Natural curcuminoids encapsulated in layered double hydroxides: a novel antimicrobial nanohybrid

Size: px
Start display at page:

Download "Natural curcuminoids encapsulated in layered double hydroxides: a novel antimicrobial nanohybrid"

Transcription

1 DOI /s RESEARCH ARTICLE Open Access Natural curcuminoids encapsulated in layered double hydroxides: a novel antimicrobial nanohybrid Ajona Megalathan 1, Sajeewani Kumarage 2, Ayomi Dilhari 3, Manjula M. Weerasekera 3,5, Siromi Samarasinghe 2 and Nilwala Kottegoda 2,4,5* Abstract Currently, there is an increased scientific interest to discover plant based drug formulations with improved therapeutic potential. Among the cornucopia of traditional medicinal plants, Curcuma longa rhizomes have been used as a powerful antibacterial and antifungal agent. However, its practical applications are limited due to its instability under thermal and UV radiation and its low bioavailability and the extensive procedures needed for isolation. This study focuses on exploring the potential of nanotechnology-based approaches to stabilize the natural curcuminoids, the major active components in turmeric without the need for its isolation, and to evaluate the release characteristics, stability and antimicrobial activity of the resulting nanohybrids. Natural curcuminoids were selectively encapsulated into nanolayers present in Mg Al-layered double hydroxides (LDHs) using a method that avoids any isolation of the curcuminoids. The products were characterized using solid state techniques, while thermal and photo-stability were studied using thermogravimetric analysis (TGA) and UV exposure data. The morphological features were studied using scanning electron microscope (SEM) and transmission electron microscope (TEM). Drug release characteristics of the nanohybrid were quantitatively monitored under ph 3 and 5, and therapeutic potentials were assessed by using distinctive kinetic models. Finally, the antimicrobial activity of curcuminoids-ldh was tested against three bacterial and two fungal species. Powder X-ray diffraction, Fourier transform infra-red spectroscopy, SEM and TEM data confirmed the successful and selective encapsulation of curcuminoids in the LDH, while the TGA and UV exposure data suggested the stabilization of curcuminoids within the LDH matrix. The LDH demonstrated a slow and a sustained release of the curcuminoids in an acidic medium, while it was active against the three bacteria and two fungal species used in this study, suggesting its potential applications in pharmaceutical industry. Keywords: Layered double hydroxide, Curcuminoids, Curcumin, Turmeric, Antimicrobial, Slow release, Nanohybrid Background The discovery of therapeutic potential of plant derived remedies based on traditional medicine has raised renewed interest in the development of drugs from natural sources. In this context, many attempts have been focused on integrating traditional medicine into western drug formulations. Despite the known challenges associated with the development of a potent drug from natural *Correspondence: nilwala@sjp.ac.lk; nilwalak@slintec.lk 2 Department of Chemistry, Faculty of Applied Sciences, University of Sri Jayewardenepura, Gangodawila, Nugegoda, Sri Lanka Full list of author information is available at the end of the article biomolecules the recent revival of interest in these molecules has resulted in broad interdisciplinary research approaches to plant based drug discovery. Among the cornucopia of traditional medicinal plants, Curcuma longa rhizomes are known to have various therapeutic properties, including antibacterial and antifungal activity. Curcumin, 1, 7-bis (4-hydroxy-3-methoxy-phenyl)-1, 6-heptadiene-3, 5-dione, the main coloring substances in turmeric, and two related compounds, demethoxycurcumin (DMC) and bisdemethoxycurcumin (BDMC), are collectively known as curcuminoids, which have wellknown antimicrobial properties together with highly potent, non-toxic, bioactive characteristics. Among the 2016 The Author(s). This article is distributed under the terms of the Creative Commons Attribution 4.0 International License ( which permits unrestricted use, distribution, and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. The Creative Commons Public Domain Dedication waiver ( publicdomain/zero/1.0/) applies to the data made available in this article, unless otherwise stated.

2 Page 2 of 10 many common health related issues, infectious diseases and emerging microbial species with resistance to common antimicrobial agents represent a significant burden to the healthcare systems [1]. In treatment of such diseases, curcuminoids would be a potential candidate. However, these curcuminoids suffer from low aqueous solubility, poor bioavailability, and low stability and therefore, have limited practical use, necessitating the modification of their properties in order to develop a versatile, useful and effective therapeutic product [2]. In this realm, nanotechnology has shown much promise in pharmaceutical industry [3]. Among the many available nanomaterials, an immense deal of attention has been focused on nanolayered inorganic materials because of their ability to encapsulate and immobilize various organic and inorganic molecules as well as bio molecules in the interlayer space due to their fascinating lamellar structures [4]. In addition, the structural and morphological tunability, convenient synthesis, versatility and their low toxicity, with good biocompatibility and bio-degradability have resulted in high intrinsic pharmacological activity compared with conventional drugs and other controlled- and slow-release drugs [5 9]. The positive surface charge of an LDH layer is due to the partial substitution of divalent cations (Mg, Zn, Ni, etc.) for trivalent cations (Al, Cr, etc.), thus making it viable for the intercalation of negatively charged drugs or biomolecules such as DNA [10, 11]. A controllable sustained anion exchange that is ph dependent is possible due to the structure of LDHs, which is also mandatory for the controlled-release properties of this system, making it a valuable candidate for biological and pharmaceutical applications [12]. Most of the work on LDH-based drug delivery systems has been based on already existing active drugs, while little attention has been devoted to exploring the potential of the encapsulation of naturally occurring biologically active compounds in slow- and controlled-release applications. Samindra and Kottegoda [13] have reported the successful intercalation of chemically isolated curcumin (CIC) into LDH and demonstrated its slow release behavior [14]. A recent attempt has been made to evaluate the anticancer activity of curcumin LDH [15]. Perera et al. [16] have also reported the potential of citrate intercalated LDH as an antimicrobial active formulation in body lotions and have verified its activity against Candida species. In recent literature Shafiei et al. [17] have reported the successful encapsulation of epigallocatechin gallate into layered double hydroxide and it s in vitro anti-tumor properties. However, none of the previous work has reported the selective encapsulation of natural pharmaceutically active compounds into layered double hydroxides. This study is an extension to the work done by Samindra and Kottegoda [13] on chemically isolated curcumin encapsulated LDHs. This study lays the foundation for the successful and selective encapsulation of curcuminoids into nanolayers present in LDHs without the need for isolation unlike previous attempts which involved isolation from crude turmeric. In addition, the encapsulation process is expected to improve its photo stability, water solubility, and prolonged bio-availability thus allowing it to be used in broad spectrum of medical applications. Results and discussion Identification of curcuminoids According to the thin layer chromatography (TLC) of turmeric powder dissolved in acetone, several spots were observed, thus signifying the presence of other components, such as protein, carbohydrates, fat, minerals, other than curcuminoids. The TLC of the de-intercalation of curcuminoids from LDH shows only three spots, which represent the presence of curcumin, DMC and BDMC with RF values of 0.75, 0.55, and 0.27, respectively. These RF values compare well with those reported for curcumin, DMC and BDMC in a previous work [18]. Furthermore, the highest intense peak corresponds to curcumin, which is the major component in natural turmeric. These observations suggest that curcuminoids have selectively intercalated into the LDH during the coprecipitation reaction (Fig. 1). Characterization of selectively encapsulated curcuminoids (SEC) LDH PXRD analysis PXRD analysis was used to understand the successful and selective intercalation of curcuminoids from natural turmeric into the LDH, and the pattern (Fig. 2) was compared with that of CIC-LDH and isolated curcuminoids. The LDH resulted by the encapsulation of curcuminoids through different routes demonstrated similar structural characteristics such as the peak positions and the peak intensities of both basal and non basal reflections. It was observed that for both CIC-LDH and SEC-LDH, the basal reflection (003) appears at a 2 theta value of 11.5, and the corresponding inter-planar spacing is confirmed as 0.76 nm. There is no appearance of peaks related to the presence of any crystalline curcuminoids. The possible intercalation reaction of curcuminoids into LDH could be explained based on the structure of the curcumin, which is the main active component among curcuminoids. The structure of LDH consists of positively charged cation layers and anions in the interlayer spacing and water molecules. The keto-enol tautomerism of curcumin allows a negative charge to form on the curcumin structure at basic ph values; hence, as

3 Page 3 of 10 Fig. 1 TLC of a turmeric powder and b curcuminoids-ldh (SEC-LDH). TLC was conducted by dissolving turmeric/curcuminoid-ldh (selectively encapsulated) in acetone and the mobile phase was a mixture of chloroform (95 %) and methanol (5 %) Fig. 2 PXRD pattern for a SEC-LDH, b CIC-LDH and c curcuminoids. PXRD patterns were obtained for the dried powders of isolated curcuminoids, chemically isolated curcuminoids encapsulated LDH (CIC-LDH), and the LDH prepared by curcuminoid encapsulation using the in situ novel method a result of that configuration, curcumin can be encapsulated into the inter-layer spacing during the co-precipitation reaction. Although curcumin molecules exhibit an overall hydrophobic nature, the presence of hydrophilic hydroxyl groups on the surface and the negative charges originated as a result of keto-enol tautomerism selectively driving the curcumin groups into the inter-layer spacing of LDHs. Similar behavior is followed by DMC and BDMC that are present in curcuminoids. The width of curcumin is approximately 0.69 nm [13]. As for isolated pure curcuminoids intercalated LDH, during the selective encapsulation process, curcuminoids adapt to a flat molecule, where the plane of curcuminoids within the brucite layers arrange in a parallel orientation. Moreover, the intensity of the basal reflection is very low, while the peak is broad due to the disordering of the curcuminoids within the layers. Such disordering may occur due to the presence of different types of large organic molecules (turbostatic disordering) with a flexible ring structure. As a result, improved water solubility can be expected from the nanohybrid. Other researchers have also reported such improved solubility with synthetic curcumin-montmorillonite nanocomposites [19]. Further evidence for the interactions between the LDHs and curcuminoids are provided by the FTIR analysis (see Additional file 1). SEM and TEM analysis As shown in Fig. 3a, the SEC-LDH demonstrates the typical plate-like morphology. The layered nature and lattice structure are clearly visible in Fig. 3b, and a basal spacing of 0.25 nm is suggested. This observation corroborates the basal spacing suggested by the PXRD analysis. Release behavior of SEC LDH effect of ph The release properties of curcuminoids have been studied at ph 3 and 5. The release study was performed at these ph values because the ph of the intact skin is acidic. The release profiles for SEC-LDH at ph 3 and 5 are shown in Fig. 4. The release profile of SEC-LDH shows a high initial drug release rate in the first 3 h and then reaches an almost constant level over a longer period, which confirms the slow and sustained release of the drug. Such a release profile is characteristic of a diffusion-controlled release process [20]. Furthermore, the amount of curcuminoids released at ph 3 is significantly greater than that released at ph 5 because the ph 3 medium consists of more H + ions than the ph 5 medium, which leads to a higher proton attack to the curcuminoid ions; thus, the curcuminoid ions become protonated, leading to a higher amount of curcuminoid ions released from the layered matrix to the medium. Meanwhile, no measurable release was observed for pure curcuminoids in an aqueous medium due to its very low solubility. Percentage intercalated and percentage release It was found that the percentage of curcuminoids intercalated into the layered matrix was 72 %; however, only 43 % of the intercalated curcuminoids were released within the first 3 h. The concentration of curcuminoids released in 3 h was g cm 3 in ph 3 and g cm 3 in ph 5, and the concentration that remained after 10 h was g cm 3 in ph 3 and g cm 3 in ph 5. As a result, the SEC-LDH is expected to demonstrate longterm release in practical application.

4 Page 4 of 10 Fig. 3 Electron microscopic images a SEM and b TEM of SEC-LDH. SEM image demonstrate the plate-like morphology and the TEM shows the internal structure, the scale bar represents 2 nm, the layered pattern is visible in b Fig. 4 Release behavior of SEC-LDH at a ph 3, b ph 5 in aqueous medium. Release behavior of the nanohybrid was studied under acidic ph which is closer to the infected skin Release kinetics of SEC LDH The release mechanism of the curcuminoids from LDH was investigated referring to four different kinetic models, first order, zeroth order, Korsmeyer-Peppas and Higuichi. Rate constants (k) and r 2 values were obtained from the best fit curves and are summarized in the supplementary materials. The first order kinetic model resulted in, r 2 values of 0.79 and 0.91 at ph values of 3 and 5, respectively suggesting that the release is not based on a dissolution mechanism. Rather the release behavior may happen according to several independent processes that occur based on the types of host guest attractions. These evidences suggest that there are various degrees of host guest interactions ranging from attractions between the intercalated curcuminoids and nanolayers to those between surface and layer edges with adsorbed curcuminoid molecules. On the other hand, the zeroth order model and Korsmeyer-Peppas model provided r 2 values of more than 0.90 at both phs (see Fig. 5). These models have been accepted for many of the transdermal systems and matrix tablets which demonstrate a low solubility and coated drugs [12, 21 25]. According to these models, pharmaceutical dosage forms follow a release profile where the same amount of drug by unit of time is released; thus, it is the ideal method of drug release to achieve a pharmacological prolonged action. These observations therefore, agree with the prolonged release behavior of curcuminoids and their potential against number of microbes as observed in this study. Conversely, Higuichi model describes drug release as a diffusion process based on Fick s law, M t / M 0 = Kt n where M t is the amount of material released at time t, M 0 is the total amount of material added, k is the rate constant and n is the diffusion exponent related to the diffusion mechanism. According to Higuichi model, the n value is 0.5 for this system suggesting a Fickian diffusion release mechanism of curcuminoids. Based on the results, a diffusion-controlled process or heterogeneous diffusion process is suggested for the curcuminoid-ldh system.

5 Page 5 of 10 Fig. 5 Kinetic behavior of the Sec-LDH according to the a zeroth order model, b Korsmeyer Peppas model Thermal stability To study the thermal behavior of curcuminoids and SEC- LDH, analysis was conducted in a flowing nitrogen environment. In TGA analysis of SEC-LDH, three weight loss steps were observed, which contributed to a total weight loss of %. The weight loss due to the removal of physisorbed and chemisorbed water was reported as approximately % at a maximum temperature of 70 C and extended up to ~125 C. The amount of hydration was significantly low compared to other inorganic LDHs because SEC-LDH is less prone to being hydrated due to the intercalation of large organic anions. At the range of C, SEC-LDH showed a complete dehydroxylation of layers, together with partial combustion of the intercalated curcuminoids at the edges or surfaces of the crystallites, approximating to a weight loss of %. On the other hand, the decomposition peak does not appear to be sharp for SEC-LDH but is a broad peak in the range of C, thus indicating the different bonding environment of curcuminoids after the intercalation. However, it is difficult to distinguish between two weight losses the dehydroxylation of nanolayers and curcuminoids decomposition within the LDH matrix. Meanwhile, for curcuminoids, a sharp decomposition peak is observed at 360 C. This observation confirms that the intercalation of curcuminoids into the layered matrix increased the thermal stability of the curcuminoids. The LDH matrix thus improves the stability of the anions because it provides protection for the intercalated anions against thermal combustion. Photo stability of SEC LDH According to the observations, the photo-stability (Fig. 6) study of curcuminoids shows that the maximum absorbance wave length (λ max ) has gradually shifted to a lower wave length, decreasing the absorbance at λ max with the time of UV exposure. Compared with this, there is only a negligible decrease in the absorbance of SEC-LDH. Additionally, according to the A/A 0 vs time graph, curcuminoids absorbance drops to a value that is nearly half of

6 Page 6 of 10 Fig. 6 Solid state absorbance spectra of a curcuminoids b SEC-LDH. Absorbance measurements were carried out for the UV exposed sec-ldh at different time intervals the initial. For SEC-LDH, this drop is also insignificant, confirming the protection of the molecule within a layered structure. Additionally, λ max is preserved over time. In SEC-LDH, curcuminoids exist in phenolate form; thus, electrostatic interactions and hydrogen bonds are formed with LDH layers. Furthermore, ketone and methoxy functional groups also form hydrogen bonds with hydroxide layers. These interactions result in the highly stabilized form of curcuminoids in between LDH layers. In addition to this, it has been found that photo-degradation of pure curcuminoids is enhanced due to the reaction of photoexcited curcuminoid molecules with molecular oxygen, which produces singlet oxygen [26]. These degradation reactions can be prevented due to various interactions within the LDH as explained below. It has been found that the diketone moiety mainly accounts for the photo-degradation of these molecules. This process gives rise to different compounds, such as feruloyl methane, ferulic acid, vanillin and acetone. Initially, curcumin degrades into feruloyl methane and ferulic acid. Then, feruloyl methane further degrades into vanillin and acetone. Accumulating degradation products are also absorbed in the same wavelength range, but they are more photo stable. Therefore, curcuminoids degradation has a nonlinear rate. Antimicrobial properties The antimicrobial activity of SEC-LDH was tested against Staphylococcus aureus (ATCC 25923), Escherichia coli (ATCC 25922), and Pseudomonas aeruginosa (ATCC 27853), as well as two yeast species, i.e., Candida albicans (ATCC 10231) and Candida dubliniensis (Clinical isolate), in the presence of various ph (3, 4 and 5) conditions in triplicates. According to the observations, the extracted curcuminoids and SEC-LDH both showed inhibitory activity against the tested microbial species. When comparing the extracted curcuminoids and SEC- LDH (in both, the concentration of curcuminoids is g cm 3 ), SEC-LDH showed a better inhibition zone for the tested organisms. No zone of inhibition was observed for the curcuminoid acetone extract. According to the study findings, the average zone of inhibition given by SEC-LDH at ph 3, against three bacterial species and C. albicans was significantly greater than the average zone of inhibition of the control (p < 0.05). The mean zone exhibited by SEC-LDH at ph 4, against only for P. aeruginosa showed a statistically greater zone of inhibition than that of the control (p < 0.05). Further, the results suggest that SEC-LDH has an improved slow-release property against most of the tested microorganisms Table 1. Fluconazole was used as the positive control for the tested yeast species, whereas vancomycin and gentamicin were used as the positive controls for the tested bacterial species. Sterile acidic solvents (ph 3, 4 and 5) were used as the negative controls. The results show that at ph 4, SEC-LDH has a relatively large zone of inhibition for the S. aureus (ATCC 25923) and P. aeruginosa (ATCC 27853) species; furthermore, at ph 3, E. coli (ATCC 25922) and C. albicans (ATCC 10231) show large inhibition zones. Due to the sustained release of curcuminoids from SEC-LDH composites, a large inhibition zone was shown

7 Page 7 of 10 Table 1 Antimicrobial and antifungal studies Substance tested Staphylococcus aureus ATCC (mm) Pseudomonas aeruginosa ATCC (mm) Escherichia coli ATCC (mm) Candida albicans ATCC (mm) Candida dubliniensis clinical isolate (mm) Positive control Negative control Pure turmeric SEC-LDH (at ph 3) SEC-LDH (at ph 4) SEC-LDH (at ph 5) 8 10 Anti-microbial behavior of SEC-LDH composite was studied at ph 3, 4 and 5. Fluconazole was used as the positive control for the tested yeast species, whereas vancomycin and gentamicin were used as the positive controls for the tested bacterial species; and sterile acidic solvents and nitrate were used as negative controls for SEC-LDH. No inhibition zone was observed for the extracted curcuminoids acetone even with the same concentration of curcuminoids. And also no inhibition zone was observed for pure nitrate-ldh. The human skin is believed to be acidic. [27] S. aureus, Candida species are commensals on skin. This skin flora is mainly the source of wound infections and the origin is endogenous. The results gained from antibacterial and antifungal susceptibility testing show the effectiveness of SEC-LDH at acidic environments against the tested microorganisms in the current study. Experimental All inorganic materials were of analytical grade and used without further purification. Turmeric was purchased from an Ayurveda pharmacy. In all the experiments, distilled water was used. Synthesis of selectively encapsulated curcuminoids layered double hydroxide (SEC LDH) SEC-LDH was synthesized by adding the Mg Al NO 3 solution (300 cm 3 of the Mg Al NO 3 solution was prepared by dissolving 1 mol dm 3 Mg (NO 3 ) 2 6H 2 O and 1 mol dm 3 Al (NO 3 ) 3 in a 2:1 ratio) drop-wise to a concentrated turmeric in acetone (40 g/200 cm 3 ) under vigorous stirring conditions at 60 C. During the addition period, the ph of the solution was maintained at 9 by adding 1 mol dm 3 NaOH. The slurry was then stirred overnight in a closed container at 60 C. Finally, it was filtered and washed thoroughly with distilled water to remove impurities and dried at 90 C. Characterization Curcuminoids in acetone were tested using thin layer chromatography to determine the presence of different curcuminoids. Thin layer chromatography was carried out using chloroform: methanol mobile phase with a composition of 95:5. After development, the plates were removed and dried. Spots were analyzed. The synthesized SEC-LDH (1.0 g) was stirred in acetone (5 cm 3 ) overnight to extract all intercalated curcuminoids. The same procedure used for the crude turmeric for TLC analysis was repeated. Powder X-ray diffraction (PXRD) patterns were recorded to confirm the formation of SEC-LDH to identify the structural orientation and crystalline phases in the synthesized nanocomposites. PXRD experiment was carried out using the Brucker D8 focus X-ray powder diffractometer using Cu Kα radiation (λ = Å) over a 2θ angle from 2 to 70 with a step size of Fourier transform infra-red (FTIR) spectra were recorded to identify the functional groups in the synthesized materials. The Nicolet IS 10 instrument was used to inspect the powdered sample using diffuse reflection mode in the range from 600 to 4000 cm 1. The sample was mixed with potassium bromide in 1:100 ratios, and then the mixture was ground to a fine powder. Furthermore, a disc having an even surface was prepared by compressing the powdered sample. Thermo gravimetric analysis (TGA) was used to study the thermal profile of the material as a function of temperature to understand the thermal stability of the synthesized materials. The SDTQ 600 thermo gravimetric analyzer was used in this study. The sample (10 mg) was heated at a rate of 10 C per min in a nitrogen atmosphere over a temperature range of C. The Q series 600 was used for this analysis. A UV-2602 single beam scanning spectrophotometer was used for the curcuminoid release studies as a function of time at different ph values, and the PerkinElmer Lambda35 UV/Vis spectrophotometer was used for solid UV analysis. Morphological studies were carried out using scanning electron microscope (SEM) and transmission electron microscopy (TEM). SEM characterization was done using the secondary electron mode of SU6600 microscope. The sample was placed on an aluminium stub and sputtered with a thin layer of gold. TEM analysis was

8 Page 8 of 10 carried out using a JEOL JEM 2100 microscope operating at 200 kev. The samples were dispersed in methanol using ultrasonication for 5 min. The suspended nanoparticles were loaded onto Lecay carbon-coated copper grids (300 mesh), and the sample containing the grids was dried for 24 h at room temperature prior to observation. Release behavior of Mg Al curcuminoids LDH The release behavior of encapsulated curcuminoids from SEC-LDH was profiled in ph 3 and 5 buffer solutions. SEC-LDH powder (2.00 g) was dispersed in the buffer solution. The amount of release of curcuminoids was determined at 15 min intervals, followed by 30 min intervals of monitoring the variation of absorbance in the UV Vis absorption spectroscopy, with the peak at 427 nm (λ max of curcuminoids). To investigate the kinetics for the release behavior of curcuminoids from LDH, the data were fitted to the following kinetic models: the zero order release model, first order release model, Higuchi release model, and Korsmeyer-Peppas release model. The zeroth order rate model Q 0 Q t = K 0 t (1) where Q t is the amount of drug dissolved in time t, Q 0 is the initial amount of the drug, K 0 is the zero order release constant, and T is the time in h [25]. The first-order rate model. Log C t = Log C 0 + Kt/2.303 (2) where C 0 is the initial concentration of the drug, C t is the concentration of the drug after time t, K is the first order rate constant, and t is the time in h [25]. The Higuchi model Log Q = 1/2 log t + log K H (3) where Q is the amount of drug released, K H is the Higuchi dissociation constant, and T is the time in h [25]. The Korsmeyer-Peppas model M t /M = Kt n (4) where M t /M fraction of drug released at time t, n-diffusion exponent, K-kinetic constant, and the assumption is infinite time, i.e., 10 h. Curcuminoids release properties in water The dissolution test was performed at a constant temperature (37 ± 0.5 C) by suspending SEC-LDH nanocomposites (2.00 g) in a phosphate buffer (50 cm 3 ) at various ph values (3 and 5). Aliquots (2.00 cm 3 ) of supernatant were taken at 15 min intervals, followed by 30 min intervals, and the curcuminoids content was determined via UV absorption at λ = 427 nm. Percentage intercalated and percentage release of curcuminoids Determination of the total amount of intercalated curcuminoids was carried out by dissolving the curcuminoids that were intercalated in the SEC-LDH composite (2 g) in acetone (15 cm 3 ) and stirring overnight. After 24 h, the absorbance of the filtrate was measured by using a UV Vis spectrometer, and the concentration of curcuminoids intercalated was determined to be λ max of 427 nm. Percentage intercalated percentage of curcumin intercalated in SEC LDH = Total percentage of curcumin used 100 Determination of the amount of released curcuminoids was carried out by suspending SEC-LDH (2 g) in a phosphate buffer solution (ph 3) for 24 h. An aliquot (2.00 cm 3 ) was taken, and the released amount of curcuminoids was determined via UV absorption at a wavelength of 427 nm. Percentage released percentage of curcumin released from SEC LDH = concentration of curcuminoid encapsulated 100 Photo stability study of curcuminoids and SEC LDH Four SEC-LDH samples (1.0 g) were exposed to UV light (wavelength 365 nm) for 1, 2, 3 and 4 h; they were placed in a black box during the exposure. One equal weight sample was kept in the dark throughout the whole experiment. Each sample was scanned using the solid state attachment of a UV visible spectrophotometer. The samples were diluted with spectroscopic grade BaCl 2 prior to scanning. The same procedure was repeated for the crude curcuminoid sample. Determination of antimicrobial activity The antimicrobial activity of the SEC-LDH composite was tested against three bacterial species (S. aureus (ATCC 25923), E. coli (ATCC 25922), P. aeruginosa (ATCC 27853)) and two fungal species [C. albicans (ATCC 10231) and C. dubliniensis (clinical isolate)] using the agar well diffusion method [24]. For each tested bacterial and yeast strain, a suspension was prepared in sterile normal saline and was turbidly adjusted to the McFarland 0.5 turbidity standards. One milliliter of the test inoculum was inoculated on a solidified MHA (Oxoid, England) plate to obtain a

9 Page 9 of 10 confluent growth. Using a sterile cork-borer, 9 mm wells were cut out of each MHA plate. The bottoms of the wells were sealed by adding a drop of molten agar into the wells using a sterile pipette. The ph of the SEC-LDH composite was adjusted (ph 3, 4 and 5). Wells were loaded with 180 µl of the SEC-LDH composite by using a micropipette. Fluconazole was used as the positive control for the tested yeast species, whereas vancomycin and gentamicin were used as the positive controls for the tested bacterial species; and sterile acidic solvents (ph 3, 4 and 5) were used as negative controls. Plates were kept at room temperature for nearly 10 min and then incubated aerobically at 37 C and observed after 24 h. The antimicrobial activity of the SEC-LDH composite was tested in triplicates and the mean diameter of the zone inhibition zone was recorded. The statistical analysis was carried out by using the software, Statistical Package for Social Sciences (SPSS) version One sample t test was used for quantitative variables. The level of significance was taken at 5 % (p < 0.05). Conclusions PXRD and FTIR data revealed the successful selective encapsulation of natural curcuminoids into the nanolayers of the LDH. SEM and TEM images confirmed the typical hexagonal morphology and the layering pattern of the resulting nanohybrid. TGA and UV exposure data proposed the stabilization of the curcuminoid molecules within the nanolayers, thus making them suitable for potential practical application. Slow and sustained behavior of the encapsulated curcuminoids was observed in acidic ph values, thus proving their applicability in antibacterial skin formulations. The release data fit the zero order kinetic model, thus suggesting that the release mechanism is based on drug dissolution from dosage forms that do not disaggregate and release the drug in a slow and sustainable manner. Improved and sustained activity of the novel nanohybrid proved the antimicrobial activity against the 3 bacteria species and 2 candida species. In this regard, the SEC-LDH nanocomposites can provide a powerful route for developing a new efficient drug delivery system with a suspended release rate. Additional file Additional file 1: Figure S1. PXRD pattern of nitrate LDH (for comparison purposes). Figure S2. FTIR spectra for (A) curcuminoids (B) SEC-LDH. Table S1. Peak assignments vs peak positions bonds. Figure S3. Thermograms of the (a) curcuminoids and (b) SEC-LDH. Table S2. Parameters for kinetic models. Figure S4. Kinetic models for the behaviour of SEC-LDH at ph 3 and 5. Authors contributions AM Carried out bench work, data collection, results analysis and drafted the manuscript. SK, AD Carried out bench work, data collection and involved in manuscript preparation. MW Designing and guiding the experiments in antimicrobial studies. SS Input in interpreting and designing certain experiments related to turmeric encapsulation. NK Team leader, played the major role in designing the project, analysis of results and finalizing the manuscript. All authors read and approved the final manuscript Author information NK is a senior research scientist attached to Sri Lanka Institute of Nanotechnology and a senior lecturer at the Department of Chemistry, University of Sri Jayewardenepura, Sri Lanka. She obtained her Ph.D. in Materials Chemistry from the University of Cambridge, UK. Her current research work spans over a wide spectrum of areas; nanotechnology applications in agriculture, nanonutraceuticals and cosmoceuticals, nanomaterials for water purification, rubber nanocomposites, and synthesis of nanomaterials from natural/ mineral resources. MW is a senior lecturer attached to the Department of Microbiology, Faculty of Medical Sciences, University of Sri Jayewardenepura, Sri Lanka. She obtained her Ph.D. in molecular medicine in 2011 from the University of Otago, New Zealand. Her current research interests are antimicrobial resistance, bio-films studies and pathogenesis of medically important microorganisms. SS is an associate professor attached to the Department of Chemistry, University of Sri Jayewardenepura, Sri Lanka. AM graduated from Institute of Chemistry Ceylon as a graduate chemist. SK is a final year research student reading for B.Sc. Special Degree in Chemistry at the University of Sri Jayewardenepura. AD obtained her B.Sc. in Medical Laboratory Science from University of Sri Jayewardenepura and currently she is reading for her Ph.D. at the University of Sri Jayewardenepura, Sri Lanka. Author details 1 Institute of Chemistry, College of Chemical Sciences, Welikada, Rajagiriya, Sri Lanka. 2 Department of Chemistry, Faculty of Applied Sciences, University of Sri Jayewardenepura, Gangodawila, Nugegoda, Sri Lanka. 3 Department of Microbiology, Faculty of Medical Sciences, University of Sri Jayewardenepura, Gangodawila, Nugegoda, Sri Lanka. 4 Center for Excellence in Nanotechnology, Nanoscience and Technology Park, Sri Lanka Institute of Nanotechnology, Pitipana, Homagama, Sri Lanka. 5 Advanced Materials Research Center, Faculty of Applied Sciences, University of Sri Jayewardenepura, Gangodawila, Nugegoda, Sri Lanka. Acknowledgements The authors wish to acknowledge Prof. B. M. R. Bandara, Department of Chemistry, University of Peradeniya, Sri Lanka, his valuable guidance and advice throughout. Competing interests The authors declare that they have no competing interests. Received: 10 January 2016 Accepted: 10 May 2016 References 1. Moghadamtousi SZ, Kadir HA, Hassandarvish P, Tajik H, Abubakar S, Zandi K (2014) A review on antibacterial, antiviral, and antifungal activity of curcumin. BioMed Research International: Anitha A, Maya S, Deepa N, Chennazhi K, Nair S, Tamura H, Jayakumar R (2011) Efficient water soluble O-carboxymethyl chitosan nanocarrier for the delivery of curcumin to cancer cells. Carbohydr Polym 83: Karunaratne V, Kottegoda N, De Alwis A (2011) Nanotechnology in a world out of balance. J Natl Sci Found Sri Lanka 40: Alcantara A, Aranda P, Darder M, Ruiz-Hitzky E (2010) Bionanocomposites based on alginate zein/layered double hydroxide materials as drug delivery systems. J Mater Chem 20: Bi X, Zhang H, Dou L (2014) Layered double hydroxide-based nanocarriers for drug delivery. Pharmaceutics 6: Zhang H, Pan D, Zou K, He J, Duan X (2009) A novel core-shell structured magnetic organic-inorganic nanohybrid involving drug-intercalated layered double hydroxides coated on a magnesium ferrite core for magnetically controlled drug release. J Mater Chem 19:

10 Page 10 of Al Ali SHH, Al-Qubaisi M, Hussein MZ, Zainal Z, Hakim MN (2011) Preparation of hippurate-zinc layered hydroxide nanohybrid and its synergistic effect with tamoxifen on HepG2 cell lines. Int J Nanomed 6: Emeje MO, Obidike IC, Akpabio EI, Ofoefule SI (2012) Nanotechnology in drug delivery. Recent advances in novel drug carrier systems. InTech, Rijeka, pp Bullo Saifullah MZH, Hussein-Al-Ali SH, Arulselvan P, Fakurazi S (2013) Sustained release formulation of an anti-tuberculosis drug based on para-amino salicylic acid-zinc layered hydroxide nanocomposite. Chem Cent J 7: Wei P-R, Cheng S-H, Liao W-N, Kao K-C, Weng C-F, Lee C-H (2012) Synthesis of chitosan-coated near-infrared layered double hydroxide nanoparticles for in vivo optical imaging. J Mater Chem 22: Lia A, Qina L, Wanga W, Zhua R, Yua Y, Liub H, Wang S (2011) The use of layered double hydroxides as DNA vaccine delivery vector forenhancement of anti-melanoma immune response. Biomaterials 32: Yang J-H, Han Y-S, Park M, Park T, Hwang S-J, Choy J-H (2007) New inorganic-based drug delivery system of indole-3-acetic acid-layered metal hydroxide nanohybrids with controlled release rate. Chem Mater 19: Samindra S, Kottegoda N (2014) Encapsulation of curcumin into layered double hydroxides. Nanotechnol Rev 3: Megalathan A, Weerasekera M, Kottegoda N (2015) Turmeric encapsulated layered double hydroxide [abstract], 3rd International Conference and exhibition on pharmacorgonacy, phytochemistry, and natural products, Hyderabad 15. Khorsandi K, Hosseinzadeh R, Fateh M (2015) Curcumin intercalated layered double hydroxide nanohybrid as a potential drug delivery system for effective photodynamic therapy in human breast cancer cells. RSC Advances 5: Perera J, Weerasekera M, Kottegoda N (2015) Slow release anti-fungal skin formulations based on citric acid intercalated layered double hydroxides nanohybrids. Chem Cent J 9: Shafiei SS, Solati-Hashjin Samadikuchaksaraei A, Kalantarinejad R, Asadi- Eydivand M, Osman NAA (2015) Epigallocatechin gallate/layered double hydroxide nanohybrids: preparation, characterization, and in vitro antitumor study. Plos ONE 10:e doi: /journal.pone Antony S, Elumalai S, Benny M (2011) Isolation purification and identification of curcuminoids from turmeric (Curcuma longa L.) by column chromatography. J Exp Sci 2: Nayak P, Sahoo D, Mohanty D, Swain P (2012) Synthesis and characterization of chitosan/cloisite 30B (MMT) Nanocomposite for controlled release of anticancer drug curcumin. Int J Biol Pharm Allied Sci 1: Gomes P, Hewageegana S, Kottahachchi J, Athukorala G, Weerasekera M, Gunasekera T, Dissanayake D, Meedin D, Fernando S (2012) In vitro study to determine antimicrobial activity of selected ayurvedic preparations against bacteria and fungi causing superficial skin infections. Sri Lankan J Infect Dis 3: Gu Z, Thomas AC, Xu ZP, Campbell JH, Lu GQ (2008) In vitro sustained release of LMWH from MgAl-layered double hydroxide nanohybrids. Chem Mater 20: Dash S, Murthy PN, Nath L, Chowdhury P (2010) Kinetic modeling on drug release from controlled drug delivery systems. Acta Pol Pharm 67: Costa P, Lobo JMS (2001) Modeling and comparison of dissolution profiles. Eur J Pharm Sci 13: Tongwen X, Binglin H (1998) Mechanism of sustained drug release in diffusion-controlled polymer matrix-application of percolation theory. Int J Pharm 170: Chime S, Onunkwo G, Onyishi I (2013) Kinetics and mechanisms of drug release from swellable and non swellable matrices: a review. Res J Pharm Biol Chem Sci 4: Chignell CF, Bilskj P, Reszka KJ, Motten AG, Sik RH, Dahl TA (1994) Spectral and photochemical properties of curcumin. J Photochem Photobiol 59: Lambers H, Piessens S, Bloem A, Pronk H, Finkel P (2006) Natural skin surface ph is on average below 5, which is beneficial for its resident flora. Int J Cosmet Sci 28:

Natural Turmeric Encapsulated Layered Double Hydroxides as Anti-microbial Nanohybrid. Anoja Megalathan. Graduate Chemist (ICHEM.

Natural Turmeric Encapsulated Layered Double Hydroxides as Anti-microbial Nanohybrid. Anoja Megalathan. Graduate Chemist (ICHEM. Natural Turmeric Encapsulated Layered Double Hydroxides as Anti-microbial Nanohybrid Anoja Megalathan Graduate Chemist (ICHEM. C) College of Chemical Sciences Sri Lankan Institute of Nano Technology University

More information

International Journal of Scientific & Engineering Research, Volume 5, Issue 3, March-2014 ISSN

International Journal of Scientific & Engineering Research, Volume 5, Issue 3, March-2014 ISSN 156 Copper Nanoparticles: Green Synthesis Characterization Y.Suresh*1, S.Annapurna*2, G.Bhikshamaiah*3, A.K.Singh#4 Abstract Present work describes the synthesis nanoparticles using papaya extract as a

More information

ZEOLITE ENCAPSULATED METAL COMPLEXES OF CURCUMIN

ZEOLITE ENCAPSULATED METAL COMPLEXES OF CURCUMIN 7 ZEOLITE ENCAPSULATED METAL COMPLEXES OF CURCUMIN 7.1 Introduction Curcumin, (1,7-bis( 4-hydroxy-3-methyoxypheny 1)-1,6-heptadiene-3,5-dione) is the main active ingredient found in the food spice turmeric,

More information

Supplementary Information

Supplementary Information Supplementary Information In situ ion exchange synthesis of the novel Ag/AgBr/BiOBr hybrid with highly efficient decontamination of pollutants Hefeng Cheng, Baibiao Huang*, Peng Wang, Zeyan Wang, Zaizhu

More information

Electronic Supplementary Information

Electronic Supplementary Information Electronic Supplementary Information Formation of MS-Ag and MS (M=Pb, Cd, Zn) nanotubes via microwave-assisted cation exchange and their enhanced photocatalytic activities Yanrong Wang, a Wenlong Yang,

More information

Fabrication and characterization of poly (ethylene oxide) templated nickel oxide nanofibers for dye degradation

Fabrication and characterization of poly (ethylene oxide) templated nickel oxide nanofibers for dye degradation Electronic Supplementary Material (ESI) for Environmental Science: Nano. This journal is The Royal Society of Chemistry 2014 Supplementary Information Fabrication and characterization of poly (ethylene

More information

Supplementary Information. Core-Shell Silver/Polymeric Nanoparticles-Based Combinatorial Therapy against Breast Cancer In-vitro

Supplementary Information. Core-Shell Silver/Polymeric Nanoparticles-Based Combinatorial Therapy against Breast Cancer In-vitro Supplementary Information Core-Shell Silver/Polymeric Nanoparticles-Based Combinatorial Therapy against Breast Cancer In-vitro Nancy M. El-Baz 1,2, Laila Ziko 1,3, Rania Siam 1,3, Wael Mamdouh 1,2 * 1

More information

8. FORMULATION OF LANSOPRAZOLE NANOPARTICLES

8. FORMULATION OF LANSOPRAZOLE NANOPARTICLES 8. FORMULATION OF LANSOPRAZOLE NANOPARTICLES FORMULATION OF LANSOPRAZOLE NANOPARTICLES Preparation of capsule of modified solubility to protect the drug from degradation To protect the drug from degradation

More information

Supporting information A Porous Zr-cluster-based Cationic Metal-Organic Framework for Highly Efficient Cr 2 O 7

Supporting information A Porous Zr-cluster-based Cationic Metal-Organic Framework for Highly Efficient Cr 2 O 7 Electronic Supplementary Material (ESI) for ChemComm. This journal is The Royal Society of Chemistry 2015 Supporting information A Porous Zr-cluster-based Cationic Metal-Organic Framework for Highly Efficient

More information

Magnetic Janus Nanorods for Efficient Capture, Separation. and Elimination of Bacteria

Magnetic Janus Nanorods for Efficient Capture, Separation. and Elimination of Bacteria Electronic Supplementary Material (ESI) for RSC Advances. This journal is The Royal Society of Chemistry 2016 Magnetic Janus Nanorods for Efficient Capture, Separation and Elimination of Bacteria Zhi-min

More information

Photocatalytic degradation of dyes over graphene-gold nanocomposites under visible light irradiation

Photocatalytic degradation of dyes over graphene-gold nanocomposites under visible light irradiation Photocatalytic degradation of dyes over graphene-gold nanocomposites under visible light irradiation Zhigang Xiong, Li Li Zhang, Jizhen Ma, X. S. Zhao* Department of Chemical and Biomolecular Engineering,

More information

Permeable Silica Shell through Surface-Protected Etching

Permeable Silica Shell through Surface-Protected Etching Permeable Silica Shell through Surface-Protected Etching Qiao Zhang, Tierui Zhang, Jianping Ge, Yadong Yin* University of California, Department of Chemistry, Riverside, California 92521 Experimental Chemicals:

More information

Supporting Information

Supporting Information Supporting Information Zeolitic Imidzolate Framework-8 as Efficient ph-sensitive Drug Delivery Vehicle Chun-Yi Sun, Chao Qin, Xin-Long Wang,* Guang-Sheng Yang, Kui-Zhan Shao, Ya-Qian Lan, Zhong-Min Su,*

More information

Novel fluorescent matrix embedded carbon quantum dots enrouting stable gold and silver hydrosols

Novel fluorescent matrix embedded carbon quantum dots enrouting stable gold and silver hydrosols Novel fluorescent matrix embedded carbon quantum dots enrouting stable gold and silver hydrosols Shouvik Mitra a, Sourov Chandra b, Prasun Patra a, Panchanan Pramanik b *, Arunava Goswami a * a AERU, Biological

More information

Encapsulation of enzyme in metal ion-surfactant nanocomposites for

Encapsulation of enzyme in metal ion-surfactant nanocomposites for Electronic Supplementary Material (ESI) for ChemComm. This journal is The Royal Society of Chemistry 2017 Supporting information for Encapsulation of enzyme in metal ion-surfactant nanocomposites for catalysis

More information

Preparation of One-dimensional ZnO/Bi2O3 Heterostructures Nanomaterial for Visible Light Photocatalysis

Preparation of One-dimensional ZnO/Bi2O3 Heterostructures Nanomaterial for Visible Light Photocatalysis 2016 International Conference on Material Science and Civil Engineering (MSCE 2016) ISBN: 978-1-60595-378-6 Preparation of One-dimensional ZnO/Bi2O3 Heterostructures Nanomaterial for Visible Light Photocatalysis

More information

Supporting Information. Carbon Imidazolate Framework-8 Nanoparticles for

Supporting Information. Carbon Imidazolate Framework-8 Nanoparticles for Supporting Information Carbon Nanodots@Zeolitic Imidazolate Framework-8 Nanoparticles for Simultaneous ph-responsive Drug Delivery and Fluorescence Imaging Liu He, a Tingting Wang, b Jiping An, c Xiaomeng

More information

Adsorption of Methylene Blue on Mesoporous SBA 15 in Ethanol water Solution with Different Proportions

Adsorption of Methylene Blue on Mesoporous SBA 15 in Ethanol water Solution with Different Proportions 2015 2 nd International Conference on Material Engineering and Application (ICMEA 2015) ISBN: 978-1-60595-323-6 Adsorption of Methylene Blue on Mesoporous SBA 15 in Ethanol water Solution with Different

More information

Supplementary Information

Supplementary Information Supplementary Information Time-dependent growth of zinc hydroxide nanostrands and their crystal structure Xinsheng Peng, ab Jian Jin, a Noriko Kobayashi, a Wolfgang Schmitt, c and Izumi Ichinose* a a Organic

More information

Supplementary Information

Supplementary Information Supplementary Information Fabrication of Novel Rattle-Type Magnetic Mesoporous carbon Microspheres for Removal of Microcystins Xinghua Zhang and Long Jiang* Beijing National Laboratory for Molecular Science

More information

MOHAMED R. BERBER Department of Chemistry, Faculty of Science, Tanta University, Tanta 31527, Egypt.

MOHAMED R. BERBER Department of Chemistry, Faculty of Science, Tanta University, Tanta 31527, Egypt. Advanced Materials Development and Performance (AMDP211) International Journal of Modern Physics: Conference Series Vol. 6 (212) 133-137 World Scientific Publishing Company DOI: 1.1142/S21194512366 CONTROL

More information

applied as UV protective films

applied as UV protective films Nanocomposite gels via in-situ photoinitiation and disassembly of TiO 2 -Clay composites with polymers applied as UV protective films Chuanan Liao, Qing Wu, Teng Su, Da Zhang, Qingsheng Wu and Qigang Wang*

More information

Supporting Information. Synthesis of Mg/ Al Layered Double Hydroxides for Adsorptive Removal of. Fluoride from Water: A Mechanistic and Kinetic Study

Supporting Information. Synthesis of Mg/ Al Layered Double Hydroxides for Adsorptive Removal of. Fluoride from Water: A Mechanistic and Kinetic Study Supporting Information Synthesis of Mg/ Al Layered Double Hydroxides for Adsorptive Removal of Fluoride from Water: A Mechanistic and Kinetic Study Gautam Kumar Sarma and Md. Harunar Rashid* Department

More information

International Journal of Pure and Applied Sciences and Technology

International Journal of Pure and Applied Sciences and Technology Int. J. Pure Appl. Sci. Technol., 9(1) (2012), pp. 1-8 International Journal of Pure and Applied Sciences and Technology ISSN 2229-6107 Available online at www.ijopaasat.in Research Paper Preparation,

More information

Three Dimensional Nano-assemblies of Noble Metal. Nanoparticles-Infinite Coordination Polymers as a Specific

Three Dimensional Nano-assemblies of Noble Metal. Nanoparticles-Infinite Coordination Polymers as a Specific Electronic Supplementary Material (ESI) for ChemComm. This journal is The Royal Society of Chemistry 2014 Electronic Supplementary Information Three Dimensional Nano-assemblies of Noble Metal Nanoparticles-Infinite

More information

Growth of silver nanocrystals on graphene by simultaneous reduction of graphene oxide and silver ions with a rapid and efficient one-step approach

Growth of silver nanocrystals on graphene by simultaneous reduction of graphene oxide and silver ions with a rapid and efficient one-step approach Growth of silver nanocrystals on graphene by simultaneous reduction of graphene oxide and silver ions with a rapid and efficient one-step approach Xiu-Zhi Tang, a Zongwei Cao, b Hao-Bin Zhang, a Jing Liu

More information

PREPARATION, CHARACTERISATION AND PHOTOCATALYTIC ACTIVITY OF TERNARY GRAPHENE-Fe 3 O 4 :TiO 2 NANOCOMPOSITES

PREPARATION, CHARACTERISATION AND PHOTOCATALYTIC ACTIVITY OF TERNARY GRAPHENE-Fe 3 O 4 :TiO 2 NANOCOMPOSITES Digest Journal of Nanomaterials and Biostructures Vol. 13, No. 2, April - June 2018, p. 499-504 PREPARATION, CHARACTERISATION AND PHOTOCATALYTIC ACTIVITY OF TERNARY GRAPHENE-Fe 3 O 4 :TiO 2 NANOCOMPOSITES

More information

Novel fungus-titanate bio-nano composites as high performance. absorbents for the efficient removal of radioactive ions from.

Novel fungus-titanate bio-nano composites as high performance. absorbents for the efficient removal of radioactive ions from. This journal is The Royal Society of Chemistry 0 Electronic Supplementary Information For Novel fungus-titanate bio-nano composites as high performance absorbents for the efficient removal of radioactive

More information

SUPPORTING INFORMATION

SUPPORTING INFORMATION SUPPORTING INFORMATION Table of Contents S1 1. General materials and methods S2 2. Syntheses of {Pd 84 } and {Pd 17 } S3-S4 3. MS studies of {Pd 84 }, {Pd 17 } and the two-component reactions S5-S6 4.

More information

Catalytic Decomposition of Formaldehyde on Nanometer Manganese Dioxide

Catalytic Decomposition of Formaldehyde on Nanometer Manganese Dioxide Modern Applied Science April, 29 Catalytic Decomposition of Formaldehyde on Nanometer Manganese Dioxide Xiujuan Chu & Hua Zhang (Corresponding author) Tianjin Municipal Key Lab of Fibres Modification and

More information

Supporting Information

Supporting Information Supporting Information Enhanced Photocatalytic Activity of Titanium Dioxide: Modification with Graphene Oxide and Reduced Graphene Oxide Xuandong Li,* Meirong Kang, Xijiang Han, Jingyu Wang, and Ping Xu

More information

Supporting Information

Supporting Information Electronic Supplementary Material (ESI) for RSC Advances. This journal is The Royal Society of Chemistry 2014 Supporting Information Au nanoparticles supported on magnetically separable Fe 2 O 3 - graphene

More information

DISSOLUTION PROFILLING OF NIMESULIDE SOLID DISPERSIONS WITH POLYETHYLENE GLYCOL, TALC AND THEIR COMBINATIONS AS DISPERSION CARRIERS

DISSOLUTION PROFILLING OF NIMESULIDE SOLID DISPERSIONS WITH POLYETHYLENE GLYCOL, TALC AND THEIR COMBINATIONS AS DISPERSION CARRIERS International Journal of PharmTech Research CODEN (USA): IJPRIF ISSN : 0974-4304 Vol.2, No.1, pp 480-484, Jan-Mar 2010 DISSOLUTION PROFILLING OF NIMESULIDE SOLID DISPERSIONS WITH POLYETHYLENE GLYCOL, TALC

More information

Supplementary Information

Supplementary Information Electronic Supplementary Material (ESI) for RSC Advances. This journal is The Royal Society of Chemistry 2016 Supplementary Information Multifunctional Fe 2 O 3 /CeO 2 Nanocomposites for Free Radical Scavenging

More information

A flexible MMOF exhibiting high selectivity for CO 2 over N 2, CH 4 and other small gases. Supporting Information

A flexible MMOF exhibiting high selectivity for CO 2 over N 2, CH 4 and other small gases. Supporting Information A flexible MMOF exhibiting high selectivity for CO 2 over N 2, CH 4 and other small gases Jingming Zhang, a Haohan Wu, a Thomas J. Emge, a and Jing Li* a a Department of Chemistry and Chemical Biology,

More information

Synthesis and Characterization of Superparamagnetic Iron Oxide Nanoparticles for Water Purification Applications

Synthesis and Characterization of Superparamagnetic Iron Oxide Nanoparticles for Water Purification Applications Synthesis and Characterization of Superparamagnetic Iron Oxide Nanoparticles for Water Purification Applications Sukhman Kaur Gill, Gursharan Singh, Madhu Khatri * University Institute of Engineering and

More information

Synthesis of nano-sized anatase TiO 2 with reactive {001} facets using lamellar protonated titanate as precursor

Synthesis of nano-sized anatase TiO 2 with reactive {001} facets using lamellar protonated titanate as precursor Supporting Information Synthesis of nano-sized anatase TiO 2 with reactive {001} facets using lamellar protonated titanate as precursor Liuan Gu, Jingyu Wang *, Hao Cheng, Yunchen Du and Xijiang Han* Department

More information

RESULTS AND DISCUSSION Characterization of pure CaO and Zr-TiO 2 /CaO nanocomposite

RESULTS AND DISCUSSION Characterization of pure CaO and Zr-TiO 2 /CaO nanocomposite RESULTS AND DISCUSSION 4.1. Characterization of pure CaO and Zr-TiO 2 /CaO nanocomposite 4.1.1. Scanning electron microscopy analysis (SEM) SEM images of prepared CaO are shown in Fig. 4.1 (a and b). CaO

More information

O-Allylation of phenols with allylic acetates in aqueous medium using a magnetically separable catalytic system

O-Allylation of phenols with allylic acetates in aqueous medium using a magnetically separable catalytic system Supporting information for -Allylation of phenols with allylic acetates in aqueous medium using a magnetically separable catalytic system Amit Saha, John Leazer* and Rajender S. Varma* Sustainable Technology

More information

Supplementary Information for. Silver Nanoparticles Embedded Anti-microbial Paints Based on Vegetable Oil

Supplementary Information for. Silver Nanoparticles Embedded Anti-microbial Paints Based on Vegetable Oil Supplementary Information for Silver Nanoparticles Embedded Anti-microbial Paints Based on Vegetable Oil Ashavani Kumar #, Praveen Kumar Vemula #, Pulickel M. Ajayan, George John * Department of Chemistry,

More information

Multifunctional polyphosphazene-coated multi-walled carbon. nanotubes for the synergistic treatment of redox-responsive

Multifunctional polyphosphazene-coated multi-walled carbon. nanotubes for the synergistic treatment of redox-responsive Electronic Supplementary Material (ESI) for Polymer Chemistry. This journal is The Royal Society of Chemistry 2017 Supporting information for Multifunctional polyphosphazene-coated multi-walled carbon

More information

Supporting Information:

Supporting Information: Supporting Information: Columnar Self-assembly of Cu 2 S Hexagonal Nanoplates Induced by Tin (IV)-X Complex Inorganic Surface Ligand Xiaomin Li, Huaibin Shen, Jinzhong Niu, Sen Li, Yongguang Zhang, Hongzhe

More information

A project report on SYNTHESIS AND CHARACTERISATION OF COPPER NANOPARTICLE-GRAPHENE COMPOSITE. Submitted by Arun Kumar Yelshetty Roll no 410 CY 5066

A project report on SYNTHESIS AND CHARACTERISATION OF COPPER NANOPARTICLE-GRAPHENE COMPOSITE. Submitted by Arun Kumar Yelshetty Roll no 410 CY 5066 A project report on SYNTHESIS AND CHARACTERISATION OF COPPER NANOPARTICLE-GRAPHENE COMPOSITE Submitted by Arun Kumar Yelshetty Roll no 410 CY 5066 Under the guidance of Prof. (Ms). Sasmita Mohapatra Department

More information

Supplementary Information. ZIF-8 Immobilized Ni(0) Nanoparticles: Highly Effective Catalysts for Hydrogen Generation from Hydrolysis of Ammonia Borane

Supplementary Information. ZIF-8 Immobilized Ni(0) Nanoparticles: Highly Effective Catalysts for Hydrogen Generation from Hydrolysis of Ammonia Borane Supplementary Information ZIF-8 Immobilized Ni() Nanoparticles: Highly Effective Catalysts for Hydrogen Generation from Hydrolysis of Ammonia Borane Pei-Zhou Li, a,b Kengo Aranishi, a and Qiang Xu* a,b

More information

Trapping Lithium into Hollow Silica Microspheres. with a Carbon Nanotube Core for Dendrite-Free

Trapping Lithium into Hollow Silica Microspheres. with a Carbon Nanotube Core for Dendrite-Free Supporting Information Trapping Lithium into Hollow Silica Microspheres with a Carbon Nanotube Core for Dendrite-Free Lithium Metal Anodes Tong-Tong Zuo,, Ya-Xia Yin,, Shu-Hua Wang, Peng-Fei Wang,, Xinan

More information

Sacrifical Template-Free Strategy

Sacrifical Template-Free Strategy Supporting Information Core/Shell to Yolk/Shell Nanostructures by a Novel Sacrifical Template-Free Strategy Jie Han, Rong Chen and Rong Guo* School of Chemistry and Chemical Engineering, Yangzhou University,

More information

enzymatic cascade system

enzymatic cascade system Electronic Supplementary Information Fe 3 O 4 -Au@mesoporous SiO 2 microsphere: an ideal artificial enzymatic cascade system Xiaolong He, a,c Longfei Tan, a Dong Chen,* b Xiaoli Wu, a,c Xiangling Ren,

More information

Facile synthesis of yolk-shell structured Si-C nanocomposites as anode for lithium-ion battery 1. Experimental 1.1 Chemicals

Facile synthesis of yolk-shell structured Si-C nanocomposites as anode for lithium-ion battery 1. Experimental 1.1 Chemicals Electronic Supplementary Material (ESI) for ChemComm. This journal is The Royal Society of Chemistry 2014 Facile synthesis of yolk-shell structured Si-C nanocomposites as anode for lithium-ion battery

More information

Electronic Supplementary Information

Electronic Supplementary Information Electronic Supplementary Information Polymer-coated spherical mesoporous silica for ph-controlled delivery of insulin Sae Rom Choi a,, Dong-jin Jang b,, Sanghyun Kim a, Sunhyung An c, Jinwoo Lee c, Euichaul

More information

Biogenic Synthesis of Silver Nanoparticles from Medicinal Plant and its Antimicrobial Activity

Biogenic Synthesis of Silver Nanoparticles from Medicinal Plant and its Antimicrobial Activity International Journal of ChemTech Research CODEN (USA): IJCRGG, ISSN: 0974-4290, ISSN(Online):2455-9555 Vol.10 No.5, pp 748-753, 2017 Biogenic Synthesis of Silver Nanoparticles from Medicinal Plant and

More information

Supporting Information. CdS/mesoporous ZnS core/shell particles for efficient and stable photocatalytic hydrogen evolution under visible light

Supporting Information. CdS/mesoporous ZnS core/shell particles for efficient and stable photocatalytic hydrogen evolution under visible light Electronic Supplementary Material (ESI) for Energy & Environmental Science. This journal is The Royal Society of Chemistry 2014 Supporting Information CdS/mesoporous ZnS core/shell particles for efficient

More information

Electronic supplementary information

Electronic supplementary information Electronic Supplementary Material (ESI) for ChemComm. This journal is The Royal Society of Chemistry 2018 Electronic supplementary information Heterogeneous nucleation and growth of highly crystalline

More information

Research Article Synthesis and Characterization of Magnetic Nanosized Fe 3 O 4 /MnO 2 Composite Particles

Research Article Synthesis and Characterization of Magnetic Nanosized Fe 3 O 4 /MnO 2 Composite Particles Nanomaterials Volume 29, rticle ID 34217, 5 pages doi:1.1155/29/34217 Research rticle Synthesis and Characterization of Magnetic Nanosized /MnO 2 Composite Particles Zhang Shu and Shulin Wang Department

More information

Electronic supplementary information. A longwave optical ph sensor based on red upconversion

Electronic supplementary information. A longwave optical ph sensor based on red upconversion Electronic Supplementary Material (ESI) for RSC Advances. This journal is The Royal Society of Chemistry 2014 Electronic supplementary information A longwave optical ph sensor based on red upconversion

More information

Electronic Supplementary Information. Facile Synthesis of Germanium-Graphene Nanocomposites. and Their Application as Anode Material for Lithium Ion

Electronic Supplementary Information. Facile Synthesis of Germanium-Graphene Nanocomposites. and Their Application as Anode Material for Lithium Ion Supplementary Material (ESI) for CrystEngCommunity This journal is (c) The Royal Society of Chemistry 2011 Electronic Supplementary Information Facile Synthesis of Germanium-Graphene Nanocomposites and

More information

DRUG DELIVERY SYSTEM FOR ARTEMISININ

DRUG DELIVERY SYSTEM FOR ARTEMISININ DRUG DELIVERY SYSTEM FOR ARTEMISININ Timothy Dexter T. Tan, Anne Marianne Allison S. Tan, Drexel H. Camacho Chemistry Department, De La Salle University, 2401 Taft Avenue, Manila Abstract: Metal-organic

More information

Electronic Supplementary Information (ESI)

Electronic Supplementary Information (ESI) Electronic Supplementary Information (ESI) A thin-layered chromatography plate prepared from naphthalimide-based receptor immobilized SiO 2 nanoparticles as a portable chemosensor and adsorbent for Pb

More information

Electronic Supplementary Information

Electronic Supplementary Information Electronic Supplementary Information Selective Diels-Alder cycloaddition on semiconducting single-walled carbon nanotubes for potential separation application Jiao-Tong Sun, Lu-Yang Zhao, Chun-Yan Hong,

More information

Supporting Information

Supporting Information Supporting Information Polyoxometalate-based crystalline tubular microreactor: redox-active inorganic-organic hybrid materials producing gold nanoparticles and catalytic properties Dong-Ying Du, Jun-Sheng

More information

Supplementary Material (ESI) for CrystEngComm. An ideal metal-organic rhombic dodecahedron for highly efficient

Supplementary Material (ESI) for CrystEngComm. An ideal metal-organic rhombic dodecahedron for highly efficient Supplementary Material (ESI) for CrystEngComm An ideal metal-organic rhombic dodecahedron for highly efficient adsorption of dyes in an aqueous solution Yuan-Chun He, Jin Yang,* Wei-Qiu Kan, and Jian-Fang

More information

Controlled self-assembly of graphene oxide on a remote aluminum foil

Controlled self-assembly of graphene oxide on a remote aluminum foil Supplementary Information Controlled self-assembly of graphene oxide on a remote aluminum foil Kai Feng, Yewen Cao and Peiyi Wu* State key Laboratory of Molecular Engineering of Polymers, Department of

More information

Supporting Information:

Supporting Information: Supporting Information: In Situ Synthesis of Magnetically Recyclable Graphene Supported Pd@Co Core-Shell Nanoparticles as Efficient Catalysts for Hydrolytic Dehydrogenation of Ammonia Borane Jun Wang,

More information

Efficient Co-Fe layered double hydroxide photocatalysts for water oxidation under visible light

Efficient Co-Fe layered double hydroxide photocatalysts for water oxidation under visible light Supplementary Information Efficient Co-Fe layered double hydroxide photocatalysts for water oxidation under visible light Sang Jun Kim, a Yeob Lee, a Dong Ki Lee, a Jung Woo Lee a and Jeung Ku Kang* a,b

More information

Supporting Information

Supporting Information Electronic Supplementary Material (ESI) for CrystEngComm. This journal is The Royal Society of Chemistry 2015 A rare case of a dye co-crystal showing better dyeing performance Hui-Fen Qian, Yin-Ge Wang,

More information

A triazine-based covalent organic polymer for efficient CO 2 adsorption

A triazine-based covalent organic polymer for efficient CO 2 adsorption Electronic Supplementary Material (ESI) for Chemical Communications. This journal is The Royal Society of Chemistry 2015 Supporting Information A triazine-based covalent organic polymer for efficient CO

More information

Supporting information

Supporting information Electronic Supplementary Material (ESI) for Journal of Materials Chemistry A. This journal is The Royal Society of Chemistry 2015 Supporting information The Assembly of Vanadium (IV)-Substituted Keggin-type

More information

Synthesis of Colloidal Au-Cu 2 S Heterodimers via Chemically Triggered Phase Segregation of AuCu Nanoparticles

Synthesis of Colloidal Au-Cu 2 S Heterodimers via Chemically Triggered Phase Segregation of AuCu Nanoparticles SUPPORTING INFORMATION Synthesis of Colloidal Au-Cu 2 S Heterodimers via Chemically Triggered Phase Segregation of AuCu Nanoparticles Nathan E. Motl, James F. Bondi, and Raymond E. Schaak* Department of

More information

MORPHOLOGY STUDIES ON SILVER NANOPARTICLES SYNTHESIZED BY GREEN METHOD USING TRIDAX PROCUMBENS AND OCIMUM TENUIFLORUM LEAF EXTRACTS

MORPHOLOGY STUDIES ON SILVER NANOPARTICLES SYNTHESIZED BY GREEN METHOD USING TRIDAX PROCUMBENS AND OCIMUM TENUIFLORUM LEAF EXTRACTS MORPHOLOGY STUDIES ON SILVER NANOPARTICLES SYNTHESIZED BY GREEN METHOD USING TRIDAX PROCUMBENS AND OCIMUM TENUIFLORUM LEAF EXTRACTS M. Sundarrajan*, A.Jeelani, S.Janarthanan Department of Physics, Sri

More information

ANTIMICROBIAL TESTING. E-Coli K-12 - E-Coli 0157:H7. Salmonella Enterica Servoar Typhimurium LT2 Enterococcus Faecalis

ANTIMICROBIAL TESTING. E-Coli K-12 - E-Coli 0157:H7. Salmonella Enterica Servoar Typhimurium LT2 Enterococcus Faecalis ANTIMICROBIAL TESTING E-Coli K-12 - E-Coli 0157:H7 Salmonella Enterica Servoar Typhimurium LT2 Enterococcus Faecalis Staphylococcus Aureus (Staph Infection MRSA) Streptococcus Pyrogenes Anti Bacteria effect

More information

Magnetic halloysite: an envirmental nanocatalyst for the synthesis of. benzoimidazole

Magnetic halloysite: an envirmental nanocatalyst for the synthesis of. benzoimidazole doi:10.3390/ecsoc-21-04726 Magnetic halloysite: an envirmental nanocatalyst for the synthesis of benzoimidazole Ali Maleki*, Zoleikha Hajizadeh Catalysts and Organic Synthesis Research Laboratory, Department

More information

Supporting Information. Graphene Oxide-Palladium Modified Ag-AgBr: A Novel Visible-Light- Responsive Photocatalyst for the Suzuki Coupling Reaction**

Supporting Information. Graphene Oxide-Palladium Modified Ag-AgBr: A Novel Visible-Light- Responsive Photocatalyst for the Suzuki Coupling Reaction** Electronic Supplementary Material (ESI) for RSC Advances. This journal is The Royal Society of Chemistry 2014 Supporting Information Graphene Oxide-Palladium Modified Ag-AgBr: A Novel Visible-Light- Responsive

More information

Electronic Supplemental Information (ESI) In situ synthesis of Ag/amino acid biopolymer hydrogels as moldable. wound dressing

Electronic Supplemental Information (ESI) In situ synthesis of Ag/amino acid biopolymer hydrogels as moldable. wound dressing Electronic Supplementary Material (ESI) for Chemical Communications. This journal is The Royal Society of Chemistry 2015 Electronic Supplemental Information (ESI) In situ synthesis of Ag/amino acid biopolymer

More information

Supporting Informations for. 1,8-Naphthyridine-based molecular clips for off-on fluorescence sensing

Supporting Informations for. 1,8-Naphthyridine-based molecular clips for off-on fluorescence sensing Electronic Supplementary Material (ESI) for RSC Advances. This journal is The Royal Society of Chemistry 2015 Supporting Informations for 1,8-aphthyridine-based molecular clips for off-on fluorescence

More information

Controlling Interfacial Contact and Exposed Facets for. Enhancing Photocatalysis via 2D-2D Heterostructure

Controlling Interfacial Contact and Exposed Facets for. Enhancing Photocatalysis via 2D-2D Heterostructure Electronic Supplementary Material (ESI) for Chemical Communications. This journal is The Royal Society of Chemistry 2015 Electronic Supplementary Information Controlling Interfacial Contact and Exposed

More information

High-Purity Separation of Gold Nanoparticle Dimers and Trimers

High-Purity Separation of Gold Nanoparticle Dimers and Trimers -Supporting Information- High-Purity Separation of Gold Nanoparticle Dimers and Trimers Gang Chen, Yong Wang, Li Huey Tan, Miaoxin Yang, Lee Siew Tan, Yuan Chen and Hongyu Chen* Division of Chemistry and

More information

Electronic Supplementary Information. Facile synthesis of polypyrrole coated copper nanowire: new concept to engineered core-shell structures

Electronic Supplementary Information. Facile synthesis of polypyrrole coated copper nanowire: new concept to engineered core-shell structures Electronic Supplementary Information Facile synthesis of polypyrrole coated copper nanowire: new concept to engineered core-shell structures Yang Liu, a Zhen Liu, a Ning Lu, b Elisabeth Preiss, a Selcuk

More information

Table S1. Supporting data summary for reviewers

Table S1. Supporting data summary for reviewers Electronic Supplementary Material (ESI) for Journal of Materials Chemistry B. This journal is The Royal Society of Chemistry 2015 Table S1. Supporting data summary for reviewers LDH (XRD, FTIR, SEM/TEM,

More information

Synthesis of Silver-Treated Bentonite: Evaluation of its Antibacterial Properties

Synthesis of Silver-Treated Bentonite: Evaluation of its Antibacterial Properties Synthesis of Silver-Treated Bentonite: Evaluation of its Antibacterial Properties Jeane A. do Rosário, Gabriel B. G. de Moura, Marivone Gusatti, Humberto G. Riella LABMAC, Chemical Engineering Department,

More information

Selective total encapsulation of the sulfate anion by neutral nano-jars

Selective total encapsulation of the sulfate anion by neutral nano-jars Supporting Information for Selective total encapsulation of the sulfate anion by neutral nano-jars Isurika R. Fernando, Stuart A. Surmann, Alexander A. Urech, Alexander M. Poulsen and Gellert Mezei* Department

More information

often display a deep green color due to where the SPR occurs (i.e., the wavelength of light that interacts with this specific morphology).

often display a deep green color due to where the SPR occurs (i.e., the wavelength of light that interacts with this specific morphology). Synthesis-Dependent Catalytic Properties of Gold Nanoparticles Nanoscience is the study of materials that have dimensions, intuitively, on the nanoscale, typically between 1 100 nm. This field has received

More information

Layered Double Hydroxide Nanoplatelets with Excellent Tribological Properties under High Contact Pressure as Water-based Lubricant Additives

Layered Double Hydroxide Nanoplatelets with Excellent Tribological Properties under High Contact Pressure as Water-based Lubricant Additives Supplementary Information Layered Double Hydroxide Nanoplatelets with Excellent Tribological Properties under High Contact Pressure as Water-based Lubricant Additives Hongdong Wang, Yuhong Liu, Zhe Chen,

More information

Synthesis And Biological Evaluation Of 1-(4-P-Toluidino)-6- (Diphenylamino)-1,3,5-Triazine 2-yl- 3-Methyl -2,6- Diphenyl Piperidine-4-One.

Synthesis And Biological Evaluation Of 1-(4-P-Toluidino)-6- (Diphenylamino)-1,3,5-Triazine 2-yl- 3-Methyl -2,6- Diphenyl Piperidine-4-One. International Journal of ChemTech Research CDE( USA): IJCRGG ISS : 0974-4290 Vol.5, o.4, pp 2051-2056, April-June 2013 Synthesis And Biological Evaluation f 1-(4-P-Toluidino)-6- (Diphenylamino)-1,3,5-Triazine

More information

Supporting Information for. Selectivity and Activity in Catalytic Methanol Oxidation in the Gas Phase

Supporting Information for. Selectivity and Activity in Catalytic Methanol Oxidation in the Gas Phase 1 / 5 Supporting Information for The Influence of Size-Induced Oxidation State of Platinum Nanoparticles on Selectivity and Activity in Catalytic Methanol Oxidation in the Gas Phase Hailiang Wang, Yihai

More information

Probing the Kinetics of Ligand Exchange on Colloidal Gold. Nanoparticles by Surface-Enhanced Raman Scattering

Probing the Kinetics of Ligand Exchange on Colloidal Gold. Nanoparticles by Surface-Enhanced Raman Scattering -Supporting Information- Probing the Kinetics of Ligand Exchange on Colloidal Gold Nanoparticles by Surface-Enhanced Raman Scattering Yuhua Feng, Shuangxi Xing, Jun Xu, Hong Wang, Jun Wei Lim, and Hongyu

More information

Supporting Information s for

Supporting Information s for Supporting Information s for # Self-assembling of DNA-templated Au Nanoparticles into Nanowires and their enhanced SERS and Catalytic Applications Subrata Kundu* and M. Jayachandran Electrochemical Materials

More information

Supporting Information for:

Supporting Information for: Electronic Supplementary Material (ESI) for Chemical Science. This journal is The Royal Society of Chemistry 2017 Supporting Information for: Hydroxyl-Triggered Fluorescence for Location of Inorganic Materials

More information

Supplementary Information for

Supplementary Information for Supplementary Information for Facile transformation of low cost thiourea into nitrogen-rich graphitic carbon nitride nanocatalyst with high visible light photocatalytic performance Fan Dong *a, Yanjuan

More information

Dr Mingzhong Li School of Pharmacy, De Montfort University

Dr Mingzhong Li School of Pharmacy, De Montfort University Dr Mingzhong Li School of Pharmacy, De Montfort University Introduction Toxicity Lack of efficacy Poor biopharmaceutical properties APIs Dosage forms Routes of administration Less than 1% of APIs into

More information

ELECTRONIC SUPPLEMENTARY INFORMATION (ESI) variable light emission created via direct ultrasonic exfoliation of

ELECTRONIC SUPPLEMENTARY INFORMATION (ESI) variable light emission created via direct ultrasonic exfoliation of Electronic Supplementary Material (ESI) for RSC Advances. This journal is The Royal Society of Chemistry 2015 ELECTRONIC SUPPLEMENTARY INFORMATION (ESI) High quantum-yield luminescent MoS 2 quantum dots

More information

International Journal of ChemTech Research CODEN (USA): IJCRGG ISSN: Vol.7, No.6, pp ,

International Journal of ChemTech Research CODEN (USA): IJCRGG ISSN: Vol.7, No.6, pp , International Journal of ChemTech Research CODEN (USA): IJCRGG ISSN: 0974-4290 Vol.7, No.6, pp 2620-2624, 2014-2015 Structural, Optical and Morphological Properties of Silver Nanoparticles using Green

More information

Supporting Information

Supporting Information Supporting Information A Generic Method for Rational Scalable Synthesis of Monodisperse Metal Sulfide Nanocrystals Haitao Zhang, Byung-Ryool Hyun, Frank W. Wise, Richard D. Robinson * Department of Materials

More information

Electronic Supplementary Information (ESI) Tunable Phase and Visible-Light Photocatalytic Activity

Electronic Supplementary Information (ESI) Tunable Phase and Visible-Light Photocatalytic Activity Electronic Supplementary Information (ESI) Metallic-Zinc Assistant Synthesis of Ti 3+ Self-Doped TiO 2 with Tunable Phase and Visible-Light Photocatalytic Activity Zhaoke Zheng, a Baibiao Huang,* a Xiaodong

More information

Carbon Quantum Dots/NiFe Layered Double Hydroxide. Composite as High Efficient Electrocatalyst for Water

Carbon Quantum Dots/NiFe Layered Double Hydroxide. Composite as High Efficient Electrocatalyst for Water Supplementary Information Carbon Quantum Dots/NiFe Layered Double Hydroxide Composite as High Efficient Electrocatalyst for Water Oxidation Di Tang, Juan Liu, Xuanyu Wu, Ruihua Liu, Xiao Han, Yuzhi Han,

More information

Supporting Information

Supporting Information Supporting Information Dynamic Interaction between Methylammonium Lead Iodide and TiO 2 Nanocrystals Leads to Enhanced Photocatalytic H 2 Evolution from HI Splitting Xiaomei Wang,, Hong Wang,, Hefeng Zhang,,

More information

Compounds Synthesis and Bilogical Analysis

Compounds Synthesis and Bilogical Analysis Research Journal of Chemical Sciences E-ISSN 2231-606X Amino Phenolic AZO Compounds Synthesis and Bilogical Analysis Abstract Namrata S. Shelke * and N.S. Thakare Department of Chemistry, M. S. P. College,

More information

Adsorption of Cd(II) ions by synthesize chitosan from fish shells

Adsorption of Cd(II) ions by synthesize chitosan from fish shells British Journal of Science 33 Adsorption of Cd(II) ions by synthesize chitosan from fish shells Angham G. Hadi Babylon University, College of Science, Chemistry Department. Abstract One of the major applications

More information

Electronic supplementary information (ESI)

Electronic supplementary information (ESI) Electronic Supplementary Material (ESI) for Dalton Transactions. This journal is The Royal Society of Chemistry 2018 Electronic supplementary information (ESI) Two novel organic phosphorous-based MOFs:

More information

Aminopropyltrimethoxysilane-Functionalized Boron Nitride. Nanotube Based Epoxy Nanocomposites with Simultaneous High

Aminopropyltrimethoxysilane-Functionalized Boron Nitride. Nanotube Based Epoxy Nanocomposites with Simultaneous High Electronic Supplementary Material (ESI) for Journal of Materials Chemistry A. This journal is The Royal Society of Chemistry 2018 Electronic Supplementary Information (ESI) Aminopropyltrimethoxysilane-Functionalized

More information

A novel one-step synthesis of PEG passivated multicolour fluorescent carbon dots for potential biolabeling application

A novel one-step synthesis of PEG passivated multicolour fluorescent carbon dots for potential biolabeling application Supporting Information A novel one-step synthesis of PEG passivated multicolour fluorescent carbon dots for potential biolabeling application Abhay Sachdev, Ishita Matai, S. Uday Kumar, Bharat Bhushan,

More information

Electronic Supplementary Information (ESI) Green synthesis of shape-defined anatase TiO 2 nanocrystals wholly exposed with {001} and {100} facets

Electronic Supplementary Information (ESI) Green synthesis of shape-defined anatase TiO 2 nanocrystals wholly exposed with {001} and {100} facets Electronic Supplementary Information (ESI) Green synthesis of shape-defined anatase TiO 2 nanocrystals wholly exposed with {001} and {100} facets Lan Wang, a Ling Zang, b Jincai Zhao c and Chuanyi Wang*

More information