate Proc. Indian Acad. Sci. (Chem. Sci.), Vol. 112, No. 2, April 2000, pp. 73 81 Indian Academy of Sciences Kinetics and mechanism of the oxidation of formic and oxalic acids by quinolinium fluorochromate

More information

International Journal of Chemical Studies

International Journal of Chemical Studies ISSN: 2321-4902 Volume 1 Issue 4 nline Available at www.chemijournal.com International Journal of Chemical Studies olymer Supported Sodium Chromate xidation of 1- henylethanol: A Kinetic Mechanistic Study

More information

RESULTS AND DISCUSSION

RESULTS AND DISCUSSION RESULTS AND DISCUSSION 6.1 Reactive Species of Catalyst and Oxidant 6.2 Mechanism and Rate Law 6.3 Multiple Regression Analysis 6.4 Comparative Study 6.5 Conclusion 6.6 Future Prospect In this chapter,

More information

Kinetics and mechanism of anation of cis-diaquo-bisoxalatochromate(lll) ion by DL-alanine in ethanol-water mixtures of varying dielectric constant

Kinetics and mechanism of anation of cis-diaquo-bisoxalatochromate(lll) ion by DL-alanine in ethanol-water mixtures of varying dielectric constant Proc. Indian Acad. Sci. (Chem. Sci.), Vol. 101, No. 3, June 1989, pp. 187-194. 9 Printed in India. Kinetics and mechanism of anation of cis-diaquo-bisoxalatochromate(lll) ion by DL-alanine in ethanol-water

More information

Kinetics and mechanism of the oxidation of some neutral and acidic α-amino acids by tetrabutylammonium tribromide

Kinetics and mechanism of the oxidation of some neutral and acidic α-amino acids by tetrabutylammonium tribromide J. Chem. Sci., Vol. 116, No. 2, March 2004, pp. 101 106. Indian Academy of Sciences. Kinetics and mechanism of the oxidation of some neutral and acidic α-amino acids by tetrabutylammonium tribromide RAGHVENDRA

More information

Kinetic And Mechanism of Oxidation of Cobalt Metal Complex By Acidic Potassium Permanganate

Kinetic And Mechanism of Oxidation of Cobalt Metal Complex By Acidic Potassium Permanganate International OPEN ACCESS Journal Of Modern Engineering Research (IJMER) Kinetic And Mechanism of Oxidation of Cobalt Metal Complex By Acidic Potassium Permanganate Sayyed Hussain 1,Sunita Jadhav 1,Sayyed

More information

Kinetic Approach to Photochemical Oxidation of Succinic Acid by Chloramine-T in Presence of UV-Light

Kinetic Approach to Photochemical Oxidation of Succinic Acid by Chloramine-T in Presence of UV-Light Research Article Kinetic Approach to Photochemical Oxidation of Succinic Acid by Chloramine-T in Presence of UV-Light Meena Wadhwani 1, Shubha Jain 2,* and Rekha Chauhan 3 1 Advance College of Science

More information

Kinetic and Thermodynamic Study for the Oxidation of 4-Oxo-4-phenyl Butanoic Acid by Tripropylammonium fluorochromate in Aqueous Acetic Acid Medium

Kinetic and Thermodynamic Study for the Oxidation of 4-Oxo-4-phenyl Butanoic Acid by Tripropylammonium fluorochromate in Aqueous Acetic Acid Medium RIENTAL JURNAL CHEMISTRY An International pen ree Access, Peer Reviewed Research Journal www.orientjchem.org ISSN: 0970-020 X CDEN: JCHEG 2015, Vol. 31, No. (1): Pg. 17-23 Kinetic and Thermodynamic Study

More information

Pelagia Research Library

Pelagia Research Library Available online at www.pelagiaresearchlibrary.com Der Chemica Sinica, 2012, 3(3):703707 Kinetics of oxidation of allyl alcohol by imidazoliumdichromate K. G. Sekar *1 and M. Vellaisamy 2 ISSN: 09768505

More information

AP CHEMISTRY 2009 SCORING GUIDELINES

AP CHEMISTRY 2009 SCORING GUIDELINES 2009 SCORING GUIDELINES Question 1 (10 points) Answer the following questions that relate to the chemistry of halogen oxoacids. (a) Use the information in the table below to answer part (a)(i). Acid HOCl

More information

Kinetic and mechanistic studies on the hypochlorite oxidation of 1-phenyl ethanol and its para substituted derivatives in aqueous acetic acid medium

Kinetic and mechanistic studies on the hypochlorite oxidation of 1-phenyl ethanol and its para substituted derivatives in aqueous acetic acid medium International Journal of hemtech Research ODEN (USA): IJRGG, ISSN: 0974-4290, ISSN(Online):2455-9555 Vol.10 No.7, pp 5-40, 2017 Kinetic and mechanistic studies on the hypochlorite oxidation of 1-phenyl

More information

N-Oxidation of Pyrazines by Bromamine-B in Perchloric Acid Medium: Kinetic and Mechanistic Approach

N-Oxidation of Pyrazines by Bromamine-B in Perchloric Acid Medium: Kinetic and Mechanistic Approach -xidation of Pyrazines Bull. Korean Chem. Soc. 2009, Vol. 30, o. 9 1939 -xidation of Pyrazines by omamine-b in Perchloric Acid Medium: Kinetic and Mechanistic Approach Puttaswamy * and J. P. Shubha Department

More information

Kinetics and Mechanism of Oxidation of Malic Acid by Morpholinium Fluorochromate in Aqueous Acetonitrile Medium

Kinetics and Mechanism of Oxidation of Malic Acid by Morpholinium Fluorochromate in Aqueous Acetonitrile Medium DI:10.7598/cst2016.1160 Chemical Science Transactions ISSN:2278-3458 2016, 5(1), 258-264 RESEARC ARTICLE Kinetics and Mechanism of xidation of Malic Acid by Morpholinium Fluorochromate in Aqueous Acetonitrile

More information

Reactions in Aqueous Solutions

Reactions in Aqueous Solutions Reactions in Aqueous Solutions 1 Chapter 4 General Properties of Aqueous Solutions (4.1) Precipitation Reactions (4.2) Acid-Base Reactions (4.3) Oxidation-Reduction Reactions (4.4) Concentration of Solutions

More information

Electron tranfer reactions of L- aspartic acid andpermanganate ion in aqueous acidic medium

Electron tranfer reactions of L- aspartic acid andpermanganate ion in aqueous acidic medium Available online at www.pelagiaresearchlibrary.com Advances in Applied Science Research, 2012, 3 (6):3421-3429 ISSN: 0976-8610 CODEN (USA): AASRFC Electron tranfer reactions of L- aspartic acid andpermanganate

More information

Thermodynamics of Dissociation and Micellization of Carboxylates of Dysprosium in Organic Solvent

Thermodynamics of Dissociation and Micellization of Carboxylates of Dysprosium in Organic Solvent Research Article Thermodynamics of Dissociation and Micellization of Carboxylates of in Organic Solvent Sangeeta* and M. K. Rawat Department of Chemistry, Agra College, Agra 282002, India Abstract myristate

More information

Nucleophilic substitution at a benzylic carbon by an ambident nucleophile---a linear free energy relationship

Nucleophilic substitution at a benzylic carbon by an ambident nucleophile---a linear free energy relationship Proc. Indian Aead. Sci., Vol. 88 A, Part I, Number 5, ctober 1979, pp. 329-335, printed in India Nucleophilic substitution at a benzylic carbon by an ambident nucleophile---a linear free energy relationship

More information

Kinetics of the reaction of methyl iodide with sulfite and thiosulfate ions in aqueous solution1

Kinetics of the reaction of methyl iodide with sulfite and thiosulfate ions in aqueous solution1 Kinetics of the reaction of methyl iodide with sulfite and thiosulfate ions in aqueous solution1 R. A. HA STY^ AND S. L. SUTTER Pacific Northwest Laboratory, Battelle Memorial Institute, Richland, Waslrington

More information

Viscosities of oxalic acid and its salts in water and binary aqueous mixtures of tetrahydrofuran at different temperatures

Viscosities of oxalic acid and its salts in water and binary aqueous mixtures of tetrahydrofuran at different temperatures J. Chem. Sci., Vol. 117, No. 4, July 2005, pp. 351 357. Indian Academy of Sciences. Viscosities of oxalic acid and its salts in water and binary aqueous mixtures of tetrahydrofuran at different temperatures

More information

Kinetics and mechanism of oxidation of D-mannitol by potassium bromate in aqueous acidic medium

Kinetics and mechanism of oxidation of D-mannitol by potassium bromate in aqueous acidic medium Available online at www.pelagiaresearchlibrary.com Der Chemica Sinica, 2010, 1 (1): 1319 Kinetics and mechanism of oxidation of Dmannitol by potassium bromate in aqueous acidic medium Sheila Srivastava

More information

CHAPTER - 2 EXPERIMENTAL TECHNIQUE. Potassium permanganate has been used for. oxidation of many systems. Oxidations by permanganate

CHAPTER - 2 EXPERIMENTAL TECHNIQUE. Potassium permanganate has been used for. oxidation of many systems. Oxidations by permanganate 42 CHAPTER - 2 EXPERIMENTAL TECHNIQUE Potassium permanganate has been used for oxidation of many systems. Oxidations by permanganate generally takes place very fast because it is a strong oxidising agent.

More information

Journal of Applicable Chemistry 2014, 3 (5): (International Peer Reviewed Journal)

Journal of Applicable Chemistry 2014, 3 (5): (International Peer Reviewed Journal) Available online at www.joac.info ISSN: 2278-1862 Journal of Applicable Chemistry 2014, 3 (5): 2123-2130 (International Peer Reviewed Journal) Kinetics and mechanism of oxidation of aminoalcohols with

More information

Kinetics and Mechanistic Oxidation of l-leucine and l-valine by 1,3-Dichloro-5,5-dimethylhydantoin in Aqueous Acetic Acid Medium

Kinetics and Mechanistic Oxidation of l-leucine and l-valine by 1,3-Dichloro-5,5-dimethylhydantoin in Aqueous Acetic Acid Medium International Journal of Advanced esearch in hemical Science (IJAS) Volume 5, Issue 3, 2018, PP 22-27 ISS o. (nline) 2349-0403 DI: http://dx.doi.org/10.20431/2349-0403.0503005 www.arcjournals.org Kinetics

More information

Kinetics of a Reaction of 3-Chloroacetylacetone with Thioureas

Kinetics of a Reaction of 3-Chloroacetylacetone with Thioureas Kinetics of a Reaction of 3-Chloroacetylacetone with Thioureas a B.. Zaware*, b R. A. Mane and c. R. Kuchekar a New Arts Commerce and cience College, Ahmednagar (M..), India b Department of chemistry,

More information

Kinetic Study of Co-oxidation of Isopropyl Alcohol with EDTA by Pyridinium Fluorochromate

Kinetic Study of Co-oxidation of Isopropyl Alcohol with EDTA by Pyridinium Fluorochromate http://www.e-journals.in Chemical Science Transactions DOI:10.7598/cst2015.959 2015, 4(2), 443-457 RESEARCH ARTICLE Kinetic Study of Co-oxidation of Isopropyl Alcohol with EDTA by Pyridinium Fluorochromate

More information

Stoichiometry: Chemical Calculations. Chemistry is concerned with the properties and the interchange of matter by reaction i.e. structure and change.

Stoichiometry: Chemical Calculations. Chemistry is concerned with the properties and the interchange of matter by reaction i.e. structure and change. Chemistry is concerned with the properties and the interchange of matter by reaction i.e. structure and change. In order to do this, we need to be able to talk about numbers of atoms. The key concept is

More information

Chem 110 General Principles of Chemistry

Chem 110 General Principles of Chemistry Chem 110 General Principles of Chemistry Chapter 3 (Page 88) Aqueous Reactions and Solution Stoichiometry In this chapter you will study chemical reactions that take place between substances that are dissolved

More information

Kinetic and Mechanistic Approach of N- Chlorosaccharin Oxidation of some Non Vicinal Poly hydroxy Alcohols

Kinetic and Mechanistic Approach of N- Chlorosaccharin Oxidation of some Non Vicinal Poly hydroxy Alcohols International Journal of ChemTech Research CODEN( USA): IJCRGG ISSN : 0974-4290 Vol.2, No.3, pp 1480-1485, July-Sept 2010 Kinetic and Mechanistic Approach of N- Chlorosaccharin Oxidation of some Non Vicinal

More information

WYSE Academic Challenge 2004 Sectional Chemistry Solution Set

WYSE Academic Challenge 2004 Sectional Chemistry Solution Set WYSE Academic Challenge 2004 Sectional Chemistry Solution Set 1. Answer: d. Assume 100.0 g of the compound. Thus, we have 40.00 g of carbon, or 40.00/12.01 = 3.33 mol C. We have 6.71 g of hydrogen, or

More information

The kinetic and mechanistic study

The kinetic and mechanistic study Indian J. Applied & Pure Bio. Vol. 32(2), 147-154 (2017). Kinetics and mechanism of oxidation of Maltose by Potassium Permanganate in Sulphuric acid medium Yugendra Kumar Soni, S.K. Chatterjee and K.N.

More information

Kinetics and mechanism of the oxidation of some diols by benzyltrimethylammonium tribromide

Kinetics and mechanism of the oxidation of some diols by benzyltrimethylammonium tribromide Proc. Indian Acad. Sci. (Chem. Sci.), Vol. 113, No. 1, February 2001, pp 43 54 Indian Academy of Sciences Kinetics and mechanism of the oxidation of some diols by benzyltrimethylammonium tribromide 1.

More information

5.1 Module 1: Rates, Equilibrium and ph

5.1 Module 1: Rates, Equilibrium and ph 5.1 Module 1: Rates, Equilibrium and ph 5.1.1 How Fast? The rate of reaction is defined as the change in concentration of a substance in unit time Its usual unit is mol dm 3 s 1 When a graph of concentration

More information

Buffers. A buffered solution resists changes in ph when small amounts of acids or bases are added or when dilution occurs.

Buffers. A buffered solution resists changes in ph when small amounts of acids or bases are added or when dilution occurs. Buffers A buffered solution resists changes in ph when small amounts of acids or bases are added or when dilution occurs. The buffer consists of a mixture of an acid and its conjugate base. Example: acetic

More information

Chapter 15 Acid-Base Equilibria

Chapter 15 Acid-Base Equilibria Chapter 15 Acid-Base Equilibria Acid-Base Equilibria 15.1 Solutions of Acids or Bases Containing a Common Ion A. Common Ion 1. Ion provided in solution by an aqueous acid (or base) as well as a salt a.

More information

Aqueous Reactions and Solution Stoichiometry (continuation)

Aqueous Reactions and Solution Stoichiometry (continuation) Aqueous Reactions and Solution Stoichiometry (continuation) 1. Electrolytes and non-electrolytes 2. Determining Moles of Ions in Aqueous Solutions of Ionic Compounds 3. Acids and Bases 4. Acid Strength

More information

Inorganica Chimica Acta

Inorganica Chimica Acta Inorganica Chimica Acta 362 (2009) 2044 2051 Contents lists available at ciencedirect Inorganica Chimica Acta journal homepage www.elsevier.com/locate/ica Mechanistic aspects for the oxidation of sunset

More information

1.6 Equilibria All reversible reactions reach an dynamic equilibrium state.

1.6 Equilibria All reversible reactions reach an dynamic equilibrium state. 1.6 Equilibria All reversible reactions reach an dynamic equilibrium state. Many reactions are reversible + 3 2NH 3 The term dynamic means both forward and backward reactions are occurring simultaneously

More information

15 Acids, Bases, and Salts. Lemons and limes are examples of foods that contain acidic solutions.

15 Acids, Bases, and Salts. Lemons and limes are examples of foods that contain acidic solutions. 15 Acids, Bases, and Salts Lemons and limes are examples of foods that contain acidic solutions. Chapter Outline 15.1 Acids and Bases 15.2 Reactions of Acids and Bases 15.3 Salts 15.4 Electrolytes and

More information

Quantitative chemistry Atomic structure Periodicity

Quantitative chemistry Atomic structure Periodicity IB chemistry Units 1-3 review Quantitative chemistry Significant figures The mole- be able to convert to number of particles and mass Finding empirical and molecular formulas from mass percentage States

More information

Chapter 4 Reactions in Aqueous Solutions. Copyright McGraw-Hill

Chapter 4 Reactions in Aqueous Solutions. Copyright McGraw-Hill Chapter 4 Reactions in Aqueous Solutions Copyright McGraw-Hill 2009 1 4.1 General Properties of Aqueous Solutions Solution - a homogeneous mixture Solute: the component that is dissolved Solvent: the component

More information

1. My answers for this Chemistry 102 exam should be graded with the answer sheet associated with: a) Form A b) Form B c) Form C d) Form D e) Form E

1. My answers for this Chemistry 102 exam should be graded with the answer sheet associated with: a) Form A b) Form B c) Form C d) Form D e) Form E Hour Exam I Page 1 1. My answers for this Chemistry 102 exam should be graded with the answer sheet associated with: a) Form A b) Form B c) Form C d) Form D e) Form E 2. Consider the measurements 9.74

More information

CH 4 AP. Reactions in Aqueous Solutions

CH 4 AP. Reactions in Aqueous Solutions CH 4 AP Reactions in Aqueous Solutions Water Aqueous means dissolved in H 2 O Moderates the Earth s temperature because of high specific heat H-bonds cause strong cohesive and adhesive properties Polar,

More information

Dielectric Relaxation Studies of Binary Mixtures of Ethanol and Chlorobenzene in Benzene Solution from Microwave Absorption Data

Dielectric Relaxation Studies of Binary Mixtures of Ethanol and Chlorobenzene in Benzene Solution from Microwave Absorption Data Dielectric Relaxation Studies of Binary Mixtures of Ethanol and Chlorobenzene in Benzene Solution from Microwave Absorption Data Vimal Sharma and Nagesh Thakur Department of Physics, H. P. University,

More information

LIMITING IONIC PARTIAL MOLAR VOLUMES OF R 4 N + AND I IN AQUEOUS METHANOL AT K

LIMITING IONIC PARTIAL MOLAR VOLUMES OF R 4 N + AND I IN AQUEOUS METHANOL AT K Int. J. Chem. Sci.: 11(1), 2013, 321-330 ISSN 0972-768X www.sadgurupublications.com LIMITING IONIC PARTIAL MOLAR VOLUMES OF R 4 N + AND I IN AQUEOUS METHANOL AT 298.15 K N. P. NIKAM * and S. V. PATIL a

More information

Topic 1: Quantitative chemistry

Topic 1: Quantitative chemistry covered by A-Level Chemistry products Topic 1: Quantitative chemistry 1.1 The mole concept and Avogadro s constant 1.1.1 Apply the mole concept to substances. Moles and Formulae 1.1.2 Determine the number

More information

Determination of the Rate Constant for an Iodine Clock Reaction

Determination of the Rate Constant for an Iodine Clock Reaction CHEM 122L General Chemistry Laboratory Revision 1.3 Determination of the Rate Constant for an Iodine Clock Reaction To learn about Integrated Rate Laws. To learn how to measure a Rate Constant. To learn

More information

Kinetics and mechanism of the oxidation of methionine by quinolinium chlorochromate

Kinetics and mechanism of the oxidation of methionine by quinolinium chlorochromate J. Serb. Chem. Soc. 70 (2) 145 151 (2005) UDC 577.112.386:531.3:66.094.3 JSCS 3257 Original scientific paper Kinetics and mechanism of the oxidation of methionine by quinolinium chlorochromate M. PANDEESWARAN,

More information

1 Sulfur, atomic number 16, is found within the Earth s crust. Sulfur is released into the atmosphere at times of volcanic activity.

1 Sulfur, atomic number 16, is found within the Earth s crust. Sulfur is released into the atmosphere at times of volcanic activity. 1 Sulfur, atomic number 16, is found within the Earth s crust. Sulfur is released into the atmosphere at times of volcanic activity. A sample of sulfur from a volcano was analysed to give the following

More information

2014 Academic Challenge Sectional Chemistry Exam Solution Set

2014 Academic Challenge Sectional Chemistry Exam Solution Set 2014 Academic hallenge Sectional hemistry Exam Solution Set 1. E. A V-shaped molecule is possible in either the trigonal planar or the tetrahedral electron group geometry (A or B). 2. B. The fact that

More information

AP CHEMISTRY 2009 SCORING GUIDELINES

AP CHEMISTRY 2009 SCORING GUIDELINES 2009 SCING GUIDELINES Question 4 (15 points) (a) A sample of solid iron(iii) oxide is reduced completely with solid carbon. 2 Fe 2 O 3 + 3 C 4 Fe + 3 CO 2 Fe 2 O 3 + 3 C 2 Fe + 3 CO One point is earned

More information

Atoms, Elements, Atoms, Elements, Compounds and Mixtures. Compounds and Mixtures. Atoms and the Periodic Table. Atoms and the.

Atoms, Elements, Atoms, Elements, Compounds and Mixtures. Compounds and Mixtures. Atoms and the Periodic Table. Atoms and the. Atoms, Elements, Compounds and Mixtures Explain how fractional distillation can be used to separate a mixture. 1 Atoms, Elements, Compounds and Mixtures Fractional distillation is used to separate components

More information

M. S. VEENA 1, M. K. PRASHANTH 2, K. YOGESH KUMAR 3, H. B. MURALIDHARA 4,*, Y. ARTHOBA NAYAKA 5

M. S. VEENA 1, M. K. PRASHANTH 2, K. YOGESH KUMAR 3, H. B. MURALIDHARA 4,*, Y. ARTHOBA NAYAKA 5 KINETICS AND MECHANISTIC STUDY OF OXIDATION OF AMOXICILLIN BY CHLORAMINE-T IN ACID MEDIUM M. S. VEENA 1, M. K. PRASHANTH 2, K. YOGESH KUMAR 3, H. B. MURALIDHARA 4,*, Y. ARTHOBA NAYAKA 5 1 Centre for Nanosciences,

More information

Kinetics and mechanism of the redox reaction of toluidine blue and nitrite ions in aqueous acidic medium

Kinetics and mechanism of the redox reaction of toluidine blue and nitrite ions in aqueous acidic medium Available online at www.scholarsresearchlibrary.com Archives of Applied Science Research, 2012, 4 (1):1018 (http://scholarsresearchlibrary.com/archive.html) ISSN 0975508X CODEN (USA) AASRC9 Kinetics and

More information

Chem 115 POGIL Worksheet - Week #6 Oxidation Numbers, Redox Reactions, Solution Concentration, and Titrations

Chem 115 POGIL Worksheet - Week #6 Oxidation Numbers, Redox Reactions, Solution Concentration, and Titrations Chem 115 POGIL Worksheet - Week #6 Oxidation Numbers, Redox Reactions, Solution Concentration, and Titrations Why? In addition to metathetical reactions, electron transfer reactions often occur in solutions.

More information

Oxidation of Some Aliphatic Alcohols by Pyridinium Chlorochromate -Kinetics and Mechanism

Oxidation of Some Aliphatic Alcohols by Pyridinium Chlorochromate -Kinetics and Mechanism ISSN: 0973-4945; CODEN ECJHAO E- Chemistry http://www.e-journals.net 2009, 6(1), 237-246 Oxidation of Some Aliphatic Alcohols by Pyridinium Chlorochromate -Kinetics and Mechanism SAPANA JAIN *, B. L. HIRAN

More information

Mechanistic study of osmium(viii) promoted oxidation of crotonic acid by aqueous alkaline solution of potassium iodate

Mechanistic study of osmium(viii) promoted oxidation of crotonic acid by aqueous alkaline solution of potassium iodate Indian Journal of Chemistry Vol. 54A, November 2015, pp. 1387-1393 Mechanistic study of osmium(viii) promoted oxidation of crotonic acid by aqueous alkaline solution of potassium iodate Bharat Singh*,

More information

Lesmahagow High School AHChemistry Inorganic and Physical Chemistry Lesmahagow High School CfE Advanced Higher Chemistry

Lesmahagow High School AHChemistry Inorganic and Physical Chemistry Lesmahagow High School CfE Advanced Higher Chemistry Lesmahagow High School CfE Advanced Higher Chemistry Unit 1 Inorganic and Physical Chemistry Chemical Equilibrium 1 Dynamic Equilibrium Revision Dynamic equilibrium happens in a closed system when the

More information

Aspects of Bonding & Acid Strength

Aspects of Bonding & Acid Strength Aspects of Bonding & Acid Strength CHEM 110/ 2014 Slide 1 of 35 Intramolecular Bonding The bonding between molecules/atoms in the solid state Ionic bonding Covalent bonding Metallic bonding e.g. sodium

More information

CHEMpossible. Final Exam Review

CHEMpossible. Final Exam Review CHEMpossible Final Exam Review 1. Given the following pair of reactions and their equilibrium constants: 2NO 2 (g) 2NO (g) + O 2 (g) K c = 15.5 2NO (g) + Cl 2 (g) 2 NOCl (g) K c = 3.20 10-3 Calculate a

More information

Kinetic features of the oxidation of secondary alcohol by polymer - supported chromic acid

Kinetic features of the oxidation of secondary alcohol by polymer - supported chromic acid Kinetic features of the oxidation of secondary alcohol by polymer - supported chromic acid Vilas Y. Sonawane* and Nandini. Hilage. a * Department of Chemistry, Bhausaheb Nene Arts, Science and Comm. College,

More information

Chapter Four: Reactions in Aqueous Solution

Chapter Four: Reactions in Aqueous Solution Chapter Four: Reactions in Aqueous Solution Learning Outcomes: Identify compounds as acids or bases, and as strong, weak, or nonelectrolytes Recognize reactions by type and be able to predict the products

More information

3. Which of the following compounds is soluble? The solubility rules are listed on page 8.

3. Which of the following compounds is soluble? The solubility rules are listed on page 8. 1. Classify the following reaction. Sb 2 O 3 + 3 Fe 2 Sb + 3 FeO a) Combination reaction b) Decomposition reaction c) Neutralization reaction d) Single-replacement reaction e) Double-replacement reaction

More information

KINETICS AND MECHANISM STUDIES OF OXIDATION OF Α-AMINO ACIDS BY N-BROMOSUCCINIMIDE

KINETICS AND MECHANISM STUDIES OF OXIDATION OF Α-AMINO ACIDS BY N-BROMOSUCCINIMIDE Journal of Al-Nahrain University Vol.0(), December, 007, pp.66-7 Science KINETICS AND MECHANISM STUDIES OF OXIDATION OF Α-AMINO ACIDS BY N-BROMOSUCCINIMIDE Ammar J. Mohammed, Hassan Hadi Biochemical Eng.

More information

Chem 1B, Test Review #2

Chem 1B, Test Review #2 1. The following kinetics data were obtained for the reaction: Expt.# 2NO(g) + Cl 2 (g) 2NOCl(g) [NO] 0 (mol/l) [Cl 2 ] 0 (mol/l) Initial Rate, (mol/l.s) 1 0.20 0.10 6.3 x 10 3 2 0.20 0.30 1.9 x 10 2 3

More information

EXPERIMENT 3 THE IODINE CLOCK

EXPERIMENT 3 THE IODINE CLOCK EXPERIMENT 3 THE IODINE CLOCK Introduction The Rates of Chemical Reactions Broadly defined, chemical kinetics is the study of the rates at which chemical reactions proceed. Oftentimes, reaction rate data

More information

Journal of Chemical and Pharmaceutical Research, 2013, 5(4): Research Article

Journal of Chemical and Pharmaceutical Research, 2013, 5(4): Research Article Available online www.jocpr.com Journal of Chemical and Pharmaceutical Research, 203, 5(4):290-300 Research Article ISSN : 0975-7384 CDEN(USA) : JCPRC5 xidation of ascorbic acid by hexacyanoferrate(iii)

More information

Journal of Chemical and Pharmaceutical Research, 2012, 4(3): Research Article

Journal of Chemical and Pharmaceutical Research, 2012, 4(3): Research Article Available online www.jocpr.com Journal of Chemical and Pharmaceutical Research, 2012, 4(3):1619-1624 Research Article ISSN : 0975-7384 CODEN(USA) : JCPRC5 Studies on ion association and solvation of multi-charged

More information

Sect 7.1 Chemical Systems in Balance HMWK: Read pages

Sect 7.1 Chemical Systems in Balance HMWK: Read pages SCH 4UI Unit 4 Chemical Systems and Equilibrium Chapter 7 Chemical Equilibrium Sect 7.1 Chemical Systems in Balance HMWK: Read pages 420-424 *Some reactions are reversible, ie not all reactions are as

More information