Kinetics and mechanism of the oxidation of aliphatic alcohols by benzy ltrimethy lammoni urn dichloroiodate

Size: px
Start display at page:

Download "Kinetics and mechanism of the oxidation of aliphatic alcohols by benzy ltrimethy lammoni urn dichloroiodate"

Transcription

1 Indian Journal of Chemistry Vol. 40A, May 2001, pp Kinetics and mechanism of the oxidation of aliphatic alcohols by benzy ltrimethy lammoni urn dichloroiodate Poonam Gupta & Seema Kothari* Department of Chemistry, J.N.V. University, Jodhpur, , India Received 14 June 2000; revised 2 January 200/ The oxidation of a series of aliphatic alcohols by benzyltrimethylammonium dichloroiodate (BTMACI), in glacial acetic acid in the presence of zinc chloride, leads to the formation of the corresponding carbonyl compounds. The reaction is first order each wi th respect to the alcohol, zi nc chloride and BTMACI. Addition of the benzyltrimethylammonium chloride enhances the rate slightly. The oxidation of deuteriated ethanol indicates the presence of a substantial kinetic isotope effect. [PhCH 2 Me 3 Nt[IZn 2 CI 6 r is postulated to be the reactive oxidizing species. The reaction is susceptible to both polar and steric effects of the substituents. A mechanism involving transfer of a hydride ion from the alcohol to the oxidant has been proposed. Benzyltrimethylammonium polyhalides are widely used as halogenating reagents in synthetic organic chemistryl.2. Recently, polymeric benzyltriethylammonium dichloroiodate and dibromoiodate have been used for the addition of halogens to olefins 3 However, they have been scantly used as oxidizing agents in synthetic organic chemistr/ 6. These compounds are more suitable than molecular halogens because of their solid nature, ease of handling, stability, selectivity and excellent product yields. We are interested in the kinetic and mechanistic studies of the newer oxidizing agents and have reported the oxidation of thioacids 7, oxyacids of phosphorus 8, substituted benzyl alcohols 9 and aliphatic aldehydes 10 by benzyltrimethylammonium <.lichloroiodate (BTMACI). In the present note, we report the kinetics of the oxidation of a series of aliphatic alcohols by BTMACI, in glacial acetic acid in the presence of zinc chloride. Attempts have been made to correlate rate and structure in this reaction. Mechanistic aspects are discussed. Materials and Methods BTMACI was prepared by the reported method 1 and its purity was checked by an iodometric method. The solutions of BTMACI were freshly prepared in the presence of zinc chloride. The alcohols were commercial products and were purified by the usual methods. [I, 1-2 H 2 ]ethanol was prepared by the reported method". Its isotopic purity, as ascertained by its 1 H NMR spectrum was 90±5%. Acetic acid was refluxed with chromic oxide and acetic anhydride for 6 h and then fractionated. BTMACI is only slightly soluble in acetic acid at room temperature. However, an addition of zinc chloride renders it readily soluble in acetic acid. We found that in the absence of zinc chloride, the strength of a saturated solution of BTMACI in acetic acid is mol dm 3. Addition of zinc chloride (0.002 mol dm. 3 ) increased the solubility of BTMACI and a saturated solution of BTMACI, under these conditions, has strength of mol dm 3. Product analysis Product analysis was carried out under kinetic conditions. In a typical experiment, ethanol (0.3 mol) and BTMACI (0.02 mol) were made up to 100 ml in glacial acetic acid in the presence of 0.06 mol of zinc chloride. The reaction mixture was allowed to stand in the dark for ca. 6 h to ensure completion of the reaction. The solution was then treated with an excess (200 ml) of a saturated solution of 2,4-dinitrophenylhydrazine in 2 mol dm- 3 HCI and kept overnight in a refrigerator. The precipitated 2,4-dinitrophenylhydrazone (DNP) was filtered off, dried, weighed, recrystallized from ethanol, and weighed again. The yields of DNP before and after recrystallization was 1.39 g (90%) and 1.30 g (82%) respectively. The DNP was found identical (mp and mi xed mp) with the DNP of acetaldehyde. l:1 similar experiments, wi th

2 GUPTA et al. : KINETICS OF OXIDATION OF ALIPHATIC ALCOHOLS 475 other alcohols, the yield of the corresponding carbonyl compounds wa:; in the range of 80-91%, after recrystallization. Stoichiometry To determine the stoichiometry, BTMACI (0.005 mol) and ethanol (0.00 I mol) were made up to 100 ml in glacial acetic acid in the presence of zinc chloride (0.015 mol dm \ The reaction was allowed to stand for ca. 10 h to ens-ure the completion of the reaction. The residual BTMACI was determined spectrophotometrically at 364 nm. Several determinations, with alcohols showed that the stoichiometry is 1: I. Spectral studies UV-vis spectra of mol dm- 3 of BTMACI alone and in the presence of 0.002, and mol dm- 3 of zinc chloride were obtained using a HP-diode array spectrophotometer (Model 8452A), at 300±3 K. The solvent and blank were glacial acetic acid. The scanning speed was 600 nm s' 1 Kinetic measurements The reactions were carried out under pseudo-first order conditions by maintaining a large excess of the alcohol (x15 times or more) over BTMACI, at constant temperature (±0.1 K). The solvent was glacial acetic acid. The reactions were carried out in the presence of zinc chloride (0.003 mol dm- 3 unless mentioned otherwise) and were followed by monitoring the decrease in [BTMACI] spectrophotometrically at 364 nm for at least three half-lives. The pseudo-first order rate constant, kobs was evaluated from the linear (r 2 > 0.995) plots of log [BTMACI] against time. Duplicate kinetic runs showed that the rate constants were reproducible to within ±3%. The experimental third order rate constant, k 3, was determined from the relationship : k3= kobsf[alcohol] [ZnC1 2 ]. Results and Discussion The rate and other experimental data were obtained for all the alcohols. Since the results are similar, only representative data are reproduced here. The oxidation of aliphatic alcohols by BTMACI results in the formation of the corresponding carbonyl compounds as the main product.. Analyses of products and stoichiometric determinations indicate the following overall reaction. RCH 2 0H+[PhCH 2 Me 3 N]IC1 2 ~ RCHO +PhCHzMe 3 NCl + HCl +HI... (1) The reaction is of first order with respect to BTMACI. Further, the pseudo-first order rate constants do not depend on the initial concentration of BTMACI. The reaction rate increases linearly with an increase in the concentration of the alcohol (Table I). The oxidation of alcohols, under a nitrogen atmosphere, failed to induce polymerization of acrylonitrile. Further, an addition of acrylonitrile had no effect on the rate (Table 1 ). The rate of oxidation of alcohols were determined at different temperatures and the activation parameters were calculated (Table 2). To ascertain the importance of the cleavage of an a-c-h bond in the rate-determining step, the oxidation of deuteriated ethanol (MeCD 2 0H) was studied. The results (Table 2) showed that the reaction exhibited a substantial kinetic isotope effect (khiko= 5.99 at 298 K). With an increase in the concentration of zinc chloride the reaction rate increases, for example, under the conditions [BTMACI]=0.001 mol dm- 3, [EtOH]= 1.00 mol dm- 3 at 318 K, when [ZnC1 2 ] was increased from 2.0 to 10.0 mol dm- 3, the corresponding 10 4 kobs increased from 9.95 to 51.0 s 1 A plot of kobs versus [ZnC1 2 ] is linear (r 2 =0.9960) and passes through the origin. An addition of benzyltrimethylammonium chloride (BTMACI) enhances the reaction rate slightly. Under similar conditions as above, a variation in 10 3 [BTMACl] from 0.0 to 4.0 mol dm- 3, resulted in an increase in the 10 4 kobs from 15.6 to 33.0 s- 1 Table I-Rate constants for the oxidation of ethanol by BTMACI at 318 K 10 3 [BTMACI]/mol dm- 3 [EtOH]/ mol dm kob/s' o *Contained mol dm' 3 acrylonitrile

3 476 INDIAN J CHEM. SEC. A, MAY 2001 Subst. (R) H Me Et Pr Bu Pri CICH 2 MeOCH 2 Bu' MeCD 2 0H kh 1 ko Table 2-Rate constants and activation parameters of the oxidation of alcohols by BTMACI I 0 2 k 3 (dm 6 mo1" 2 s ') 6. H 6. s 6. c 298 K 308 K 318 K 328 K (kj mo1" 1 ) "" (J mor' K" 1 ) (kj mo1" 1 ) ± ± ± ±0.3 - \ 44.4± ± ± ± ± ±0.5-61±6-89±2-99±4-96±1-103±1-9:,_ 3-86±6-94±4-123±4-98±2 88.8± ± ± ± ± ± ± ± ± ±0.4 A comparison of the UV-vis spectra (Fig. 1) of BTMACI alone and in the presence of different concentrations of ZnC12 showed that the nature of the spectra is not much different in the presence and absence of zinc chloride. However, there is an initial sharp decrease in the absorbance followed by a regular but gradual decrease in the absorbance of BTMACI on further addition of increasing amounts of ZnC12. This clearly showed that a strong complex is formed initially which undergoes further complexation whose concentration increases with an increase in the concentration of ZnC12. From our data on the solubility of BTMACI in the absence and presence of zinc chloride, the value of the equilibrium constant 9, Kh comes to be ca mor' dm 3. This indicates that even at the lowest concentration of zinc chloride used, almost whole of BTMACI will be in the form of complex (A) (Eq. 2). The linear increase in the rate with an increase in the concentration of zinc chloride points to a further complexation (Eq. 3). The role of ZnCh is to coordinate with ICh-. Interhalogen compounds are known to form complexes with Lewis acids like zinc chloride 12. K, [PhCH2Me3NtiCh-+ZnCh "'=7 [PhCH2Me3Nt [IZnCl4r (A)... (2) K2 (A)+ZnCh """' [PhCH2Me3Nt [IZn2Cl6r... (3) (B) In the complexes (A) and (B), the formal oxidation state of iodine is + 1. Despite the lack of evidence for the existence of discrete I+ ions, its stable complexes 0 169~3 i w u z ; a: 0 Ill ~ WAVELENGTH Fig. 1-UV-vis spectra of [A] ( mol dm- 3 BTMACI), [B] ([A] mol dm- 3 ZnCI 2 ), [C] ([A] mol dm- 3 ZnCI 2 ) and [D] ([A] mol dm- 3 ZnCI 2 ); Solvent: glacial acetic acid; Temperature : 300±3 K with donors have been known for a long time The formation of positive iodine species in the sulphuric acid medium has been reported recently 14. Acetic acid is a relatively poor ionizing solvent and formation of ion-pairs in it is a distinct possibility. Therefore, it is probable that complexes (A) and (B) exist as ion-pair in the solvent. The observed dependence on the concentration of zinc chloride indicates that the equilibrium between (A) and (B) is rapid, that the equilibrium constant, K 2, is small and the reaction is not complete even at high concentration of ZnC1 2, and that only the complex (B) is reactive. The small rate-enhancing effect of BTMACl suggests that iodine monochloride (Eq. 4) is not involved in the oxidation process. 400

4 GUPTA eta/.: KINETICS OF OXIDATION OF ALIPHATIC ALCOHOLS 477 KJ [PhCH2Me 3 Nt ICl2 "=r [PhCH2Me3N]Cl + ICl... (4) Therefore, (B) is 1 ' the only reactive oxidizing species in the oxidation of alcohols. The formation of the complex is supported by the spectral studies also. The existence of the anion [Zn2CI 6 r 2, in tertahydrofuran, has been confirmed by X-ray crystallography 15 Various metallic salts of [Zn2Cl 6 r 2 are known 16. The linear correlation between log k 3 at 298 K and 328 K (r 2 =0.9990; slope=0.862±0.010) for the nine alcohols shows that an isokinetic relationship exists in the oxidation of alcohols by BTMACI 17 The value of the isokinetic temperature is 927±22K. An isokinetic relationship is a necessary condition for the validity of linear free energy relationships. It also implies that all the alcohols so correlated are oxidized by the similar mechanism 17 The rates of oxidation of the alcohols failed to yield a significant correlation separately with Taft's 18 a * and E. (Eqs. 5 and 6). log k 3 = ± 0.35 a r 2 =0.8949; sd=0.44; n=9 ; temperature=298 K... (5) log k 3 = ± 0.47 E /=0.5248; sd=0.94; n=9; temperature=298 K... (6) The rates were, therefore, correlated in terms of the Pavelich-Taft 19 dual substituent-parameter Eq. (7). log k 3 = p*a * + 8 Es+ log k 0. (7) The values of the substituent constants were obtained from the compilation by Wiberg 18 The correlations are excellent and reaction constants being negative (Table 3). There is no significant collinearity (r 2 = ) between a andes of the nine substituents. The negative polar reaction constant indicates an electron-deficient carbon centre in the transition state of the rate-determining step. The negative steric reaction constant shows a steric acceleration of the reaction. This may be explained by relief of steric Table 3-Temperature dependence of the reaction constants in the oxidation of alcohols by BTMACI T!K p' 8 R 2 sd ± ± ± ± ± ± ± ± crowding as the reaction proceeds from an sp 3 hybridised carbon atom in the alcohol towards an sp 2 hybridised carbon atom in the product. Mechanism A hydrogen abstraction mechanism leading to the formation of free radicals may be discounted in view of the failure to induce polymerization of acrylonitrile 20 The cleavage of the a-c-h bond in the rate-determining step is confirmed by the presence of a substantial kinetic isotope effect: The correlation analysis of the substituent effect indicated the presence of a highly electron-deficient reaction centre in the rate-determining step. Therefore, the transfer of a hydride-ion from the alcohol to the oxidant is indicated (Scheme 1). A linear transition state, implied in a hydride-ion transfer through a bimolecular reaction, is supported by the relatively higher magnitude of kinetic isotope effect. RCH20H+[PhCH2Me3Nt[IZn2CI6r ~ + RCHOH + RCHOH + H+ + r + PhCH 2 Me 3 N + 2CI - fa st RCHO+H+ Scheme I We were unable to study the effect of polarity, which might have given supportive evidence to our mechanism, because of the decomposition of the oxidant in water and its insolubility in any other suitable solvent. The proposed mechanism is, however, supported by the observed negative entropy of activation. As the charge separation takes place in the transition state, the two ends become highly solvated. This results in an immobilization of a large number of solvent molecules, reflected in the loss of entropy. Further the bimolecularity of the transition state is also in accordance with the observed negative entropy of activation. Acknowledgement Thanks are due to Prof. K.K. Banerji for his useful suggestions and to the UGC (India) for financial support. References I Fujisaki S, Kajigaeshi S, Kakinami T, Yamasaki H & Okamoto T, Bull chem Soc Japan, 61 ( 1988) Kajigaeshi S, Kakinami T, Moriwaki M, Tanaka T, Fujisaki S & Okamoto T, Bull chem Soc Japan, 62 (1989) Mitra S & Sreekumar K, Indian J Chem, 36B ( 1997) 133.

5 478 INDIAN J CHEM. SEC. A, MAY 200 I 4 Kajigaeshi S. Kawamuki H & Fujisaki S, Bull chem Soc Japan, 62 ( 1989) Kajigaeshi S, Morikawa Y, Fujisaki S, Kakinami T & Nishihira K, Bull chem Soc Japan, 64 ( 1991) Kakinami T, Kajigaeshi S, Morikawa Y, Fujisaki S & Nishihara K, Bull chem Soc Japan, 64 ( 1991) Suri D. Bane1ji K K & Kothari S, Im J chem Kiner. 28 ( 1996) Suri D, Kothari S & Banerji K K, Proc Indian Acad Sci, Chem Sci, 109 ( 1997) Rao P S C. Suri D, Kothari S & Banerji K K, J chem Res (S), (1998) 510; (M) Goswami G, Kothari S & Bane1ji K K, Indian J Chem, 38B ( 1999) II Kaplan L. J Am chem Soc. 80 ( 1958) Downs A J & Adams C J, Comprehensive inorganic chemisny. Vol II, edited by J C Bailer, H J Emeleus, R N Yholm & A F Tritman-Dickenson, (Pergamon Press. Oxford), 1973, Supplement to Mellor's Comprehensive treatise on inorganic and theorirical chemistry, Vol II, edited by H V A Briscoe, A A Eldridge & G M Dyson, (Longmans, London), 1956, Chaikovski V K, Kharlova T S, Filimonov V D & Saryucheva T A, Synthesis, (1999) Cotton FA, Duraj SA, Extine M W, Lewis G E, Roth W J, Schmulbach C D & Schwotzer W, J chem Soc Chem Commun, (1983) Emeleus H 1, In organic chemisny ( MTP International Review of Science), Vol I, (Butlerworths. London) 1973, Exner 0, Prog phys org Chem, L (1973) Johnson C D, The Hamm ert equarion,(university Press, Cambridge), 1966, Pavelich W A & Taft R W, J Am chem Soc, 79 ( 1957) Mehnert R & Brede 0, Radial phys Chem, 23 ( 1984) 463.

Kinetics and mechanism of the oxidation of some neutral and acidic α-amino acids by tetrabutylammonium tribromide

Kinetics and mechanism of the oxidation of some neutral and acidic α-amino acids by tetrabutylammonium tribromide J. Chem. Sci., Vol. 116, No. 2, March 2004, pp. 101 106. Indian Academy of Sciences. Kinetics and mechanism of the oxidation of some neutral and acidic α-amino acids by tetrabutylammonium tribromide RAGHVENDRA

More information

Kinetics and mechanism of the oxidation of some diols by benzyltrimethylammonium tribromide

Kinetics and mechanism of the oxidation of some diols by benzyltrimethylammonium tribromide Proc. Indian Acad. Sci. (Chem. Sci.), Vol. 113, No. 1, February 2001, pp 43 54 Indian Academy of Sciences Kinetics and mechanism of the oxidation of some diols by benzyltrimethylammonium tribromide 1.

More information

Kinetics and mechanism of the oxidation of primary aliphatic alcohols by pyridinium bromochromate

Kinetics and mechanism of the oxidation of primary aliphatic alcohols by pyridinium bromochromate Proc. Indian Acad. Sci. (Chem. Sci.), Vol. 107, No. 3, June 1995, pp. 213-220. 9 Printed in India. Kinetics and mechanism of the oxidation of primary aliphatic alcohols by pyridinium bromochromate 1. Introduction

More information

Kinetics and mechanism of the oxidation of formic and oxalic acids by quinolinium fluorochromate

Kinetics and mechanism of the oxidation of formic and oxalic acids by quinolinium fluorochromate Proc. Indian Acad. Sci. (Chem. Sci.), Vol. 112, No. 2, April 2000, pp. 73 81 Indian Academy of Sciences Kinetics and mechanism of the oxidation of formic and oxalic acids by quinolinium fluorochromate

More information

Kinetics and mechanism of oxidation of aliphatic primary alcohols by quinolinium bromochromate

Kinetics and mechanism of oxidation of aliphatic primary alcohols by quinolinium bromochromate Proc. Indian Acad. Sci. (Chem. Sci.), Vol. 115, No. 1, February 2003, pp 75 82 Indian Academy of Sciences Kinetics and mechanism of oxidation of aliphatic primary alcohols by quinolinium bromochromate

More information

Kinetics and Mechanism of the Selective Oxidation of Benzyl Alcohols by Acidified Dichromate in Aqueous Acetic Acid Medium

Kinetics and Mechanism of the Selective Oxidation of Benzyl Alcohols by Acidified Dichromate in Aqueous Acetic Acid Medium ORIENTAL JOURNAL OF CHEMISTRY An International Open Free Access, Peer Reviewed Research Journal www.orientjchem.org ISSN: 0970-020 X CODEN: OJCHEG 2014, Vol. 30, No. (3): Pg. 1391-1396 Kinetics and Mechanism

More information

Kinetic Study of Oxidation of n-hexanol by Tetramethyl ammonium Fluorochromate

Kinetic Study of Oxidation of n-hexanol by Tetramethyl ammonium Fluorochromate Kinetic Study of Oxidation of n-hexanol by Tetramethyl ammonium Fluorochromate Sayyed Hussain 1 and Syed Yousuf Hussain 2* 1-P.G. Department of Chemistry, Sir Sayyed College Aurangabad 2-Department of

More information

Kinetics and mechanism of oxidation of benzyl alcohol by Oxone catalyzed by Keggin type 12-tungstocobaltate(II)

Kinetics and mechanism of oxidation of benzyl alcohol by Oxone catalyzed by Keggin type 12-tungstocobaltate(II) Available online at www.scholarsresearchlibrary.com Archives of Applied Science Research, 2014, 6 (3):133-137 (http://scholarsresearchlibrary.com/archive.html) ISSN 0975-508X CODEN (USA) AASRC9 Kinetics

More information

Kinetic And Mechanism of Oxidation of Cobalt Metal Complex By Acidic Potassium Permanganate

Kinetic And Mechanism of Oxidation of Cobalt Metal Complex By Acidic Potassium Permanganate International OPEN ACCESS Journal Of Modern Engineering Research (IJMER) Kinetic And Mechanism of Oxidation of Cobalt Metal Complex By Acidic Potassium Permanganate Sayyed Hussain 1,Sunita Jadhav 1,Sayyed

More information

Kinetics and Mechanism of Oxidation of Benzyl Alcohol by Benzimidazolium Fluorochromate

Kinetics and Mechanism of Oxidation of Benzyl Alcohol by Benzimidazolium Fluorochromate ISSN: 0973-4945; CODEN ECJHAO E- Chemistry http://www.e-journals.net Vol. 5, No.4, pp. 754-760, October 2008 Kinetics and Mechanism of Oxidation of Benzyl Alcohol by Benzimidazolium Fluorochromate J. DHARMARAJA,

More information

Kinetics and mechanism of oxidation of aliphatic aldehydes by 2,2' -bipyridinium chlorochromate

Kinetics and mechanism of oxidation of aliphatic aldehydes by 2,2' -bipyridinium chlorochromate Indian Journal of Chemistry Vol. 39A, November2000, pp. 1169-1173 Kinetics and mechanism of oxidation of aliphatic aldehydes by 2,2' -bipyridinium chlorochromate Vinita Kumbhat, Pradeep K Sharma & Kalyan

More information

Results. Keywords: isonicotinic acid hydrazide, kinetics, thallium(iii), oxidation

Results. Keywords: isonicotinic acid hydrazide, kinetics, thallium(iii), oxidation International Journal of ChemTech Research CDEN( USA): IJCRGG ISSN : 09744290 Vol.1, No.2, pp 270274, AprilJune 2009 Kinetic and Mechanistic study of oxidation of isonicotinic acid hydrazide by Thallium

More information

Oxidation of Aromatic Monoethers by N-Chloronicotinamide in Aqueous Acetic Acid Medium A Kinetic Approach

Oxidation of Aromatic Monoethers by N-Chloronicotinamide in Aqueous Acetic Acid Medium A Kinetic Approach 6 Oxidation of Aromatic Monoethers by N-Chloronicotinamide in Aqueous Acetic Acid Medium A Kinetic Approach V. Priya, PG and Research Department of Chemistry, Holy Cross College, Tiruchirappalli, Tamil

More information

Kinetic and Mechanistic Approach of N- Chlorosaccharin Oxidation of some Non Vicinal Poly hydroxy Alcohols

Kinetic and Mechanistic Approach of N- Chlorosaccharin Oxidation of some Non Vicinal Poly hydroxy Alcohols International Journal of ChemTech Research CODEN( USA): IJCRGG ISSN : 0974-4290 Vol.2, No.3, pp 1480-1485, July-Sept 2010 Kinetic and Mechanistic Approach of N- Chlorosaccharin Oxidation of some Non Vicinal

More information

Chapter 5. Nucleophilic aliphatic substitution mechanism. by G.DEEPA

Chapter 5. Nucleophilic aliphatic substitution mechanism. by G.DEEPA Chapter 5 Nucleophilic aliphatic substitution mechanism by G.DEEPA 1 Introduction The polarity of a carbon halogen bond leads to the carbon having a partial positive charge In alkyl halides this polarity

More information

Kinetic Isotope Effects

Kinetic Isotope Effects 1 Experiment 31 Kinetic Isotope Effects Isotopic substitution is a useful technique for the probing of reaction mechanisms. The change of an isotope may affect the reaction rate in a number of ways, providing

More information

Structure-reactivity correlation in the oxidation of ortho-substituted benzaldehydes by Tetrakis (pyridine) Silver Dichromate

Structure-reactivity correlation in the oxidation of ortho-substituted benzaldehydes by Tetrakis (pyridine) Silver Dichromate Structure-reactivity correlation in the oxidation of ortho-substituted benzaldehydes by Tetrakis (pyridine) Silver Dichromate Amol P. Kharche, Dr.Indu M. Shastri * Department of Chemistry, R.D.and S.H.

More information

Journal of Chemical and Pharmaceutical Research, 2017, 9(12): Research Article

Journal of Chemical and Pharmaceutical Research, 2017, 9(12): Research Article Available online www.jocpr.com Journal of Chemical and Pharmaceutical Research, 2017, 9(12):143-147 Research Article ISSN : 0975-7384 CODEN(USA) : JCPRC5 A Kinetic Study of Oxidation of Cetirizine Hydrochloride

More information

Kinetic Study of Oxidation of Acettyl Acetone by Nicotinium Dichromate

Kinetic Study of Oxidation of Acettyl Acetone by Nicotinium Dichromate Nano Vision, Vol.3 (2), 70-74 (2013) Kinetic Study of Oxidation of Acettyl Acetone by Nicotinium Dichromate S.K. NIGAM #, PRIYANKA PATEL *, AKS TIWARI # and ANITA TIWARI # * Guest Lecturer, Govt. Tilak

More information

Kinetic Studies on The Selective Oxidation of Benzyl Alcohol and Substituted Benzyl Alcohols in Organic Medium under Phase Transfer Catalysis

Kinetic Studies on The Selective Oxidation of Benzyl Alcohol and Substituted Benzyl Alcohols in Organic Medium under Phase Transfer Catalysis Available online at BCREC Website: http://bcrec.undip.ac.id Bulletin of Chemical Reaction Engineering & Catalysis, 9 (2), 2014, 142-147 Research Article Kinetic Studies on The Selective xidation of Benzyl

More information

Organic Catalysis in Oxidation of Isopropyl Alcohol by Pyridinium Flourochromate - A Kinetic and Mechanistic Study

Organic Catalysis in Oxidation of Isopropyl Alcohol by Pyridinium Flourochromate - A Kinetic and Mechanistic Study http://www.e-journals.in Chemical Science Transactions DOI:10.7598/cst2015.1023 2015, 4(2), 559-569 RESEARCH ARTICLE Organic Catalysis in Oxidation of Isopropyl Alcohol by Pyridinium Flourochromate - A

More information

Nucleophilic Substitution Synthesis of 1-Iodobutane.

Nucleophilic Substitution Synthesis of 1-Iodobutane. Nucleophilic Substitution Synthesis of 1-Iodobutane Nucleophilic Substitution of Alkyl alides: Synthesis of 1-Iodobutane C 4 9 Br MW 137.02 d 1.28 g/ml BP 100-104 o C Br + NaI I + NaBr 1-Bromobutane is

More information

Pelagia Research Library

Pelagia Research Library Available online at www.pelagiaresearchlibrary.com Der Chemica Sinica, 2013, 4(1):100-104 ISSN: 0976-8505 CODEN (USA) CSHIA5 Oxidation of S-phenylmercaptoacetic acid by quinoxalinium dichromate K. G. Sekar*

More information

Solvation model for the oxidation of methionine by imidazolium fluorochromate in aqueous acetic acid medium

Solvation model for the oxidation of methionine by imidazolium fluorochromate in aqueous acetic acid medium J. Serb. Chem. Soc. 71 (1) 19 25 (2006) UDC 577.112.386+66.094.3+531.3+541.126 JSCS 3395 Original scientific paper Solvation model for the oxidation of methionine by imidazolium fluorochromate in aqueous

More information

AP Chem Final Practice Questions (Set #1)

AP Chem Final Practice Questions (Set #1) AP Chem Final Practice Questions (Set #1) 1. Which gas is least soluble in water? (A) H 2 (B) CO 2 (C) NH 3 (D) SO 2 2. Identify every process that is a chemical change. 1. cooling 2. evaporating 3. rusting

More information

Oxidation of Some Aliphatic Alcohols by Pyridinium Chlorochromate -Kinetics and Mechanism

Oxidation of Some Aliphatic Alcohols by Pyridinium Chlorochromate -Kinetics and Mechanism ISSN: 0973-4945; CODEN ECJHAO E- Chemistry http://www.e-journals.net 2009, 6(1), 237-246 Oxidation of Some Aliphatic Alcohols by Pyridinium Chlorochromate -Kinetics and Mechanism SAPANA JAIN *, B. L. HIRAN

More information

Background Information

Background Information ackground nformation ntroduction to Condensation eactions Condensation reactions occur between the α-carbon of one carbonyl-containing functional group and the carbonyl carbon of a second carbonyl-containing

More information

Journal of Chemical and Pharmaceutical Research

Journal of Chemical and Pharmaceutical Research Available on line www.jocpr.com Journal of Chemical and Pharmaceutical Research ISSN No: 0975-7384 CODEN(USA): JCPRC5 J. Chem. Pharm. Res., 2011, 3(1):529-535 Oxidation of Amino acids by Manganese (III)

More information

OXIDATION OF SOME ALIPHATIC ALDEHYDES BY QUINOLINIUM CHLOROCHROMATE: A KINETIC AND MECHANISTIC STUDY

OXIDATION OF SOME ALIPHATIC ALDEHYDES BY QUINOLINIUM CHLOROCHROMATE: A KINETIC AND MECHANISTIC STUDY xidation f some aliphatic aldehydes with quinolinium chlorochromate XIDATIN F SME ALIPHATIC ALDEHYDES BY QUINLINIUM CHLRCHRMATE: A KINETIC AND MECHANISTIC STUDY Seema Panwar [a], Shilpa Pohani [a], Preeti

More information

IJRE Vol. 03 No. 04 April ijre.org

IJRE Vol. 03 No. 04 April ijre.org 69 Kinetics and Correlation Analysis of Reactivity in the Oxidation of Secondary Alcohols by Benzimidazolium Dichromate Rakesh kumar 1 and Mamita 1-RK P.G. College Bissau, Jhunjhunu (Raj) 33107 (India)

More information

Organolithium Compounds *

Organolithium Compounds * OpenStax-CNX module: m32444 1 Organolithium Compounds * Andrew R. Barron This work is produced by OpenStax-CNX and licensed under the Creative Commons Attribution License 3.0 One of the major uses of lithium

More information

Kinetics and Mechanism of Oxidation of Malic Acid by Morpholinium Fluorochromate in Aqueous Acetonitrile Medium

Kinetics and Mechanism of Oxidation of Malic Acid by Morpholinium Fluorochromate in Aqueous Acetonitrile Medium DI:10.7598/cst2016.1160 Chemical Science Transactions ISSN:2278-3458 2016, 5(1), 258-264 RESEARC ARTICLE Kinetics and Mechanism of xidation of Malic Acid by Morpholinium Fluorochromate in Aqueous Acetonitrile

More information

But in organic terms: Oxidation: loss of H 2 ; addition of O or O 2 ; addition of X 2 (halogens).

But in organic terms: Oxidation: loss of H 2 ; addition of O or O 2 ; addition of X 2 (halogens). Reactions of Alcohols Alcohols are versatile organic compounds since they undergo a wide variety of transformations the majority of which are either oxidation or reduction type reactions. Normally: Oxidation

More information

Oxidation of Some Primary Amines by Bromamine-T in Alkaline Medium: A Kinetic and Mechanistic Study

Oxidation of Some Primary Amines by Bromamine-T in Alkaline Medium: A Kinetic and Mechanistic Study Transactions of the Illinois State Academy of Science received 7/10/98 (2000), Volume 93, #1, pp. 25-38 accepted 12/16/98 Oxidation of Some Primary Amines by Bromamine-T in Alkaline Medium: A Kinetic and

More information

Kinetics and mechanism of the oxidation of methionine by quinolinium chlorochromate

Kinetics and mechanism of the oxidation of methionine by quinolinium chlorochromate J. Serb. Chem. Soc. 70 (2) 145 151 (2005) UDC 577.112.386:531.3:66.094.3 JSCS 3257 Original scientific paper Kinetics and mechanism of the oxidation of methionine by quinolinium chlorochromate M. PANDEESWARAN,

More information

Chapter 10: Carboxylic Acids and Their Derivatives

Chapter 10: Carboxylic Acids and Their Derivatives Chapter 10: Carboxylic Acids and Their Derivatives The back of the white willow tree (Salix alba) is a source of salicylic acid which is used to make aspirin (acetylsalicylic acid) The functional group

More information

Pelagia Research Library

Pelagia Research Library Available online at www.pelagiaresearchlibrary.com Der Chemica Sinica, 2012, 3(5):1108-1112 ISSN: 0976-8505 CODEN (USA) CSHIA5 Oxidation of Ethyl -2-Chloropropionate by Potassium permanganate in acidic

More information

Nucleophilic substitution at a benzylic carbon by an ambident nucleophile---a linear free energy relationship

Nucleophilic substitution at a benzylic carbon by an ambident nucleophile---a linear free energy relationship Proc. Indian Aead. Sci., Vol. 88 A, Part I, Number 5, ctober 1979, pp. 329-335, printed in India Nucleophilic substitution at a benzylic carbon by an ambident nucleophile---a linear free energy relationship

More information

Title. Author(s)BALASUBRAMANIAN, K.; KURIACOSE, J. C. Issue Date Doc URL. Type. File Information FERRITE SPINEL

Title. Author(s)BALASUBRAMANIAN, K.; KURIACOSE, J. C. Issue Date Doc URL. Type. File Information FERRITE SPINEL Title KINETICS OF REACTIONS OF ACETIC ACID AND 2-PROPANOL FERRITE SPINEL Author(s)BALASUBRAMANIAN, K.; KURIACOSE, J. C. CitationJOURNAL OF THE RESEARCH INSTITUTE FOR CATALYSIS HOKK Issue Date 1983-11 Doc

More information

VILAS Y. SONAWANE, SUBASH D. LAKDE and J.S. PATIL

VILAS Y. SONAWANE, SUBASH D. LAKDE and J.S. PATIL Oriental Journal of Chemistry Vol. 26(3), 995-1000 (2010) Development of green and of polymer-supported chromic acid on strong anion exchange resin for oxidation of secondary alcohol - A kinetic and mechanistic

More information

Cambridge International Examinations Cambridge International Advanced Subsidiary and Advanced Level

Cambridge International Examinations Cambridge International Advanced Subsidiary and Advanced Level Cambridge International Examinations Cambridge International Advanced Subsidiary and Advanced Level *6897461207* CHEMISTRY 9701/22 Paper 2 AS Level Structured Questions May/June 2016 1 hour 15 minutes

More information

Mechanism of oxidation of L-methionine by iron(iii)-1,10-phenanthroline complex A kinetic study

Mechanism of oxidation of L-methionine by iron(iii)-1,10-phenanthroline complex A kinetic study Proc. Indian Acad. Sci. (Chem. Sci.), Vol. 113, No. 4, August 001, pp 351 359 Indian Academy of Sciences Mechanism of oxidation of L-methionine by iron(iii)-1,10-phenanthroline complex A kinetic study

More information

Sodium Borohydride Reduction of Benzoin

Sodium Borohydride Reduction of Benzoin Sodium Borohydride Reduction of Benzoin Introduction The most common and useful reducing agents for reducing aldehydes, ketones, and other functional groups are metal hydride reagents. The two most common

More information

Kinetic and mechanistic studies on the hypochlorite oxidation of 1-phenyl ethanol and its para substituted derivatives in aqueous acetic acid medium

Kinetic and mechanistic studies on the hypochlorite oxidation of 1-phenyl ethanol and its para substituted derivatives in aqueous acetic acid medium International Journal of hemtech Research ODEN (USA): IJRGG, ISSN: 0974-4290, ISSN(Online):2455-9555 Vol.10 No.7, pp 5-40, 2017 Kinetic and mechanistic studies on the hypochlorite oxidation of 1-phenyl

More information

The kinetic and mechanistic study

The kinetic and mechanistic study Indian J. Applied & Pure Bio. Vol. 32(2), 147-154 (2017). Kinetics and mechanism of oxidation of Maltose by Potassium Permanganate in Sulphuric acid medium Yugendra Kumar Soni, S.K. Chatterjee and K.N.

More information

18.8 Oxidation. Oxidation by silver ion requires an alkaline medium

18.8 Oxidation. Oxidation by silver ion requires an alkaline medium 18.8 Oxidation Oxidation by silver ion requires an alkaline medium Test for detecting aldehydes Tollens reagent to prevent precipitation of the insoluble silver oxide, a complexing agent is added: ammonia

More information

Correlation analysis of reactivity in the oxidation of substituted benzyl alcohols by morpholinium chlorochromate

Correlation analysis of reactivity in the oxidation of substituted benzyl alcohols by morpholinium chlorochromate Indian Journal of Chemistry Vol. 47A, May 2008, pp. 669-676 Correlation analysis of reactivity in the oxidation of substituted benzyl alcohols by morpholinium chlorochromate Neelam Soni, Vandana Tiwari

More information

Kinetics and mechanism of anation of cis-diaquo-bisoxalatochromate(lll) ion by DL-alanine in ethanol-water mixtures of varying dielectric constant

Kinetics and mechanism of anation of cis-diaquo-bisoxalatochromate(lll) ion by DL-alanine in ethanol-water mixtures of varying dielectric constant Proc. Indian Acad. Sci. (Chem. Sci.), Vol. 101, No. 3, June 1989, pp. 187-194. 9 Printed in India. Kinetics and mechanism of anation of cis-diaquo-bisoxalatochromate(lll) ion by DL-alanine in ethanol-water

More information

Kinetics and Mechnism of Oxidation of Benzhydrol by 4-Methyl Pyridinium Di Chromate in Acetic Acid Water Medium

Kinetics and Mechnism of Oxidation of Benzhydrol by 4-Methyl Pyridinium Di Chromate in Acetic Acid Water Medium International Journal of Chemistry and Applications. ISSN 0974-3111 Volume 5, Number 1 (2013), pp. 45-53 International Research Publication House http://www.irphouse.com Kinetics and Mechnism of Oxidation

More information

Supporting Information. for. Angew. Chem. Int. Ed. Z Wiley-VCH 2003

Supporting Information. for. Angew. Chem. Int. Ed. Z Wiley-VCH 2003 Supporting Information for Angew. Chem. Int. Ed. Z53001 Wiley-VCH 2003 69451 Weinheim, Germany 1 Ordered Self-Assembly and Electronic Behavior of C 60 -Anthrylphenylacetylene Hybrid ** Seok Ho Kang 1,

More information

Kinetic features of the oxidation of secondary alcohol by polymer - supported chromic acid

Kinetic features of the oxidation of secondary alcohol by polymer - supported chromic acid Kinetic features of the oxidation of secondary alcohol by polymer - supported chromic acid Vilas Y. Sonawane* and Nandini. Hilage. a * Department of Chemistry, Bhausaheb Nene Arts, Science and Comm. College,

More information

Prelab Assignmet Date, Title, Introduction. You will complete the procedures during the lab period as you plan for each test.

Prelab Assignmet Date, Title, Introduction. You will complete the procedures during the lab period as you plan for each test. 1 Qualitative Analysis Prelab Assignmet Date, Title, Introduction. You will complete the procedures during the lab period as you plan for each test. Introduction In this experiment you will be determining

More information

Chapter 7: Alcohols, Phenols and Thiols

Chapter 7: Alcohols, Phenols and Thiols Chapter 7: Alcohols, Phenols and Thiols 45 -Alcohols have the general formula R-OH and are characterized by the presence of a hydroxyl group, -OH. -Phenols have a hydroxyl group attached directly to an

More information

STRUCTURE REACTIVITY CORRELATION IN THE OXIDATION OF SUBSTITUTED BENZALDEHYDES BY MORPHOLINIUM FLUOROCHROMATES

STRUCTURE REACTIVITY CORRELATION IN THE OXIDATION OF SUBSTITUTED BENZALDEHYDES BY MORPHOLINIUM FLUOROCHROMATES STRUCTURE REACTIVITY CORRELATION IN THE OXIDATION OF SUBSTITUTED BENZALDEHYDES BY MORPHOLINIUM FLUOROCHROMATES Vinita Purohit and *Pallavi Mishra Department of Chemistry, J.N.V. University, 342005, Rajasthan

More information

Selective Synthesis of Benzaldehydes by Hypochlorite Oxidation of Benzyl Alcohols under Phase Transfer. catalysis

Selective Synthesis of Benzaldehydes by Hypochlorite Oxidation of Benzyl Alcohols under Phase Transfer. catalysis Available online at BCREC Website: http://bcrec.undip.ac.id Bulletin of Chemical Reaction Engineering & Catalysis, 10 (1), 2015, 38-42 Research Article Selective Synthesis of Benzaldehydes by Hypochlorite

More information

Atovaquone: An Antipneumocystic Agent

Atovaquone: An Antipneumocystic Agent Atovaquone: An Antipneumocystic Agent Atovaquone is a pharmaceutical compound marketed in the United States under different combinations to prevent and treat pneumocystosis and malaria. In a report from

More information

2-Hydroxy-4-n-propoxy-5-bromoacetophenone (HnPBAO) oxime as a gravimetric reagent for Ni(II) and Cu(II) and spectrophotometric study of the complexes

2-Hydroxy-4-n-propoxy-5-bromoacetophenone (HnPBAO) oxime as a gravimetric reagent for Ni(II) and Cu(II) and spectrophotometric study of the complexes Available online at www.pelagiaresearchlibrary.com Pelagia Research Library Der Chemica Sinica, 2010, 1 (3): 100-106 ISSN: 0976-8505 CODEN (USA) CSHIA5 2-Hydroxy-4-n-propoxy-5-bromoacetophenone (HnPBAO)

More information

International Journal of Chemical Studies

International Journal of Chemical Studies ISSN: 2321-4902 Volume 1 Issue 4 nline Available at www.chemijournal.com International Journal of Chemical Studies olymer Supported Sodium Chromate xidation of 1- henylethanol: A Kinetic Mechanistic Study

More information

Chemistry Assessment Unit A2 1

Chemistry Assessment Unit A2 1 Centre Number 71 Candidate Number ADVANCED General Certificate of Education January 2013 Chemistry Assessment Unit A2 1 assessing Periodic Trends and Further Organic, Physical and Inorganic Chemistry AC212

More information

A dual-model and on off fluorescent Al 3+ /Cu 2+ - chemosensor and the detection of F /Al 3+ with in situ prepared Al 3+ /Cu 2+ complex

A dual-model and on off fluorescent Al 3+ /Cu 2+ - chemosensor and the detection of F /Al 3+ with in situ prepared Al 3+ /Cu 2+ complex Supporting Information (SI) A dual-model and on off fluorescent Al 3+ /Cu 2+ - chemosensor and the detection of F /Al 3+ with in situ prepared Al 3+ /Cu 2+ complex Xiaoya Li, Mingming Yu, Faliu Yang, Xingjiang

More information

CHEM 344 Fall 2015 Final Exam (100 pts)

CHEM 344 Fall 2015 Final Exam (100 pts) CHEM 344 Fall 2015 Final Exam (100 pts) Name: TA Name: DO NOT REMOVE ANY PAGES FROM THIS EXAM PACKET. Have a swell winter break. Directions for drawing molecules, reactions, and electron-pushing mechanisms:

More information

Chem 263 Notes March 2, 2006

Chem 263 Notes March 2, 2006 Chem 263 Notes March 2, 2006 Average for the midterm is 102.5 / 150 (approx. 68%). Preparation of Aldehydes and Ketones There are several methods to prepare aldehydes and ketones. We will only deal with

More information

SOLVENT EFFECTS ON P VALUES OF THE HAMMETT' EQUATION FOR THE HYDROLYSIS OF BENZYLIDENE BENZOYLHYDRAZONES

SOLVENT EFFECTS ON P VALUES OF THE HAMMETT' EQUATION FOR THE HYDROLYSIS OF BENZYLIDENE BENZOYLHYDRAZONES n-najah J. Res. Vol. 1( 1989) Number 6 Mohammed A. AL-Nud Short Communication SOLVENT EFFECTS ON P VALUES OF THE HAMMETT' EQUATION FOR THE HYDROLYSIS OF BENZYLIDENE BENZOYLHYDRAZONES Mohammed A. AL-Nuri*,

More information

Chapter 19 Substitutions at the Carbonyl Group

Chapter 19 Substitutions at the Carbonyl Group Chapter 19 Substitutions at the Carbonyl Group In Chapter 18 Additions to the Carbonyl Groups In Chapter 19 Substitutions at the Carbonyl Group O O - - O - O R Y R C+ Y R Y Nu -Ȳ R N u + Y=goodleavinggroup

More information

Mechanistic Aspects of Oxidation of 1- Phenylethanol by N-Bromophthalimide in Aqueous Acetic acid A Kinetic Study

Mechanistic Aspects of Oxidation of 1- Phenylethanol by N-Bromophthalimide in Aqueous Acetic acid A Kinetic Study International Journal of ChemTech Research CDEN( USA): IJCRGG ISSN : 0974-4290 Vol.2, No.4, pp 2150-2155, ct-dec 2010 Mechanistic Aspects of xidation of 1- Phenylethanol by N-Bromophthalimide in Aqueous

More information

Supramolecular Free Radicals: Near-infrared Organic Materials with Enhanced Photothermal Conversion. Supporting Information

Supramolecular Free Radicals: Near-infrared Organic Materials with Enhanced Photothermal Conversion. Supporting Information Electronic Supplementary Material (ESI) for Chemical Science. This journal is The Royal Society of Chemistry 2015 Supramolecular Free Radicals: Near-infrared Organic Materials with Enhanced Photothermal

More information

Pelagia Research Library

Pelagia Research Library Available online at www.pelagiaresearchlibrary.com Der Chemica Sinica, 2012, 3(3):703707 Kinetics of oxidation of allyl alcohol by imidazoliumdichromate K. G. Sekar *1 and M. Vellaisamy 2 ISSN: 09768505

More information

Chapter 15 Dienes, Resonance, and Aromaticity

Chapter 15 Dienes, Resonance, and Aromaticity Instructor Supplemental Solutions to Problems 2010 Roberts and Company Publishers Chapter 15 Dienes, Resonance, and Aromaticity Solutions to In-Text Problems 15.2 The delocalization energy is the energy

More information

Keynotes in Organic Chemistry

Keynotes in Organic Chemistry Keynotes in Organic Chemistry Second Edition ANDREW F. PARSONS Department of Chemistry, University of York, UK Wiley Contents Preface xi 1 Structure and bonding 1 1.1 Ionic versus covalent bonds 1 1.2

More information

Lab 11 Guide: Nucleophilic Substitution (Nov 10 16)

Lab 11 Guide: Nucleophilic Substitution (Nov 10 16) Lab 11 Guide: Nucleophilic Substitution (Nov 10 16) Nucleophilic Substitution of Alkyl Halides, Exp. 17A, B, and C, pages 187-192 in Taber This week you will be doing examining real life S N 1 and S N

More information

KINETICS OF OXIDATION OF ALCOHOLS BY CHLOROPENTAMINE COBALT(III) CHLORIDE IN NaOH MEDIUM. A MECHANISTIC STUDY

KINETICS OF OXIDATION OF ALCOHOLS BY CHLOROPENTAMINE COBALT(III) CHLORIDE IN NaOH MEDIUM. A MECHANISTIC STUDY Research Article Latona Dayo Felix et al, Carib.j.Sciech, 016, Vol.4, 931-938 KINEICS OF OXIDAION OF ALCOHOLS BY CHLOROPENAMINE COBAL(III) CHLORIDE IN NaOH MEDIUM. A MECHANISIC SUDY Authors & Affiliation:

More information

Paper Reference. Advanced Unit Test 6B (Synoptic) Thursday 18 June 2009 Morning Time: 1 hour 30 minutes

Paper Reference. Advanced Unit Test 6B (Synoptic) Thursday 18 June 2009 Morning Time: 1 hour 30 minutes Centre No. Paper Reference Surname Initial(s) Candidate No. 6 2 4 6 0 2 Signature Paper Reference(s) 6246/02 Edexcel GCE Chemistry Examiner s use only Team Leader s use only Advanced Unit Test 6B (Synoptic)

More information

Student Manual for Aerobic Alcohol Oxidation Using a Copper(I)/TEMPO Catalyst System

Student Manual for Aerobic Alcohol Oxidation Using a Copper(I)/TEMPO Catalyst System Student Manual for Aerobic Alcohol Oxidation Using a Copper(I)/TEMPO Catalyst System icholas J. Hill, Jessica M. Hoover and Shannon S. Stahl* Department of Chemistry, University of Wisconsin-Madison, 1101

More information

Selective total encapsulation of the sulfate anion by neutral nano-jars

Selective total encapsulation of the sulfate anion by neutral nano-jars Supporting Information for Selective total encapsulation of the sulfate anion by neutral nano-jars Isurika R. Fernando, Stuart A. Surmann, Alexander A. Urech, Alexander M. Poulsen and Gellert Mezei* Department

More information

Cambridge International Examinations Cambridge International Advanced Subsidiary and Advanced Level

Cambridge International Examinations Cambridge International Advanced Subsidiary and Advanced Level Cambridge International Examinations Cambridge International Advanced Subsidiary and Advanced Level *0516596213* CEMISTRY 9701/42 Paper 4 A Level Structured Questions February/March 2016 2 hours Candidates

More information

Class XII: Chemistry Chapter 13: Amines Top concepts

Class XII: Chemistry Chapter 13: Amines Top concepts Class XII: Chemistry Chapter 13: Amines Top concepts 1. Amines are regarded as derivatives of ammonia in which one, two or all three hydrogen atoms are replaced by alkyl or aryl group 2. Classification

More information

1 Answer. 2 Answer A B C D

1 Answer. 2 Answer A B C D 216 W10-Exam #1 Page 1 of 9. I. (8 points) 1) Given below are infrared (IR) spectra of four compounds. The structures of compounds are given below. Assign each spectrum to its compound by putting the letter

More information

Experiment 3: Preparation of Lidocaine

Experiment 3: Preparation of Lidocaine Experiment 3: Preparation of Lidocaine This two-step synthesis involves the following conversion: 2,6-dimethylaniline α- chloro-2, 6-dimethylacetanilide Lidocaine. This synthetic scheme is shown in equation

More information

D. X. Hu Towards Catalytic Enantioselective Halogenation of Alkenes Burns Group

D. X. Hu Towards Catalytic Enantioselective Halogenation of Alkenes Burns Group D. X. Hu Towards Catalytic Enantioselective Halogenation of Alkenes Burns Group Literature Review Organic Synthesis 10, 20, 50 Years from Now? Catalytic Enantioselective Halogenation October 6 th, 2012

More information

Chapter 9 Aldehydes and Ketones Excluded Sections:

Chapter 9 Aldehydes and Ketones Excluded Sections: Chapter 9 Aldehydes and Ketones Excluded Sections: 9.14-9.19 Aldehydes and ketones are found in many fragrant odors of many fruits, fine perfumes, hormones etc. some examples are listed below. Aldehydes

More information

Research Article. Kinetics and mechanism of oxidation of ketoacids by N-bromophthalimide in aqueous acetic acid medium

Research Article. Kinetics and mechanism of oxidation of ketoacids by N-bromophthalimide in aqueous acetic acid medium Available online www.jocpr.com Journal of Chemical and Pharmaceutical Research, 2015, 7(8):267-272 Research Article ISSN : 0975-7384 CDEN(USA) : JCPRC5 Kinetics and mechanism of oxidation of ketoacids

More information

ICSE Board Class X Chemistry Board Paper Time: 1½ hrs Total Marks: 80

ICSE Board Class X Chemistry Board Paper Time: 1½ hrs Total Marks: 80 ICSE Board Class X Chemistry Board Paper 2011 Time: 1½ hrs Total Marks: 80 General Instructions: 1. Answers to this paper must be written on the paper provided separately. 2. You will NOT be allowed to

More information

The effect of solvent on the kinetics of the oxidation of benzaldehydes by quinolinium chlorochromate in aqueous organic solvent media

The effect of solvent on the kinetics of the oxidation of benzaldehydes by quinolinium chlorochromate in aqueous organic solvent media J.Serb.Chem.Soc. 67(12)803 808(2002) UDC 547.571:531.3+542.943+547.831 JSCS 3004 Original scientific paper The effect of solvent on the kinetics of the oxidation of benzaldehydes by quinolinium chlorochromate

More information

Electronic supporting information for

Electronic supporting information for Electronic Supplementary Material (ESI) for Organic & Biomolecular Chemistry. This journal is The Royal Society of Chemistry 2016 Electronic supporting information for The effects of an ionic liquid on

More information

Honors Cup Synthetic Proposal

Honors Cup Synthetic Proposal onors Cup Synthetic Proposal Section: 270-V Group Members: Azhar Carim, Ian Cross, Albert Tang Title: Synthesis of indigo from -(2-bromoethyl)-2-nitrobenzamide Introduction: Indigo has been used as a dye

More information

Q1. Ammonia is used in the production of fertilisers. The flow diagram shows the main stages in the manufacture of ammonia.

Q1. Ammonia is used in the production of fertilisers. The flow diagram shows the main stages in the manufacture of ammonia. Q1. Ammonia is used in the production of fertilisers. The flow diagram shows the main stages in the manufacture of ammonia. Study the flow diagram and then answer the questions. (a) What is the purpose

More information

Preparation of Alkyl Halides, R-X. Reaction of alkanes with Cl 2 & Br 2 (F 2 is too reactive, I 2 is unreactive): R + X X 2.

Preparation of Alkyl Halides, R-X. Reaction of alkanes with Cl 2 & Br 2 (F 2 is too reactive, I 2 is unreactive): R + X X 2. Preparation of Alkyl alides, R-X Reaction of alkanes with Cl 2 & Br 2 (F 2 is too reactive, I 2 is unreactive): UV R + X 2 R X or heat + X This mechanism involves a free radical chain reaction. A chain

More information

(a) (i) Give the equation representing the overall reaction. (1) Give the equation representing the formation of the electrophile.

(a) (i) Give the equation representing the overall reaction. (1) Give the equation representing the formation of the electrophile. 1. Benzene reacts with concentrated nitric acid in the presence of concentrated sulphuric acid at about 50 º in an electrophilic substitution reaction to give nitrobenzene. (a) Give the equation representing

More information

-SHORT COMMUNICATION- THE ROLE OF SOLVENT ON THE KINETICS AND MECHANISM OF THE HYDROLYSIS OF SOLICYLIDENE BENZOYL HYDRAZONE MAHER ABU-EID

-SHORT COMMUNICATION- THE ROLE OF SOLVENT ON THE KINETICS AND MECHANISM OF THE HYDROLYSIS OF SOLICYLIDENE BENZOYL HYDRAZONE MAHER ABU-EID AN-NAJ. J. RES.,JAN.1988,SEC.II,VOL.I,N0.5, 28-34. 28 -SHORT COMMUNICATION- THE ROLE OF SOLVENT ON THE KINETICS AND MECHANISM OF THE HYDROLYSIS OF SOLICYLIDENE BENZOYL HYDRAZONE BY MAHER ABU-EID Chemistry

More information

A kinetic study of the mechanism of oxidation of arabinose, fructose and lactose by peroxydisulphate

A kinetic study of the mechanism of oxidation of arabinose, fructose and lactose by peroxydisulphate International Journal of Basic and Applied Sciences, () (5) www.sciencepubco.com/index.php/ijbas Science Publishing Corporation doi:.9/ijbas.vi.6 Research Paper A kinetic study of the mechanism of oxidation

More information

Assistant Lecturer: Sahar Mohammed Shakir Assistant Lecturer: Sarah Sattar Jabbar

Assistant Lecturer: Sahar Mohammed Shakir Assistant Lecturer: Sarah Sattar Jabbar Assistant Lecturer: Sahar Mohammed Shakir Assistant Lecturer: Sarah Sattar Jabbar Structure Aldehydes are cpd.s of the general formula R ; Ketones are cpd.s of the general formula RŔ. The groups R and

More information

KINETICS AND MECHANISM OF KEGGIN TYPE 12-TUNGSTOCOBALTATE (II) CATALYZED POTASSIUM IODIDE OXIDATION BY PERBORATE

KINETICS AND MECHANISM OF KEGGIN TYPE 12-TUNGSTOCOBALTATE (II) CATALYZED POTASSIUM IODIDE OXIDATION BY PERBORATE Int. J. Chem. Sci.: 12(1), 2014, 145-154 ISSN 0972-768X www.sadgurupublications.com KINETICS AND MECHANISM OF KEGGIN TYPE 12-TUNGSTOCOBALTATE (II) CATALYZED POTASSIUM IODIDE OXIDATION BY PERBORATE D. S.

More information

2 Answer all the questions. 1 Nitrogen monoxide is formed when nitrogen and oxygen from the air combine. (g) + O 2

2 Answer all the questions. 1 Nitrogen monoxide is formed when nitrogen and oxygen from the air combine. (g) + O 2 2 Answer all the questions. 1 Nitrogen monoxide is formed when nitrogen and oxygen from the air combine. N 2 (g) + 2 (g) 2N(g) equation 1.1 Under normal atmospheric conditions, a further reaction occurs

More information

Chapter 8. Acidity, Basicity and pk a

Chapter 8. Acidity, Basicity and pk a Chapter 8 Acidity, Basicity and pk a p182 In this reaction water is acting as a base, according to our definition above, by accepting a proton from HCl which in turn is acting as an acid by donating a

More information

Aldehydes & Ketones I

Aldehydes & Ketones I 2302272 Org Chem II Part I Lecture 3 Aldehydes & Ketones I Instructor: Dr. Tanatorn Khotavivattana E-mail: tanatorn.k@chula.ac.th Recommended Textbook: Chapter 18 in Organic Chemistry, 8 th Edition, L.

More information

For the element X in the ionic compound MX, explain the meaning of the term oxidation state.

For the element X in the ionic compound MX, explain the meaning of the term oxidation state. 1. (a) By referring to electrons, explain the meaning of the term oxidising agent.... For the element X in the ionic compound MX, explain the meaning of the term oxidation state.... (c) Complete the table

More information

Chem 263 Nov 24, Properties of Carboxylic Acids

Chem 263 Nov 24, Properties of Carboxylic Acids Chem 263 ov 24, 2009 Properties of Carboxylic Acids Since carboxylic acids are structurally related to both ketones and aldehydes, we would expect to see some similar structural properties. The carbonyl

More information

Preparation of Aliphatic Amines by the Leuckart Reaction

Preparation of Aliphatic Amines by the Leuckart Reaction Preparation of Aliphatic Amines by the Leuckart Reaction Lin Yang, Rongji Dai, Wei Liu and Yulin Deng, School of Life Science and Technology, Beijing Institute of Technology, 5 South Zhongguancun Street,

More information

CHAPTER - V MECHANISM OF OXIDATION OF AMINO ACIDS BY NBN

CHAPTER - V MECHANISM OF OXIDATION OF AMINO ACIDS BY NBN 37 CHAPTER - V MECHANISM OF OXIDATION OF AMINO ACIDS BY NBN Before proposing a probable mechanism for the oxidation of amino acids by NBN, the inetic results of the present investigation are summed up

More information

(Neither an oxidation or reduction: Addition or loss of H +, H 2 O, HX).

(Neither an oxidation or reduction: Addition or loss of H +, H 2 O, HX). eactions of Alcohols Alcohols are versatile organic compounds since they undergo a wide variety of transformations the majority of which are either oxidation or reduction type reactions. xidation is a

More information