POGIL 5 KEY Periodic Table Trends (Part 1)

Size: px
Start display at page:

Download "POGIL 5 KEY Periodic Table Trends (Part 1)"

Transcription

1 Honors Chem Block Name POGIL 5 KEY Periodic Table Trends (Part 1) The periodic table is often considered to be the best friend of chemists and chemistry students alike. It includes information about atomic masses and element symbols, but it can also be used to make predictions about atomic size, electronegativity, ionization energies, bonding, solubility, and reactivity. In this activity you will look at a few periodic trends that can help you make those predictions. Like most trends, they are not perfect, but useful just the same. 1. Let us learn about the first trend on the periodic table Atomic Radius Trend. Try answering the following questions (your instructor will help you): a. How would you define the atomic radius? Atomic radius is the distance between the nucleus and the place of highest probability of the furthest electron location b. What are the units for the atomic radius? The units are Angstroms (A o ) 1nm=10A o 1m=10 10 A o c. What is the group trend for atomic radius? Use the Atomic Radius graph on the back of this page to answer this question. (It is easier to see elements that belong to the same group by looking at the highest points on the graph or the lowest points on the graph). The group trend for atomic radius goes down the group. d. Using your knowledge of Coulombic attraction and the structure of the atom, explain the trend in atomic radius that you identified in Question c. Hint: You should discuss either a change in distance between the nucleus and outer shell of electrons or a change in the number of protons in the nucleus. As you go down the group the number of levels increases, so the distance between the nucleus and valence electrons becomes bigger, so does the atomic radius e. What is the trend in atomic radius as you go across a period? Use the graph to answer this question. As you go from right to left in a period, the atomic radius becomes bigger. f. Using your knowledge of Coulombic attraction and the structure of the atom, explain the trend in atomic radius that you identified in Question e. As you go from right to left in a period, the number of protons decreases, the force of attraction of the valence electrons becomes weaker, so the radius increases g. Which one influences the force of attraction more, the number of protons in the nucleus or the distance between the nucleus and the valence electrons that make the atomic radius smaller or bigger? It looks like the distance between a nucleus and valence electrons influences the force of attraction more. In a group as you go down, the nucleus becomes much more powerful, but still the force becomes weaker with the increase of # of levels. 1

2 Atomic Radius Trend K Atomic radius (pm) Li Na 50 H Ar Kr 0 He Ne Atomic number 2

3 2. Rank the following atoms in order from smaller to larger: Ge, Sr, S, Si, Rb, F, Ca, P, Ga F<S<P<Si<Ge<Ga<Ca<Sr<Rb 3. If we analyze atomic radius group trend further, there is a question we still need to answer. Why does an addition of one energy level or shell makes the atomic radius increase so much. Even if the force of attraction is decreased by the square of the distance, would it be at least partially compensated by the attraction coming from a much more positive nucleus? This phenomenon can be explained if we take the shielding of the valence electrons into account. Once a level of electrons appears between the valence shell and the nucleus, the nuclear attraction gets weakened. The electrons of the shell in the middle would shield the valence electrons from the nucleus. So, no matter how big the nuclear charge is (number of protons in the nucleus), the valence electrons cannot experience that attraction fully. In reality it is not the nucleus that attracts the valence electrons, it is the core of the atom or effective nuclear charge. The examples below show the core of the atom that is positively charged, the valence electrons and the calculation of the core charge or the effective nuclear charge Z eff 3

4 4. What is another way of figuring out the effective nuclear charge? (Hint: valence electrons). Effective nuclear charge (Z eff ) = number of valence electrons 5. What is the trend for Z eff on the periodic table? In a period (from left to right) Z eff goes up In a group Z eff stays the same 6. What is Z eff in: K atom +1 ; C atom _+4 ; As atom +5 Br atom _+7 7. Now we can answer the question why the increase of number of protons down the group cannot compete with the increase of the distance between the nucleus and the valence electrons. Protons cannot attract valence electrons because of shielding by inner shells. Since Zeff is not changing down the group, the distance is the only one that affects the force From now on, when describing any trend in a period, you will use Z eff only as an explanation and, when describing any trend in a group, you will use the number of energy levels only as an explanation of the trend. Ionic Radius Try to do this on your own: 8. What do the following atoms/ions have in common: Ne, F -, O 2-, Mg 2+, Na + These species are isoelectronic. 9. Arrange the above atoms/ions in order from smallest to largest. (Hint: consider the nucleus) Mg 2+, Na +, Ne, F, O In the above example, the number of electrons for each atom was the same. Let s consider examples where the numbers of electrons are different: Which is bigger: F or F -? Why? F >F. They have the same nuclear power. F has one extra electron, which brings more repulsion, and atoms become bigger. Which is bigger: Na or Na +? Why? Na>Na +. When an atom becomes a positive ion, it loses the entire valence shell. Na has 3 shells, Na + has 2 shells. 4

5 11. Atom/Ion Size Sample Problems Arrange each of the following sets of atoms/ions in order from smallest to largest radius: 1) Rn, Ra 2+, At -, Fr + They are isoelectronic to Rn. The nuclear charge decides the size. Ra 2+ <Fr + <Rn<At 2) Cl, Ar, Li +, Se, S, Se 2-, He Li +, He, Ar, Cl, S, Se, Se 2 3) Fe, Fe 2+, Fe 3+ Fe 3+, Fe 2+, Fe Ionization Energy The ionization energy is the amount of energy needed to remove an electron from an atom. 12. Which takes more energy, removing an electron from an atom where the nucleus has a tight hold on its electrons, or a weak hold on its electrons? Explain. It takes more energy to remove an electrons that is tightly held by the nucleus 13. Using your knowledge about the Z eff and the number of energy levels predict the group trend for ionization energy and explain your thinking. The group trend for IE goes up the group. Elements in the same group have the same Z eff. As you go up the group, the # of shells decreases, the force of attraction increases, harder to remove an electron, more energy needed. 14. Predict the period trend for the ionization energy and explain your thinking. The period trend will go right. As you go right in a period, Z eff increases, force of attraction increases, holding electrons tighter, it is harder to remove them, so more energy is needed. 15. What does 1 st Ionization Energy refer to as opposed to 2 nd Ionization Energy? First IE is needed to remove the first electron. Second IE is spent to remove the second electron. 5

6 16. Examine the following ionization energies. Explain the break in the sequence. Si kj/mol S has an IE drop compared to P. P S 1012 kj/mol kj/mol P: S: Cl 1255 kj/mol It is easier to remove an electron from sulfur than from phosphorus. The phosphorus configuration is more stable Ar 1520 kj/mol (p-sublevel is half filled). 17. Follow the instruction, given to you by your teacher to build the graph for ionization energy vs. atomic number, and check your predictions (this time you need to use the first and the third column from the data). 18. Look at your graph. What is happening to ionization energy as the atomic number increases? As atomic number increases, the IE goes up and down periodically in the same intervals. 19. How can you explain the interruptions in the graph? The interruptions are the IE drops. They are in groups 3A and 6A. In 6A, for the same reason as sulfur. In 3A the elements have only one electron in the p-subshell. It is easier to remove it than removing an electron from completely filled s-subshell. 20. Sample Problems 1. The ionization energies of all noble gases are extremely high. Explain. Noble gases have the most stable electron configuration 8 valence electrons (complete valence shell). They also have the highest Z eff, so it is very hard to remove electrons. 2. Arrange the following atoms in order of increasing ionization energy: In, Ar, Rb, Ga, Kr, Cs Cs<Rb<In<Ga<Kr<Ar 6

POGIL 6 Key Periodic Table Trends (Part 2)

POGIL 6 Key Periodic Table Trends (Part 2) Honors Chem Block Name POGIL 6 Key Periodic Table Trends (Part 2) is a measure of the ability of an atom s nucleus to attract electrons from a different atom within a covalent bond. A higher electronegativity

More information

Periodic Trends. Can the properties of an element be predicted using a periodic table?

Periodic Trends. Can the properties of an element be predicted using a periodic table? Why? Periodic Trends Can the properties of an element be predicted using a periodic table? The periodic table is often considered to be the best friend of chemists and chemistry students alike. It includes

More information

Name Date Period. Can the properties of an element be predicted using a periodic table?

Name Date Period. Can the properties of an element be predicted using a periodic table? Name Date Period Periodic Trends Can the properties of an element be predicted using a periodic table? Why? Coleman; Chemistry The periodic table is often considered to be the best friend of chemists and

More information

Periodic Relationships

Periodic Relationships Periodic Relationships 1 Tabulation of Elements Mendeleev (1869) Arranged by mass Tabulation by chem.& physical properties Predicted missing elements and properties 2 Modern Periodic Table Argon vs. potassium

More information

SAMPLE PROBLEMS! 1. From which of the following is it easiest to remove an electron? a. Mg b. Na c. K d. Ca

SAMPLE PROBLEMS! 1. From which of the following is it easiest to remove an electron? a. Mg b. Na c. K d. Ca SAMPLE PROBLEMS! 1. From which of the following is it easiest to remove an electron? a. Mg b. Na c. K d. Ca 2. Which of the following influenced your answer to number one the most? a. effective nuclear

More information

Periodic Relationships

Periodic Relationships Periodic Relationships 1 Tabulation of Elements Mendeleev (1869) Arranged by mass Tabulation by chem.& physical properties Predicted missing elements and properties 2 Modern Periodic Table Argon vs. potassium

More information

No Brain Too Small CHEMISTRY AS91390 Demonstrate understanding of thermochemical principles and the properties of particles and substances

No Brain Too Small CHEMISTRY AS91390 Demonstrate understanding of thermochemical principles and the properties of particles and substances COLLATED QUESTIONS Electron configuration of atoms and ions of the first 36 elements (using s,p,d notation), periodic trends in atomic radius, ionisation energy, and electronegativity, and comparison of

More information

Periodic Table Trends. Atomic Radius Ionic Radius Ionization Energy Electronegativity

Periodic Table Trends. Atomic Radius Ionic Radius Ionization Energy Electronegativity Periodic Table Trends Atomic Radius Ionic Radius Ionization Energy Electronegativity 1. Atomic Radius Atomic Radius - distance from nucleus to outermost atom Measured by dividing the distance between 2

More information

Periodic Trends. 1. Why is it difficult to measure the size of an atom? 2. What does the term atomic radius mean? 3. What is ionization energy?

Periodic Trends. 1. Why is it difficult to measure the size of an atom? 2. What does the term atomic radius mean? 3. What is ionization energy? Periodic Trends 1. Why is it difficult to measure the size of an atom? 2. What does the term atomic radius mean? 3. What is ionization energy? 4. What periodic trends exist for ionization energy? 5. What

More information

Periodic Trends. 1. (#2 3a) I can determine how gaining or losing electrons affects the atomic

Periodic Trends. 1. (#2 3a) I can determine how gaining or losing electrons affects the atomic Periodic Trends objectives: (#2 3) How do the properties of electrons and the electron shells contribute to the periodic trends? 1. (#2 3a) I can determine how gaining or losing electrons affects the atomic

More information

Periodic Trends. 1. (#2 3a) I can determine how gaining or losing electrons affects the atomic

Periodic Trends. 1. (#2 3a) I can determine how gaining or losing electrons affects the atomic Periodic Trends objectives: (#2 3) How do the properties of electrons and the electron shells contribute to the periodic trends? 1. (#2 3a) I can determine how gaining or losing electrons affects the atomic

More information

Electron Configurations and the Periodic Table

Electron Configurations and the Periodic Table Electron Configurations and the Periodic Table The periodic table can be used as a guide for electron configurations. The period number is the value of n. Groups 1A and 2A have the s-orbital filled. Groups

More information

Notes: Unit 6 Electron Configuration and the Periodic Table

Notes: Unit 6 Electron Configuration and the Periodic Table Name KEY Block Notes: Unit 6 Electron Configuration and the Periodic Table In the 1790's Antoine Lavoisier compiled a list of the known elements at that time. There were only 23 elements. By the 1870's

More information

Name: Block: Date: Atomic Radius: the distance from the center of the nucleus to the outer most electrons in an atom.

Name: Block: Date: Atomic Radius: the distance from the center of the nucleus to the outer most electrons in an atom. Name: Block: Date: Chemistry 11 Trends Activity Assignment Atomic Radius: the distance from the center of the nucleus to the outer most electrons in an atom. Ionic Radius: the distance from the center

More information

Periodic Trends. Atomic Radius: The distance from the center of the nucleus to the outer most electrons in an atom.

Periodic Trends. Atomic Radius: The distance from the center of the nucleus to the outer most electrons in an atom. Periodic Trends Study and learn the definitions listed below. Then use the definitions and the periodic table provided to help you answer the questions in the activity. By the end of the activity you should

More information

Electron Configuration and Periodic Trends - Chapter 5 section 3 Guided Notes

Electron Configuration and Periodic Trends - Chapter 5 section 3 Guided Notes Electron Configuration and Periodic Trends - Chapter 5 section 3 Guided Notes There are several important atomic characteristics that show predictable that you should know. Atomic Radius The first and

More information

8.6,8.7 Periodic Properties of the Elements

8.6,8.7 Periodic Properties of the Elements Pre -AP Chemistry 8.6,8.7 Periodic Properties of the Elements READ p. 305 315, 294-296 Practice Problems Pg 315 -Exercise 8.9 Pg 318-321 #36, 55, 64, 66, 67, 69, 72, 80 Periodic Trends are predictable

More information

CHAPTER 6. Chemical Periodicity

CHAPTER 6. Chemical Periodicity CHAPTER 6 Chemical Periodicity 1 Chapter Goals 1. More About the Periodic Table Periodic Properties of the Elements 2. Atomic Radii 3. Ionization Energy (IE) 4. Electron Affinity (EA) 5. Ionic Radii 6.

More information

PERIODIC TRENDS AND THE PERIODIC TABLE

PERIODIC TRENDS AND THE PERIODIC TABLE PERIODIC TRENDS AND THE PERIODIC TABLE THE PERIODIC TABLE The row tells us how many energy levels are in that atom The row is also the group The column tells us how many electrons are in the outer energy

More information

CHEM N-3 November 2014

CHEM N-3 November 2014 CHEM1101 2014-N-3 November 2014 Electron affinity is the enthalpy change for the reaction A(g) + e A (g). The graph below shows the trend in electron affinities for a sequence of elements in the third

More information

Periodicity SL (answers) IB CHEMISTRY SL

Periodicity SL (answers) IB CHEMISTRY SL (answers) IB CHEMISTRY SL Syllabus objectives 3.1 Periodic table Understandings: The periodic table is arranged into four blocks associated with the four sublevels s, p, d, and f. The periodic table consists

More information

Chapter 7. Generally, the electronic structure of atoms correlates w. the prop. of the elements

Chapter 7. Generally, the electronic structure of atoms correlates w. the prop. of the elements Chapter 7 Periodic Properties of the Elements I) Development of the P.T. Generally, the electronic structure of atoms correlates w. the prop. of the elements - reflected by the arrangement of the elements

More information

Summation of Periodic Trends

Summation of Periodic Trends Summation of Periodic Trends Factors Affecting Atomic Orbital Energies The Effect of Nuclear Charge (Z effective ) Higher nuclear charge lowers orbital energy (stabilizes the system) by increasing nucleus-electron

More information

Periods: horizontal rows (# 1-7) 2. Periodicity the of the elements in the same group is explained by the arrangement of the around the nucleus.

Periods: horizontal rows (# 1-7) 2. Periodicity the of the elements in the same group is explained by the arrangement of the around the nucleus. The Modern Periodic Table 1. An arrangement of the elements in order of their numbers so that elements with properties fall in the same column (or group). Groups: vertical columns (#1-18) Periods: horizontal

More information

Summation of Periodic Trends Factors Affecting Atomic Orbital Energies

Summation of Periodic Trends Factors Affecting Atomic Orbital Energies Summation of Periodic Trends Factors Affecting Atomic Orbital Energies The Effect of Nuclear Charge (Z effective ) Higher nuclear charge lowers orbital energy (stabilizes the system) by increasing nucleus-electron

More information

2. Why do all elements want to obtain a noble gas electron configuration?

2. Why do all elements want to obtain a noble gas electron configuration? AP Chemistry Ms. Ye Name Date Block Do Now: 1. Complete the table based on the example given Location Element Electron Configuration Metal, Nonmetal or Semi-metal Metalloid)? Group 1, Period 1 Group 11,

More information

Periodic Variations in Element Properties

Periodic Variations in Element Properties OpenStax-CNX module: m51042 1 Periodic Variations in Element Properties OpenStax College This work is produced by OpenStax-CNX and licensed under the Creative Commons Attribution License 4.0 By the end

More information

Chemical symbols. Know names and symbols of elements #1 30, plus. Rb, Cs, Sr, Ba, Ag, Au, Cd, Hg, Pt, Ga, Ge, As, Sn, Pb, Se, Br, I, and U

Chemical symbols. Know names and symbols of elements #1 30, plus. Rb, Cs, Sr, Ba, Ag, Au, Cd, Hg, Pt, Ga, Ge, As, Sn, Pb, Se, Br, I, and U Chemical symbols Know names and symbols of elements #1 30, plus Rb, Cs, Sr, Ba, Ag, Au, Cd, Hg, Pt, Ga, Ge, As, Sn, Pb, Se, Br, I, and U Coulomb s Law F = attractive/repulsive force Q 1, Q 2 = charges

More information

Shielding & Atomic Radius, Ions & Ionic Radius. Chemistry AP

Shielding & Atomic Radius, Ions & Ionic Radius. Chemistry AP Shielding & Atomic Radius, Ions & Ionic Radius Chemistry AP Periodic Table Periodic Table Elements in same column have similar properties Column # (IA-VIIIA) gives # valence electrons All elements in column

More information

Topic 3: Periodicity OBJECTIVES FOR TODAY: Fall in love with the Periodic Table, Interpret trends in atomic radii, ionic radii, ionization energies &

Topic 3: Periodicity OBJECTIVES FOR TODAY: Fall in love with the Periodic Table, Interpret trends in atomic radii, ionic radii, ionization energies & Topic 3: Periodicity OBJECTIVES FOR TODAY: Fall in love with the Periodic Table, Interpret trends in atomic radii, ionic radii, ionization energies & electronegativity The Periodic Table What is the periodic

More information

CHEM 115 Electron Configurations and

CHEM 115 Electron Configurations and CHEM 115 Electron Configurations and Periodic Trends Lecture 20 Prof. Sevian 1 Agenda Electron configurations Ground state vs. excited state Periodic properties Ionization energy Atomic radius Others Interpreting

More information

Periodic Trends. objectives: Atomic Radius Ionization Energy Reactivity

Periodic Trends. objectives: Atomic Radius Ionization Energy Reactivity objectives: Periodic Trends I can determine parts (see vocab list) of the periodic table. (with stepline) I can apply Coulomb's law to attraction of electrons to the nucleus. I can analyze data or use

More information

Chapter 3 Classification of Elements and Periodicity in Properties

Chapter 3 Classification of Elements and Periodicity in Properties Question 3.1: What is the basic theme of organisation in the periodic table? The basic theme of organisation of elements in the periodic table is to classify the elements in periods and groups according

More information

Chemical Bonding. Nuclear Charge. Nuclear Charge. Trends of the Periodic Table. Down the Table (from Top to Bottom):

Chemical Bonding. Nuclear Charge. Nuclear Charge. Trends of the Periodic Table. Down the Table (from Top to Bottom): Trends of the Periodic Table Chemical Bonding TRENDS OF THE PERIODIC TABLE CHEM ISTRY 11 3 factors are usually discussed when explaining trends nuclear charge n value (outer most filled shell) Inter-electron

More information

Topic 3 Periodicity 3.2 Physical Properties. IB Chemistry T03D02

Topic 3 Periodicity 3.2 Physical Properties. IB Chemistry T03D02 Topic 3 Periodicity 3.2 Physical Properties IB Chemistry T03D02 3.1 Physical Properties hrs 3.2.1 Define the terms first ionization energy and electronegativity. (1) 3.2.2 Describe and explain the trends

More information

POST TRANSITION METALS

POST TRANSITION METALS Hydrogen is considered to be a group on its own POST TRANSITION METALS NON METALS NOBLE GASSES HALOGENS TRANSITION METALS ALKALI METALS ALKALINE EARTH METALS LANTHANIDES ACTINIDES SEMI METALS TRENDS OF

More information

Valence Electrons. Periodic Table and Valence Electrons. Group Number and Valence Electrons. Learning Check. Learning Check.

Valence Electrons. Periodic Table and Valence Electrons. Group Number and Valence Electrons. Learning Check. Learning Check. Chapter 5 Lecture Chapter 5 Electronic Structure and Periodic Trends 5.6 Trends in Periodic Properties Learning Goal Use the electron configurations of elements to explain the trends in periodic properties.

More information

Li or Na Li or Be Ar or Kr Al or Si

Li or Na Li or Be Ar or Kr Al or Si Pre- AP Chemistry 11 Atomic Theory V Name: Date: Block: 1. Atomic Radius/Size 2. Ionization Energy 3. Electronegativity 4. Chemical Bonding Atomic Radius Effective Nuclear Charge (Z eff) Ø Net positive

More information

Chemistry (www.tiwariacademy.com)

Chemistry (www.tiwariacademy.com) () Question 3.1: What is the basic theme of organisation in the periodic table? Answer 1.1: The basic theme of organisation of elements in the periodic table is to classify the elements in periods and

More information

Question 3.2: Which important property did Mendeleev use to classify the elements in his periodic table and did he stick to that?

Question 3.2: Which important property did Mendeleev use to classify the elements in his periodic table and did he stick to that? Question 3.1: What is the basic theme of organisation in the periodic table? The basic theme of organisation of elements in the periodic table is to classify the elements in periods and groups according

More information

Accelerated Chemistry Study Guide The Periodic Table, Chapter 5

Accelerated Chemistry Study Guide The Periodic Table, Chapter 5 Accelerated Chemistry Study Guide The Periodic Table, Chapter 5 Terms, definitions, and people Dobereiner Newlands Mendeleev Moseley Periodic table Periodic Law group family period Page 1 of 38 alkali

More information

Periodic Trends. More than 20 properties change in predictable way based location of elements on PT

Periodic Trends. More than 20 properties change in predictable way based location of elements on PT Periodic Trends Periodic Trends More than 20 properties change in predictable way based location of elements on PT Some properties: Density Melting point/boiling point Atomic radius Ionization energy Electronegativity

More information

Activity 06.3a Periodic Trends Inquiry

Activity 06.3a Periodic Trends Inquiry Background In this investigation you will examine several periodic trends, including atomic radius, ionization energy and ionic radius. You will be asked to interact with select atoms as you investigate

More information

Hydrogen (H) Nonmetal (none)

Hydrogen (H) Nonmetal (none) Honors Chemistry Ms. Ye Name Date Block Do Now: 1. Complete the table based on the example given Location Element Metal, Nonmetal or Group/Family Name Semi-metal (Metalloid)? Group 1, Period 1 Hydrogen

More information

Chemical Periodicity. Periodic Table

Chemical Periodicity. Periodic Table Chemical Periodicity Periodic Table Classification of the Elements OBJECTIVES: Explain why you can infer the properties of an element based on those of other elements in the periodic table. Classification

More information

Trends in the Periodic Table

Trends in the Periodic Table Trends in the Periodic Table OBJECTIVES FOR TODAY: Fall in love with the Periodic Table, Interpret group and period trends in atomic radii, ionization energies and electronegativity The Periodic Table

More information

Trends in Atomic Size. Atomic Radius-one half the distance between the nuclei of two atoms of the same element when the atoms are joined

Trends in Atomic Size. Atomic Radius-one half the distance between the nuclei of two atoms of the same element when the atoms are joined Periodic trends Trends in Atomic Size Atomic Radius-one half the distance between the nuclei of two atoms of the same element when the atoms are joined Trends in Atomic Size Group Trend: Atomic radii of

More information

Why is it called a periodic table?

Why is it called a periodic table? The Periodic Table Why is it called a periodic table? The properties of the elements in the table repeat in a "periodic" way (specific pattern). Periodic law: There is a periodic repetition of chemical

More information

Trends in the Periodic Table

Trends in the Periodic Table Trends in the Periodic Table Effective nuclear charge: < effective nuclear charge is the attraction felt by the valence electrons from the nucleus < increases across a period : increases across because

More information

Chapter 6 The Periodic Table

Chapter 6 The Periodic Table Chapter 6 The Periodic Table Section 6.1 Organizing the Elements OBJECTIVES: Explain how elements are organized in a periodic table. Section 6.1 Organizing the Elements OBJECTIVES: Compare early and modern

More information

Chapter 7. Electron Configuration and the Periodic Table

Chapter 7. Electron Configuration and the Periodic Table Chapter 7 Electron Configuration and the Periodic Table Topics Development of the periodic table The modern periodic table Effective nuclear charge Periodic trends in properties of elements Electron configuration

More information

Chapter 8. Periodic Properties of the Element

Chapter 8. Periodic Properties of the Element Chapter 8 Periodic Properties of the Element Mendeleev (1834 1907) Ordered elements by atomic mass Saw a repeating pattern of properties Periodic law when the elements are arranged in order of increasing

More information

Ø Draw the Bohr Diagrams for the following atoms: Sodium Potassium Rubidium

Ø Draw the Bohr Diagrams for the following atoms: Sodium Potassium Rubidium Chemistry 11 Atomic Theory V Name: Date: Block: 1. Atomic Radius 2. Ionization Energy 3. Electronegativity 4. Chemical Bonding Atomic Radius Periodic Trends Ø As we move across a period or down a chemical

More information

E3 Describe the development of the modern periodic table E4 Draw conclusion about the similarities and trends in the properties of elements, with

E3 Describe the development of the modern periodic table E4 Draw conclusion about the similarities and trends in the properties of elements, with E3 Describe the development of the modern periodic table E4 Draw conclusion about the similarities and trends in the properties of elements, with reference to the periodic table By 1817 52 elements had

More information

Shapes of the orbitals

Shapes of the orbitals Electrons Review and Periodic Table Trends Unit 7 Electrons Shapes of the orbitals Electron Configuration Electrons spin in opposite direction Background Electrons can jump between shells (Bohr s model

More information

Chapter 7 Electron Configuration and the Periodic Table

Chapter 7 Electron Configuration and the Periodic Table Chapter 7 Electron Configuration and the Periodic Table Copyright McGraw-Hill 2009 1 7.1 Development of the Periodic Table 1864 - John Newlands - Law of Octaves- every 8 th element had similar properties

More information

Honors Chemistry Unit 4 ( )

Honors Chemistry Unit 4 ( ) Honors Chemistry Unit 4 (2017-2018) Families (research and present) Metals/nonmetals Trends o Atomic radius o Electronegativity o Ionization energy o Metallic and nonmetallic character Review Ions Oxidation

More information

Electron configurations follow the order of sublevels on the periodic table.

Electron configurations follow the order of sublevels on the periodic table. Electron configurations follow the order of sublevels on the periodic table. 1 The periodic table consists of sublevel blocks arranged in order of increasing energy. Groups 1A(1)-2A(2) = s level Groups

More information

Lecture outline: Chapter 7 Periodic properties

Lecture outline: Chapter 7 Periodic properties Lecture outline: Chapter 7 Periodic properties 1. Electrostatic effects 2. Atomic size 3. Ionization energy 4. Electron affinity it 5. Summarize some periodic properties 1 Some important terms Electron

More information

Na Mg Al Si P S Cl Ar

Na Mg Al Si P S Cl Ar Section 14.2 Periodic Trends OBJECTIVES: Interpret group trends in atomic radii, ionic radii, ionization energies, and electronegativities. Interpret period trends in atomic radii, ionic radii, ionization

More information

CHEM 103 Quantum Mechanics and Periodic Trends

CHEM 103 Quantum Mechanics and Periodic Trends CHEM 103 Quantum Mechanics and Periodic Trends Lecture Notes April 11, 2006 Prof. Sevian Agenda Predicting electronic configurations using the QM model Group similarities Interpreting measured properties

More information

Chapter 7 The Structure of Atoms and Periodic Trends

Chapter 7 The Structure of Atoms and Periodic Trends Chapter 7 The Structure of Atoms and Periodic Trends Jeffrey Mack California State University, Sacramento Arrangement of Electrons in Atoms Electrons in atoms are arranged as SHELLS (n) SUBSHELLS (l) ORBITALS

More information

4 Periodic Trends. 1.Atomic Radii (AR) 2.Ionization Energy (IE) 3.Ionic Radii (IR) 4.Electronegativity (EN) Periodic Trends > Types of Periodic Trends

4 Periodic Trends. 1.Atomic Radii (AR) 2.Ionization Energy (IE) 3.Ionic Radii (IR) 4.Electronegativity (EN) Periodic Trends > Types of Periodic Trends Periodic Trends > Types of Periodic Trends 4 Periodic Trends 1.Atomic Radii (AR) 2.Ionization Energy (IE) 3.Ionic Radii (IR) 4.Electronegativity (EN) 1 of 31 Periodic Trends > Trends in Atomic Size The

More information

Section 7 iclicker questions

Section 7 iclicker questions Reading assignment: 7.1-7.5 As you read ask yourself: What is meant by the expression effective nuclear charge? How can you use this concept to explain the trends in atomic radius in the periodic table?

More information

Mr. Dolgos Regents Chemistry PRACTICE PACKET. Unit 3: Periodic Table

Mr. Dolgos Regents Chemistry PRACTICE PACKET. Unit 3: Periodic Table *STUDENT* *STUDENT* Mr. Dolgos Regents Chemistry PRACTICE PACKET Unit 3: Periodic Table 2 3 It s Elemental DIRECTIONS: Use the reading below to answer the questions that follow. We all know by now that

More information

CH 4 The Periodic Table

CH 4 The Periodic Table CH 4 The Periodic Table Finding patters and order among the known elements 1700 s metals and non-metals 1800 s new lab techniques= new discoveries (Line Spectroscopy) JW Dobereiner 1780-1849 Triads John

More information

Chapter 7 Electron Configuration and the Periodic Table

Chapter 7 Electron Configuration and the Periodic Table Chapter 7 Electron Configuration and the Periodic Table Copyright McGraw-Hill 2009 1 7.1 Development of the Periodic Table 1864 - John Newlands - Law of Octaves- every 8th element had similar properties

More information

Worksheet 5 - Chemical Bonding

Worksheet 5 - Chemical Bonding Worksheet 5 - Chemical Bonding The concept of electron configurations allowed chemists to explain why chemical molecules are formed from the elements. In 1916 the American chemist Gilbert Lewis proposed

More information

Supplemental Activities. Module: Atomic Theory. Section: Periodic Properties and Trends - Key

Supplemental Activities. Module: Atomic Theory. Section: Periodic Properties and Trends - Key Supplemental Activities Module: Atomic Theory Section: Periodic Properties and Trends - Key Periodic Table and Reactivity Activity 1 1. Consider lithium metal. a. Why don t we find lithium metal in its

More information

Lecture Presentation. Chapter 8. Periodic Properties of the Element. Sherril Soman Grand Valley State University Pearson Education, Inc.

Lecture Presentation. Chapter 8. Periodic Properties of the Element. Sherril Soman Grand Valley State University Pearson Education, Inc. Lecture Presentation Chapter 8 Periodic Properties of the Element Sherril Soman Grand Valley State University Nerve Transmission Movement of ions across cell membranes is the basis for the transmission

More information

Ch. 5 - The Periodic Table

Ch. 5 - The Periodic Table Ch. 5 - The Periodic Table 250 Atomic Radius (pm) 200 150 100 50 0 0 5 10 15 20 Atomic Number III. Periodic Trends (p. 140-154) I II III A. Periodic Law When elements are arranged in order of increasing

More information

ELECTRON CONFIGURATION AND THE PERIODIC TABLE

ELECTRON CONFIGURATION AND THE PERIODIC TABLE ELECTRON CONFIGURATION AND THE PERIODIC TABLE The electrons in an atom fill from the lowest to the highest orbitals. The knowledge of the location of the orbitals on the periodic table can greatly help

More information

8.1 Early Periodic Tables CHAPTER 8. Modern Periodic Table. Mendeleev s 1871 Table

8.1 Early Periodic Tables CHAPTER 8. Modern Periodic Table. Mendeleev s 1871 Table 8.1 Early Periodic Tables CHAPTER 8 Periodic Relationships Among the Elements 1772: de Morveau table of chemically simple substances 1803: Dalton atomic theory, simple table of atomic masses 1817: Döbreiner's

More information

Chapter 8: Periodic Relationships Among the Elements

Chapter 8: Periodic Relationships Among the Elements 10/25 Chapter 8: Periodic Relationships Among the Elements Development of the Periodic Table Early chemists: chemical properties related to atomic mass Newlands: Law of octaves >Didn t work past Ca Mendeleev

More information

Periodic Relationships Among the Elements

Periodic Relationships Among the Elements When the Elements Were Discovered Periodic Relationships Among the Elements Chapter 8 Copyright The McGraw-Hill Companies, Inc. Permission required for reproduction or display. 2 ns 1 Ground State Electron

More information

2. Atomic Structure and Periodic Table Details of the three Sub-atomic (fundamental) Particles

2. Atomic Structure and Periodic Table Details of the three Sub-atomic (fundamental) Particles 2. Atomic Structure and Periodic Table Details of the three Sub-atomic (fundamental) Particles Particle Position Relative Mass Relative Charge Proton Nucleus 1 +1 Neutron Nucleus 1 Electron Orbitals 1/184-1

More information

Explaining Periodic Trends. Saturday, January 20, 18

Explaining Periodic Trends. Saturday, January 20, 18 Explaining Periodic Trends Many observable trends in the chemical and physical properties of elements are observable in the periodic table. Let s review a trend that you should already be familiar with,

More information

Unit 3: The Periodic Table and Atomic Theory

Unit 3: The Periodic Table and Atomic Theory Name: Period: Unit 3: The Periodic Table and Atomic Theory Day Page # Description IC/HW 1 2-3 Periodic Table and Quantum Model Notes IC 1 4-5 Orbital Diagrams Notes IC 1 14 3-A: Orbital Diagrams Worksheet

More information

Topic 2 : Atomic Structure

Topic 2 : Atomic Structure Topic 2 : Atomic Structure AJC/P2/Q1a 1. The first ionisation energy of aluminium will be lower than that of sulphur, as S has a higher nuclear charge than Al, but the shielding effect is similar for both

More information

Regents Chemistry PRACTICE PACKET

Regents Chemistry PRACTICE PACKET *KEY* *KEY* Regents Chemistry PRACTICE PACKET Unit 3: Periodic Table 1 Copyright 2015 Tim Dolgos 2 Copyright 2015 Tim Dolgos 3 Copyright 2015 Tim Dolgos It s Elemental DIRECTIONS: Use the reading below

More information

2011 CHEM 120: CHEMICAL REACTIVITY

2011 CHEM 120: CHEMICAL REACTIVITY 2011 CHEM 120: CHEMICAL REACTIVITY INORGANIC CHEMISTRY SECTION Lecturer: Dr. M.D. Bala Textbook by Petrucci, Harwood, Herring and Madura 15 Lectures (4/10-29/10) 3 Tutorials 1 Quiz 1 Take-home test https://chemintra.ukzn.ac.za/

More information

Unit 1 Part 2 Atomic Structure and The Periodic Table Introduction to the Periodic Table UNIT 1 ATOMIC STRUCTURE AND THE PERIODIC TABLE

Unit 1 Part 2 Atomic Structure and The Periodic Table Introduction to the Periodic Table UNIT 1 ATOMIC STRUCTURE AND THE PERIODIC TABLE UNIT 1 ATOMIC STRUCTURE AND THE PERIODIC TABLE PART 2 INTRODUCTION TO THE PERIODIC TABLE Contents 1. The Structure of the Periodic Table 2. Trends in the Periodic Table Key words: group, period, block,

More information

nucleus charge = +5 nucleus charge = +6 nucleus charge = +7 Boron Carbon Nitrogen

nucleus charge = +5 nucleus charge = +6 nucleus charge = +7 Boron Carbon Nitrogen ChemQuest 16 Name: Date: Hour: Information: Shielding FIGURE 1: Bohr Diagrams of boron, carbon and nitrogen nucleus charge = +5 nucleus charge = +6 nucleus charge = +7 Boron Carbon Nitrogen Because the

More information

Part I: It s Just a Trend

Part I: It s Just a Trend Part I: It s Just a Trend 1. What is the trend with the atomic numbers of the elements as you move from left to right across a period on the Periodic Table? How does this sequence continue to the next

More information

6.3 Periodic Trends > Chapter 6 The Periodic Table. 6.3 Periodic Trends. 6.1 Organizing the Elements. 6.2 Classifying the Elements

6.3 Periodic Trends > Chapter 6 The Periodic Table. 6.3 Periodic Trends. 6.1 Organizing the Elements. 6.2 Classifying the Elements 1 63 Periodic Trends > Chapter 6 The Periodic Table 61 Organizing the Elements 62 Classifying the Elements 63 Periodic Trends 2 63 Periodic Trends > CHEMISTRY & YOU How are trends in the weather similar

More information

Trends in Atomic Size. What are the trends among the elements for atomic size? The distances between atoms in a molecule are extremely small.

Trends in Atomic Size. What are the trends among the elements for atomic size? The distances between atoms in a molecule are extremely small. 63 Periodic Trends > 63 Periodic Trends > CHEMISTRY & YOU Chapter 6 The Periodic Table 61 Organizing the Elements 62 Classifying the Elements 63 Periodic Trends How are trends in the weather similar to

More information

Chapter 6 Part 3; Many-electron atoms

Chapter 6 Part 3; Many-electron atoms Chapter 6 Part 3; Many-electron atoms Read: BLB 6.7 6.9 HW: BLB 6:59,63,64,67,71b-d,74,75,90,97; Packet 6:10 14 Know: s & atoms with many electrons Spin quantum number m s o Pauli exclusion principle o

More information

Periodic Trends. Elemental Properties and Patterns

Periodic Trends. Elemental Properties and Patterns Periodic Trends Elemental Properties and Patterns The Periodic Law Dimitri Mendeleev was the first scientist to publish an organized periodic table of the known elements. Henry Moseley Discovered the proton

More information

Chapter 8: Periodic Properties of the Elements

Chapter 8: Periodic Properties of the Elements C h e m i s t r y 1 A : C h a p t e r 8 P a g e 1 Chapter 8: Periodic Properties of the Elements Homework: Read Chapter 8. Work out sample/practice exercises Check for the MasteringChemistry.com assignment

More information

Orbitals give the probability of finding an electron in a given region of space (boundary surface encloses 90% of electron density)

Orbitals give the probability of finding an electron in a given region of space (boundary surface encloses 90% of electron density) Matter Waves Find the wavelength of any object given v and m Orbitals Square of Schrödinger wave-function gives the probability density or electron density or orbital Orbitals give the probability of finding

More information

Chemistry. The Periodic Table.

Chemistry. The Periodic Table. 1 Chemistry The Periodic Table 2015 11 16 www.njctl.org 2 Table of Contents: The Periodic Table Click on the topic to go to that section Periodic Table Periodic Table & Electron Configurations Effective

More information

Name: Date: Blk: Examine your periodic table to answer these questions and fill-in-the-blanks. Use drawings to support your answers where needed:

Name: Date: Blk: Examine your periodic table to answer these questions and fill-in-the-blanks. Use drawings to support your answers where needed: Name: Date: Blk: NOTES: PERIODIC TRENDS Examine your periodic table to answer these questions and fill-in-the-blanks. Use drawings to support your answers where needed: I. ATOMIC RADIUS (Size) Going from

More information

AP Chemistry. Periodic Table. Slide 1 / 113 Slide 2 / 113. Slide 3 / 113. Slide 4 / 113. Slide 5 / 113. Slide 6 / 113. The Atom.

AP Chemistry. Periodic Table. Slide 1 / 113 Slide 2 / 113. Slide 3 / 113. Slide 4 / 113. Slide 5 / 113. Slide 6 / 113. The Atom. Slide 1 / 113 Slide 2 / 113 P hemistry The tom 2015-08-25 www.njctl.org Slide 3 / 113 Slide 4 / 113 Table of ontents: The tom (Pt. ) lick on the topic to go to that section Periodic Table Periodic Trends

More information

Unit 2 Exam Note/Sample Questions

Unit 2 Exam Note/Sample Questions Unit 2 Exam Note/Sample Questions READ THIS NOTE: You will be provided with a periodic table on the exam. The one you will be receiving is the one at this URL: http://www.bpc.edu/mathscience/chemistry/images/periodic_table_of_elements.jpg

More information

CHEM 1305 Introductory Chemistry

CHEM 1305 Introductory Chemistry CHEM 1305 Introductory Chemistry Introductory Chemistry: Concepts and Critical Thinking 7 th Edition, Charles H. Corwin Chapter 12. Chemical Bonding Modified by: Dr. Violeta F. Coarfa 1 Chemical Bond Concept

More information

Chemistry 101 Chapter 9 CHEMICAL BONDING. Chemical bonds are strong attractive force that exists between the atoms of a substance

Chemistry 101 Chapter 9 CHEMICAL BONDING. Chemical bonds are strong attractive force that exists between the atoms of a substance CHEMICAL BONDING Chemical bonds are strong attractive force that exists between the atoms of a substance Chemical Bonds are commonly classified into 3 types: 1. IONIC BONDING Ionic bonds usually form between

More information

ORBITAL DIAGRAM - A graphical representation of the quantum number "map" of electrons around an atom.

ORBITAL DIAGRAM - A graphical representation of the quantum number map of electrons around an atom. 160 ORBITAL DIAGRAM - A graphical representation of the quantum number "map" of electrons around an atom. 4p 3d 4s 3p 3s 2p 2s 1s Each blank represents an ORBITAL, and can hold two electrons. The 4s subshell

More information

Key Questions. 1. Write the electron configurations of. a. Helium. b. Lithium

Key Questions. 1. Write the electron configurations of. a. Helium. b. Lithium Periodic Trends - Atomic Radius Name Hr How and why is atomic radius a periodic trend? Model 1 The diagram to the right shows electron-electron interactions and nucleus-electron interactions in atoms of

More information

Section 11: Electron Configuration and Periodic Trends

Section 11: Electron Configuration and Periodic Trends Section 11: Electron Configuration and Periodic Trends The following maps the videos in this section to the Texas Essential Knowledge and Skills for Science TAC 112.35(c). 11.01 The Bohr Model of the Atom

More information

Atomic Radius. Half of the distance between two bonding atoms nuclei

Atomic Radius. Half of the distance between two bonding atoms nuclei Periodic Trends Atomic Radius Half of the distance between two bonding atoms nuclei Increases Atomic Radius Trend Increases Atomic Radius Across a Period Atomic radius generally decreases in size as you

More information