Supporting Information. Valley Zeeman Splitting and Valley Polarization of Neutral and Charged Excitons in Monolayer MoTe2 at High Magnetic Fields

Size: px
Start display at page:

Download "Supporting Information. Valley Zeeman Splitting and Valley Polarization of Neutral and Charged Excitons in Monolayer MoTe2 at High Magnetic Fields"

Transcription

1 Supporting Information Valley Zeeman Splitting and Valley Polarization of Neutral and Charged Excitons in Monolayer MoTe2 at High Magnetic Fields Ashish Arora,*, Robert Schmidt, Robert Schneider, Maciej R. Molas, Ivan Breslavetz, Marek Potemski, and Rudolf Bratschitsch*, Institute of Physics and Center for Nanotechnology, University of Münster, Wilhelm-KlemmStrasse 10, Münster, Germany Laboratoire National des Champs Magnétiques Intenses, CNRS-UGA-UPS-INSA-EMFL, 25 rue des Martyrs, Grenoble, France Corresponding Authors: * (RB) * (AA) *Fax: Atomic force microscopy, Raman spectroscopy, spectroscopy of monolayer and few-layer MoTe2 flakes and photoluminescence Figure S1: Optical microscope image and AFM profile of (a) the 1L MoTe2 flake on Si/SiO2 substrate and (b) a 2L and a 3L thick MoTe2 flake on Si/SiO2 substrate. (c) Raman spectra of 1L, 2L, and 3L thick MoTe2 flakes on sapphire and (d) on Si/SiO2 substrate. Figures S1 (a) and (b) show optical microscopy images of monolayer (1L), 2L, and 3L-MoTe2 flakes on Si/SiO2(80 nm) substrate. The monolayer thickness is 0.65 ± 0.08 nm. This value is determined by measuring the step height between a 2L and a 3L flake with an atomic force microscope (AFM) (Fig. S1 (b)), and is in agreement with a previous report.1 The 1L-height of S1

2 the MoTe 2 flake measured with the AFM directly from substrate to monolayer is 1.6±0.1 nm, and larger than the theoretical value. This is due to contamination between the monolayer and the substrate, as observed earlier for MoS 2, 2 MoSe 2, 3 WS 2, 4 and WSe 2. 5 However, the monolayer is unambiguously identified by Raman spectroscopy (see below). For performing Raman spectroscopy measurements 600 μw of a 632 nm laser is focused to a diameter of ~ 1 μm. Raman spectra are obtained for 1L, 2L and 3L MoTe 2 flakes, placed on Si/SiO 2 or sapphire substrates (Fig S1 (c) and (d)). The Raman active modes A and E are identified in all flakes. 1,6 8 In 2L and 3L flakes, the B mode is observed in addition, which is absent in the 1L flake. In that way, the monolayer is unambiguously identified. 1,6 8 The A mode splits into two lines for the 3L flake, which lets one distinguish the 2L and 3L flakes. 1,6 8 Figure S2 shows microphotoluminescence (μpl) spectra for 1L MoTe 2 at temperatures ranging from T = 4 K to 220 K. A continuous-wave 514 nm laser is used as an excitation source with a power of 20 μw focused on the sample (focus diameter ~ 1 μm). Raising the temperature above 220 K does not yield any measurable PL emission. The charged exciton emission is discernible below 100 K. At higher temperatures the PL is dominated by the neutral exciton emission. This behavior is in qualitative agreement with a previous report on ML MoTe 2, 6 as well as other ML transition metal dichalcogenides Figure S2: Microphotoluminescence spectra of ML MoTe 2 on Si/SiO 2 substrate, as a function of temperature T = 4 K K, in steps of 20 K. PL corresponding to the neutral X and charged X ± excitons is observed. The spectra are shifted vertically in steps of 200 counts μw -1 s -1 for clarity, and have been multiplied by the factors noted on the right side of the respective curve. S2

3 Summary of excitonic g-factors in monolayer transition metal dichalcogenides Table 1: Experimentally obtained g-factors for the neutral ( and ) and charged ( ± ) excitons for various monolayer TMDCs including the present work along with the corresponding references. Material (monolayer) "! ± " # 4.0± ± MoS 2 4.6± ± WS ± ± MoSe 2 WSe 2 4.1± ±0.2 17,18 4.4± to ± ± ± ± ± ± ± ± MoTe 2 (present work) 4.6± ± ±0.6 S3

4 References (1) Ruppert, C.; Aslan, O. B.; Heinz, T. F. Nano Lett. 2014, 14, (2) Crowne, F. J.; Amani, M.; Birdwell, A. G.; Chin, M. L.; O Regan, T. P.; Najmaei, S.; Liu, Z.; Ajayan, P. M.; Lou, J.; Dubey, M. Phys. Rev. B 2013, 88, (3) Tongay, S.; Zhou, J.; Ataca, C.; Lo, K.; Matthews, T. S.; Li, J.; Grossman, J. C.; Wu, J. Nano Lett. 2012, 12, (4) Berkdemir, A.; Gutiérrez, H. R.; Botello-Méndez, A. R.; Perea-López, N.; Elías, A. L.; Chia, C.-I.; Wang, B.; Crespi, V. H.; López-Urías, F.; Charlier, J.-C.; Terrones, H.; Terrones, M. Sci. Rep. 2013, 3, (5) Koperski, M.; Nogajewski, K.; Arora, A.; Cherkez, V.; Mallet, P.; Veuillen, J.-Y.; Marcus, J.; Kossacki, P.; Potemski, M. Nat. Nanotechnol. 2015, 10, (6) Lezama, I. G.; Arora, A.; Ubaldini, A.; Barreteau, C.; Giannini, E.; Potemski, M.; Morpurgo, A. F. Nano Lett. 2015, 15, (7) Froehlicher, G.; Lorchat, E.; Fernique, F.; Joshi, C.; Molina-Sánchez, A.; Wirtz, L.; Berciaud, S. Nano Lett. 2015, 15, (8) Grzeszczyk, M.; Gołasa, K.; Zinkiewicz, M.; Nogajewski, K.; Molas, M. R.; Potemski, M.; Wysmołek, A.; Babiński, A. arxiv: (9) Arora, A.; Koperski, M.; Nogajewski, K.; Marcus, J.; Faugeras, C.; Potemski, M. Nanoscale 2015, 7, (10) Arora, A.; Nogajewski, K.; Molas, M.; Koperski, M.; Potemski, M. Nanoscale 2015, 7, (11) Ross, J. S.; Wu, S.; Yu, H.; Ghimire, N. J.; Jones, A. M.; Aivazian, G.; Yan, J.; Mandrus, D. G.; Xiao, D.; Yao, W.; Xu, X. Nat. Commun. 2013, 4, (12) Zhu, C. R.; Zhang, K.; Glazov, M.; Urbaszek, B.; Amand, T.; Ji, Z. W.; Liu, B. L.; Marie, X. Phys. Rev. B 2014, 90, (13) Wang, G.; Robert, C.; Suslu, A.; Chen, B.; Yang, S.; Alamdari, S.; Gerber, I. C.; Amand, T.; Marie, X.; Tongay, S.; Urbaszek, B. Nat. Commun. 2015, 6, (14) Stier, A. V.; McCreary, K. M.; Jonker, B. T.; Kono, J.; Crooker, S. A. Nat. Commun. 2016, 7, (15) Mitioglu, A. A.; Galkowski, K.; Surrente, A.; Klopotowski, L.; Dumcenco, D.; Kis, A.; Maude, D. K.; Plochocka, P. Phys. Rev. B 2016, 93, (16) Li, Y.; Ludwig, J.; Low, T.; Chernikov, A.; Cui, X.; Arefe, G.; Kim, Y. D.; van der Zande, A. M.; Rigosi, A.; Hill, H. M.; Kim, S. H.; Hone, J.; Li, Z.; Smirnov, D.; Heinz, T. F. Phys. Rev. Lett. 2014, 113, (17) MacNeill, D.; Heikes, C.; Mak, K. F.; Anderson, Z.; Kormányos, A.; Zólyomi, V.; Park, J.; Ralph, D. C. Phys. Rev. Lett. 2015, 114, S4

5 (18) Wang, G.; Bouet, L.; Glazov, M. M.; Amand, T.; Ivchenko, E. L.; Palleau, E.; Marie, X.; Urbaszek, B. 2D Mater. 2015, 2, (19) Aivazian, G.; Gong, Z.; Jones, A. M.; Chu, R.-L.; Yan, J.; Mandrus, D. G.; Zhang, C.; Cobden, D.; Yao, W.; Xu, X. Nat. Phys. 2015, 11, (20) Srivastava, A.; Sidler, M.; Allain, A. V.; Lembke, D. S.; Kis, A.; Imamoğlu, A. Nat. Phys. 2015, 11, (21) Mitioglu, A. A.; Plochocka, P.; Granados del Aguila, Á.; Christianen, P. C. M.; Deligeorgis, G.; Anghel, S.; Kulyuk, L.; Maude, D. K. Nano Lett. 2015, 15, S5

Single photon emitters in exfoliated WSe 2 structures

Single photon emitters in exfoliated WSe 2 structures Single photon emitters in exfoliated WSe 2 structures M. Koperski, 1,2 K. Nogajewski, 1 A. Arora, 1 V. Cherkez, 3 P. Mallet, 3 J.-Y. Veuillen, 3 J. Marcus, 3 P. Kossacki, 1,2 and M. Potemski 1 1 Laboratoire

More information

arxiv: v1 [cond-mat.mes-hall] 22 Mar 2019

arxiv: v1 [cond-mat.mes-hall] 22 Mar 2019 Large g factor in bilayer WS flakes arxiv:1903.0939v1 [cond-mat.mes-hall] Mar 019 Sibai Sun, 1, Yang Yu, 1, Jianchen Dang, 1, Kai Peng, 1, Xin Xie, 1, Feilong Song, 1, Chenjiang Qian, 1, Shiyao Wu, 1,

More information

arxiv: v1 [cond-mat.mes-hall] 9 Nov 2018

arxiv: v1 [cond-mat.mes-hall] 9 Nov 2018 Zeeman spectroscopy of excitons and hybridization of electronic states in few-layer WSe, MoSe and MoTe arxiv:1811.0403v1 cond-mat.mes-hall 9 Nov 018 Ashish Arora, 1, Maciej Koperski, 1, 3, 4 Artur Slobodeniuk,

More information

Supporting Information: Probing Interlayer Interactions in Transition Metal. Dichalcogenide Heterostructures by Optical Spectroscopy: MoS 2 /WS 2 and

Supporting Information: Probing Interlayer Interactions in Transition Metal. Dichalcogenide Heterostructures by Optical Spectroscopy: MoS 2 /WS 2 and Supporting Information: Probing Interlayer Interactions in Transition Metal Dichalcogenide Heterostructures by Optical Spectroscopy: MoS 2 /WS 2 and MoSe 2 /WSe 2 Albert F. Rigosi, Heather M. Hill, Yilei

More information

arxiv: v2 [cond-mat.mes-hall] 15 Jun 2015

arxiv: v2 [cond-mat.mes-hall] 15 Jun 2015 Optical investigation of monolayer and bulk tungsten arxiv:1506.03905v2 [cond-mat.mes-hall] 15 Jun 2015 diselenide (WSe 2 ) in high magnetic fields A. A. Mitioglu,, P. Plochocka,, Á. Granados del Aguila,

More information

arxiv: v1 [cond-mat.mes-hall] 13 Aug 2016

arxiv: v1 [cond-mat.mes-hall] 13 Aug 2016 Exciton and trion dynamics in atomically thin MoSe 2 arxiv:1608.04031v1 [cond-mat.mes-hall] 13 Aug 2016 and WSe 2 : effect of localization D. Schmidt, T. Godde,, J. Schmutzler, M. Aßmann, J. Debus, F.

More information

Observation of tunable charged exciton polaritons in hybrid monolayer WS 2 plasmonic nanoantenna system

Observation of tunable charged exciton polaritons in hybrid monolayer WS 2 plasmonic nanoantenna system Supporting Information for Observation of tunable charged exciton polaritons in hybrid monolayer WS 2 plasmonic nanoantenna system Jorge Cuadra 1,*, Denis G. Baranov 1, Martin Wersäll 1, Ruggero Verre

More information

Single Photon Emission from Deep Level Defects in Monolayer WSe 2. Yanxia Ye, Xiuming Dou*, Kun Ding, Yu Chen, Desheng Jiang, Fuhua Yang, and Baoquan

Single Photon Emission from Deep Level Defects in Monolayer WSe 2. Yanxia Ye, Xiuming Dou*, Kun Ding, Yu Chen, Desheng Jiang, Fuhua Yang, and Baoquan Single Photon Emission from Deep Level Defects in Monolayer WSe 2 Yanxia Ye, Xiuming Dou*, Kun Ding, Yu Chen, Desheng Jiang, Fuhua Yang, and Baoquan Sun* State Key Laboratory of Superlattices and Microstructures,

More information

Dark excitons and the elusive valley polarization in transition metal dichalcogenides

Dark excitons and the elusive valley polarization in transition metal dichalcogenides Home Search Collections Journals About Contact us My IOPscience Dark excitons and the elusive valley polarization in transition metal dichalcogenides This content has been downloaded from IOPscience. Please

More information

Supporting Information. Davydov Splitting and Excitonic Resonance Effects

Supporting Information. Davydov Splitting and Excitonic Resonance Effects Supporting Information Davydov Splitting and Excitonic Resonance Effects in Raman Spectra of Few-Layer MoSe2 Kangwon Kim,,1 Jae-Ung Lee,,1 Dahyun Nam, and Hyeonsik Cheong Department of Physics, Sogang

More information

arxiv: v1 [cond-mat.mtrl-sci] 20 Apr 2016

arxiv: v1 [cond-mat.mtrl-sci] 20 Apr 2016 Well separated trion and neutral excitons on superacid treated MoS 2 monolayers Fabian Cadiz 1, Simon Tricard 1, Maxime Gay 1, Delphine Lagarde 1, Gang Wang 1, Cedric Robert 1, Pierre Renucci 1, Bernhard

More information

Valley Zeeman Effect of free and bound excitons in WSe2

Valley Zeeman Effect of free and bound excitons in WSe2 Valley Zeeman Effect of free and bound excitons in WSe2 Ajit Srivastava Quantum Photonics Group ETH Zurich, Switzerland 24.01.2014 TMD Research Motivation Optical control of spins & pseudo-spins 2D optical

More information

arxiv: v1 [cond-mat.mtrl-sci] 5 Dec 2017

arxiv: v1 [cond-mat.mtrl-sci] 5 Dec 2017 Optical spectroscopy of excited exciton states in MoS 2 monolayers in van der Waals heterostructures arxiv:72.548v [cond-mat.mtrl-sci] 5 Dec 27 C. Robert, M.A. Semina 2, F. Cadiz,3, M. Manca, E. Courtade,

More information

Resonant quenching of Raman scattering due to out-of-plane A1g/A 1 modes

Resonant quenching of Raman scattering due to out-of-plane A1g/A 1 modes Resonant quenching of Raman scattering due to out-of-plane A1g/A 1 modes in few-layer MoTe2 K. Gołasa, 1,a) M. Grzeszczyk, 1 M. R. Molas, 2 M. Zinkiewicz, 1 Ł. Bala, 1 K. Nogajewski, 2 M. Potemski, 2 A.

More information

Influence of the oxide thickness of SiO_2/Si(001) substrate on the optic harmonic intensity of few-layer MoSe. Miyauchi, Yoshihiro; Morishita, Ryo;

Influence of the oxide thickness of SiO_2/Si(001) substrate on the optic harmonic intensity of few-layer MoSe. Miyauchi, Yoshihiro; Morishita, Ryo; JAIST Reposi https://dspace.j Title Influence of the oxide thickness of SiO_2/Si(001) substrate on the optic harmonic intensity of few-layer MoSe Miyauchi, Yoshihiro; Morishita, Ryo; Author(s) Masatoshi;

More information

Supplementary Information for Atomically Phase-Matched Second-Harmonic Generation. in a 2D Crystal

Supplementary Information for Atomically Phase-Matched Second-Harmonic Generation. in a 2D Crystal Supplementary Information for Atomically Phase-Matched Second-Harmonic Generation in a 2D Crystal Mervin Zhao 1, 2, Ziliang Ye 1, 2, Ryuji Suzuki 3, 4, Yu Ye 1, 2, Hanyu Zhu 1, Jun Xiao 1, Yuan Wang 1,

More information

Nanoscale PAPER. 1 Introduction. Huimin Sun, Zhigao Hu * a,b and Junhao Chu a. View Article Online View Journal View Issue

Nanoscale PAPER. 1 Introduction. Huimin Sun, Zhigao Hu * a,b and Junhao Chu a. View Article Online View Journal View Issue PAPER View Article Online View Journal View Issue Cite this:, 2018, 10, 11553 Received 3rd March 2018, Accepted 30th May 2018 DOI: 10.1039/c8nr01823e rsc.li/nanoscale Enhanced exciton emission behavior

More information

arxiv: v2 [cond-mat.mes-hall] 1 Dec 2015

arxiv: v2 [cond-mat.mes-hall] 1 Dec 2015 Exciton band structure in layered MoSe 2 : From monolayer to bulk limit arxiv:159.6439v2 [cond-mat.mes-hall] 1 Dec 215 shish rora,,, Karol Nogajewski, Maciej R. Molas,, Maciej Koperski,, and Marek Potemski,

More information

arxiv: v1 [cond-mat.mes-hall] 24 Jun 2016

arxiv: v1 [cond-mat.mes-hall] 24 Jun 2016 Radiatively limited dephasing and exciton dynamics arxiv:166.7634v1 [cond-mat.mes-hall] 24 Jun 216 in MoSe 2 monolayers Tomasz Jakubczyk,, Valentin Delmonte,, Maciej Koperski,, Karol Nogajewski, Clément

More information

Physical origin of Davydov splitting and resonant. Raman spectroscopy of Davydov components in

Physical origin of Davydov splitting and resonant. Raman spectroscopy of Davydov components in Physical origin of Davydov splitting and resonant Raman spectroscopy of Davydov components in multilayer MoTe 2 Q. J. Song, 1, 3, Q. H. Tan, 2, X. Zhang, 2 J. B. Wu, 2 B. W. Sheng, 1 Y. Wan, 1, 3 X. Q.

More information

Resonance Profiles of Valley Polarization in Single-Layer MoS 2 and MoSe 2

Resonance Profiles of Valley Polarization in Single-Layer MoS 2 and MoSe 2 This article has been published at Physical Review Letters: Phys. Rev. Lett. 121, 167401 (2018). Resonance Profiles of Valley Polarization in Single-Layer MoS 2 and MoSe 2 Hans Tornatzky and Anne-Marie

More information

Hall and field-effect mobilities in few layered p -WSe2 field-effect transistors Current-Voltage characteristics and leakage voltage Figure S1

Hall and field-effect mobilities in few layered p -WSe2 field-effect transistors Current-Voltage characteristics and leakage voltage Figure S1 Supplemental information to manuscript titled: Hall and field-effect mobilities in few layered p-wse 2 field-effect transistors by Nihar R. Pradhan 1, Daniel Rhodes 1, Shariar Memaran 1, Jean M. Poumirol

More information

Fine Structure and Lifetime of Dark Excitons in Transition Metal Dichalcogenide Monolayers

Fine Structure and Lifetime of Dark Excitons in Transition Metal Dichalcogenide Monolayers Fine Structure and Lifetime of Dark Excitons in Transition Metal Dichalcogenide Monolayers C. Robert 1, T. Amand 1, F. Cadiz 1, D. Lagarde 1, E. Courtade 1, M. Manca 1, T. Taniguchi, K. Watanabe, B. Urbaszek

More information

Magnetic control of valley pseudospin in monolayer WSe 2

Magnetic control of valley pseudospin in monolayer WSe 2 Magnetic control of valley pseudospin in monolayer WSe 2 Grant Aivazian, Zhirui Gong, Aaron M. Jones, Rui-Lin Chu, Jiaqiang Yan, David G. Mandrus, Chuanwei Zhang, David Cobden, Wang Yao, and Xiaodong Xu

More information

Atomically thin two-dimensional crystals have attracted

Atomically thin two-dimensional crystals have attracted pubs.acs.org/nanolett Optical Properties and Band Gap of Single- and Few-Layer MoTe 2 Crystals Claudia Ruppert, Ozgur Burak Aslan, and Tony F. Heinz* Departments of Physics and Electrical Engineering,

More information

Nanoscale. Valley and spin dynamics in MoSe 2 two-dimensional crystals PAPER. 1. Introduction

Nanoscale. Valley and spin dynamics in MoSe 2 two-dimensional crystals PAPER. 1. Introduction PAPER Cite this: Nanoscale, 2014, 6, 12690 Valley and spin dynamics in MoSe 2 two-dimensional crystals Nardeep Kumar, a Jiaqi He, b Dawei He, b Yongsheng Wang* b and Hui Zhao* a Received 27th June 2014,

More information

Measurement of high exciton binding energy in the monolayer transition-metal dichalcogenides WS 2 and WSe 2

Measurement of high exciton binding energy in the monolayer transition-metal dichalcogenides WS 2 and WSe 2 Measurement of high exciton binding energy in the monolayer transition-metal dichalcogenides WS 2 and WSe 2 A. T. Hanbicki a, M. Currie a, G. Kioseoglou b, A. L. Friedman a, and B. T. Jonker a* a Naval

More information

Two-dimensional transition metal dichalcogenides

Two-dimensional transition metal dichalcogenides Tightly Bound Trions in Transition Metal Dichalcogenide Heterostructures Matthew Z. Bellus, Frank Ceballos, Hsin-Ying Chiu,* and Hui Zhao* Department of Physics and Astronomy, The University of Kansas,

More information

Dirac matter: Magneto-optical studies

Dirac matter: Magneto-optical studies Dirac matter: Magneto-optical studies Marek Potemski Laboratoire National des Champs Magnétiques Intenses Grenoble High Magnetic Field Laboratory CNRS/UGA/UPS/INSA/EMFL MOMB nd International Conference

More information

vapour deposition. Raman peaks of the monolayer sample grown by chemical vapour

vapour deposition. Raman peaks of the monolayer sample grown by chemical vapour Supplementary Figure 1 Raman spectrum of monolayer MoS 2 grown by chemical vapour deposition. Raman peaks of the monolayer sample grown by chemical vapour deposition (S-CVD) are peak which is at 385 cm

More information

Excitonic resonances in thin films of WSe 2 : from monolayer to bulk material

Excitonic resonances in thin films of WSe 2 : from monolayer to bulk material Excitonic resonances in thin films of WSe 2 : from monolayer to bulk material shish rora, Maciej Koperski, Karol Nogajewski, Jacques Marcus, Clement Faugeras, Marek Potemski To cite this version: shish

More information

Supporting Information. Strain control of exciton-phonon coupling in. atomically thin semiconductors

Supporting Information. Strain control of exciton-phonon coupling in. atomically thin semiconductors Supporting Information Strain control of exciton-phonon coupling in atomically thin semiconductors Iris Niehues 1, Robert Schmidt 1, Matthias Drüppel 2, Philipp Marauhn 2, Dominik Christiansen 3, Malte

More information

Imaging Spin Dynamics in Monolayer WS 2 by Time-Resolved Kerr Rotation Microscopy

Imaging Spin Dynamics in Monolayer WS 2 by Time-Resolved Kerr Rotation Microscopy Imaging Spin Dynamics in Monolayer WS 2 by Time-Resolved Kerr Rotation Microscopy Elizabeth J. Bushong, 1 Michael J. Newburger, 1 Yunqiu (Kelly) Luo, 1 Kathleen M. McCreary, 2 Simranjeet Singh, 1 Iwan

More information

Revealing the Biexciton and Trion-exciton Complexes in BN Encapsulated WSe2

Revealing the Biexciton and Trion-exciton Complexes in BN Encapsulated WSe2 Revealing the Biexciton and Trion-exciton Complexes in BN Encapsulated WSe2 Zhipeng Li 1,2,#, Tianmeng Wang 1,#, Zhengguang Lu 3,4, Chenhao Jin 5, Yanwen Chen 1, Yuze Meng 1,6, Zhen Lian 1, Takashi Taniguchi

More information

Supporting Information

Supporting Information Supporting Information Composition-Tunable Synthesis of Large-Scale Mo1-xWxS2 Alloys with Enhanced Photoluminescence Juhong Park,#, Min Su Kim,#, Bumsu Park, Sang Ho Oh, Shrawan Roy,, Jeongyong Kim*,,,,

More information

Supplementary Information. Experimental Evidence of Exciton Capture by Mid-Gap Defects in CVD. Grown Monolayer MoSe2

Supplementary Information. Experimental Evidence of Exciton Capture by Mid-Gap Defects in CVD. Grown Monolayer MoSe2 Supplementary Information Experimental Evidence of Exciton Capture by Mid-Gap Defects in CVD Grown Monolayer MoSe2 Ke Chen 1, Rudresh Ghosh 2,3, Xianghai Meng 1, Anupam Roy 2,3, Joon-Seok Kim 2,3, Feng

More information

Binding energies of trions and biexcitons in two-dimensional semiconductors from diffusion quantum Monte Carlo calculations

Binding energies of trions and biexcitons in two-dimensional semiconductors from diffusion quantum Monte Carlo calculations Binding energies of trions and biecitons in two-dimensional semiconductors from diffusion quantum Monte Carlo calculations M. Szyniszewski, 1, E. Mostaani, 1, 3 N. D. Drummond, 1 and V. I. Fal ko 1, 1

More information

SUPPLEMENTARY INFORMATION

SUPPLEMENTARY INFORMATION In the format provided by the authors and unedited. DOI: 10.1038/NMAT4996 Exciton Hall effect in monolayer MoS2 Masaru Onga 1, Yijin Zhang 2, 3, Toshiya Ideue 1, Yoshihiro Iwasa 1, 4 * 1 Quantum-Phase

More information

Atomically thin transition metal dichalcogenides

Atomically thin transition metal dichalcogenides Layer-Dependent Modulation of Tungsten Disulfide Photoluminescence by Lateral Electric Fields Zhengyu He, Yuewen Sheng, Youmin Rong, Gun-Do Lee, Ju Li,, ) and Jamie H. Warner*, ARTICLE Department of Materials,

More information

Measurement of the optical dielectric function of transition metal dichalcogenide monolayers: MoS 2, MoSe 2, WS 2 and WSe 2

Measurement of the optical dielectric function of transition metal dichalcogenide monolayers: MoS 2, MoSe 2, WS 2 and WSe 2 Measurement of the optical dielectric function of transition metal dichalcogenide monolayers: MoS 2, MoSe 2, WS 2 and WSe 2 Yilei Li 1, Alexey Chernikov 1, Xian Zhang 2, Albert Rigosi 1, Heather M. Hill

More information

Observation of Intervalley Biexcitonic Optical Stark Effect in Monolayer WS[subscript 2]

Observation of Intervalley Biexcitonic Optical Stark Effect in Monolayer WS[subscript 2] Observation of Intervalley Biexcitonic Optical Stark Effect in Monolayer WS[subscript 2] The MIT Faculty has made this article openly available. Please share how this access benefits you. Your story matters.

More information

Monolayer Semiconductors

Monolayer Semiconductors Monolayer Semiconductors Gilbert Arias California State University San Bernardino University of Washington INT REU, 2013 Advisor: Xiaodong Xu (Dated: August 24, 2013) Abstract Silicon may be unable to

More information

Supplementary Information. depending on the atomic thickness of intrinsic and chemically doped. MoS 2

Supplementary Information. depending on the atomic thickness of intrinsic and chemically doped. MoS 2 Electronic Supplementary Material (ESI) for Nanoscale. This journal is The Royal Society of Chemistry 2014 Supplementary Information Confocal absorption spectral imaging of MoS 2 : Optical transitions

More information

Differences in the Mechanical Properties of Monolayer and Multilayer WSe 2 /MoSe 2

Differences in the Mechanical Properties of Monolayer and Multilayer WSe 2 /MoSe 2 Differences in the Mechanical Properties of Monolayer and Multilayer WSe 2 /MoSe 2 Y. M. Jaques 1,2,3, P. Manimunda 4, Y. Nakanishi 2, S. Susarla 2, C. F. Woellner 1,2,3, S. Bhowmick 4, S. A. S. Asif 4,

More information

Photothermal Characterization of MoS 2 Emission Coupled to a Microdisk Cavity

Photothermal Characterization of MoS 2 Emission Coupled to a Microdisk Cavity Photothermal Characterization of MoS 2 Emission Coupled to a Microdisk Cavity Jason C Reed 3, Stephanie C. Malek 3, Fei Yi 3, Carl H. Naylor 4, A. T. Charlie Johnson 4, and Ertugrul Cubukcu 1,2 * 1 Department

More information

Switzerland 2) GAP, Université de Genève, 24 quai Ernest Ansermet, CH-1211, Geneva, Switzerland (Dated: 26 April 2018)

Switzerland 2) GAP, Université de Genève, 24 quai Ernest Ansermet, CH-1211, Geneva, Switzerland (Dated: 26 April 2018) One important aspect that is seemingly common to semiconducting TMDC monolayers is their ability to support well-balanced ambipolar transport. Measurements done on suitable field-effect transistor (FET)

More information

Substrate Sensitivity of Monolayer WS2

Substrate Sensitivity of Monolayer WS2 Substrate Sensitivity of Monolayer WS2 Kathleen M. McCreary, 1 * Aubrey T. Hanbicki, 1 Simranjeet Singh, 2 Roland K. Kawakami, 2 Berend T. Jonker 1 1 Naval Research Laboratory, Washington DC 20375, USA

More information

Excitonic Complexes and Emerging Interlayer Electron-Phonon Coupling in BN Encapsulated Monolayer Semiconductor Alloy: WS0.6Se1.4

Excitonic Complexes and Emerging Interlayer Electron-Phonon Coupling in BN Encapsulated Monolayer Semiconductor Alloy: WS0.6Se1.4 Excitonic Complexes and Emerging Interlayer Electron-Phonon Coupling in BN Encapsulated Monolayer Semiconductor Alloy: WS0.6Se1.4 Yuze Meng 1,2#, Tianmeng Wang 2#, Zhipeng Li 2,3, Ying Qin 4, Zhen Lian

More information

Tunable Photoluminescence of Monolayer MoS 2. via Chemical Doping

Tunable Photoluminescence of Monolayer MoS 2. via Chemical Doping Tunable Photoluminescence of Monolayer MoS 2 via Chemical Doping Shinichiro Mouri 1, *, Yuhei Miyauchi 1,2, and Kazunari Matsuda 1,+ 1 Institute of Advanced Energy, Kyoto University, Uji, Kyoto 611-0011,

More information

TEOS characterization of 2D materials from graphene to TMDCs

TEOS characterization of 2D materials from graphene to TMDCs Marc Chaigneau Yoshito Okuno, Andrey Krayev, Filippo Fabbri HORIBA Scientific AIST-NT Inc. IMEM-CNR Institute TEOS characterization of 2D materials from graphene to TMDCs 30-03-2017 Graphene2017 2015 2017

More information

Supplemental Materials for. Interlayer Exciton Optoelectronics in a 2D Heterostructure p-n Junction

Supplemental Materials for. Interlayer Exciton Optoelectronics in a 2D Heterostructure p-n Junction Supplemental Materials for Interlayer Exciton Optoelectronics in a 2D Heterostructure p-n Junction Jason S. Ross 1, Pasqual Rivera 2, John Schaibley 2, Eric Lee-Wong 2, Hongyi Yu 3, Takashi Taniguchi 4,

More information

Supporting Information. Progressive Micro-Modulation of Interlayer Coupling in. Stacked WS 2 /WSe 2 Heterobilayers Tailored by a. Focused Laser Beam

Supporting Information. Progressive Micro-Modulation of Interlayer Coupling in. Stacked WS 2 /WSe 2 Heterobilayers Tailored by a. Focused Laser Beam Supporting Information Progressive Micro-Modulation of Interlayer Coupling in Stacked WS 2 /WSe 2 Heterobilayers Tailored by a Focused Laser Beam Yayu Lee^, Zhenliang Hu^,, Xinyun Wang^,, Chorng-Haur Sow^,

More information

Received: October 19, Letter. pubs.acs.org/journal/apchd5

Received: October 19, Letter. pubs.acs.org/journal/apchd5 lhc00 ACSJCA JCA10.0.1465/W Unicode research.3f (R3.6.i11:4432 2.0 alpha 39) 2015/07/15 14:30:00 PROD-JCA1 rq_4817396 2/10/2016 15:27:44 5 JCA-DEFAULT pubs.acs.org/journal/apchd5 1 Strong Circularly Polarized

More information

SUPPLEMENTARY INFORMATION

SUPPLEMENTARY INFORMATION In the format provided by the authors and unedited. DOI: 10.1038/NNANO.2017.105 Magnetic brightening and control of dark excitons in monolayer WSe 2 Xiao-Xiao Zhang 1,2,3, Ting Cao 4,5, Zhengguang Lu 6,

More information

SUPPLEMENTARY INFORMATION

SUPPLEMENTARY INFORMATION Lateral heterojunctions within monolayer MoSe 2 -WSe 2 semiconductors Chunming Huang 1,#,*, Sanfeng Wu 1,#,*, Ana M. Sanchez 2,#,*, Jonathan J. P. Peters 2, Richard Beanland 2, Jason S. Ross 3, Pasqual

More information

arxiv: v1 [cond-mat.mtrl-sci] 10 Dec 2016

arxiv: v1 [cond-mat.mtrl-sci] 10 Dec 2016 Resonant Raman imaging of MoS 2 -substrate interaction Hongyuan Li 1, 2 and Dmitri V. Voronine 1, 3 1 Institute for Quantum Science and Engineering, arxiv:1612.03354v1 [cond-mat.mtrl-sci] 10 Dec 2016 Texas

More information

Valley polarization by spin injection in a light-emitting van der Waals heterojunction

Valley polarization by spin injection in a light-emitting van der Waals heterojunction Valley polarization by spin injection in a lightemitting van der Waals heterojunction Oriol Lopez Sanchez 1,2, Dmitry Ovchinnikov 1,2, Shikhar Misra 3, Adrien Allain 1,2, Andras Kis 1,2* 1 Electrical Engineering

More information

Anomalous temperature-dependent spin-valley polarization in monolayer WS 2

Anomalous temperature-dependent spin-valley polarization in monolayer WS 2 Anomalous temperature-dependent spin-valley polarization in monolayer WS 2 A.T. Hanbicki 1, G. Kioseoglou 2,3, M. Currie 1, C.S. Hellberg 1, K.M. McCreary 1, A.L. Friedman 1, and B.T. Jonker 1 1 Naval

More information

Phase Change and Piezoelectric Properties of Two-Dimensional Materials

Phase Change and Piezoelectric Properties of Two-Dimensional Materials Phase Change and Piezoelectric Properties of Two-Dimensional Materials April 22, 2015 Karel-Alexander Duerloo, Yao Li, Yao Zhou, Evan Reed Department of Materials Science and Engineering Stanford University

More information

arxiv: v1 [cond-mat.mes-hall] 14 Apr 2016

arxiv: v1 [cond-mat.mes-hall] 14 Apr 2016 Valley Trion Dynamics in Monolayer MoSe 2 Feng Gao, 1 Yongji Gong, 2, 3 Michael Titze, 1 Raybel Almeida, 1 Pulickel M. Ajayan, 2, 3 and Hebin Li 1 1 Department of Physics, Florida International University,

More information

Electronic Supplementary Information

Electronic Supplementary Information Electronic Supplementary Material (ESI) for Nanoscale Horizons. This journal is The Royal Society of Chemistry 218 Electronic Supplementary Information High Temperature Driven Inter-valley Carrier Transfer

More information

Ultrafast transient absorption measurements of photocarrier dynamics in monolayer and bulk ReSe2

Ultrafast transient absorption measurements of photocarrier dynamics in monolayer and bulk ReSe2 Vol. 26, No. 17 20 Aug 2018 OPTICS EXPRESS 21501 Ultrafast transient absorption measurements of photocarrier dynamics in monolayer and bulk ReSe2 J IAQI H E, 1,2,4 L U Z HANG, 1,4 D AWEI H E, 1,5 YONGSHENG

More information

Supporting Information Title: The effect of preparation conditions on Raman and Photoluminescence of Monolayer WS2

Supporting Information Title: The effect of preparation conditions on Raman and Photoluminescence of Monolayer WS2 Supporting Information Title: The effect of preparation conditions on Raman and Photoluminescence of Monolayer WS2 Kathleen M. McCreary, Aubrey T. Hanbicki, Simranjeet Singh, Roland K. Kawakami, Glenn

More information

Excitonic luminescence upconversion in a two-dimensional semiconductor

Excitonic luminescence upconversion in a two-dimensional semiconductor Excitonic luminescence upconversion in a two-dimensional semiconductor Authors: Aaron M. Jones 1, Hongyi Yu 2, John R. Schaibley 1, Jiaqiang Yan 3,4, David G. Mandrus 3-5, Takashi Taniguchi 6, Kenji Watanabe

More information

Nanoscale optical imaging of multi-junction MoS2-WS2 lateral heterostructure

Nanoscale optical imaging of multi-junction MoS2-WS2 lateral heterostructure Nanoscale optical imaging of multi-junction MoS2-WS2 lateral heterostructure Jiru Liu 1, Wenjin Xue 1, Haonan Zong 1, Xiaoyi Lai 1, Prasana K. Sahoo 2, Humberto R. Gutierrez 2 and Dmitri V. Voronine 2

More information

Photoluminescence of Monolayer MoS 2 on LaAlO 3 and SrTiO 3 substrates

Photoluminescence of Monolayer MoS 2 on LaAlO 3 and SrTiO 3 substrates Electronic Suppleentary Material (ES for anoscale. This journal is The Royal Society of Cheistry 214 Suppleentary nforation for Photoluinescence of Monolayer MoS 2 on LalO 3 and SrTiO 3 substrates Yuanyuan

More information

Evolution of Electronic Structure in Atomically Thin Sheets of WS 2

Evolution of Electronic Structure in Atomically Thin Sheets of WS 2 Evolution of Electronic Structure in Atomically Thin Sheets of WS 2 and WSe 2 Weijie Zhao a,c,#, Zohreh Ghorannevis a,c,#, Leiqiang Chu a,c, Minglin Toh d, Christian Kloc d, Ping-Heng Tan e, Goki Eda a,b,c,*

More information

TABLE OF CONTENTS (TOC) Bandgap-tunable lateral and vertical heterostructures based on monolayer Mo1-xWxS2 alloys

TABLE OF CONTENTS (TOC) Bandgap-tunable lateral and vertical heterostructures based on monolayer Mo1-xWxS2 alloys Nano Research DOI 10.1007/s12274-015-0826-7 Nano Res 1 Bandgap-tunable lateral and vertical heterostructures based on monolayer Mo 1-x W x S 2 alloys Yu Kobayashi 1, Shohei Mori 1, Yutaka Maniwa 1, and

More information

Probing dark excitons in atomically thin semiconductors via near-field. coupling to surface plasmon polaritons

Probing dark excitons in atomically thin semiconductors via near-field. coupling to surface plasmon polaritons Probing dark excitons in atomically thin semiconductors via near-field coupling to surface plasmon polaritons You Zhou 1,2*, Giovanni Scuri 2*, Dominik S. Wild 2*, Alexander A. High 1,2*, Alan Dibos 1,

More information

Nanoscale. Probing excitons in transition metal dichalcogenides by Drude-like exciton intraband absorption PAPER. 1. Introduction

Nanoscale. Probing excitons in transition metal dichalcogenides by Drude-like exciton intraband absorption PAPER. 1. Introduction PAPER Cite this: Nanoscale, 2018, 10, 9538 Probing excitons in transition metal dichalcogenides by Drude-like exciton intraband absorption Siqi Zhao, a Dawei He, a Jiaqi He, a Xinwu Zhang, a Lixin Yi,

More information

Supporting Information

Supporting Information Supporting Information Observation of Charge Transfer in Heterostructures Composed of MoSe 2 Quantum Dots and a Monolayer of MoS 2 or WSe 2 Shrawan Roy, a,b Guru P. Neupane, a,b Krishna P. Dhakal, a,b

More information

arxiv: v1 [cond-mat.mes-hall] 4 Sep 2018

arxiv: v1 [cond-mat.mes-hall] 4 Sep 2018 Interlayer excitons in transition metal dichalcogenide heterostructures arxiv:189.165v1 [cond-mat.mes-hall] 4 Sep 18 M. Van der Donck 1, and F. M. Peeters 1, 1 Department of Physics, University of Antwerp,

More information

Room temperature observation of biexcitons in exfoliated WS 2 monolayers

Room temperature observation of biexcitons in exfoliated WS 2 monolayers Room temperature observation of biexcitons in exfoliated WS 2 monolayers I. Paradisanos 1,2, S. Germanis 1, N. T. Pelekanos 1,3, C. Fotakis 1,2, E. Kymakis 1,4, G. Kioseoglou* 1,3, 3 and E. Stratakis*

More information

Abstract. Introduction

Abstract. Introduction Two Dimensional Maps of Photoluminescence and Second Harmonic Generation Tara Boland University of North Dakota University of Washington INT REU, 2014 Advisor: Xiaodong Xu (Dated: August 31, 2014) Abstract

More information

Optical properties of atomically thin transition metal dichalcogenides: Observations and puzzles

Optical properties of atomically thin transition metal dichalcogenides: Observations and puzzles Optical properties of atomically thin transition metal dichalcogenides: Observations and puzzles M. Koperski,, M. R. Molas, A. Arora,, K. Nogajewski, A. O. Slobodeniuk, C. Faugeras, M. Potemski Laboratoire

More information

Recombination kinetics and effects of superacid treatment in sulfur and selenium based transition metal dichalcogenides

Recombination kinetics and effects of superacid treatment in sulfur and selenium based transition metal dichalcogenides Supporting Information For Recombination kinetics and effects of superacid treatment in sulfur and selenium based transition metal dichalcogenides Matin Amani 1,2, Peyman Taheri 1, Rafik Addou 3, Geun

More information

Observation of long-lived interlayer excitons in monolayer MoSe2 WSe2 heterostructures

Observation of long-lived interlayer excitons in monolayer MoSe2 WSe2 heterostructures Title Author(s) Observation of long-lived interlayer excitons in monolayer MoSe2 WSe2 heterostructures Rivera, P; Schaibley, JR; Jones, AM; Ross, JS; Wu, SF; Aivazian, G; Klement, P; Seyler, K; Clark,

More information

Superior valley polarization and coherence of 2s. excitons in monolayer WSe2

Superior valley polarization and coherence of 2s. excitons in monolayer WSe2 Superior valley polarization and coherence of s excitons in monolayer WSe Shao-Yu Chen, 1 Thomas Goldstein, 1 Jiayue Tong, 1 Takashi Taniguchi, Kenji Watanabe and Jun Yan 1,* 1 Department of Physics, University

More information

Room temperature multi-phonon upconversion photoluminescence in monolayer semiconductor WS 2

Room temperature multi-phonon upconversion photoluminescence in monolayer semiconductor WS 2 https://doi.org/1.138/s41467-18-7994-1 OPEN Room temperature multi-phonon upconversion photoluminescence in monolayer semiconductor WS 2 J. Jadczak 1, L. Bryja 1, J. Kutrowska-Girzycka 1, P. Kapuściński

More information

Supplementary Figure 1 Interlayer exciton PL peak position and heterostructure twisting angle. a, Photoluminescence from the interlayer exciton for

Supplementary Figure 1 Interlayer exciton PL peak position and heterostructure twisting angle. a, Photoluminescence from the interlayer exciton for Supplementary Figure 1 Interlayer exciton PL peak position and heterostructure twisting angle. a, Photoluminescence from the interlayer exciton for six WSe 2 -MoSe 2 heterostructures under cw laser excitation

More information

Supporting Information

Supporting Information Copyright WILEY-VCH Verlag GmbH & Co. KGaA, 69469 Weinheim, Germany, 2015. Supporting Information for Adv. Funct. Mater., DOI: 10.1002/adfm.201503131 Tuning the Excitonic States in MoS 2 /Graphene van

More information

Chiral electroluminescence from 2D material based transistors

Chiral electroluminescence from 2D material based transistors New Perspectives in Spintronic and Mesoscopic Physics (NPSMP2015) June 10-12, 2015 Kashiwanoha, Japan Chiral electroluminescence from 2D material based transistors Y. Iwasa University of Tokyo & RIKEN

More information

Blue shifting of the A exciton peak in folded monolayer 1H-MoS 2

Blue shifting of the A exciton peak in folded monolayer 1H-MoS 2 Blue shifting of the A exciton peak in folded monolayer 1H-MoS 2 1,*, Frank J. Crowne, 1, Matin Amani, 1, A. Glen Birdwell, 1 Matthew L. Chin, 1 Terrance P. O Regan, 2 Sina Najmaei, 2 Zheng Liu, 2 Pulickel

More information

SYNERGISTIC ACTIVITIES

SYNERGISTIC ACTIVITIES University of Washington Department of Physics Email: xuxd@uw.edu Phone:206-543-8444 EDUCATION BACKGROUND Xiaodong Xu 2002-2008 PhD in Physics, University of Michigan, Ann Arbor Advisor: Duncan Steel,

More information

Strong light matter coupling in two-dimensional atomic crystals

Strong light matter coupling in two-dimensional atomic crystals SUPPLEMENTARY INFORMATION DOI: 10.1038/NPHOTON.2014.304 Strong light matter coupling in two-dimensional atomic crystals Xiaoze Liu 1, 2, Tal Galfsky 1, 2, Zheng Sun 1, 2, Fengnian Xia 3, Erh-chen Lin 4,

More information

SUPPLEMENTARY INFORMATION

SUPPLEMENTARY INFORMATION doi:10.1038/nature13734 1. Gate dependence of the negatively charged trion in WS 2 monolayer. We test the trion with both transport and optical measurements. The trion in our system is negatively charged,

More information

Nanoscale. Effects of rhenium dopants on photocarrier dynamics and optical properties of monolayer, few-layer, and bulk MoS 2 PAPER.

Nanoscale. Effects of rhenium dopants on photocarrier dynamics and optical properties of monolayer, few-layer, and bulk MoS 2 PAPER. PAPER Cite this: Nanoscale, 2017, 9, 19360 Effects of rhenium dopants on photocarrier dynamics and optical properties of monolayer, few-layer, and bulk MoS 2 Yuanyuan Li, a,b Qingfeng Liu, b Qiannan Cui,

More information

Valley Hall effect in electrically spatial inversion symmetry broken bilayer graphene

Valley Hall effect in electrically spatial inversion symmetry broken bilayer graphene NPSMP2015 Symposium 2015/6/11 Valley Hall effect in electrically spatial inversion symmetry broken bilayer graphene Yuya Shimazaki 1, Michihisa Yamamoto 1, 2, Ivan V. Borzenets 1, Kenji Watanabe 3, Takashi

More information

Cascaded emission of single photons from the biexciton in monolayered WSe2

Cascaded emission of single photons from the biexciton in monolayered WSe2 Cascaded emission of single photons from the biexciton in monolayered WSe2 Yu-Ming He 1,4, Oliver Iff 1, Nils Lundt 1, Vasilij Baumann 1, Marcelo Davanco 2, Kartik Srinivasan 2, Sven Höfling 1,3 and Christian

More information

Coherent Lattice Vibrations in Mono- and Few-Layer. WSe 2. Supporting Information for. 749, Republic of Korea

Coherent Lattice Vibrations in Mono- and Few-Layer. WSe 2. Supporting Information for. 749, Republic of Korea Supporting Information for Coherent Lattice Vibrations in Mono- and Few-Layer WSe 2 Tae Young Jeong, 1,2 Byung Moon Jin, 1 Sonny H. Rhim, 3 Lamjed Debbichi, 4 Jaesung Park, 2 Yu Dong Jang, 1 Hyang Rok

More information

Valley Manipulation by Optically Tuning the Magnetic Proximity Effect in WSe2/CrI3 Heterostructures

Valley Manipulation by Optically Tuning the Magnetic Proximity Effect in WSe2/CrI3 Heterostructures Valley Manipulation y Optically Tuning the Magnetic Proximity Effect in WSe2/CrI3 Heterostructures Kyle L. Seyler 1, Ding Zhong 1, Bevin Huang 1, Xiayu Linpeng 1, Nathan P. Wilson 1, Takashi Taniguchi

More information

arxiv: v1 [cond-mat.mes-hall] 9 Jul 2014

arxiv: v1 [cond-mat.mes-hall] 9 Jul 2014 Valley Zeeman Effect in Elementary Optical Excitations of a Monolayer WSe Ajit Srivastava 1, Meinrad Sidler 1, Adrien V. Allain, Dominik S. Lembke, Andras Kis, and A. Imamoğlu 1 1 Institute of Quantum

More information

Optical Properties of 2D Semiconductor WS 2

Optical Properties of 2D Semiconductor WS 2 Review 2D Semiconductors Optical Properties of 2D Semiconductor WS 2 Chunxiao Cong,* Jingzhi Shang, Yanlong Wang, and Ting Yu* 2D semiconductor tungsten disulfide (WS 2 ) attracts significant interest

More information

Tunable excitonic emission of monolayer WS 2 for the optical detection of DNA nucleobases

Tunable excitonic emission of monolayer WS 2 for the optical detection of DNA nucleobases Nano Research https://doi.org/10.1007/s12274-017-1792-z Tunable excitonic emission of monolayer WS 2 for the optical detection of DNA nucleobases Shun Feng 1, Chunxiao Cong 2 ( ), Namphung Peimyoo 1,,

More information

Observation of bright and dark exciton transitions in monolayer MoSe 2 by photocurrent spectroscopy

Observation of bright and dark exciton transitions in monolayer MoSe 2 by photocurrent spectroscopy Observation of bright and dark exciton transitions in monolayer MoSe 2 by photocurrent spectroscopy Jorge Quereda*, Talieh S. Ghiasi, Feitze A. van Zwol, Caspar H. van der Wal, Bart J. van Wees Physics

More information

arxiv: v2 [cond-mat.mes-hall] 5 Oct 2017

arxiv: v2 [cond-mat.mes-hall] 5 Oct 2017 Ambipolar Landau levels and strong band-selective carrier interactions in monolayer WSe 2 Martin V. Gustafsson*, 1, 2 Matthew Yankowitz*, 2 Carlos Forsythe, 2 Daniel Rhodes, 3 Kenji Watanabe, 4 Takashi

More information

Xiaodong Xu Phone:

Xiaodong Xu   Phone: University of Washington Department of Physics Email: xuxd@uw.edu Phone:206-543-8444 EDUCATION BACKGROUND 2002-2008 PhD in Physics, University of Michigan, Ann Arbor Advisor: Duncan Steel, Ph.D., Departments

More information

Supporting Information for:

Supporting Information for: Supporting Information for: Correlatively Dependent Lattice and Electronic Structural Evolutions in Compressed Monolayer Tungsten Disulfide Bo Han, Fangfei Li, * Liang Li, Xiaoli Huang, Yuanbo Gong, Xinpeng

More information

Supporting Information for Tunable Ambipolar Polarization-Sensitive Photodetectors Based on High Anisotropy ReSe 2 Naonosheets

Supporting Information for Tunable Ambipolar Polarization-Sensitive Photodetectors Based on High Anisotropy ReSe 2 Naonosheets Supporting Information for Tunable Ambipolar Polarization-Sensitive Photodetectors Based on High Anisotropy ReSe 2 Naonosheets Enze Zhang 1 Peng Wang 2, Zhe Li 1, Haifeng Wang 3,4, Chaoyu Song 1, Ce Huang

More information

2-Dimensional Transition Metal Dichalcogenides with Tunable Direct Band Gaps: MoS 2(1 x) Se2x Monolayers

2-Dimensional Transition Metal Dichalcogenides with Tunable Direct Band Gaps: MoS 2(1 x) Se2x Monolayers www.materialsviews.com 2-Dimensional Transition Metal Dichalcogenides with Tunable Direct Band Gaps: MoS 2(1 x) Se2x Monolayers www.advmat.de John Mann, Quan Ma, Patrick M. Odenthal, Miguel Isarraraz,

More information