Highly Diastereo- and Enantioselective Organocatalytic Domino Michael/Aldol Reaction of Acyclic 3- Halogeno- 1,2- Diones to α,β- Unsaturated Aldehydes

Size: px
Start display at page:

Download "Highly Diastereo- and Enantioselective Organocatalytic Domino Michael/Aldol Reaction of Acyclic 3- Halogeno- 1,2- Diones to α,β- Unsaturated Aldehydes"

Transcription

1 Supporting Information for Highly Diastereo- and Enantioselective rganocatalytic Domino Michael/Aldol Reaction of Acyclic 3- Halogeno- 1,2- Diones to α,β- Unsaturated Aldehydes Alice Lefranc 1, Laure Guénée 2, Alexandre Alexakis 1, * 1 Department of rganic Chemistry, University of Geneva, 30 quai Ernest- Ansermet, 1211 Geneva 4, Switzerland. 2 Laboratory of crystallography, University of Geneva, 24 quai Ernest- Ansermet, 1211 Geneva 4, Switzerland. Alexandre.Alexakis@unige.ch Table of contents General remarks 2 General procedure for the synthesis of 3-chloro-1,2-diones 2 General procedure for the organocatalytic domino Michael/aldol reaction of 3-chloro-1,2-diones to α,β-unsaturated aldehydes 7 Procedure for the synthesis of 3-fluoro-1,3-diphenylpropane-1,2- dione 5 16 Procedure for the organocatalytic domino Michael/aldol reaction of 3- fluoro-1,3-diphenylpropane-1,2-dione 6 to cinnamaldehyde 16 SFC chromatograms 18 NMR spectra 36 Crystallographic data 98 1

2 I. General remarks: 1 H (400 MHz or 300 MHz), 13 C (100 MHz or 75 MHz), 19 F (376 MHz) spectra were recorded on either a Bruker 300 MHz, or 400 MHz spectrometer at room temperature and are reported as chemical shift (δ) in ppm relative to solvent peak. Spin multiplicity are reported as singlet (s), doublet (d), triplet (t), doublet of doublet (dd), triplet of doublet (td) and multiplet (m). Coupling constant J is given in Hertz (Hz). ptical rotation were measured at 22 C in a 10 cm cell in the stated solvent; [α] D values are given in 10-1 deg.cm 2 g - 1 (concentration c given as g/100 ml). Melting points (mp) were measured in open capillary tubes and are uncorrected. Electrospray mass spectra were obtained by the Sciences Mass Spectrometry (SMS) platform at the Faculty of Sciences (University of Geneva) on a QStar pulsar instrument from AB/MDS Sciex, ESI. Enantiomeric excesses were determined by chiral super fluid chromatography (SFC) with an appropriate program using a gradient of isopropanol, Temperature = 30 C, initial pourcentage of isopropanol (%) - isopropanol gradient (%/min)- final pourcentage of isopropanol (%); retention time (RT) are given in minute. X-ray data were measured using Cu radiation on a SuperNova Dual source equipped with an Atlas detector.flash chromatography was performed using silica gel µm, 60 Å. Methylene chlroride was dried on aluminia columns. The other commercial solvents were used directly without any drying or purifications before use. TMS (98%, Acros) distilled on calcium hydride. bmimpf 6 (Sigma Aldrich), DMP (Alpha Aesar), cinnamaldehyde 2a (Sigma Aldrich), trans- 4- methoxycinnamaldehyde 2c (Acros), 3- (2- furyl)acrolein 2i (Acros) and (S)- α,α- Bis[3,5- bis(trifluoromethyl)phenyl]- 2- pyrrolidinemethanol trimethylsilyl ether (Sigma Aldrich) were purchased and used as received. The following substrates 7a- k were prepared according to literature procedures: aldol condensation between the corresponding acetophenone and aldehyde 1 ; then epoxydation of the obtained α,β- unsaturated ketone 2. The substrates 2b, 2d- h and 9 have been prepared according to literature procedure 3,4. II. General procedure for the synthesis of 3-chloro-1,2-diones: 1)TMS, bmimpf 6, rt, 24h DMP R 1 R 2 2) sat. NH 4 solution R 1 R 2 H CH 2 2, rt, 4h R 1 R 2 7a-k 8a-k 1a-k General procedure: A suspension of epoxy ketone 7a- k (1.0 equiv.), freshly distilled Me 3 Si (1.5 equiv.), and bmimpf 6 (1 M) were stirred at ambient temperature under an inert atmosphere for 24 h. After completion of the reaction, as indicated by TLC, the resultant yellow reaction mixture was diluted with saturated aqueous NH 4, and extracted with diethyl ether. The combined organic layers were dried over anhydrous Na 2 S 4, filtered and concentrated in vacuo. Product 8a- k, 3- chloro- 2- hydroxy- ketone, was directly involved in the next step without purification 5. To a well- stirred mixture of 3- chloro- 2- hydroxy- ketone 8a- k (1.0 equiv.) in anhydrous CH 2 2 (0.15 M) was added Dess- Martin periodinane (1.2 equiv.) portionwise as a solid. The resultant yellow solution was stirred at ambient temperature under an inert atmosphere for 4 h. The mixture was poured into 10% (w/w) aqueous Na 2 S 2 3 and extracted twice with CH 2 2. The combined organic layers were washed with water, then brine, dried over anhydrous Na 2 S 4, filtered and concentrated under 2

3 reduced pressure. The crude product was purified by flash chromatography on silica gel (c- hexane/etac), affording the corresponding diketone 1a- k. Product 3- chloro- 1,3- diphenylpropane- 1,2- dione 1a: C 15 H 11 2 MW: g.mo l-1 General procedure using 1,3- diphenyl- 2,3- epoxy- 1- propanone (449 mg, 2.0 mmol), Me 3 Si (383 μl, 3 mmol) and bmimpf 6 (2mL). Then DMP (968 mg, 2.4 mmol) and CH 2 2 (13mL). Purification by flash chromatography (c- hexane/etac 99:1) gave 1a as a yellow solid. Yield : 64% (328 mg, 1.27 mmol). R f (silica gel, c- Hex/EtAc 4:1) H NMR (CD 3, 400 MHz) δ 7.90 (d, J = 7.2 Hz, 2H, C ar - H), 7.62 (t, J = 7.9 Hz, 1H, C ar - H), (m, 4H, C ar - H), (m, 3H, C ar - H), 6.33 (s, 1H, CH). 13 C NMR (CD 3, 100 MHz) δ (ketone Cq), (ketone Cq), (C ar - H), (Cq), (Cq), (C ar - H), (C ar - H), (C ar - H), (C ar - H), (C ar - H), 61.8 (CH). I.R. (thin film) ν 1731, 1665, 1592, 1447, 1269, 1192, 688, 668 cm - 1. Mp C. HRMS (ESI) for C 15 H 11 2 [M- H] - : calcd , found Product 3- chloro- 1- (o- chloro)phenyl- 3- phenylpropane- 1,2- dione 1b: C 15 H MW: g.mol -1 General procedure using 1- (o- chloro)phenyl- 3- phenyl- 2,3- epoxy- 1- propanone (515 mg, 2 mmol), Me 3 Si (383 μl, 3 mmol) and bmimpf 6 (2 ml). Then DMP (968 mg, 2.4 mmol) and CH 2 2 (13 ml). Purification by flash chromatography (c- hexane/etac 99:1) gave 1b as a yellow oil. Yield : 54% (314 mg, 1.07 mmol). R f (silica gel, c- Hex/EtAc 9:1) H NMR (CD 3, 300 MHz) δ 7.59 (dd, J = 1.5, 7.7 Hz, 1H, C ar - H), (m, 3H, C ar - H), (m, 5H, C ar - H), 6.29 (s, 1H, CH). 13 C NMR (CD 3, 75 MHz) δ (ketone Cq), (ketone Cq), (C ar - H), (Cq), (Cq), (Cq), (C ar - H), (C ar - H), (C ar - H), (C ar - H), (C ar - H), (C ar - H), 61.3 (CH). I.R. (thin film) ν 1729, 1684, 1588, 1437, 1295, 1225, 1053, 907, 752, 740, 691, 634 cm - 1. HRMS (ESI) for C 15 H [M- H] - : calcd , found Product 3- chloro- 1- (p- bromo)phenyl- 3- phenylpropane- 1,2- dione 1c : Br C 15 H 10 Br 2 MW: g.mol -1 General procedure using 1- (p- bromo)phenyl- 3- phenyl- 2,3- epoxy- 1- propanone (606 mg, 2 mmol), Me 3 Si (383 μl, 3 mmol) and bmimpf 6 (2 ml). Then DMP (968 mg, 2.4 mmol) and CH 2 2 (13 ml). Purification by flash chromatography (c- hexane/etac 99:1) gave 1c as a yellow solid. Yield : 61% (410 mg, 1.21 mmol). R f (silica gel, c- Hex/EtAc 9:1)

4 1 H NMR (CD 3, 400 MHz) δ 7.77 (d, J = 8.6 Hz, 2H, C ar - H), 7.60 (d, J = 8.6 Hz, 2H, C ar - H), 7.45 (dd, J = 1.6, 7.9 Hz, 2H, C ar - H), (m, 3H, C ar - H), 6.32 (s 1H, CH). 13 C NMR (CD 3, 100 MHz) δ (ketone Cq), (ketone Cq), (Cq), (C ar - H), (C ar - H), (Cq), (Cq), (C ar - H), (C ar - H), (C ar - H), 61.6 (CH). I.R. (thin film) ν 1726, 1676, 1582, 1486, 1285, 1201, 1102, 1069, 1009, 898, 851, 730, 710, 650 cm - 1. Mp C. HRMS (ESI) for C 15 H 10 Br 2 [M- H] - : calcd , found Product 3- chloro- 1- (p- methoxy)phenyl- 3- phenylpropane- 1,2- dione 1d: Me C 16 H 13 3 MW: g.mol -1 General procedure using 1- (p- methoxy)phenyl- 3- phenyl- 2,3- epoxy- 1- propanone (508 mg, 2 mmol), Me 3 Si (383 μl, 3 mmol) and bmimpf 6 (2 ml). Then DMP (968 mg, 2.4 mmol) and CH 2 2 (13 ml). Purification by flash chromatography (c- hexane/etac 90:10) gave 1d as a yellow oil. Yield : 58% (332 mg, 1.15 mmol). R f (silica gel, c- Hex/EtAc 9:1) H NMR (CD 3, 300 MHz) δ 7.90 (d, J = 8.9 Hz, 2H, C ar - H), 7.46 (d, J = 6.3 Hz, 2H, C ar - H), (m, 3H, C ar - H), 6.91 (d, J = 8.9 Hz, 2H, C ar - H), 6.35 (s, 1H, CH), 3.84 (s, 3H, CH 3 ). 13 C NMR (CD 3, 75 MHz) δ (ketone Cq), (ketone Cq), (Cq), (Cq), (C ar - H), (C ar - H), (C ar - H), (C ar - H), (Cq), (C ar - H), 61.9 (CH), 55.7 (CH 3 ). I.R. (thin film) ν 1728, 1657, 1593, 1572, 1511, 1260, 1172, 1091, 1023, 905, 829, 714, 694 cm - 1. HRMS (ESI) for C 16 H 13 3 [M+H] + : calcd , found Product 3- chloro- 1- (m- methyl)phenyl- 3- phenylpropane- 1,2- dione 1e : General procedure using 1- (m- methyl)phenyl- 3- phenyl- 2,3- epoxy- 1- propanone (331 mg, 1.4 mmol), Me 3 Si (266 μl, 2.1mmol) and bmimpf 6 (1.4 ml). Then DMP (686 mg, 1.7 mmol) and CH 2 2 (9 ml). Purification by flash chromatography (c- hexane/etac 99:1) gave 1e as a yellow oil. Yield : 61% (234 mg, 0.86 mmol). R f (silica gel, c- Hex/EtAc 9:1) C 16 H 13 2 MW: g.mol -1 1 H NMR (CD 3, 300 MHz) δ (m, 2H, C ar - H), (m, 7H, C ar - H), 6.32 (s, 1H, CH), 2.38 (s, 3H, CH 3 ). 13 C NMR (CD 3, 75 MHz) δ (ketone Cq), (ketone Cq), (Cq), (C ar - H), (Cq), (Cq), (C ar - H), (C ar - H), (C ar - H), (C ar - H), (C ar - H), (C ar - H), 61.8 (CH), 21.4 (CH 3 ). I.R. (thin film) ν 1731, 1666, 1601, 1581, 1454, 1285, 1188, 1096, 948, 860, 702, 638 cm - 1. HRMS (ESI) for C 16 H 13 2 [M- H] - : calcd , found Product 3- chloro- 1,3- bis(p- chloro)phenylpropane- 1,2- dione 1f : General procedure using 1- (p- chloro)phenyl- 3- (p- chloro)phenyl- 2,3- epoxy- 1- propanone (586 mg, 2 mmol), Me 3 Si (383 μl, 3 mmol) and bmimpf 6 (2 ml). Then DMP (968 mg, 2.4 mmol) and C 15 H MW: g.mol -1 4

5 CH 2 2 (13 ml). Purification by flash chromatography (c- hexane/etac 99:1) gave 1f as a yellow solid. Yield : 48% (311 mg, 0.95 mmol). R f (silica gel, c- Hex/EtAc 9:1) H NMR (CD 3, 400 MHz) δ 7.89 (d, J = 8.3Hz, 2H, C ar - H), 7.45 (d, J = 8.3 Hz, 2H, C ar - H), (m, 4H, C ar - H), 6.29 (s, 1H, CH). 13 C NMR (CD 3, 100 MHz) δ (ketone Cq), (ketone Cq), (Cq), (Cq), (C ar - H), (Cq), (C ar - H), (2C ar - H and Cq), 60.3 (CH). I.R. (thin film) ν 1719, 1676, 1586, 1490, 1402, 1285, 1262, 1193, 1089, 1012, 910, 853, 805, 750, 724, 643 cm - 1. Mp C. HRMS (ESI) for C 15 H [M- H] - : calcd , found Product 3- chloro- 3- (m- methoxy)phenyl- 1- phenylpropane- 1,2- dione 1g: Me C 16 H 13 3 MW: g.mol -1 General procedure using 1- phenyl- 3- (m- methoxy)phenyl- 2,3- epoxy- 1- propanone (440 mg, 1.7 mmol), Me 3 Si (332 μl, 2.6 mmol) and bmimpf 6 (1.7 ml). Then DMP (807 mg, 2.0 mmol) and CH 2 2 (12 ml). Purification by flash chromatography (c- hexane/etac 95:5) gave 1g as a yellow oil. Yield : 49% (243 mg, 0.84 mmol). R f (silica gel, c- Hex/EtAc 9,5:5) H NMR (CD 3, 300 MHz) δ 7.91 (d, J = 7.5 Hz, 2H, C ar - H), 7.62 (t, J = 7.4 Hz, 1H, C ar - H), 7.46 (t, J = 7.7 Hz, 2H, C ar - H), 7.29 (t, J = 7.9 Hz, 1H, C ar - H), (m, 2H, C ar - H), 6.88 (d, J = 8.3 Hz, 1H, C ar - H), 6.31 (s, 1H, CH), 3.79 (s, 3H, CH 3 ). 13 C NMR (CD 3, 75 MHz) δ 191,3 (ketone Cq), (ketone Cq), (Cq), (C ar - H), (Cq), (Cq), (C ar - H), (C ar - H), (C ar - H), (C ar - H), (C ar - H), (C ar - H), 61.8 (CH), 55.5 (CH 3 ). I.R. (thin film) ν 1728, 1670, 1597, 1490, 1451, 1262, 1041, 760, 732, 685, 640 cm - 1. HRMS (ESI) for C 16 H 13 2 [M+H] + : calcd , found Product 3- chloro- 3- (p- methyl)phenyl- 1- phenylpropane- 1,2- dione 1h : C 16 H 13 2 MW: g.mol -1 General procedure using 1- phenyl- 3- (p- methyl)phenyl- 2,3- epoxy- 1- propanone (476 mg, 2 mmol), Me 3 Si (383 μl, 3 mmol) and bmimpf 6 (2 ml). Then DMP (968 mg, 2.4 mmol) and CH 2 2 (13 ml). Purification by flash chromatography (c- hexane/etac 99:1) gave 1h as a yellow solid. Yield : 69% (374 mg, 1.38 mmol). R f (silica gel, c- Hex/EtAc 9:1) H NMR (CD 3, 400 MHz) δ 7.90 (d, J = 7.1 Hz, 2H, C ar - H), 7.62 (t, J = 7.4 Hz, 1H, C ar - H), 7.46 (t, J = 7.7 Hz, 2H, C ar - H), 7.35 (t, J = 8.1 Hz, 2H, C ar - H), 7.19 (d, J = 8.0 Hz, 2H, C ar - H), 6.30 (s, 1H, CH), 2.33 (s, 3H, CH 3 ). 13 C NMR (CD 3, 100 MHz) δ (ketone Cq), (ketone Cq), (Cq), (Cq), (Cq), 130.3(C ar - H), (C ar - H), (C ar - H), (C ar - H), (C ar - H), 61.8 (CH), 21.4 (CH 3 ). I.R. (thin film) ν 1725, 1675, 1585, 1290, 1104, 1075, 847, 814, 732, 702, 651 cm - 1. Mp C. 5

6 HRMS (ESI) for C 16 H 13 2 [M- H] - : calcd , found Product 3- chloro- 3- (p- nitro)phenyl- 1- phenylpropane- 1,2- dione 1i: C 15 H 10 N 4 MW: g.mol -1 N 2 General procedure using 1- phenyl- 3- (p- nitro)phenyl- 2,3- epoxy- 1- propanone (538 mg, 2 mmol), Me 3 Si (383 μl, 3 mmol) and bmimpf 6 (2 ml). Then DMP (968 mg, 2.4 mmol) and CH 2 2 (13 ml). Purification by flash chromatography (c- hexane/etac 90:10) gave 1i as a yellow solid. Yield : 13% (78 mg, 0.26 mmol). R f (silica gel, c- Hex/EtAc 9:1) H NMR (CD 3, 400 MHz) δ 8.28 (d, J = 8.8 Hz, 2H, C ar - H), 7.98 (dd, J = 1.3, 8.3 Hz, 2H, C ar - H), (m, 3H, C ar - H), 7.52 (t, J = 7.8 Hz, 2H, C ar - H), 6.37 (s, 1H, CH). 13 C NMR (CD 3, 100 MHz) δ190,3 (ketone Cq), (ketone Cq), (Cq), (Cq), (C ar - H), (Cq), 130.4(C ar - H), (C ar - H), (C ar - H), (C ar - H), 59.4 (CH). I.R. (thin film) ν 1725, 1668, 1595, 1519, 1345, 1313, 1268, 1098, 833, 771, 728, 683, 638, 612 cm - 1. Mp C. HRMS (ESI) for C 15 H 10 N 4 [M- H] - : calcd , found Product 3- chloro- 3- (o- bromo)phenyl- 1- phenylpropane- 1,2- dione 1j : Br C 15 H 10 Br 2 MW: g.mol -1 General procedure using 1- phenyl- 3- (o- bromo)phenyl- 2,3- epoxy- 1- propanone (604 mg, 2 mmol), Me 3 Si (383 μl, 3 mmol) and bmimpf 6 (2 ml). Then DMP (968 mg, 2.4 mmol) and CH 2 2 (13 ml). Purification by flash chromatography (c- hexane/etac 99:1) gave 1j as a yellow oil. Yield : 50% (338 mg, 1.0 mmol). R f (silica gel, c- Hex/EtAc 9:1) H NMR (CD 3, 400 MHz) δ 7.97 (d, J = 7.4Hz, 2H, C ar - H), (m, 3H, C ar - H), 7.43 (t, J = 7.5 Hz, 2H, C ar - H), 7.33 (t, J = 7.5 Hz, 1H, C ar - H), 7.17 (t, J = 7.6 Hz, 1H, C ar - H), 6.78 (s, 1H, CH). 13 C NMR (CD 3, 100 MHz) δ (ketone Cq), (ketone Cq), (C ar - H), (C ar - H), (Cq), (Cq), (C ar - H), (C ar - H), (C ar - H), (C ar - H), (C ar - H), (Cq), 60.2 (CH). I.R. (thin film) ν 1731, 1672, 1596, 1448, 1261, 1235, 1095, 1027, 906, 857, 735, 715, 683, 637 cm - 1. HRMS (ESI) for C 15 H 10 Br 2 [M+H] + : calcd , found Product 3- chloro- 3- (o- methyl)phenyl- 1- phenylpropane- 1,2- dione 1k : C 16 H 13 2 MW: g.mol -1 General procedure using 1- phenyl- 3- (o- methyl)phenyl- 2,3- epoxy- 1- propanone (477 mg, 2 mmol), Me 3 Si (383 μl, 3 mmol) and bmimpf 6 (2 ml). Then DMP (968 mg, 2.4 mmol) and CH 2 2 (13 ml). Purification by flash chromatography (c- hexane/etac 99:1) gave 1k as a yellow oil. Yield : 62% (335 mg, 1.23 mmol). R f (silica gel, c- Hex/EtAc 9:1)

7 1 H NMR (CD 3, 400 MHz) δ 7.96 (d, J = 7.8 Hz, 2H, C ar - H), 7.61 (t, J = 7.4 Hz, 1H, C ar - H), (m, 3H, C ar - H), (m, 3H, C ar - H), 6.64 (s, 1H, CH), 2.48 (s, 3H, CH 3 ). 13 C NMR (CD 3, 100 MHz) δ (ketone Cq), (ketone Cq), (Cq), (C ar - H), (Cq), (Cq), (C ar - H), (C ar - H), (C ar - H), (C ar - H), (C ar - H), (C ar - H), 59.3 (CH), 19.4 (CH 3 ). I.R. (thin film) ν 1730, 1666, 1594, 1451, 1312, 1279, 1233, 1098, 914, 861, 771, 738, 709, 681, 630 cm - 1. Mp C. HRMS (ESI) for C 16 H 13 2 [M- H] - : calcd , found III. General procedure for the organocatalytic domino Michael/aldol reaction of 3-chloro-1,2-diones to α,β-unsaturated aldehydes: R 1 R 2 R 3 N H Ar Ar TMS Ar: 3,5-(CF 3 ) 2 Ph 20 mol% Toluene, rt, 30min R 1 H R 2 1a-k 2a-h R 3 3a-r To a solution of the corresponding derivative cinnamaldehyde 2a- i (2.0 equiv.) in Toluene (1 M) were added successively the diarylprolinol silylether catalyst II (20 mol%) and the corresponding diketone 1a- k (1.0 equiv.). The mixture was stirred at room temperature for 30 minutes. Then mixture was quenched with 1 ml of 1M H solution and extracted three times with 5 ml of CH 2 2. The combined organic layers were dried over anhydrous Na 2 S 4, filtered and concentrated under reduced pressure. The crude product was purified by flash chromatography on silica gel (c- hexane/etac), affording the corresponding cyclopentanone 3a- q. Product 3a : H C 24 H 19 3 MW: g.mol -1 Hex/EtAc 9:1) : General procedure using 3- chloro- 1,3- diphenylpropane- 1,2- dione 1a (26 mg, 0.1 mmol), cinnamaldehyde 2a (26.4 mg, 0.2 mmol) and the diarylprolinol silylether catalyst II (12 mg, 0.02 mmol) in Toluene (0.2 ml). Purification by flash chromatography (c- hexane/etac 100:1 - > 98 :2 - > 96 :4) gave 3a as a pale yellow oil. Yield : 97% (38.1 mg, 97.4 µmol). dr >20 :1 (determined by 1 H NMR of the crude reactive mixture). R f (silica gel, c- 7

8 The enantiomeric excess was determined by chiral SFC Chiralpak AS- 3, 10% Isopropanol- 1%/min- 25% Isopropanol in C 2, 30 C, t 1 = 9.70 min, t 2 = min. [α] 22 D = (c= 0.39 in CH 3, 88% ee). 1 H NMR (CD 3, 400 MHz) δ 9.81 (d, J = 1.8Hz, 1H, aldehyde), 7.62 (d, J = 7.2 Hz, 2H, C ar - H), 7.50 (t, J = 7.3 Hz, 2H, C ar - H), 7.47 (d, J = 7.1 Hz, 1H, C ar - H), (m, 3H, C ar - H), (m, 2H, C ar - H), (m, 1H, C ar - H), 7.21 (t, J = 7.4 Hz, 2H, C ar - H), 6.86 (d, J = 7.3 Hz, 2H, C ar - H), 4.54 (d, J = 12.4 Hz, 1H, CH), 4.00 (d, J = 12.4 Hz, 1H, CH), 3.38 (s, 1H, H). 13 C NMR (CD 3, 100 MHz) δ (ketone Cq), (aldehyde CH), (Cq), (Cq), (Cq), (C ar - H), (C ar - H), (C ar - H), (C ar - H), (C ar - H), (C ar - H), (C ar - H), (C ar - H), (C ar - H), 81.9 (Cq), 77.8 (Cq), 60.1 (CH), 54.1 (CH). I.R. (thin film) ν 3379, 1762, 1721, 1497, 1448, 1373, 1279, 1136, 907, 732, 697, 607 cm - 1. HRMS (ESI) for C 24 H 19 3 [(M- H)- H] - : calcd , found Product 3b : H General procedure using 3- chloro- 1,3- diphenylpropane- 1,2- dione 1a (51.7 mg, 0.2 mmol), trans- m- methoxycinnamaldehyde 2b (64.9 mg, 0.4 mmol) and the diarylprolinol silylether catalyst II (24 mg, 0.04 mmol) in Toluene (0.4 ml). Purification by flash chromatography (c- hexane/etac 100:1 - > 98 :2 - > 96:4) gave 3b as a pale yellow oil. Yield : 83% (70 mg, 0.17 mmol). dr >20 :1 (determined by 1 H NMR of the crude reactive mixture). R f (silica gel, c- Hex/EtAc 9:1) : The enantiomeric excess was determined by chiral SFC Chiralpak AS- 3, 10% Isopropanol- 1%/min- 25% Isopropanol in C 2, 30 C, t 1 = min, t 2 = min. [α] 22 D = (c= 0.44 in CH 3, 90% ee). 1 H NMR (CD 3, 300 MHz) δ 9.82 (s, 1H, aldehyde), 7.62 (d, J = 7.0 Hz, 2H, C ar - H), 7.50 (t, J = 7.1 Hz, 2H, C ar - H), 7.45 (d, J = 7.9 Hz, 1H, C ar - H), (m, 5H, C ar - H), 7.13 (t, J = 7.9 Hz, 1H, C ar - H), 6.81 (d, J = 8.1 Hz, 1H, C ar - H), 6.48 (d, J = 7.6 Hz, 1H, C ar - H), 6.32 (s, 1H, C ar - H), 4.51 (d, J = 12.4 Hz, 1H, CH), 3.97 (d, J = 12.4 Hz, 1H, CH), 3.61 (s, 3H, CH 3 ), 3.34 (s, 1H, H). 13 C NMR (CD 3, 100 MHz) δ (ketone Cq), (aldehyde CH), (Cq), (Cq), (Cq), (Cq), (C ar - H), (C ar - H), (C ar - H), (C ar - H), (C ar - H), (C ar - H), (C ar - H), (C ar - H), (C ar - H), (C ar - H), 81.8 (Cq), 77.7 (Cq), 60.1 (CH), 55.1 (CH 3 ), 53.9 (CH). I.R. (thin film) ν 3414, 1761, 1721, 1601, 1493, 1448, 1279, 1140, 1042, 737, 695 cm - 1. Mp C. HRMS (ESI) for C 25 H 21 4 [(M- H)- H] - : calcd , found Product 3c : H C 25 H 21 4 MW: g.mol -1 C 25 H 21 4 MW: g.mol -1 General procedure using 3- chloro- 1,3- diphenylpropane- 1,2- dione 1a (51.7 mg, 0.2 mmol), trans- p- methoxycinnamaldehyde 2c (64.9 mg, 0.4 mmol) and the diarylprolinol silylether catalyst II (24 mg, 0.04 mmol) in Toluene (0.4 ml). Purification by flash chromatography (c- hexane/etac 100:1 - > 98 :2 - > 96:4) gave 3c as a pale yellow oil. Yield : 77% (69.2 mg, 0.15 mmol). dr >20 :1 (determined by 1 H NMR of the crude reactive mixture). R f (silica gel, c- Hex/EtAc 9:1) : The enantiomeric excess was determined by chiral SFC Chiralpak AS- 3, 10% Isopropanol- 1%/min- 25% Isopropanol in C 2, 30 C, t 1 = min, t 2 = min. 8

9 [α] 22 D = (c= 0.38 in CH 3, 86% ee). 1 H NMR (CD 3, 400 MHz) δ 9.79 (d, J = 2.0 Hz, 1H, aldehyde), 7.60 (d, J = 7.0 Hz, 2H, C ar - H), 7.49 (t, J = 7.0 Hz, 2H, C ar - H), 7.44 (d, J = 7.1 Hz, 1H, C ar - H), (m, 3H, C ar - H), (m, 2H, C ar - H), 6.80 (d, J = 8.9 Hz, 2H, C ar - H), 6.75 (d, J = 8.9 Hz, 2H, C ar - H), 4.48 (d, J = 12.5 Hz, 1H, CH), 3.92 (d, J = 12.5 Hz, 1H, CH), 3.76 (s, 3H, CH 3 ), 3.44 (s, 1H, H). 13 C NMR (CD 3, 100 MHz) δ (ketone Cq), (aldehyde CH), (Cq), (Cq), (Cq), (C ar - H), (C ar - H), (C ar - H), 128.8(C ar - H), (C ar - H), (C ar - H), (C ar - H), (Cq), (C ar - H), 81.9 (Cq), 78.0 (Cq), 60.3 (CH), 55.3 (CH 3 ), 53.5 (CH). I.R.(thin film)ν 3405, 1761, 1722, 1612, 1514, 1447, 1250, 1180, 1065, 1031, 907, 829, 728, 696 cm - 1. HRMS (ESI) for C 25 H 21 4 [(M- H)- H] - : calcd , found Product 3d : H C 25 H 21 3 MW: g.mol -1 General procedure using 3- chloro- 1,3- diphenylpropane- 1,2- dione 1a (51.7 mg, 0.2 mmol), trans- p- methylcinnamaldehyde 2d (58.4 mg, 0.4 mmol) and the diarylprolinol silylether catalyst II (24 mg, 0.04 mmol) in Toluene (0.4 ml). Purification by flash chromatography (c- hexane/etac 100:1 - > 98 :2 - > 96:4) gave 3d as a pale yellow oil. Yield : 90% (73 mg, 0.18 mmol). dr >20 :1 (determined by 1 H NMR of the crude reactive mixture). R f (silica gel, c- Hex/EtAc 9:1) : The enantiomeric excess was determined by chiral SFC Chiralpak AS- 3, 20% Isopropanol- 1%/min- 35% Isopropanol in C 2, 30 C, t 1 = 5.39 min, t 2 = 6.71 min. [α] 22 D = (c= 0.30 in CH 3, 86% ee). 1 H NMR (CD 3, 400 MHz) δ 9.78 (d, J = 2.0 Hz, 1H, aldehyde), 7.60 (d, J = 6.9 Hz, 2H, C ar - H), 7.48 (t, J = 7.3 Hz, 2H, C ar - H), 7.43 (d, J = 7.3 Hz, 1H, C ar - H), (m, 5H, C ar - H), 7.03 (d, J = 7.9 Hz, 2H, C ar - H), 6.76 (d, J = 7.9 Hz, 2H, C ar - H), 4.51 (d, J = 12.5 Hz, 1H, CH), 3.96 (d, J = 12.4 Hz, 1H, CH), 3.60 (s, 1H, H), 2.30 (s, 3H, CH 3 ). 13 C NMR (CD 3, 100 MHz) δ (ketone Cq), (aldehyde CH), (Cq), (Cq), (Cq), (Cq), (C ar - H), 129.1(2C ar - H), (C ar - H), (C ar - H), (C ar - H), (C ar - H), (C ar - H), 81.9 (Cq), 77.8 (Cq), 60.2 (CH), 53.7 (CH), 21.2 (CH 3 ). I.R. (thin film) ν 3308, 1754, 1719, 1446, 1279, 1141, 1065, 906, 818, 731, 694, 594 cm - 1. Mp C. HRMS (ESI) for C 25 H 21 3 [(M- H)- H] - : calcd , found Product 3e : H C 25 H 21 4 MW: g.mol -1 General procedure using 3- chloro- 1,3- diphenylpropane- 1,2- dione 1a (51.7 mg, 0.2 mmol), trans- o- methoxycinnamaldehyde 2e (60 mg, 0.4 mmol) and the diarylprolinol silylether catalyst II (24 mg, 0.04 mmol) in Toluene (0.4 ml). Purification by flash chromatography (c- hexane/etac 100:1 - > 98 :2 - > 96:4) gave 3e as a pale yellow oil. Yield : 83% (76.6 mg, 0.17 mmol). dr >20 :1 (determined by 1 H NMR of the crude reactive mixture). R f (silica gel, c- Hex/EtAc 9:1) : The enantiomeric excess was determined by chiral SFC Chiralpak AS- 3, 10% Isopropanol- 1%/min- 25% Isopropanol in C 2, 30 C, t 1 = min, t 2 = min. [α] 22 D = (c= 0.60 in CH 3, 82% ee). 1 H NMR (CD 3, 400 MHz) δ 9.65 (d, J = 2.0 Hz, 1H, aldehyde), 7.53 (d, J = 7.2 Hz, 2H, C ar - H), 7.40 (t, J 9

10 = 7.3 Hz, 2H, C ar - H), (m, 1H, C ar - H), (m, 7H, C ar - H), 6.87 (t, J = 7.5 Hz, 1H, C ar - H), 6.60 (d, J = 8.2 Hz, 1H, C ar - H), 5.06 (d, J = 12.8 Hz, 1H, CH), 3.84 (d, J = 13.6 Hz, 1H, CH), 3.53 (s, 1H, H), 3.02 (s, 3H, CH 3 ). 13 C NMR (CD 3, 100 MHz) δ (ketone Cq), (aldehyde CH), (Cq), (Cq), (Cq), (C ar - H), (C ar - H), (C ar - H), (C ar - H), (2C ar - H), (C ar - H), (2C ar - H), (Cq), (C ar - H), (C ar - H), 81.9 (Cq), 78.1 (Cq), 60.4 (CH), 54.7 (CH 3 ), 46.5 (CH). I.R. (thin film) ν 3511, 1755, 1723, 1494, 1276, 1250, 1141, 1095, 1031, 751, 696, 608 cm - 1. Mp C. HRMS (ESI) for C 25 H 21 4 [(M- H)- H] - : calcd , found Product 3f : min. H F C 24 H 18 F 3 MW: g.mol -1 General procedure using 3- chloro- 1,3- diphenylpropane- 1,2- dione 1a (51.7 mg, 0.2 mmol), trans- p- fluorocinnamaldehyde 2f (60 mg, 0.4 mmol) and the diarylprolinol silylether catalyst II (24 mg, 0.04 mmol) in Toluene (0.4 ml). Purification by flash chromatography (c- hexane/etac 100:1 - > 98 :2 - > 96:4) gave 3f as a pale yellow oil. Yield : 94% (76.6 mg, 0.19 mmol). dr >20 :1 (determined by 1 H NMR of the crude reactive mixture). R f (silica gel, c- Hex/EtAc 9:1) : The enantiomeric excess was determined by chiral SFC Chiralpak AS- 3, 10% Isopropanol- 1%/min- 25% Isopropanol in C 2, 30 C, t 1 = 8.46 min, t 2 = 9.83 [α] 22 D = (c= 0.67 in CH 3, 90% ee). 1 H NMR (CD 3, 400 MHz) δ 9.77 (s, 1H, aldehyde), 7.59 (d, J = 7.0 Hz, 2H, C ar - H), 7.48 (t, J = 6.8 Hz, 2H, C ar - H), 7.44 (d, J = 7.0 Hz, 1H, C ar - H), (m, 3H, C ar - H), (m, 2H, C ar - H), (m, 2H, C ar - H), 6.90 (t, J = 8.7 Hz, 2H, C ar - H), 4.49 (d, J = 12.4 Hz, 1H, CH), 3.91(d, J = 12.4 Hz, 1H, CH), 3.55 (s, 1H, H). 13 C NMR (CD 3, 100 MHz) δ (ketone Cq), (aldehyde CH), (d, J C- F = Hz, Cq), (Cq), (Cq), (d, J C- F = 8.1 Hz, C ar - H), (C ar - H), (C ar - H), (C ar - H), (C ar - H), (d, J C- F = 3.3 Hz, Cq), (C ar - H), (C ar - H), (d, J C- F = 21.4 Hz, C ar - H), 81.6 (Cq), 77.7 (Cq), 60.5 (CH), 53.3 (CH). I.R. (thin film) ν 3352, 1760, 1713, 1604, 1511, 1448, 1368, 1280, 1227, 1139, 1068, 831, 803, 742, 699, 611 cm - 1. Mp C. HRMS (ESI) for C 24 H 18 F 3 [(M- H)- H] - : calcd , found Product 3g : H Br C 24 H 18 Br 3 MW: g.mol -1 General procedure using 3- chloro- 1,3- diphenylpropane- 1,2- dione 1a (51.7 mg, 0.2 mmol), trans- m- bromocinnamaldehyde 2g (84.4 mg, 0.4 mmol) and the diarylprolinol silylether catalyst II (24 mg, 0.04 mmol) in Toluene (0.4 ml). Purification by flash chromatography (c- hexane/etac 100:1 - > 98 :2 - > 96:4) gave 3g as a pale yellow oil. Yield : 92% (86.6 mg, 0.18 mmol). dr >20 :1 (determined by 1 H NMR of the crude reactive mixture). R f (silica gel, c- Hex/EtAc 9:1) :

11 The enantiomeric excess was determined by chiral SFC Chiralpak AS- 3, 10% Isopropanol- 1%/min- 25% Isopropanol in C 2, 30 C, t 1 = min, t 2 = min. [α] 22 D = (c= 0.57 in CH 3, 88% ee). 1 H NMR (CD 3, 400 MHz) δ 9.80 (d, J = 1.7 Hz, 1H, aldehyde), 7.62 (d, J = 7.0 Hz, 2H, C ar - H), 7.50 (t, J = 8.0 Hz, 2H, C ar - H), 7.46 (d, J = 7.0 Hz, 1H, C ar - H), (m, 4H, C ar - H), (m, 2H, C ar - H), 7.06 (t, J = 7.9 Hz, 1H, C ar - H), 7.00 (s, 1H, C ar - H), 6.72 (d, J = 7.8 Hz, 1H, C ar - H), 4.47 (d, J = 12.3 Hz, 1H, CH), 3.94 (d, J = 12.3 Hz, 1H, CH), 3.24 (s, 1H, H). 13 C NMR (CD 3, 100 MHz) δ (ketone Cq), (aldehyde CH), (Cq), (Cq), (Cq), (C ar - H), (C ar - H), (C ar - H), (C ar - H), (C ar - H), (C ar - H), (C ar - H), (C ar - H), (C ar - H), (C ar - H), (Cq), 81.6 (Cq), 77.4 (Cq), 60.2 (CH), 53.5 (CH). I.R. (thin film) ν 3432, 1762, 1723, 1279, 1140, 1070, 906, 729, 693 cm - 1. HRMS (ESI) for C 24 H 18 Br 3 [(M- H)- H] - : calcd , found Product 3h : H General procedure using 3- chloro- 1,3- diphenylpropane- 1,2- dione 1a (51.7 mg, 0.2 mmol), trans- o- bromocinnamaldehyde 2h (84.4 mg, 0.4 mmol) and the diarylprolinol silylether catalyst II (24 mg, 0.04 mmol) in Toluene (0.4 ml). Purification by flash chromatography (c- hexane/etac 100:1 - > 98 :2 - > 96:4) gave 3h as a yellow solid. Yield : 85% (80.3 mg, 0.17 mmol). dr >20 :1 (determined by 1 H NMR of the crude reactive mixture). R f (silica gel, c- Hex/EtAc 9:1) : The enantiomeric excess was determined by chiral SFC Chiralpak AD- 3, 10% Isopropanol- 1%/min- 25% Isopropanol in C 2, 30 C, t 1 = min, t 2 = min. [α] 22 D = (c= 0.51 in CH 3, 83% ee). 1 H NMR (CD 3, 400 MHz) δ 9.71 (d, J = 1.7 Hz, 1H, aldehyde), 7.61 (d, J = 7.2 Hz, 2H, C ar - H), (m, 5H, C ar - H), (m, 4H, C ar - H), (m, 2H, C ar - H), 7.14 (dt, J = 1.6, 7.2 Hz, 1H, C ar - H), 5.09 (d, J = 12.4 Hz, 1H, CH), 3.84 (dd, J = 1.7, 12.4 Hz, 1H, CH), 3.49 (s, 1H, H). 13 C NMR (CD 3, 100 MHz) δ (ketone Cq), (aldehyde CH), (Cq), (Cq), (C ar - H), (Cq), (C ar - H), (C ar - H), (C ar - H), (C ar - H), (C ar - H), (C ar - H), (C ar - H), (Cq), (C ar - H), (C ar - H), 81.6 (Cq), 77.2 (Cq), 62.0 (CH), 51.8 (CH). I.R. (thin film) ν 3446, 1761, 1720, 1446, 1280, 1140, 1096, 1025, 906, 797, 727, 695, 605 cm - 1. Mp C. HRMS (ESI) for C 24 H 18 Br 3 [(M- H)- H] - : calcd , found Product 3i : Br C 24 H 18 Br 3 MW: g.mol -1 H C 22 H 17 4 MW: g.mol -1 General procedure using 3- chloro- 1,3- diphenylpropane- 1,2- dione 1a (51.7 mg, 0.2 mmol), 3- (2- furyl)acrolein 2i (48.8 mg, 0.4 mmol) and the diarylprolinol silylether catalyst II (24 mg, 0.04 mmol) in Toluene (0.4 ml). Purification by flash chromatography (c- hexane/etac 100:1 - > 98 :2 - > 97:3) gave 3i as a pale yellow oil. Yield : 81% (61.6 mg, 0.16 mmol). dr >20 :1 (determined by 1 H NMR of the crude reactive mixture). R f (silica gel, c- Hex/EtAc 9:1) : The enantiomeric excess was determined by chiral SFC Chiralpak AS- 10, 10% Isopropanol- 1%/min- 25% Isopropanol in C 2, 30 C, t 1 = 8.59 min, t 2 = 9.03 min. [α] 22 D = (c= 0.55 in CH 3, 82% ee). 11

12 1 H NMR (CD 3, 400 MHz) δ 9.85 (d, J = 1.2 Hz, 1H, aldehyde), (m, 2H, C ar - H), (m, 2H, C ar - H), (m, 2H, C ar - H), (m, 4H, C ar - H), 7.32 (d, J = 1.0 Hz, 1H, C ar - H), 6.31 (dd, J = 1.5, 2.6 Hz, 1H, C ar - H), 6.00 (d, J = 2.6 Hz, 1H, C ar - H), 4.71 (d, J = 9.6 Hz, 1H, CH), 3.98 (d, J = 9.6 Hz, 1H, CH), 3.23 (s, 1H, H). 13 C NMR (CD 3, 100 MHz) δ (ketone Cq), (aldehyde CH), (Cq), (C ar - H), (Cq), (Cq), (C ar - H), (C ar - H), (C ar - H), (C ar - H), (C ar - H), (C ar - H), (C ar - H), (C ar - H), 81.4 (Cq), 76.0 (Cq), 59.7 (CH), 47.5 (CH). I.R. (thin film) ν 3464, 1763, 1725, 1279, 1266, 1142, 1065, 1012, 946, 733, 695 cm - 1. HRMS (ESI) for C 22 H 17 4 [M+H] + : calcd , found Product 3j : H C 24 H MW: g.mol -1 General procedure using 3- chloro- 1- (o- chloro)phenyl- 3- phenylpropane- 1,2- dione 1b (58.6 mg, 0.2 mmol), cinnamaldehyde 2a (52.8 mg, 0.4 mmol) and the diarylprolinol silylether catalyst II (24 mg, 0.04 mmol) in Toluene (0.4 ml). Purification by flash chromatography (c- hexane/etac 100:1 - > 98 :2 - > 96:4) gave 3j as a yellow solid. Yield : 80% (68 mg, 0.16 mmol). dr >20 :1 (determined by 1 H NMR of the crude reactive mixture). R f (silica gel, c- Hex/EtAc 9:1) : The enantiomeric excess was determined by chiral SFC Chiralpak AS- 3, 10% Isopropanol- 1%/min- 25% Isopropanol in C 2, 30 C, t 1 = min, t 2 = min. [α] 22 D = (c= 0.39 in CH 3, 94% ee). 1 H NMR (CD 3, 400 MHz) δ 9.70 (d, J = 1.9 Hz, 1H, aldehyde), (m, 1H, C ar - H), (m, 3H, C ar - H), (m, 5H, C ar - H), (m, 3H, C ar - H), 6.99 (d, J = 6.6 Hz, 2H, C ar - H), 4.67 (d, J = 12.4 Hz, 1H, CH), 4.50 (dd, J = 1.7, 12.4 Hz, 1H, CH), 4.07 (s, 1H, H). 13 C NMR (CD 3, 100 MHz) δ (ketone Cq), (aldehyde CH), (Cq), (Cq), (Cq), (Cq), (C ar - H), (C ar - H), (C ar - H), (C ar - H), (C ar - H), 128.5(C ar - H), (C ar - H), (C ar - H), (C ar - H), (C ar - H), 81.6 (Cq), 75.9 (Cq), 56.0 (CH), 54.5 (CH). I.R. (thin film) n 3459, 1774, 1720, 1497, 1441, 1356, 1280, 1183, 1139, 1033, 913, 753, 693, 611, 585 cm - 1. Mp C. HRMS (ESI) for C 24 H [(M- H)- H] - : calcd , found Product 3k : Br H C 24 H 18 Br 3 MW: g.mol -1 General procedure using 3- chloro- 1- (p- bromo)phenyl- 3- phenylpropane- 1,2- dione 1c (67.6 mg, 0.2 mmol), cinnamaldehyde 2a (52.8 mg, 0.4 mmol) and the diarylprolinol silylether catalyst II (24 mg, 0.04 mmol) in Toluene (0.4 ml). Purification by flash chromatography (c- hexane/etac 100:1 - > 98 :2 - > 96:4) gave 3k as a yellow solid. Yield : 85% (79.5 mg, 0.17 mmol). dr >20 :1 (determined by 1 H NMR of the crude reactive mixture). R f (silica gel, c- Hex/EtAc 9:1) : The enantiomeric excess was determined by chiral SFC Chiralpak AS- 3, 10% Isopropanol- 1%/min- 25% Isopropanol in C 2, 30 C, t 1 = min, t 2 = min. [α] 22 D = (c= 0.64 in CH 3, 89% ee). 1 H NMR (CD 3, 400 MHz) δ 9.78 (d, J = 2.1 Hz, 1H, aldehyde), 7.65 (d, J = 8.7 Hz, 2H, C ar - H), 7.51 (d, J = 8.7 Hz, 2H, C ar - H), (m, 3H, C ar - H), (m, 3H, C ar - H), 7.26 (t, J = 7.5 Hz, 2H, C ar - H), 12

13 6.88 (d, J = 7.3 Hz, 2H, C ar - H), 4.54 (d, J = 12.5 Hz, 1H, CH), 3.96 (d, J = 12.4 Hz, 1H, CH), 3.47 (s, 1H, H). 13 C NMR (CD 3, 100 MHz) δ (ketone Cq), (aldehyde CH), (Cq), (Cq), (C ar - H), (Cq), (C ar - H), 129.0(C ar - H), (C ar - H), (C ar - H), (C ar - H), 127.8(C ar - H), (C ar - H), (Cq), 81.6 (Cq), 77.8 (Cq), 59.8 (CH), 54.2 (CH). I.R. (thin film) ν 3449, 1756, 1725, 1489, 1448, 1279, 1138, 1073, 1009, 906, 794, 731, 697, 608 cm - 1. Mp C. HRMS (ESI) for C 24 H 18 Br 3 [(M- H)- H] - : calcd , found Product 3l : H C 25 H 21 4 MW: g.mol -1 General procedure using 3- chloro- 1- (p- methoxy)phenyl- 3- phenylpropane- 1,2- dione 1d (57.7 mg, 0.2 mmol), cinnamaldehyde 2a (52.8 mg, 0.4 mmol) and the diarylprolinol silylether catalyst II (24 mg, 0.04 mmol) in Toluene (0.4 ml). Purification by flash chromatography (c- hexane/etac 100:1 - > 98 :2 - > 96:4) gave 3l as a yellow oil. Yield : 95% (79.9 mg, 0.19 mmol). dr >20 :1 (determined by 1 H NMR of the crude reactive mixture). R f (silica gel, c- Hex/EtAc 9:1) : The enantiomeric excess was determined by chiral SFC Chiralpak AS- 3, 10% Isopropanol- 1%/min- 25% Isopropanol in C 2, 30 C, t 1 = min, t 2 = min. [α] 22 D = (c= 0.51 in CH 3, 90% ee). 1 H NMR (CD 3, 400 MHz) δ 9.80 (d, J = 2.0 Hz, 1H, aldehyde), 7.51 (d, J = 8.5 Hz, 2H, C ar - H), (m, 3H, C ar - H), (m, 2H, C ar - H), 7.27 (t, J = 7.3 Hz, 1H, C ar - H), 7.21 (d, J = 7.3 Hz, 2H, C ar - H), 7.00 (d, J = 8.8 Hz, 2H, C ar - H), 6.85 (d, J = 7.2 Hz, 2H, C ar - H), 4.52 (d, J = 12.4 Hz, 1H, CH), 3.97 (d, J = 12.4 Hz, 1H, CH), 3.85 (s, 3H, CH 3 ), 3.34 (s, 1H, H). 13 C NMR (CD 3, 100 MHz) δ (ketone Cq), (aldehyde CH), (Cq), (Cq), (Cq), (Cq), (C ar - H), (C ar - H), (C ar - H), (C ar - H), (C ar - H), (C ar - H), (C ar - H), (C ar - H), 81.6 (Cq), 77.8 (Cq), 60.1 (CH), 55.5 (CH 3 ), 53.9 (CH). I.R. (thin film) ν 3447, 1757, 1722, 1610, 1513, 1447, 1250, 1181, 1142, 1064, 1030, 907, 832, 791, 732, 693, 597 cm - 1. HRMS (ESI) for C 25 H 21 4 [(M- H)- H] - : calcd , found Product 3m : H C 25 H 21 3 MW: g.mol -1 General procedure using 3- chloro- 1- (o- chloro)phenyl- 3- phenylpropane- 1,2- dione 1e (54.5 mg, 0.2 mmol), cinnamaldehyde 2a (52.8 mg, 0.4 mmol) and the diarylprolinol silylether catalyst II (24 mg, 0.04 mmol) in Toluene (0.4 ml). Purification by flash chromatography (c- hexane/etac 100:1 - > 98 :2 - > 96:4) gave 3m as a yellow oil. Yield : 95% (76.8 mg, 0.19 mmol). dr >20 :1 (determined by 1 H NMR of the crude reactive mixture). R f (silica gel, c- Hex/EtAc 9:1) : The enantiomeric excess was determined by chiral SFC Chiralpak AS- 3, 10% Isopropanol- 1%/min- 25% Isopropanol in C 2, 30 C, t 1 = 9.18 min, t 2 = min. [α] 22 D = (c= 0.35 in CH 3, 88% ee). 1 H NMR (CD 3, 400 MHz) δ 9.80 (d, J = 1.7 Hz, 1H, aldehyde), (m, 8H, C ar - H), (m, 4H, C ar - H), 6.87 (d, J = 7.3 Hz, 2H, C ar - H), 4.53 (d, J = 12.4 Hz, 1H, CH), 4.00 (dd, J = 1.7, 12.4 Hz, 1H, 13

14 CH), 3.36 (s, 1H, H), 2.44 (s, 3H, CH 3 ). 13 C NMR (CD 3, 100 MHz) δ (ketone Cq), (aldehyde CH), (Cq), (Cq), (Cq), (Cq), (C ar - H), 129.4(C ar - H), (C ar - H), 128.8(C ar - H), (C ar - H), (C ar - H), (C ar - H), 127.8(C ar - H), (C ar - H), 123.0(C ar - H), 81.8 (Cq), 77.7 (Cq), 60.1 (CH), 54.0 (CH), 21.8 (CH 3 ). I.R. (thin film) ν 3392, 1762, 1722, 1497, 1448, 1365, 1279, 1138, 1083, 908, 783, 729, 695, 606 cm - 1. HRMS (ESI) for C 25 H 21 3 [(M- H)- H] - : calcd , found H Product 3n: General procedure using 3- chloro- 1,3- bis(p- chloro)phenylpropane- 1,2- dione 1f (65.5 mg, 0.2 mmol), cinnamaldehyde 2a (52.8 mg, 0.4 mmol) and the diarylprolinol silylether catalyst II (24 mg, 0.04 mmol) in Toluene (0.4 ml). Purification by flash chromatography (c- hexane/etac 100:1 - > 98 :2 - > 96:4) gave 3n as a yellow oil. Yield : 75% (65 mg, 0.15 mmol). dr >20 :1 (determined by 1 H NMR of the crude reactive mixture). R f (silica gel, c- Hex/EtAc 9:1) : The enantiomeric excess was determined by chiral SFC Chiralpak AS- 3, 10% Isopropanol- 1%/min- 25% Isopropanol in C 2, 30 C, t 1 = 9.79 min, t 2 = min. [α] 22 D = (c= 0.40 in CH 3, 91% ee). 1 H NMR (CD 3, 400 MHz) δ 9.66 (d, J = 2.0 Hz, 1H, aldehyde), 7.43 (d, J = 8.8 Hz, 2H, C ar - H), 7.37 (d, J = 8.8 Hz, 2H, C ar - H), 7.29 (d, J = 8.7 Hz, 2H, C ar - H), (m, 5H, C ar - H), 6.80 (d, J = 7.2 Hz, 2H, C ar - H), 4.37 (d, J = 12.5 Hz, 1H, CH), 3.84 (d, J = 12.5 Hz, 1H, CH), 3.46 (s, 1H, H). 13 C NMR (CD 3, 100 MHz) δ (ketone Cq), (aldehyde CH), (Cq), (Cq), (Cq), (Cq), (Cq), (C ar - H), (C ar - H), (C ar - H), (C ar - H), 128.6(C ar - H), (C ar - H), (C ar - H), 81.5 (Cq), 77.4 (Cq), 59.8 (CH), 54.1 (CH). I.R. (thin film) ν 3494, 1761, 1721, 1493, 1400, 1279, 1181, 1140, 1092, 1014, 906, 818, 786, 736, 697 cm - 1. HRMS (ESI) for C 24 H [(M- H)- H] - : calcd , found Product 3o : C 24 H MW: g.mol -1 H C 25 H 21 4 MW: g.mol -1 General procedure using 3- chloro- 3- (m- methoxy)phenyl- 1- phenylpropane- 1,2- dione 1g (57.7 mg, 0.2 mmol), cinnamaldehyde 2a (52.8 mg, 0.4 mmol) and the diarylprolinol silylether catalyst II (24 mg, 0.04 mmol) in Toluene (0.4 ml). Purification by flash chromatography (c- hexane/etac 100:1 - > 98 :2 - > 96 :4) gave 3o as a yellow oil. Yield : 95% (80.1 mg, 0.19 mmol). dr >20 :1 (determined by 1 H NMR of the crude reactive mixture). R f (silica gel, c- Hex/EtAc 9:1) : The enantiomeric excess was determined by chiral SFC Chiralpak AS- 3, 10% Isopropanol- 1%/min- 25% Isopropanol in C 2, 30 C, t 1 = 9.79 min, t 2 = min. [α] 22 D = (c= 0.33 in CH 3, 90% ee). 1 H NMR (CD 3, 400 MHz) δ 9.80 (d, J = 1.8 Hz, 1H, aldehyde), 7.61 (d, J = 7.2 Hz, 2H, C ar - H), 7.50 (t, J = 7.4 Hz, 2H, C ar - H), 7.46 (t, J = 7.0 Hz, 1H, C ar - H), 7.33 (t, J = 8.0 Hz, 1H, C ar - H), (m, 3H, C ar - H), (m, 5H, C ar - H), 4.55 (d, J = 12.5 Hz, 1H, CH), 3.98 (dd, J = 1.5, 12.5 Hz, 1H, CH), 3.77 (s, 3H, CH 3 ), 3.35 (s, 1H, H). 13 C NMR (CD 3, 100 MHz) δ (ketone Cq), (aldehyde CH), (Cq), (Cq), (Cq), (Cq), (C ar - H), (C ar - H), (C ar - H), 129.1(C ar - H), (C ar - H), (C ar - H), (C ar - H), (C ar - H), (C ar - H), (C ar - H), 81.9 (Cq), 77.6 (Cq), 60.1 (CH), 55.5 (CH 3 ), 14

15 53.9 (CH). I.R. (thin film) n 3363, 1762, 1723, 1601, 1493, 1451, 1279, 1173, 1139, 1054, 907, 730, 691 cm - 1. HRMS (ESI) for C 25 H 21 4 [(M- H)- H] - : calcd , found Product 3p : H C 25 H 21 3 MW: g.mol -1 General procedure using 3- chloro- 3- (p- methyl)phenyl- 1- phenylpropane- 1,2- dione 1h (54.5 mg, 0.2 mmol), cinnamaldehyde 2a (52.8 mg, 0.4 mmol) and the diarylprolinol silylether catalyst II (24 mg, 0.04 mmol) in Toluene (0.4 ml). Purification by flash chromatography (c- hexane/etac 100:1 - > 98 :2 - > 96:4) gave 3p as a yellow solid. Yield : 80% (64.9 mg, 0.16 mmol). dr >20 :1 (determined by 1 H NMR of the crude reactive mixture). R f (silica gel, c- Hex/EtAc 9:1) : The enantiomeric excess was determined by chiral SFC Chiralpak AS- 3, 10% Isopropanol- 1%/min- 25% Isopropanol in C 2, 30 C, t 1 = 9.91 min, t 2 = min. [α] 22 D = (c= 0.60 in CH 3, 90% ee). 1 H NMR (CD 3, 400 MHz) δ 9.81 (s, 1H, aldehyde), 7.65(d, J = 7.1 Hz, 2H, C ar - H), (m, 3H, C ar - H), (m, 7H, C ar - H), 6.93 (d, J = 7.2 Hz, 2H, C ar - H), 4.58 (d, J = 12.1 Hz, 1H, CH), 4.02 (d, J = 12.5 Hz, 1H, CH), 3.41 (s, 1H, H), 2.45 (s, 3H, CH 3 ). 13 C NMR (CD 3, 100 MHz) δ (ketone Cq), (aldehyde CH), (Cq), (Cq), (Cq), (Cq), (C ar - H), (C ar - H), (C ar - H), 129.1(C ar - H), (C ar - H), (C ar - H), (C ar - H), (C ar - H), 81.8 (Cq), 77.7 (Cq), 60.1 (CH), 53.9 (CH), 21.3 (CH 3 ). I.R. (thin film) ν 3457, 1758, 1727, 1497, 1450, 1279, 1140, 1063, 759, 693, 613 cm - 1. Mp C. HRMS (ESI) for C 25 H 21 3 [(M- H)- H] - : calcd , found Product 3q : H C 24 H 18 N 5 MW: g.mol -1 N 2 General procedure using 3- chloro- 3- (p- nitro)phenyl- 1- phenylpropane- 1,2- dione 1i (30.4 mg, 0.1 mmol), cinnamaldehyde 2a (26.4 mg, 0.2 mmol) and the diarylprolinol silylether catalyst II (12 mg, 0.02 mmol) in Toluene (0.2 ml). Purification by flash chromatography (c- hexane/etac 100:1 - > 98 :2 - > 90:10) gave 3q as a yellow solid. Yield : 69% (30 mg, 69 µmol). dr >20 :1 (determined by 1 H NMR of the crude reactive mixture). R f (silica gel, c- Hex/EtAc 9:1) : The enantiomeric excess was determined by chiral SFC Chiralpak AY- 3, 10% Isopropanol- 1%/min- 25% Isopropanol in C 2, 30 C, t 1 = 9.51 min, t 2 = min. [α] 22 D = (c= 0.34 in CH 3, 77% ee). 1 H NMR (CD 3, 400 MHz) δ 9.80 (d, J = 1.3 Hz, 1H, aldehyde), 8.26 (d, J = 8.8 Hz, 2H, C ar - H), 7.61 (d, J = 7.3 Hz, 2H, C ar - H), (m, 5H, C ar - H), (m, 3H, C ar - H), 6.87 (d, J = 7.4 Hz, 2H, C ar - H), 4.51 (d, J = 12.4 Hz, 1H, CH), 4.04 (d, J = 12.4 Hz, 1H, CH), 3.47 (s, 1H, H). 13 C NMR (CD 3, 100 MHz) δ (ketone Cq), (aldehyde CH), (Cq), (Cq), 138.6(Cq), (Cq), (C ar - H), (C ar - H), 129.2(C ar - H), (C ar - H), (C ar - H), (C ar - H), (C ar - H), (C ar - H), 81.6 (Cq), 77.5 (Cq), 60.0 (CH), 54.1 (CH). I.R. (thin film) ν 3457, 1761, 1723, 1603, 1521, 1450, 1348, 1279, 1137, 1058, 906, 853, 793, 728, 695, 608 cm - 1. Mp C. HRMS (ESI) for C 24 H 18 N 5 [(M- H)- H] - : calcd , found

16 IV. Procedure for the synthesis of 3-fluoro-1,3-diphenylpropane- 1,2-dione 5: F DMP F H CH 2 2, rt, 4h 9 5 To a well- stirred mixture of 3- fluoro- 2- hydroxy- 1,3- diphenylpropan- 1- one 9 (368 mg, 1.51 mmol, 1.0 equiv.) in anhydrous CH 2 2 (9.2 ml) was added Dess- Martin periodinane (767 mg, 1.81 mmol, 1.2 equiv.) portionwise as a solid. The resultant yellow solution was stirred at ambient temperature under an inert atmosphere for 4 h (apparition of a cloudy precipitate). The mixture was poured into 10% (w/w) aqueous Na 2 S 2 3 and extracted twice with methylene chloride. The combined organic layers were washed with water, then brine, dried over anhydrous Na 2 S 4, filtered and concentrated under reduced pressure. The crude product was purified by flash chromatography on silica gel (c- hexane/etac 98:2), affording a yellow crystalline solid. Yield : 70% (254 mg, 1.07 mmol). R f (silica gel, c- Hex/EtAc 95:5) H NMR (CD 3, 400 MHz) δ 7.85 (dd, J = 1.2, 8.2 Hz, 2H, C ar - H), 7.60 (t, J = 7.5 Hz, 1H, C ar - H), (m, 7H, C ar - H), 6.63 (d, J H- F = 46.9 Hz, 1H, CH). 13 C NMR (CD 3, 100 MHz) δ (d, J C- F = 25.7 Hz, ketone Cq), (ketone Cq), (C ar - H), (Cq), (d, J C- F = 20.3 Hz, Cq), (C ar - H), (C ar - H), (C ar - H), (C ar - H), (C ar - H), 59.3 (d, J C- F = Hz, CH). 19 F NMR (376 MHz, CD 3 ) δ (s, 1F, CH- F). I.R. (thin film) ν 1740, 1677, 1596, 1448, 1283, 1252, 1190, 1123, 1036, 932, 816, 790, 702, 666 cm - 1. Mp C. HRMS (ESI) for C 15 H 11 F 2 [M- H] - : calcd , found V. Procedure for the organocatalytic domino Michael/aldol reaction of 3-fluoro-1,3-diphenylpropane-1,2-dione 5 to cinnamaldehyde: F N H Ph Ph TMS 20 mol% Toluene, rt, 30min F 5 2a 6 16

17 To a solution of cinnamaldehyde 2a (26.4 mg, 0.2 mmol, 2.0 equiv.) in Toluene (0.2 ml) are added successively Hayashi- Jorgensen catalyst I (6.5 mg, 0.02 mmol, 20 mol%) and 3- fluoro- 1,3- diphenylpropane- 1,2- dione 5 (24.2 mg, 0.1 mmol1.0 equiv.). The mixture was stirred at room temperature for 30 minutes. Then mixture was quenched with 1 ml of 1M H solution and extracted three times with 5 ml of CH 2 2. The combined organic layers were dried over anhydrous Na 2 S 4, filtered and concentrated under reduced pressure. The crude product was purified by preparative TLC plate (c- hexane/etac 8 :2), affording the corresponding cyclopentanone 6. Yield : 68% (24.3 mg, mmol). dr >20 :1 (determined by 1 H NMR of the crude reactive mixture). R f (silica gel, c- Hex/EtAc 9:1) : 0.4. The enantiomeric excess was determined by chiral SFC Chiralpak AS- 3, 10% Isopropanol- 1%/min- 25% Isopropanol in C 2, 30 C, t 1 = 8.31 min, t 2 = 9.03 min. [α] 22 D = (c= 0.32 in CH 3, 90% ee). 1 H NMR (CD 3, 400 MHz) δ (s, 1H, aldehyde), (m, 2H, C ar - H), (m, 3H, C ar - H), (m, 3H, C ar - H), (m, 3H, C ar - H), (m, 2H, C ar - H), (m, 2H, C ar - H), 4.80 (d, J H- F = 22.4 Hz, 1H, CH). 13 C NMR (CD 3, 100 MHz) δ (d, J C- F = 14.5 Hz, ketone Cq), (aldehyde CH), (Cq), (Cq), (Cq), (Cq), (d, J C- F = 18.6 Hz, Cq), (C ar - H), (C ar - H), (C ar - H), (C ar - H), (C ar - H), (C ar - H), (C ar - H), (C ar - H), (d, J C- F = 6.7 Hz, C ar - H), 98.7 (d, J C- F = 147.1Hz, Cq), 55.9 (d, J C- F = 23.1 Hz, CH). 19 F NMR (376 MHz, CD 3 ) δ (s, 1F, C- F). I.R. (thin film) ν 1725, 1673, 1448, 1247, 1203, 1110, 980, 996, 770, 745, 697, 626 cm - 1. Mp C. HRMS (ESI) for C 24 H 17 F 2 [M- H] - : calcd , found References : 1) Xu, W.; Zhou, Y.; Wang, R.; Wu, G.; Chen, P. rg. Biomol. Chem. 2012, 10, ) Harwood, L. M.; Moody, C. J. Experimental rganic Chemistry, Principles and Practice, John Wiley and Sons, 1989, ) Battistuzzi, G.; Cacchi, S.; Fabrizi, G. rg. Lett. 2003, 5, ) Cresswell, A. J.; Davies, S. G.; Lee J. A.; Roberts, P. M.; Russell, A. J.; Thomson, J. E.; Tyte, M. J. rg. Lett, 2010, 12, ) Marques, C. S.; Moura, N. M. M.; Burke, A. J.; Furtado,. R. Tetrahedron Lett. 2007, 48,

18 H 3a C 24 H 19 3 MW: g.mol -1 18

19 H 3b C 25 H 21 4 MW: g.mol -1 19

20 H 3c C 25 H 21 4 MW: g.mol -1 20

21 H 3d C 25 H 21 3 MW: g.mol -1 21

22 H 3e C 25 H 21 4 MW: g.mol -1 22

23 H 3f F C 24 H 18 F 3 MW: g.mol -1 23

24 H Br 3g C 24 H 18 Br 3 MW: g.mol -1 24

25 H Br 3h C 24 H 18 Br 3 MW: g.mol -1 25

26 H C 22 H 17 4 MW: g.mol -1 3i 26

27 H 3j C 24 H MW: g.mol -1 27

28 Br H 3k C 24 H 18 Br 3 MW: g.mol -1 28

29 H 3l C 25 H 21 4 MW: g.mol -1 29

30 H 3m C 25 H 21 3 MW: g.mol -1 30

31 H 3n C 24 H MW: g.mol -1 31

32 H 3o C 25 H 21 4 MW: g.mol -1 32

33 H 3p C 25 H 21 3 MW: g.mol -1 33

34 H N 2 3q C 24 H 18 N 5 MW: g.mol -1 34

35 F 6 C 24 H 17 F 2 MW: g.mol -1 35

36 C 15 H 11 2 MW: g.mo l-1 1a 1H NMR 400 MHz, CD3 36

37 13C NMR 100 MHz, CD3 37

38 1b 1 H NMR 300 MHz, CD3 C 15 H MW:

39 13 C NMR 75 MHz, CD 3 39

40 Br C 15 H 10 Br 2 MW: c H NMR 400 MHz, CD3 40

41 13 C NMR 100 MHz, CD 3 41

42 Me C 16 H 13 3 MW: d H NMR 300 MHz, CD3 42

43 13 C NMR 75 MHz, CD 3 43

44 1 1e H NMR 300 MHz, CD3 C 16 H 13 2 MW:

45 13 C NMR 75 MHz, CD 3 45

46 1 1f H NMR 400 MHz, CD3 C 15 H MW:

47 13 C NMR 100 MHz, CD 3 47

48 C 16 H 13 3 MW: Me 1g 1 H NMR 300 MHz, CD3 48

49 13 C NMR 75 MHz, CD 3 49

50 1h 1 H NMR 400 MHz, CD3 C 16 H 13 2 MW:

51 13 C NMR 100 MHz, CD 3 51

52 N 2 1i 1 H NMR 400 MHz, CD3 C 15 H 10 N 4 MW:

53 13 C NMR 100 MHz, CD 3 53

54 Br 1j 1 H NMR 400 MHz, CD3 C 15 H 10 Br 2 MW:

55 13 C NMR 100 MHz, CD 3 55

56 1 1k H NMR 400 MHz, CD3 C 16 H 13 2 MW:

57 13 C NMR 100 MHz, CD 3 57

58 H 1 3a H NMR 400 MHz, CD3 C 24 H 19 3 MW: g.mol -1 58

59 13 C NMR 100 MHz, CD 3 59

60 H 1 3b H NMR 300 MHz, CD3 C 25 H 21 4 MW: g.mol -1 60

61 13 C NMR 100 MHz, CD 3 61

62 H 1 3c H NMR 400 MHz, CD3 C 25 H 21 4 MW: g.mol -1 62

63 13 C NMR 100 MHz, CD 3 63

64 H 1 3d H NMR 400 MHz, CD3 C 25 H 21 3 MW: g.mol -1 64

65 13 C NMR 100 MHz, CD 3 65

66 H 1 3e H NMR 400 MHz, CD3 C 25 H 21 4 MW: g.mol -1 66

67 13 C NMR 100 MHz, CD 3 67

68 H 1 3f H NMR 400 MHz, CD3 F C 24 H 18 F 3 MW: g.mol -1 68

69 13 C NMR 100 MHz, CD 3 69

70 H Br 1 3g H NMR 400 MHz, CD3 C 24 H 18 Br 3 MW: g.mol -1 70

71 13 C NMR 100 MHz, CD 3 71

72 H Br 1 3h H NMR 400 MHz, CD3 C 24 H 18 Br 3 MW: g.mol -1 72

73 13 C NMR 100 MHz, CD 3 73

74 H C 22 H 17 4 MW: g.mol -1 3i 74

75 13 C NMR 100 MHz, CD 3 75

76 H 1 3j H NMR 400 MHz, CD3 C 24 H MW: g.mol -1 76

77 13 C NMR 100 MHz, CD 3 77

78 Br H 3k 1 H NMR 400 MHz, CD3 C 24 H 18 Br 3 MW: g.mol -1 78

79 13 C NMR 100 MHz, CD 3 79

80 H 1 3l H NMR 400 MHz, CD3 C 25 H 21 4 MW: g.mol -1 80

81 13 C NMR 100 MHz, CD 3 81

82 H 1 3m H NMR 400 MHz, CD3 C 25 H 21 3 MW: g.mol -1 82

83 13 C NMR 100 MHz, CD 3 83

84 H 1 3n H NMR 400 MHz, CD3 C 24 H MW: g.mol -1 84

85 13 C NMR 100 MHz, CD 3 85

86 H 3o 1 H NMR 400 MHz, CD3 C 25 H 21 4 MW: g.mol -1 86

87 13 C NMR 100 MHz, CD 3 87

88 H 3p 1 H NMR 400 MHz, CD3 C 25 H 21 3 MW: g.mol -1 88

89 13 C NMR 100 MHz, CD 3 89

90 H N 2 1 3q H NMR 400 MHz, CD3 C 24 H 18 N 5 MW: g.mol -1 90

91 13 C NMR 100 MHz, CD 3 91

92 F 5 1 H NMR 400 MHz, CD3 C 15 H 11 F 2 MW: g.mol -1 92

93 13 C NMR 100 MHz, CD 3 93

94 19 F NMR 376 MHz, CD 3 94

95 F C 24 H 17 F 2 MW: g.mol H NMR 400 MHz, CD3 95

96 13 C NMR 100 MHz, CD 3 96

97 19 F NMR 376 MHz, CD 3 97

98 Crystal Structure Determination: Compound (3k) X- ray data were measured using Cu radiation on a SuperNova Dual source equipped with an Atlas detector. The crystal was kept at 190 K during data collection. Refinement was made within the ShelXL [1] refinement package using Least Squares minimisation. Hydrogen atom positions were calculated geometrically and constrained to ride on the parent atom during the refinement. The crystal structure has been deposited at the Cambridge Crystallographic Data Centre and allocated the deposition number: CCDC Table 1. Crystal data and structure refinement for al03_725_abs. Identification code Empirical formula al03_725_abs C28 H28 Br 4 Formula weight Temperature Wavelength Crystal system 180(2) K Å Monoclinic Space group P 2 1 Unit cell dimensions a = (14) Å a= 90. b = (12) Å b= (19). c = (16) Å g = 90. Volume (3) Å 3 Z 2 Density (calculated) Mg/m 3 Absorption coefficient mm - 1 F(000) 560 Crystal size x x mm 3 Theta range for data collection 4.90 to

99 Index ranges - 12<=h<=12, - 17<=k<=17, - 12<=l<=10 Reflections collected Independent reflections 5059 [R(int) = ] Completeness to theta = % Absorption correction Analytical Max. and min. transmission and Refinement method Full- matrix least- squares on F 2 Data / restraints / parameters 5059 / 1 / 313 Goodness- of- fit on F Final R indices [I>2sigma(I)] R1 = , wr2 = R indices (all data) R1 = , wr2 = Absolute structure parameter 0.000(11) Largest diff. peak and hole and e.å - 3 Table 2. Bond lengths [Å] and angles [ ] for al03_725_abs. Br(1)- C(10) (19) (1)- C(3) (19) (1)- C(2) 1.203(3) (2)- C(1) 1.426(2) (2)- H(2) 0.72(4) (3)- C(6) 1.182(3) C(1)- C(7) 1.509(2) C(1)- C(5) 1.543(3) 99

100 C(1)- C(2) 1.544(3) C(2)- C(3) 1.543(3) C(3)- C(19) 1.503(3) C(3)- C(4) 1.550(3) C(4)- C(13) 1.514(3) C(4)- C(5) 1.540(3) C(4)- H(4) C(5)- C(6) 1.519(3) C(5)- H(5) C(6)- H(6) C(7)- C(8) 1.387(3) C(7)- C(12) 1.397(3) C(8)- C(9) 1.390(3) C(8)- H(8) C(9)- C(10) 1.379(3) C(9)- H(9) C(10)- C(11) 1.377(3) C(11)- C(12) 1.379(3) C(11)- H(11) C(12)- H(12) C(13)- C(14) 1.388(3) C(13)- C(18) 1.388(3) C(14)- C(15) 1.389(4) C(14)- H(14) C(15)- C(16) 1.376(4) 100

101 C(15)- H(15) C(16)- C(17) 1.376(4) C(16)- H(16) C(17)- C(18) 1.389(3) C(17)- H(17) C(18)- H(18) C(19)- C(20) 1.384(3) C(19)- C(24) 1.394(3) C(20)- C(21) 1.395(4) C(20)- H(20) C(21)- C(22) 1.372(5) C(21)- H(21) C(22)- C(23) 1.374(5) C(22)- H(22) C(23)- C(24) 1.385(4) C(23)- H(23) C(24)- H(24) (1S)- C(2S) 1.426(6) (1S)- C(4S) 1.448(6) C(2S)- C(3S) 1.242(10) C(2S)- H(2SA) C(2S)- H(2SB) C(3S)- H(3SA) C(3S)- H(3SB) C(3S)- H(3SC)

102 C(4S)- C(5S) 1.423(8) C(4S)- H(4SA) C(4S)- H(4SB) C(5S)- H(5SA) C(5S)- H(5SB) C(5S)- H(5SC) C(1)- (2)- H(2) 112(3) (2)- C(1)- C(7) (14) (2)- C(1)- C(5) (17) C(7)- C(1)- C(5) (19) (2)- C(1)- C(2) (17) C(7)- C(1)- C(2) (18) C(5)- C(1)- C(2) (14) (1)- C(2)- C(3) 125.3(2) (1)- C(2)- C(1) 125.0(2) C(3)- C(2)- C(1) (17) C(19)- C(3)- C(2) (16) C(19)- C(3)- C(4) (16) C(2)- C(3)- C(4) (16) C(19)- C(3)- (1) (14) C(2)- C(3)- (1) (13) C(4)- C(3)- (1) (13) C(13)- C(4)- C(5) (17) C(13)- C(4)- C(3) (16) 102

103 C(5)- C(4)- C(3) (16) C(13)- C(4)- H(4) C(5)- C(4)- H(4) C(3)- C(4)- H(4) C(6)- C(5)- C(4) (18) C(6)- C(5)- C(1) (18) C(4)- C(5)- C(1) (16) C(6)- C(5)- H(5) C(4)- C(5)- H(5) C(1)- C(5)- H(5) (3)- C(6)- C(5) 123.7(2) (3)- C(6)- H(6) C(5)- C(6)- H(6) C(8)- C(7)- C(12) (18) C(8)- C(7)- C(1) (17) C(12)- C(7)- C(1) (17) C(7)- C(8)- C(9) (19) C(7)- C(8)- H(8) C(9)- C(8)- H(8) C(10)- C(9)- C(8) (19) C(10)- C(9)- H(9) C(8)- C(9)- H(9) C(11)- C(10)- C(9) (19) C(11)- C(10)- Br(1) (16) C(9)- C(10)- Br(1) (15) 103

104 C(10)- C(11)- C(12) 119.1(2) C(10)- C(11)- H(11) C(12)- C(11)- H(11) C(11)- C(12)- C(7) 121.0(2) C(11)- C(12)- H(12) C(7)- C(12)- H(12) C(14)- C(13)- C(18) 117.8(2) C(14)- C(13)- C(4) 122.8(2) C(18)- C(13)- C(4) 119.4(2) C(13)- C(14)- C(15) 121.2(3) C(13)- C(14)- H(14) C(15)- C(14)- H(14) C(16)- C(15)- C(14) 120.2(3) C(16)- C(15)- H(15) C(14)- C(15)- H(15) C(15)- C(16)- C(17) 119.3(2) C(15)- C(16)- H(16) C(17)- C(16)- H(16) C(16)- C(17)- C(18) 120.4(2) C(16)- C(17)- H(17) C(18)- C(17)- H(17) C(13)- C(18)- C(17) 121.0(2) C(13)- C(18)- H(18) C(17)- C(18)- H(18) C(20)- C(19)- C(24) 118.4(2) 104

105 C(20)- C(19)- C(3) 124.3(2) C(24)- C(19)- C(3) (19) C(19)- C(20)- C(21) 120.0(3) C(19)- C(20)- H(20) C(21)- C(20)- H(20) C(22)- C(21)- C(20) 120.9(3) C(22)- C(21)- H(21) C(20)- C(21)- H(21) C(21)- C(22)- C(23) 119.6(3) C(21)- C(22)- H(22) C(23)- C(22)- H(22) C(22)- C(23)- C(24) 120.1(3) C(22)- C(23)- H(23) C(24)- C(23)- H(23) C(23)- C(24)- C(19) 121.0(2) C(23)- C(24)- H(24) C(19)- C(24)- H(24) C(2S)- (1S)- C(4S) 106.3(5) C(3S)- C(2S)- (1S) 118.8(7) C(3S)- C(2S)- H(2SA) (1S)- C(2S)- H(2SA) C(3S)- C(2S)- H(2SB) (1S)- C(2S)- H(2SB) H(2SA)- C(2S)- H(2SB) C(2S)- C(3S)- H(3SA)

106 C(2S)- C(3S)- H(3SB) H(3SA)- C(3S)- H(3SB) C(2S)- C(3S)- H(3SC) H(3SA)- C(3S)- H(3SC) H(3SB)- C(3S)- H(3SC) C(5S)- C(4S)- (1S) 110.6(3) C(5S)- C(4S)- H(4SA) (1S)- C(4S)- H(4SA) C(5S)- C(4S)- H(4SB) (1S)- C(4S)- H(4SB) H(4SA)- C(4S)- H(4SB) C(4S)- C(5S)- H(5SA) C(4S)- C(5S)- H(5SB) H(5SA)- C(5S)- H(5SB) C(4S)- C(5S)- H(5SC) H(5SA)- C(5S)- H(5SC) H(5SB)- C(5S)- H(5SC) Symmetry transformations used to generate equivalent atoms: Table 3. Hydrogen bonds for al03_725_abs [Å and ]. D- H...A d(d- H) d(h...a) d(d...a) <(DHA) (2)- H(2)...(1S)#1 0.72(4) 2.07(4) 2.739(3) 155(4) 106

107 Symmetry transformations used to generate equivalent atoms: #1 - x+1,y- 1/2,- z+1 Figure 1- rtep view of Al03_725 (50% probability level). Ether solvate molecule is omitted for clarity. Remarque: There is one hydrogen bond between the Et2 solvate molecule and the H group of the compound (see table 3 and figure 2). 107

108 Figure

Synthesis of Trifluoromethylated Naphthoquinones via Copper-Catalyzed. Cascade Trifluoromethylation/Cyclization of. 2-(3-Arylpropioloyl)benzaldehydes

Synthesis of Trifluoromethylated Naphthoquinones via Copper-Catalyzed. Cascade Trifluoromethylation/Cyclization of. 2-(3-Arylpropioloyl)benzaldehydes Supporting Information to Synthesis of Trifluoromethylated Naphthoquinones via Copper-Catalyzed Cascade Trifluoromethylation/Cyclization of 2-(3-Arylpropioloyl)benzaldehydes Yan Zhang*, Dongmei Guo, Shangyi

More information

Supporting Information

Supporting Information Supporting Information Organocatalytic Enantioselective Formal Synthesis of Bromopyrrole Alkaloids via Aza-Michael Addition Su-Jeong Lee, Seok-Ho Youn and Chang-Woo Cho* Department of Chemistry, Kyungpook

More information

Supporting Information. Table of Contents. 1. General Notes Experimental Details 3-12

Supporting Information. Table of Contents. 1. General Notes Experimental Details 3-12 Supporting Information Table of Contents page 1. General Notes 2 2. Experimental Details 3-12 3. NMR Support for Timing of Claisen/Diels-Alder/Claisen 13 4. 1 H and 13 C NMR 14-37 General Notes All reagents

More information

Brønsted Base-Catalyzed Reductive Cyclization of Alkynyl. α-iminoesters through Auto-Tandem Catalysis

Brønsted Base-Catalyzed Reductive Cyclization of Alkynyl. α-iminoesters through Auto-Tandem Catalysis Supporting Information Brønsted Base-Catalyzed Reductive Cyclization of Alkynyl α-iminoesters through Auto-Tandem Catalysis Azusa Kondoh, b and Masahiro Terada* a a Department of Chemistry, Graduate School

More information

Poly(4-vinylimidazolium)s: A Highly Recyclable Organocatalyst Precursor for. Benzoin Condensation Reaction

Poly(4-vinylimidazolium)s: A Highly Recyclable Organocatalyst Precursor for. Benzoin Condensation Reaction Electronic Supplementary Material (ESI) for RSC Advances. This journal is The Royal Society of Chemistry 24 Supporting Information Poly(4-vinylimidazolium)s: A Highly Recyclable rganocatalyst Precursor

More information

Supporting Information

Supporting Information Electronic Supplementary Material (ESI) for RSC Advances. This journal is The Royal Society of Chemistry 2017 Supporting Information Lithium Triethylborohydride-Promoted Generation of α,α-difluoroenolates

More information

Divergent Synthesis of CF 3 -Substituted Polycyclic Skeletons Based on Control of Activation Site of Acid Catalysts

Divergent Synthesis of CF 3 -Substituted Polycyclic Skeletons Based on Control of Activation Site of Acid Catalysts Electronic Supplementary Material (ESI) for ChemComm. This journal is The Royal Society of Chemistry 2018 Divergent Synthesis of CF 3 -Substituted Polycyclic Skeletons Based on Control of Activation Site

More information

Supporting Information

Supporting Information Electronic Supplementary Material (ESI) for RSC Advances. This journal is The Royal Society of Chemistry 2016 Supporting Information TEMPO-catalyzed Synthesis of 5-Substituted Isoxazoles from Propargylic

More information

Supporting Information

Supporting Information Supporting Information Synthesis of H-Indazoles from Imidates and Nitrosobenzenes via Synergistic Rhodium/Copper Catalysis Qiang Wang and Xingwei Li* Dalian Institute of Chemical Physics, Chinese Academy

More information

Supporting Information

Supporting Information Electronic Supplementary Material (ESI) for RSC Advances. This journal is The Royal Society of Chemistry 2014 Supporting Information Rh 2 (Ac) 4 -Catalyzed 2,3-Migration of -rrocenecarboxyl -Diazocarbonyl

More information

Supporting Information

Supporting Information Supporting Information Copyright Wiley-VCH Verlag GmbH & Co. KGaA, 69451 Weinheim, 2012 Subcellular Localization and Activity of Gambogic Acid Gianni Guizzunti,* [b] Ayse Batova, [a] Oraphin Chantarasriwong,

More information

Supporting Information:

Supporting Information: Supporting Information: An rganocatalytic Asymmetric Sequential Allylic Alkylation/Cyclization of Morita-Baylis-Hillman Carbonates and 3-Hydroxyoxindoles Qi-Lin Wang a,b, Lin Peng a, Fei-Ying Wang a, Ming-Liang

More information

Silver-catalyzed decarboxylative acylfluorination of styrenes in aqueous media

Silver-catalyzed decarboxylative acylfluorination of styrenes in aqueous media Electronic Supplementary Material (ESI) for ChemComm. This journal is The Royal Society of Chemistry 2014 Supporting Information Silver-catalyzed decarboxylative acylfluorination of styrenes in aqueous

More information

Tetrahydrofuran (THF) was distilled from benzophenone ketyl radical under an argon

Tetrahydrofuran (THF) was distilled from benzophenone ketyl radical under an argon SUPPLEMENTARY METHODS Solvents, reagents and synthetic procedures All reactions were carried out under an argon atmosphere unless otherwise specified. Tetrahydrofuran (THF) was distilled from benzophenone

More information

An Efficient Total Synthesis and Absolute Configuration. Determination of Varitriol

An Efficient Total Synthesis and Absolute Configuration. Determination of Varitriol An Efficient Total Synthesis and Absolute Configuration Determination of Varitriol Ryan T. Clemens and Michael P. Jennings * Department of Chemistry, University of Alabama, 500 Campus Dr. Tuscaloosa, AL

More information

The First Asymmetric Total Syntheses and. Determination of Absolute Configurations of. Xestodecalactones B and C

The First Asymmetric Total Syntheses and. Determination of Absolute Configurations of. Xestodecalactones B and C Supporting Information The First Asymmetric Total Syntheses and Determination of Absolute Configurations of Xestodecalactones B and C Qiren Liang, Jiyong Zhang, Weiguo Quan, Yongquan Sun, Xuegong She*,,

More information

Supporting Information

Supporting Information Supporting Information Construction of Highly Functional α-amino itriles via a ovel Multicomponent Tandem rganocatalytic Reaction: a Facile Access to α-methylene γ-lactams Feng Pan, Jian-Ming Chen, Zhe

More information

Supporting Information

Supporting Information Supporting Information Wiley-VCH 2008 69451 Weinheim, Germany S1 Stereoselective Synthesis of α,α-chlorofluoro Carbonyl Compounds Leading to the Construction of luorinated Chiral Quaternary Carbon Centers

More information

Supporting Information

Supporting Information Supporting Information Silver-Mediated Oxidative Trifluoromethylation of Alcohols to Alkyl Trifluoromethyl Ethers Jian-Bo Liu, Xiu-Hua Xu, and Feng-Ling Qing Table of Contents 1. General Information --------------------------------------------------------------------------2

More information

Synthetic Studies on Norissolide; Enantioselective Synthesis of the Norrisane Side Chain

Synthetic Studies on Norissolide; Enantioselective Synthesis of the Norrisane Side Chain rganic Lett. (Supporting Information) 1 Synthetic Studies on Norissolide; Enantioselective Synthesis of the Norrisane Side Chain Charles Kim, Richard Hoang and Emmanuel A. Theodorakis* Department of Chemistry

More information

Organocatalytic asymmetric biomimetic transamination of aromatic ketone to optically active amine

Organocatalytic asymmetric biomimetic transamination of aromatic ketone to optically active amine Organocatalytic asymmetric biomimetic transamination of aromatic ketone to optically active amine Ying Xie, a Hongjie Pan, a Xiao Xiao, a Songlei Li a and Yian Shi* a,b a Beijing National Laboratory for

More information

Supporting Information

Supporting Information Supporting Information Divergent Reactivity of gem-difluoro-enolates towards Nitrogen Electrophiles: Unorthodox Nitroso Aldol Reaction for Rapid Synthesis of -Ketoamides Mallu Kesava Reddy, Isai Ramakrishna,

More information

Electronic Supplementary Material (ESI) for Chemical Communications This journal is The Royal Society of Chemistry 2012

Electronic Supplementary Material (ESI) for Chemical Communications This journal is The Royal Society of Chemistry 2012 Ring Expansion of Alkynyl Cyclopropanes to Highly substituted Cyclobutenes via a N-Sulfonyl-1,2,3-Triazole Intermediate Renhe Liu, Min Zhang, Gabrielle Winston-Mcerson, and Weiping Tang* School of armacy,

More information

Carbonylative Coupling of Allylic Acetates with. Arylboronic Acids

Carbonylative Coupling of Allylic Acetates with. Arylboronic Acids Electronic Supplementary Material (ESI) for ChemComm. This journal is The Royal Society of Chemistry 2015 Carbonylative Coupling of Allylic Acetates with Arylboronic Acids Wei Ma, a Ting Yu, Dong Xue,*

More information

Supporting Information. DBU-Mediated Metal-Free Oxidative Cyanation of α-amino. Carbonyl Compounds: Using Molecular Oxygen as the Oxidant

Supporting Information. DBU-Mediated Metal-Free Oxidative Cyanation of α-amino. Carbonyl Compounds: Using Molecular Oxygen as the Oxidant Electronic Supplementary Material (ESI) for Organic & Biomolecular Chemistry. This journal is The Royal Society of Chemistry 2015 Supporting Information DBU-Mediated Metal-Free Oxidative Cyanation of α-amino

More information

Domino reactions of 2-methyl chromones containing an electron withdrawing group with chromone-fused dienes

Domino reactions of 2-methyl chromones containing an electron withdrawing group with chromone-fused dienes Domino reactions of 2-methyl chromones containing an electron withdrawing group with chromone-fused dienes Jian Gong, Fuchun Xie, Wenming Ren, Hong Chen and Youhong Hu* State Key Laboratory of Drug Research,

More information

Supporting Information

Supporting Information Supporting Information Wiley-VCH 2006 69451 Weinheim, Germany A Highly Enantioselective Brønsted Acid Catalyst for the Strecker Reaction Magnus Rueping, * Erli Sugiono and Cengiz Azap General: Unless otherwise

More information

Synthesis of borinic acids and borinate adducts using diisopropylaminoborane

Synthesis of borinic acids and borinate adducts using diisopropylaminoborane Synthesis of borinic acids and borinate adducts using diisopropylaminoborane Ludovic Marciasini, Bastien Cacciuttolo, Michel Vaultier and Mathieu Pucheault* Institut des Sciences Moléculaires, UMR 5255,

More information

Supporting Information

Supporting Information Meyer, Ferreira, and Stoltz: Diazoacetoacetic acid Supporting Information S1 2-Diazoacetoacetic Acid, an Efficient and Convenient Reagent for the Synthesis of Substituted -Diazo- -ketoesters Michael E.

More information

Recyclable Enamine Catalysts for Asymmetric Direct Cross-Aldol

Recyclable Enamine Catalysts for Asymmetric Direct Cross-Aldol Recyclable Enamine Catalysts for Asymmetric Direct Cross-Aldol Reaction of Aldehydes in Emulsion Media Qiang Gao, a,b Yan Liu, a Sheng-Mei Lu, a Jun Li a and Can Li* a a State Key Laboratory of Catalysis,

More information

Supporting Information for Synthesis of C(3) Benzofuran Derived Bis-Aryl Quaternary Centers: Approaches to Diazonamide A

Supporting Information for Synthesis of C(3) Benzofuran Derived Bis-Aryl Quaternary Centers: Approaches to Diazonamide A Fuerst et al. Synthesis of C(3) Benzofuran Derived Bis-Aryl Quaternary Centers: Approaches to Diazonamide A S1 Supporting Information for Synthesis of C(3) Benzofuran Derived Bis-Aryl Quaternary Centers:

More information

Supporting Information

Supporting Information Supporting Information Efficient Short Step Synthesis of Corey s Tamiflu Intermediate Nsiama Tienabe Kipassa, Hiroaki kamura, * Kengo Kina, Tetsuo Iwagawa, and Toshiyuki Hamada Department of Chemistry

More information

Supporting Information

Supporting Information Supporting Information (Tetrahedron. Lett.) Cavitands with Inwardly and Outwardly Directed Functional Groups Mao Kanaura a, Kouhei Ito a, Michael P. Schramm b, Dariush Ajami c, and Tetsuo Iwasawa a * a

More information

Phil S. Baran*, Jeremy M. Richter and David W. Lin SUPPORTING INFORMATION

Phil S. Baran*, Jeremy M. Richter and David W. Lin SUPPORTING INFORMATION Direct Coupling of Pyrroles with Carbonyl Compounds: Short, Enantioselective Synthesis of (S)-Ketorolac Phil S. Baran*, Jeremy M. Richter and David W. Lin SUPPRTIG IFRMATI General Procedures. All reactions

More information

Synthesis of Glaucogenin D, a Structurally Unique. Disecopregnane Steroid with Potential Antiviral Activity

Synthesis of Glaucogenin D, a Structurally Unique. Disecopregnane Steroid with Potential Antiviral Activity Supporting Information for Synthesis of Glaucogenin D, a Structurally Unique Disecopregnane Steroid with Potential Antiviral Activity Jinghan Gui,* Hailong Tian, and Weisheng Tian* Key Laboratory of Synthetic

More information

Enantioselective Conjugate Addition of 3-Fluoro-Oxindoles to. Vinyl Sulfone: An Organocatalytic Access to Chiral. 3-Fluoro-3-Substituted Oxindoles

Enantioselective Conjugate Addition of 3-Fluoro-Oxindoles to. Vinyl Sulfone: An Organocatalytic Access to Chiral. 3-Fluoro-3-Substituted Oxindoles Enantioselective Conjugate Addition of 3-Fluoro-Oxindoles to Vinyl Sulfone: An Organocatalytic Access to Chiral 3-Fluoro-3-Substituted Oxindoles Xiaowei Dou and Yixin Lu * Department of Chemistry & Medicinal

More information

Suzuki-Miyaura Coupling of Heteroaryl Boronic Acids and Vinyl Chlorides

Suzuki-Miyaura Coupling of Heteroaryl Boronic Acids and Vinyl Chlorides Suzuki-Miyaura Coupling of Heteroaryl Boronic Acids and Vinyl Chlorides Ashish Thakur, Kainan Zhang, Janis Louie* SUPPORTING INFORMATION General Experimental: All reactions were conducted under an atmosphere

More information

Supporting Information

Supporting Information Supporting Information Wiley-VCH 2007 69451 Weinheim, Germany Diphenylprolinol Silyl Ether in Enantioselective, Catalytic Tandem Michael-Henry Reaction for the Control of Four Stereocenters Yujiro Hayashi*,

More information

SUPPORTING INFORMATION. Fathi Elwrfalli, Yannick J. Esvan, Craig M. Robertson and Christophe Aïssa

SUPPORTING INFORMATION. Fathi Elwrfalli, Yannick J. Esvan, Craig M. Robertson and Christophe Aïssa Electronic Supplementary Material (ESI) for ChemComm. This journal is The Royal Society of Chemistry 2018 SUPPORTING INFORMATION S1 Fathi Elwrfalli, Yannick J. Esvan, Craig M. Robertson and Christophe

More information

Dual Catalyst System provides the Shortest Pathway for l-menthol Synthesis

Dual Catalyst System provides the Shortest Pathway for l-menthol Synthesis Chemical Communications Supporting Information Dual Catalyst System provides the Shortest Pathway for l-menthol Synthesis Hironori Maeda, Shinya Yamada, Hisanori Itoh, and Yoji Hori* Takasago International

More information

Department of Chemistry and Biochemistry, California State University Northridge, Northridge, CA Experimental Procedures

Department of Chemistry and Biochemistry, California State University Northridge, Northridge, CA Experimental Procedures Supporting Information Low Temperature n-butyllithium-induced [3,3]-Sigmatropic Rearrangement/Electrophile Trapping Reactions of Allyl-1,1- Dichlorovinyl Ethers. Synthesis of - - and -lactones. Aaron Christopher

More information

Supporting Information

Supporting Information Supporting Information Total Synthesis of (±)-Grandilodine B Chunyu Wang, Zhonglei Wang, Xiaoni Xie, Xiaotong Yao, Guang Li, and Liansuo Zu* School of Pharmaceutical Sciences, Tsinghua University, Beijing,

More information

for Brønsted Base-Mediated Aziridination of 2- Alkyl Substituted-1,3-Dicarbonyl Compounds and 2-Acyl-1,4-Dicarbonyl Compounds by Iminoiodanes

for Brønsted Base-Mediated Aziridination of 2- Alkyl Substituted-1,3-Dicarbonyl Compounds and 2-Acyl-1,4-Dicarbonyl Compounds by Iminoiodanes 10.1071/CH16580_AC CSIRO 2017 Australian Journal of Chemistry 2017, 70(4), 430-435 Supplementary Material for Brønsted Base-Mediated Aziridination of 2- Alkyl Substituted-1,3-Dicarbonyl Compounds and 2-Acyl-1,4-Dicarbonyl

More information

Supporting Information:

Supporting Information: Enantioselective Synthesis of (-)-Codeine and (-)-Morphine Barry M. Trost* and Weiping Tang Department of Chemistry, Stanford University, Stanford, CA 94305-5080 1. Aldehyde 7. Supporting Information:

More information

Electronic Supplementary Information

Electronic Supplementary Information Electronic Supplementary Material (ESI) for rganic & Biomolecular Chemistry. This journal is The Royal Society of Chemistry 2014 Electronic Supplementary Information Visible light-mediated dehydrogenative

More information

Supporting Information. Enantioselective Organocatalyzed Henry Reaction with Fluoromethyl Ketones

Supporting Information. Enantioselective Organocatalyzed Henry Reaction with Fluoromethyl Ketones Supporting Information Enantioselective Organocatalyzed Henry Reaction with Fluoromethyl Ketones Marco Bandini,* Riccardo Sinisi, Achille Umani-Ronchi* Dipartimento di Chimica Organica G. Ciamician, Università

More information

Enantioselectivity switch in copper-catalyzed conjugate addition. reaction under influence of a chiral N-heterocyclic carbene-silver complex

Enantioselectivity switch in copper-catalyzed conjugate addition. reaction under influence of a chiral N-heterocyclic carbene-silver complex Electronic Supplementary Material (ESI) for RSC Advances. This journal is The Royal Society of Chemistry 2016 Supplementary Information Enantioselectivity switch in copper-catalyzed conjugate addition

More information

Supporting Information. Enantioselective Pd-Catalyzed Allylation Reaction of Fluorinated Silyl Enol Ethers

Supporting Information. Enantioselective Pd-Catalyzed Allylation Reaction of Fluorinated Silyl Enol Ethers S1 Supporting Information Enantioselective Pd-Catalyzed Allylation Reaction of luorinated Silyl Enol Ethers Étienne Bélanger, Katy Cantin, livier Messe, Mélanie Tremblay, and Jean-rançois Paquin* Canada

More information

Supporting Information

Supporting Information Supporting Information Wiley-VCH 2006 69451 Weinheim, Germany rganocatalytic Conjugate Addition of Malonates to a,ß-unsaturated Aldehydes: Asymmetric Formal Synthesis of (-)-Paroxetine, Chiral Lactams

More information

Supporting Information. Cu(I)-Catalyzed Three-Component Reaction of Diazo. Compound with Terminal Alkyne and Nitrosobenzene for

Supporting Information. Cu(I)-Catalyzed Three-Component Reaction of Diazo. Compound with Terminal Alkyne and Nitrosobenzene for Supporting Information of Cu(I)-Catalyzed Three-Component Reaction of Diazo Compound with Terminal Alkyne and Nitrosobenzene for the Synthesis of Trifluoromethyl Dihydroisoxazoles Xinxin Lv, Zhenghui Kang,

More information

Supporting information. Direct Enantioselective Aldol Reactions catalyzed by a Proline-Thiourea Host- Guest Complex

Supporting information. Direct Enantioselective Aldol Reactions catalyzed by a Proline-Thiourea Host- Guest Complex Supporting information Direct Enantioselective Aldol Reactions catalyzed by a Proline-Thiourea Host- Guest Complex Ömer Reis, Serkan Eymur, Barbaros Reis, Ayhan S. Demir* Department of Chemistry, Middle

More information

Supporting Information

Supporting Information Supporting Information for Cu-Mediated trifluoromethylation of benzyl, allyl and propargyl methanesulfonates with TMSCF 3 Xueliang Jiang 1 and Feng-Ling Qing* 1,2 Address: 1 Key Laboratory of Organofluorine

More information

hydroxyanthraquinones related to proisocrinins

hydroxyanthraquinones related to proisocrinins Supporting Information for Regiodefined synthesis of brominated hydroxyanthraquinones related to proisocrinins Joyeeta Roy, Tanushree Mal, Supriti Jana and Dipakranjan Mal* Address: Department of Chemistry,

More information

SUPPLEMENTARY INFORMATION

SUPPLEMENTARY INFORMATION Supplementary Method Synthesis of 2-alkyl-MPT(R) General information (R) enantiomer of 2-alkyl (18:1) MPT (hereafter designated as 2-alkyl- MPT(R)), was synthesized as previously described 1, with some

More information

Supplementary Information. Table of Contents

Supplementary Information. Table of Contents Supplementary Information Modular Chiral Dendritic monodentate phosphoramidite ligands for Rh(I)-Catalyzed Asymmetric Hydrogenation: Unprecedented Enhancement of Enantioselectivity Feng Zhang, a, b Yong

More information

Highly Regioselective Lithiation of Pyridines Bearing an Oxetane Unit by n-buthyllithium

Highly Regioselective Lithiation of Pyridines Bearing an Oxetane Unit by n-buthyllithium Electronic Supplementary Material (ESI) for ChemComm. This journal is The Royal Society of Chemistry 2014 Highly Regioselective Lithiation of Pyridines Bearing an Oxetane Unit by n-buthyllithium Guy Rouquet,*

More information

Supporting Information for. A New Method for the Cleavage of Nitrobenzyl Amides and Ethers

Supporting Information for. A New Method for the Cleavage of Nitrobenzyl Amides and Ethers SI- 1 Supporting Information for A ew Method for the Cleavage of itrobenzyl Amides and Ethers Seo-Jung Han, Gabriel Fernando de Melo, and Brian M. Stoltz* The Warren and Katharine Schlinger Laboratory

More information

Photooxidations of 2-(γ,ε-dihydroxyalkyl) furans in Water: Synthesis of DE-Bicycles of the Pectenotoxins

Photooxidations of 2-(γ,ε-dihydroxyalkyl) furans in Water: Synthesis of DE-Bicycles of the Pectenotoxins S1 Photooxidations of 2-(γ,ε-dihydroxyalkyl) furans in Water: Synthesis of DE-Bicycles of the Pectenotoxins Antonia Kouridaki, Tamsyn Montagnon, Maria Tofi and Georgios Vassilikogiannakis* Department of

More information

Supporting Information

Supporting Information Supporting Information Wiley-VCH 2008 69451 Weinheim, Germany Complete Switch of Migratory Aptitude in Aluminum-Catalyzed 1,2-Rearrangement of Differently α,α-disubstituted α-siloxy Aldehydes Kohsuke hmatsu,

More information

Supporting Information

Supporting Information Supporting Information SmI 2 -Mediated Carbon-Carbon Bond Fragmentation in α-aminomethyl Malonates Qiongfeng Xu,, Bin Cheng, $, Xinshan Ye,*, and Hongbin Zhai*,,,$ The State Key Laboratory of Natural and

More information

Supporting Information for: Synthesis of Chiral Tryptamines via a Regioselective Indole Alkylation

Supporting Information for: Synthesis of Chiral Tryptamines via a Regioselective Indole Alkylation Supporting Information for: Synthesis of Chiral Tryptamines via a Regioselective Indole Alkylation Jens Wolfard, Jie Xu,* Haiming Zhang, and Cheol K. Chung* Department of Small Molecule Process Chemistry,

More information

A fluorinated dendritic TsDPEN-Ru(II) catalyst for asymmetric transfer hydrogenation of prochiral ketones in aqueous media

A fluorinated dendritic TsDPEN-Ru(II) catalyst for asymmetric transfer hydrogenation of prochiral ketones in aqueous media Supplementary Information A fluorinated dendritic TsDPEN-Ru(II) catalyst for asymmetric transfer hydrogenation of prochiral ketones in aqueous media Weiwei Wang and Quanrui Wang* Department of Chemistry,

More information

Supporting Information for Exploration of C H and N H-bond functionalization towards 1-(1,2-diarylindol-3-yl)- tetrahydroisoquinolines

Supporting Information for Exploration of C H and N H-bond functionalization towards 1-(1,2-diarylindol-3-yl)- tetrahydroisoquinolines Supporting Information for Exploration of C H and N H-bond functionalization towards 1-(1,2-diarylindol-3-yl)- tetrahydroisoquinolines Michael Ghobrial, Marko D. Mihovilovic and Michael Schnürch* Address:

More information

Enantioselective Synthesis of Fused Heterocycles with Contiguous Stereogenic Centers by Chiral Phosphoric Acid-Catalyzed Symmetry Breaking

Enantioselective Synthesis of Fused Heterocycles with Contiguous Stereogenic Centers by Chiral Phosphoric Acid-Catalyzed Symmetry Breaking Electronic Supplementary Material (ESI) for ChemComm. This journal is The Royal Society of Chemistry 2015 Enantioselective Synthesis of Fused Heterocycles with Contiguous Stereogenic Centers by Chiral

More information

Supporting Information

Supporting Information Supporting Information Wiley-VC 2008 69451 Weinheim, Germany SI-1 A Concise Approach to Vinigrol Thomas J. Maimone, Ana-Florina Voica, and Phil S. Baran* Contribution from the Department of Chemistry,

More information

Supporting Information:

Supporting Information: Electronic Supplementary Material (ESI) for Green Chemistry. This journal is The Royal Society of Chemistry 2016 Supporting Information: A metal free reduction of aryl-n-nitrosamines to corresponding hydrazines

More information

Light-Controlled Switching of a Non- Photoresponsive Molecular Shuttle

Light-Controlled Switching of a Non- Photoresponsive Molecular Shuttle Supporting Information Light-Controlled Switching of a Non- Photoresponsive Molecular Shuttle Liu-Pan Yang, a,b Fei Jia, a Jie-Shun Cui, a Song-Bo Lu, a and Wei Jiang* a a Department of Chemistry, South

More information

Straightforward Synthesis of Enantiopure (R)- and (S)-trifluoroalaninol

Straightforward Synthesis of Enantiopure (R)- and (S)-trifluoroalaninol S1 Supplementary Material (ESI) for Organic & Biomolecular Chemistry This journal is (c) The Royal Society of Chemistry 2010 Straightforward Synthesis of Enantiopure (R)- and (S)-trifluoroalaninol Julien

More information

Iridium-catalyzed regioselective decarboxylative allylation of. β-ketoacids: efficient construction of γ, δ-unsaturated ketones

Iridium-catalyzed regioselective decarboxylative allylation of. β-ketoacids: efficient construction of γ, δ-unsaturated ketones Electronic Supplementary Material (ESI) for ChemComm. This journal is The Royal Society of Chemistry 2015 Iridium-catalyzed regioselective decarboxylative allylation of β-ketoacids: efficient construction

More information

Aziridine in Polymers: A Strategy to Functionalize Polymers by Ring- Opening Reaction of Aziridine

Aziridine in Polymers: A Strategy to Functionalize Polymers by Ring- Opening Reaction of Aziridine Electronic Supplementary Material (ESI) for Polymer Chemistry. This journal is The Royal Society of Chemistry 2015 Electronic Supplementary Information (ESI) Aziridine in Polymers: A Strategy to Functionalize

More information

A Facile and General Approach to 3-((Trifluoromethyl)thio)- 4H-chromen-4-one

A Facile and General Approach to 3-((Trifluoromethyl)thio)- 4H-chromen-4-one A Facile and General Approach to 3-((Trifluoromethyl)thio)- 4H-chromen-4-one Haoyue Xiang and Chunhao Yang* State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy

More information

Scalable Synthesis of Fmoc-Protected GalNAc-Threonine Amino Acid and T N Antigen via Nickel Catalysis

Scalable Synthesis of Fmoc-Protected GalNAc-Threonine Amino Acid and T N Antigen via Nickel Catalysis Scalable Synthesis of Fmoc-Protected GalNAc-Threonine Amino Acid and T N Antigen via Nickel Catalysis Fei Yu, Matthew S. McConnell, and Hien M. Nguyen* Department of Chemistry, University of Iowa, Iowa

More information

Supporting Text Synthesis of (2 S ,3 S )-2,3-bis(3-bromophenoxy)butane (3). Synthesis of (2 S ,3 S

Supporting Text Synthesis of (2 S ,3 S )-2,3-bis(3-bromophenoxy)butane (3). Synthesis of (2 S ,3 S Supporting Text Synthesis of (2S,3S)-2,3-bis(3-bromophenoxy)butane (3). Under N 2 atmosphere and at room temperature, a mixture of 3-bromophenol (0.746 g, 4.3 mmol) and Cs 2 C 3 (2.81 g, 8.6 mmol) in DMS

More information

SYNTHESIS OF A 3-THIOMANNOSIDE

SYNTHESIS OF A 3-THIOMANNOSIDE Supporting Information SYNTHESIS OF A 3-THIOMANNOSIDE María B Comba, Alejandra G Suárez, Ariel M Sarotti, María I Mangione* and Rolando A Spanevello and Enrique D V Giordano Instituto de Química Rosario,

More information

A Strategy Toward the Synthesis of C 13 -Oxidized Cembrenolides

A Strategy Toward the Synthesis of C 13 -Oxidized Cembrenolides A Strategy Toward the Synthesis of C 13 -xidized Cembrenolides Alec Saitman, Steven D. E. Sullivan and Emmanuel A. Theodorakis* Department of Chemistry and Biochemistry, University of California, San Diego,

More information

Supporting Information. Efficient N-arylation and N-alkenylation of the five. DNA/RNA nucleobases

Supporting Information. Efficient N-arylation and N-alkenylation of the five. DNA/RNA nucleobases Supporting Information Efficient -arylation and -alkenylation of the five DA/RA nucleobases Mikkel F. Jacobsen, Martin M. Knudsen and Kurt V. Gothelf* Center for Catalysis and Interdisciplinary anoscience

More information

Metal-free general procedure for oxidation of secondary amines to nitrones

Metal-free general procedure for oxidation of secondary amines to nitrones S1 Supporting information Metal-free general procedure for oxidation of secondary amines to nitrones Carolina Gella, Èric Ferrer, Ramon Alibés, Félix Busqué,* Pedro de March, Marta Figueredo,* and Josep

More information

Reactions. James C. Anderson,* Rachel H. Munday. School of Chemistry, University of Nottingham, Nottingham, NG7 2RD, UK

Reactions. James C. Anderson,* Rachel H. Munday. School of Chemistry, University of Nottingham, Nottingham, NG7 2RD, UK Vinyl-dimethylphenylsilanes as Safety Catch Silanols in Fluoride free Palladium Catalysed Cross Coupling Reactions. James C. Anderson,* Rachel H. Munday School of Chemistry, University of Nottingham, Nottingham,

More information

How to build and race a fast nanocar Synthesis Information

How to build and race a fast nanocar Synthesis Information How to build and race a fast nanocar Synthesis Information Grant Simpson, Victor Garcia-Lopez, Phillip Petemeier, Leonhard Grill*, and James M. Tour*, Department of Physical Chemistry, University of Graz,

More information

Fast and Flexible Synthesis of Pantothenic Acid and CJ-15,801.

Fast and Flexible Synthesis of Pantothenic Acid and CJ-15,801. Fast and Flexible Synthesis of Pantothenic Acid and CJ-15,801. Alan L. Sewell a, Mathew V. J. Villa a, Mhairi Matheson a, William G. Whittingham b, Rodolfo Marquez a*. a) WestCHEM, School of Chemistry,

More information

Supporting Information

Supporting Information Electronic Supplementary Material (ESI) for rganic & Biomolecular Chemistry. This journal is The Royal Society of Chemistry 2015 Supporting Information Palladium-Catalyzed Regio-selective xidative C-H

More information

Supporting Information

Supporting Information An Improved ynthesis of the Pyridine-Thiazole Cores of Thiopeptide Antibiotics Virender. Aulakh, Marco A. Ciufolini* Department of Chemistry, University of British Columbia 2036 Main Mall, Vancouver, BC

More information

Supporting Information

Supporting Information ne-pot synthesis of pyrrolidino- and piperidinoquinolinones by three-component aza-diels Alder reactions of -arylimines with in situ generated cyclic enamides. Wenxue Zhang, Yisi Dai, Xuerui Wang, Wei

More information

Supporting Information for

Supporting Information for Page of 0 0 0 0 Submitted to The Journal of Organic Chemistry S Supporting Information for Syntheses and Spectral Properties of Functionalized, Water-soluble BODIPY Derivatives Lingling Li, Junyan Han,

More information

Supporting Information

Supporting Information Supporting Information An L-proline Functionalized Metallo-organic Triangle as Size-Selective Homogeneous Catalyst for Asymmertry Catalyzing Aldol Reactions Xiao Wu, Cheng He, Xiang Wu, Siyi Qu and Chunying

More information

guanidine bisurea bifunctional organocatalyst

guanidine bisurea bifunctional organocatalyst Supporting Information for Asymmetric -amination of -keto esters using a guanidine bisurea bifunctional organocatalyst Minami Odagi* 1, Yoshiharu Yamamoto 1 and Kazuo Nagasawa* 1 Address: 1 Department

More information

Supporting Information for: Direct Conversion of Haloarenes to Phenols under Mild, Transition-Metal-Free Conditions

Supporting Information for: Direct Conversion of Haloarenes to Phenols under Mild, Transition-Metal-Free Conditions Supporting Information for: Direct Conversion of Haloarenes to Phenols under Mild, Transition-Metal-Free Conditions Patrick S. Fier* and Kevin M. Maloney* S1 General experimental details All reactions

More information

Supplementary Material for: Unexpected Decarbonylation during an Acid- Mediated Cyclization to Access the Carbocyclic Core of Zoanthenol.

Supplementary Material for: Unexpected Decarbonylation during an Acid- Mediated Cyclization to Access the Carbocyclic Core of Zoanthenol. Tetrahedron Letters 1 Pergamon TETRAHEDRN LETTERS Supplementary Material for: Unexpected Decarbonylation during an Acid- Mediated Cyclization to Access the Carbocyclic Core of Zoanthenol. Jennifer L. Stockdill,

More information

A Mild, Catalytic and Highly Selective Method for the Oxidation of α,β- Enones to 1,4-Enediones. Jin-Quan Yu, a and E. J.

A Mild, Catalytic and Highly Selective Method for the Oxidation of α,β- Enones to 1,4-Enediones. Jin-Quan Yu, a and E. J. A Mild, Catalytic and Highly Selective Method for the Oxidation of α,β- Enones to 1,4-Enediones Jin-Quan Yu, a and E. J. Corey b * a Department of Chemistry, Cambridge University, Cambridge CB2 1EW, United

More information

Electronic Supplementary Information. An Ultrafast Surface-Bound Photo-active Molecular. Motor

Electronic Supplementary Information. An Ultrafast Surface-Bound Photo-active Molecular. Motor This journal is The Royal Society of Chemistry and wner Societies 2013 Electronic Supplementary Information An Ultrafast Surface-Bound Photo-active Molecular Motor Jérôme Vachon, [a] Gregory T. Carroll,

More information

Ring-Opening / Fragmentation of Dihydropyrones for the Synthesis of Homopropargyl Alcohols

Ring-Opening / Fragmentation of Dihydropyrones for the Synthesis of Homopropargyl Alcohols Ring-pening / Fragmentation of Dihydropyrones for the Synthesis of Homopropargyl Alcohols Jumreang Tummatorn, and Gregory B. Dudley, * Department of Chemistry and Biochemistry, Florida State University,

More information

Palladium-Catalyzed Asymmetric [3+2] Cycloaddition to Construct 1,3-Indandione and Oxindole-Fused Spiropyrazolidine Scaffolds

Palladium-Catalyzed Asymmetric [3+2] Cycloaddition to Construct 1,3-Indandione and Oxindole-Fused Spiropyrazolidine Scaffolds Electronic Supplementary Material (ESI) for RSC Advances. This journal is The Royal Society of Chemistry 2015 Supporting Information Palladium-Catalyzed Asymmetric [3+2] Cycloaddition to Construct 1,3-Indandione

More information

SUPPLEMENTARY INFORMATION

SUPPLEMENTARY INFORMATION doi:10.1038/nature22309 Chemistry All reagents and solvents were commercially available unless otherwise noted. Analytical LC-MS was carried out using a Shimadzu LCMS-2020 with UV detection monitored between

More information

Supporting Information. Rh (III)-Catalyzed Meta-C H Olefination Directed by a Nitrile Template

Supporting Information. Rh (III)-Catalyzed Meta-C H Olefination Directed by a Nitrile Template Supporting Information Rh (III)-Catalyzed Meta-C H Olefination Directed by a Nitrile Template Hua-Jin Xu, Yi Lu, *, Marcus E. Farmer, Huai-Wei Wang, Dan Zhao, Yan-Shang Kang, Wei-Yin Sun, *, Jin-Quan Yu

More information

*Corresponding author. Tel.: , ; fax: ; Materials and Method 2. Preparation of GO nanosheets 3

*Corresponding author. Tel.: , ; fax: ; Materials and Method 2. Preparation of GO nanosheets 3 Electronic Supplementary Material (ESI) for RSC Advances. This journal is The Royal Society of Chemistry 2016 Synthesis of 2,3-dihydroquinazolinones and quinazolin-4(3h)-one catalyzed by Graphene Oxide

More information

Efficient Mono- and Bis-Functionalization of 3,6-Dichloropyridazine using (tmp) 2 Zn 2MgCl 2 2LiCl ** Stefan H. Wunderlich and Paul Knochel*

Efficient Mono- and Bis-Functionalization of 3,6-Dichloropyridazine using (tmp) 2 Zn 2MgCl 2 2LiCl ** Stefan H. Wunderlich and Paul Knochel* Efficient Mono- and Bis-Functionalization of 3,6-Dichloropyridazine using (tmp) 2 Zn 2Mg 2 2Li ** Stefan H. Wunderlich and Paul Knochel* Ludwig Maximilians-Universität München, Department Chemie & Biochemie

More information

Enantioselective Organocatalytic Michael Addition of Malonate Esters to Nitro Olefins Using Bifunctional Cinchonine Derivatives

Enantioselective Organocatalytic Michael Addition of Malonate Esters to Nitro Olefins Using Bifunctional Cinchonine Derivatives Enantioselective rganocatalytic Michael Addition of Malonate Esters to itro lefins Using Bifunctional Cinchonine Derivatives Jinxing Ye, Darren J. Dixon * and Peter S. Hynes School of Chemistry, University

More information

Electronic Supplementary Information for Catalytic Asymmetric Hydrophosphonylation of Ynones

Electronic Supplementary Information for Catalytic Asymmetric Hydrophosphonylation of Ynones Electronic Supplementary Information for Catalytic Asymmetric Hydrophosphonylation of Ynones Daisuke Uraguchi, Takaki Ito, Shinji Nakamura, and Takashi oi* Department of Applied Chemistry, Graduate School

More information

Asymmetric Organocatalytic Strecker-Type Reactions of Aliphatic N,N- Dialkylhydrazones

Asymmetric Organocatalytic Strecker-Type Reactions of Aliphatic N,N- Dialkylhydrazones Asymmetric Organocatalytic Strecker-Type Reactions of Aliphatic N,N- Dialkylhydrazones Aurora Martínez-Muñoz, David Monge,* Eloísa Martín-Zamora, Eugenia Marqués-López, Eleuterio Álvarez, Rosario Fernández,*

More information

A Sumanene-based Aryne, Sumanyne

A Sumanene-based Aryne, Sumanyne A Sumanene-based Aryne, Sumanyne Niti Ngamsomprasert, Yumi Yakiyama, and Hidehiro Sakurai* Division of Applied Chemistry, Graduate School of Engineering, Osaka University, 2-1 Yamadaoka, Suita, Osaka 565-0871

More information