ENCM Environmental Impact Assessment and Environmental Monitoring. Determination of Chemical Oxygen Demand in water/waste water

Size: px
Start display at page:

Download "ENCM Environmental Impact Assessment and Environmental Monitoring. Determination of Chemical Oxygen Demand in water/waste water"

Transcription

1 ENCM Environmental Impact Assessment and Environmental Monitoring itoenvironmental Monitoring Practical Number 3 Determination of Chemical Oxygen Demand in water/waste water Learning outcomes At the end of the practical the learners will be able to gain familiarity with the standard procedures of determining Chemical Oxygen Demand(COD) in surface water/waste water determine the chemical oxygen demand of the waste water samples provided following the standard procedures present COD analysis data in a scientific report and comment on the pollution status of the analyzed samples Introduction The Chemical Oxygen Demand (COD) of a surface water/waste water sample is a measure of the chemically oxidisable organic material present in that sample. It differs from Biochemical Oxygen Demand (BOD) determinations in that COD is determined chemically by using a strong oxidizing agent. COD is a rapidly measured and important variable for characterizing water bodies, sewage, industrial wastes and treatment plant effluents. In this practical, the dichromate method has been selected as a reference method for the COD determination because it has advantages over other oxidants owing to its oxidizing power, its applicability to a wide variety of samples and its ease of manipulation. COD is defined as the amount of a specified oxidant (potassium dichromate) that reacts with the sample under controlled conditions; it is the amount of oxygen consumed by organic matter from boiling acidic potassium dichromate solution. It provides a measure of the oxygen equivalent of that portion (mainly organic matter) of the water sample susceptible to oxidation under the conditions of the test. Both organic and inorganic components of a sample are subject to oxidation, but in most cases the organic component predominates and is of the greater interest. Where the sample contains only readily available organic bacterial nutrients and no toxic matter, the COD results can be used to obtain an approximate estimate of the ultimate carbonaceous BOD values. Two standard methods with potassium dichromate as the oxidant are available for COD analysis; Open Reflux method and Closed Reflux method. The open reflux method is suitable for a wide range of wastes where a large sample size is preferred. The closed reflux method is more economical in the use of metallic salt reagents and generates smaller quantities of hazardous waste. Interferences: Oxidation of most organic compounds is 95 to 100% of the theoretical value. Pyridine and related compounds resist oxidation and volatile organic compounds will react in proportion to their contact with the oxidant. Straight-chain aliphatic compounds are oxidized more effectively in the presence of 1

2 a silver sulphate catalyst. But if chloride ions are present, chloride reacts with silver ion to precipitate silver chloride, and thus inhibits the catalytic activity of silver. Bromide, iodide, and any other reagent that inactivates the silver ion can interfere similarly. Such interferences are negative in that they tend to restrict the oxidizing action of the dichromate ion itself. However, under the rigorous digestion procedures for COD analyses, chloride, bromide, or iodide can react with dichromate to produce the elemental form of the halogen and the chromic ion. Results then are in error on the high side. The difficulties caused by the presence of the chloride can be overcome largely, though not completely, by complexing with mercuric sulphate (HgSO4) before the refluxing procedure. Nitrite (NO2 ) exerts a COD of 1.1 mg O2/mg NO2 N. Because concentrations of NO2 in waters rarely exceed 1 or 2 mg NO2 N/L, the interference is considered insignificant and usually is ignored. To eliminate a significant interference due to NO2 in sulfamic acid is added (10 mg for each mg NO2 N present in the sample volume used; same amount of sulfamic acid is added to the reflux vessel containing the distilled water blank). Sample handling Samples should be collected to glass-stoppard glass bottles. Unstable samples should be tested without delay, especially wastewater and polluted water samples. Natural, not heavily polluted, water should be analysed on the same day or at least within 24 hours and the sample should be kept cold before analysis. If delay before analysis is unavoidable, the sample may be preserved by adding conc. sulphuric acid, about 2 ml H2SO4 to each 1L of sample (ph <2) and refrigerate at 4 C until 28 days. Safety Precautions: Avoid skin and eye contact with caustic and acidic solutions. If contact occurs, rinse your hands and/or flush your eyes for several minutes. Seek immediate medical advice for eye contact. Some apparatus used in this procedure may be hazardous to the safety of the user if inappropriately or accidently misused. 1. COD determination using Open Reflux method 1.1 Principle The sample is boiled under reflux with a known excess of potassium dichromate and silver sulphate catalyst in strong sulphuric acid. Part of the dichromate (Cr2O7 2- ) is reduced to the chromic ion (Cr 3+ ) by the organic matter in the sample and the remaining unreduced dichromate is titrated with ferrous ammonium sulphate to determine the amount of K2Cr2O7 consumed. The quantity of oxidant (dichromate) consumed is expressed in terms of its oxygen equivalence. 1.2 Chemicals/Reagents (Note to the technical officers: reagents should be prepared only the required amounts for the practical based on the following proportions to minimize wastage of chemicals: Consult the lecturer in charge). Sulphuric acid reagent: Add Ag 2 (reagent or technical grade), crystals or powder, to conc H 2 (d =1.84) at the rate of 5g Ag 2 /L H 2. Let stand 2 days to dissolve. Mix. Standard potassium dichromate solution, ( M): Dissolve g of K2Cr2O7 primary standard grade, previously dried at 150 C for 2 hours, in distilled water and dilute to 1000 ml. 2

3 Dilute standard potassium dichromate solution, M. Dilute 100 ml of the standard potassium dichromate solution to 1000 ml.(use only for low COD samples) Standard ferrous ammonium sulphate solution, M. Dissolve 98 g of Fe(NH4)2(SO4)2.6H2O analytical grade crystals in distilled water. Add 20 ml of conc. H2SO4 (d=1.84), cool and dilute to 1000 ml. This solution may be standardised against the standard potassium dichromate solution as follows: Dilute 10.0 ml of standard potassium dichromate solution, M, to about 100 ml. Add 30 ml conc. H2SO4 (d=1.84) and allow to cool. Titrate with the ferrous ammonium titrant, using 2 or 3 drops of ferroin indicator. Molarity of the ferrous ammonium sulphate solution Dilute standard ferrous ammonium sulphate solution, M. Dilute 100 ml of the standard ferrous ammonium sulphate solution to 1000 ml. Standardise daily against the dilute standard potassium dichromate, M..( use only for low COD samples) Mercuric sulphate, analytical grade crystals. Ferroin indicator solution. Dissolve g of ferrous sulphate, FeSO4.7H2O, in distilled water. Add g of 1,10-phenanthroline monohydrate, shaking until dissolved. Dilute to 100 ml. This solution is also commercially available. Sulphamic acid, analytical grade (required only if the interference of nitrites is to be eliminated).-this will not be used in this practical assuming no nitrite interference) Anti-bumping granules that have been previously heated to 600 C for 1 hour. 1.3 Apparatus A reflux apparatus consisting of a 250-ml Erlenmeyer flask with ground-glass neck, and a 300- mm double surface condenser (Liebig, Friedrichs, West or equivalent) with a ground-glass joint. Since absolute cleanliness is essential, flasks and condensers should be protected from dust by inverted cups when not in use. The glassware must be cleaned well and used exclusively for COD determinations. A heating mantle or hotplate. - A hotplate producing at least 1.5 W cm -2 of heating surface to ensure adequate boiling of the liquid in the flask. Heating mantles are preferred because they prevent the problem of overheating. Electric Blender Pipetes (Wide bore) 1.4 Procedure for the Open Reflux Method Blend (homogenize) all samples containing suspended solids before analysis to obtain reproducible results. If COD is to be related to BOD, ensure that all tests receive identical pretreatment. Make preliminary dilutions for wastes containing a high COD to reduce the error in measuring small sample volumes (note the dilution factor). 3

4 Samples with low chloride concentrations If the sample contains less than 100 mg L -1 chloride, proceed as follows: 1. Place in an 250 ml refluxing flask 20.0 ml of the blended sample or an aliquot diluted to 20.0 ml with distilled water (if high COD value is expected). 2. Add 10.0 ml of standard potassium dichromate solution, M, and a few anti-bumping granules. Mix well. 3. Add very slowly, with caution, 30 ml of concentrated H2SO4 containing silver sulphate, mixing thoroughly by swirling while adding the acid. If H2SO4 containing silver sulphate is not used, add 0.15 g of dry silver sulphate and then, slowly, 30 ml of concentrated H2SO4. Caution: If the liquid has not been well mixed local heating may occur on the bottom of the flask and the mixture may be blown out of the flask. 4. Attach the condenser to the flask and turn on cooling water and reflux the mixture for 2 hours. Cover open end of condenser with a small beaker to prevent foreign material from entering refluxing mixture. 5. Allow to cool and then wash the condenser with distilled water. Disconnect the reflux condenser. Dilute the mixture to about 150 ml with distilled water, 6. Cool to room temperature and titrate excess K 2 Cr 2 O 7 with standard ammonium ferrous sulphate, using 0.10 to 0.15 ml (2 to 3 drops) ferroin indicator. Although the quantity of ferroin indicator is not critical, use the same volume for all titrations. 7. Take the first sharp color change from blue-green to reddish brown that persists for 1 min or longer as the end point of the titration. The blue-green may reappear. 8. Reflux a blank consisting of 20 ml of distilled water together with the reagents and titrate as in steps 2-7 above in the same manner Samples with high chloride concentration (If the sample contains more than 100 mg L -1 chloride) after appropriate dilution, proceed as follows: 1. To 20.0 ml of sample (or diluted sample to 20 ml with deionized water if COD >900 mg O2/L) in the 250 ml refluxing flask add 0.5 g of mercuric sulphate, several glass beads and shake thoroughly. (if a slight precipitate develops, ignore. It will not affect the determination). 2. Very slowly add 5 ml sulfuric acid reagent, with mixing to dissolve HgSO4. Cool while mixing to avoid possible loss of volatile materials. 3. Add 10 ml of standard K 2 Cr 2 O 7 solution M and add a few antibumping granules and mix. 4

5 4. Attach flask to condenser and turn on cooling water. Add remaining sulfuric acid reagent (25 ml) through open end of condenser. Continue swirling and mixing while adding sulfuric acid reagent. Caution: Mix reflux mixture thoroughly before applying heat to prevent local heating of flask bottom and a possible blowout of flask contents. 5. Cover open end of condenser with a small beaker to prevent foreign material from entering refluxing mixture and reflux for 2 h. Cool and wash down condenser with distilled water. 6. Disconnect reflux condenser and dilute mixture to about twice its volume with distilled water. 7. Cool to room temperature and titrate excess K 2 Cr 2 O 7 with standard ammonium ferrous sulphate, using 0.10 to 0.15 ml (2 to 3 drops) ferroin indicator. Although the quantity of ferroin indicator is not critical, use the same volume for all titrations. 8. Take as the end point of the titration the first sharp color change from blue-green to reddish brown that persists for 1 min or longer. Samples with suspended solids or components that are slow to oxidize may require additional determinations. The blue-green may reappear. 9. In the same manner, reflux and titrate a blank containing the reagents and a volume of distilled water equal to that of sample Adjustments for other sample sizes Table 1 : Quantities of reagents for different sample sizes (source UNEP/WHO 1996) If a water is expected to have a higher or lower than normal COD, a sample ranging in size from 10.0 ml to 50.0 ml may be used with the volumes, weights and concentrations adjusted accordingly. Table 1 gives the appropriate reagent quantities for different sample sizes. When using large samples, increase the size of the Erlenmeyer flask to 500 ml to permit titration within the refluxing flask. 5

6 Samples with low COD (eg. Less polluted River water) Follow one of the procedures given above for high and low chloride concentrations with the following differences: Use dilute standard potassium dichromate, M (instead of M). Perform the back titration with either M or 0.01 M ferrous ammonium sulphate (instead of 0.25 M). Use redistilled water for the preparation of all reagents and blanks. Exercise extreme care with this procedure because a trace of organic matter in the glassware or the atmosphere may cause a gross error Calculations: Where A = ml ferrous ammonium sulphate used for blank B = ml ferrous ammonium sulphate used for sample M = molarity of ferrous ammonium sulphate 8000 = milliequivalent weight of oxygen X 1000 ml/l 2. COD determinations using Closed Reflux method Chemical reactions are usually similar to the open reflux method. Volatile organic compounds are more completely oxidized in the closed system because of longer contact with the oxidant. Instead of reflux flasks, digestion vessels (borosilicate culture tubes with TFE-lined screw caps) are needed for sample digestion. In addition a block heater is needed to operate at 150 ± 2 C, with holes to accommodate digestion vessels. Digestion vessels with premixed reagents and other accessories are available from commercial suppliers. Premixed reagents contain all the reagents/chemicals used in the open reflux method including silver as a catalyst and mercury to complex the chloride interferences. Instead of the titration, colour development can be measured spectrophotometricaly to determine COD values of the digested samples. Note: The waste generated from the COD analysis should not be thrown to the normal drainage system as it may contain hazardous waste. Pour the waste to the specific waste containers provided. 6

7 Lab Exercise You are provided with surface water/waste water samples from two sources for COD analysis. 1. Determine the COD contents of the two water/waste water samples using the open reflux method following the standard procedures given in this handout. 2. Determine the COD content of the two water/waste water samples using the closed reflux method (reactor digestion method) and the colorimetric procedure following instructions given by the commercial supplier (Hach Company). 3. Compare the COD values of the same water/waste water samples obtained from the two methods. 4. Comment on the pollution status of the two samples analyzed. Note: You are expected to write a Lab Report based on the COD and BOD analysis of the water/waste water samples provided (Practical 2 and 3). The Lab report should contain the following sections. Title Introduction (Do not repeat the whole description given in the practical handouts) Objectives Methodology (Write sentences, use impersonal form ) Results: short description of results in sentences. include raw data tables, calculations, final data tables under results. Discussion and Conclusions: Briefly discuss your main results. Discuss uncertainties (if any) associated with the final results and propose corrective measures. Compare your COD data obtained for the waste water samples with the Sri Lankan tolerance limits for industrial effluent discharge into surface waters. Any References you may have read and used in writing the report Due date for the lab report submission 22nd May 2015 References used for preparation of the practical: APHA (1999). Standard Methods for the Examination of Water and Wastewater. 20 th ed. American Public Health Association, Washington DC, USA UNEP/WHO (1996).Water Quality Monitoring- A practical guide to the design and implementation of freshwater quality studies and monitoring programmes, Chapman and Hall, Prof A Pathiratne/Department of ZEM/UOK,

DETERMINATION OF CHEMICAL OXYGEN DEMAND COD

DETERMINATION OF CHEMICAL OXYGEN DEMAND COD COMENIUS BILATERAL PARTENARIATE 2012/2014 WATER POLLUTION IN URBAN AREAS: ANALYSIS AND TREATMENT IstitutoTecnico E. Fermi Via San Pelajo, 37 31100 TREVISO ITALY Falu Gymnasium Haraldsbo Kopparvägen, 1

More information

Oxygen Demand, Chemical

Oxygen Demand, Chemical Oxygen Demand, Chemical DOC316.53.01103 USEPA Reactor Digestion Method Method 10211 1 to 60 mg/l COD (ULR) TNTplus 820 Scope and application: For wastewater, process water, surface water, and cooling water.

More information

Oxygen Demand, Chemical

Oxygen Demand, Chemical Oxygen Demand, Chemical DOC316.53.01104 USEPA Reactor Digestion Method Method 10212 250 to 15,000 mg/l COD (UHR) TNTplus 823 Scope and application: For wastewater and process waters; digestion is required.

More information

Manganese III Digestion Method * (with chloride removal)

Manganese III Digestion Method * (with chloride removal) Method 10067 OXYGEN DEMAND, CHEMICAL (20 to 1,000 mg/l) For water and wastewater Manganese III Digestion Method * (with chloride removal) 1. Enter the stored program number for Manganese III COD. Press:

More information

METHOD #: Approved for NPDES and SDWA (Ed. Rev. 1974, 1978) Fluoride, Total (Colorimetric, SPADNS with Bellack Distillation)

METHOD #: Approved for NPDES and SDWA (Ed. Rev. 1974, 1978) Fluoride, Total (Colorimetric, SPADNS with Bellack Distillation) METHOD #: 340.1 Approved for NPDES and SDWA (Ed. Rev. 1974, 1978) TITLE: Fluoride, Total (Colorimetric, SPADNS with Bellack Distillation) ANALYTE: CAS # F Fluoride 7782-41-4 INSTRUMENTATION: Spectrophotometer

More information

Exercise 6: Determination of Hardness of Water

Exercise 6: Determination of Hardness of Water Fundamentals of Analytical Chemistry, CHC014011L Exercise 6: Determination of Hardness of Water Introduction: Hardness in water is generally caused by the presence of dissolved calcium and magnesium carbonates

More information

Scope and application: For water, wastewater and seawater. Distillation is required for wastewater and seawater.

Scope and application: For water, wastewater and seawater. Distillation is required for wastewater and seawater. Nitrogen, Ammonia DOC316.53.01078 USEPA 1 Nessler Method 2 Method 8038 0.02 to 2.50 mg/l NH 3 N Reagent Solution Scope and application: For water, wastewater and seawater. Distillation is required for

More information

SYNTHESIS OF 1-BROMOBUTANE Experimental procedure at macroscale (adapted from Williamson, Minard & Masters 1 )

SYNTHESIS OF 1-BROMOBUTANE Experimental procedure at macroscale (adapted from Williamson, Minard & Masters 1 ) SYNTHESIS OF 1-BROMOBUTANE Experimental procedure at macroscale (adapted from Williamson, Minard & Masters 1 ) Introduction 1-bromobutane is a primary alkyl halide (primary alkyl) and therefore it is produced

More information

Cyanide, colorimetric, pyridine-pyrazolone

Cyanide, colorimetric, pyridine-pyrazolone Cyanide, colorimetric, pyridine-pyrazolone Parameters and Codes: Cyanide, dissolved, I-1300-85 mg/l as CN): 00723 Cyanide, total, I-3300-85 (mgll as CN): 00720 Cyanide, total-in-bottom-material, dry wt,

More information

Standard Methods for the Examination of Water and Wastewater

Standard Methods for the Examination of Water and Wastewater 4500-NO 2 NITROGEN (NITRITE)*#(1) 4500-NO 2 A. Introduction 1. Occurrence and Significance For a discussion of the chemical characteristics, sources, and effects of nitrite nitrogen, see Section 4500-N.

More information

PhysicsAndMathsTutor.com. Advanced Subsidiary Unit 3: Chemistry Laboratory Skills I

PhysicsAndMathsTutor.com. Advanced Subsidiary Unit 3: Chemistry Laboratory Skills I Write your name here Surname Other names Pearson Edexcel International Advanced Level Centre Number Chemistry Advanced Subsidiary Unit 3: Chemistry Laboratory Skills I Candidate Number Monday 7 November

More information

LABORATORY 2. ENZYME CATALYSIS

LABORATORY 2. ENZYME CATALYSIS LABORATORY 2 STUDENT GUIDE LABORATORY 2. ENZYME CATALYSIS Objectives In this laboratory, you will observe the role of an enzyme (catalase) in conversion of hydrogen peroxide (H 2 O 2 ) to water and oxygen

More information

Enzyme Catalysis Lab

Enzyme Catalysis Lab AP Biology Name: Enzyme Catalysis Lab Objectives In this laboratory, you will observe the role of an enzyme (catalase) in conversion of hydrogen peroxide (H 2 O 2 ) to water and oxygen determine the rate

More information

METHOD 9012 TOTAL AND AMENABLE CYANIDE (COLORIMETRIC, AUTOMATED UV)

METHOD 9012 TOTAL AND AMENABLE CYANIDE (COLORIMETRIC, AUTOMATED UV) METHOD 9012 TOTAL AND AMENABLE CYANIDE (COLORIMETRIC, AUTOMATED UV) 1.0 SCOPE AND APPLICATION 1.1 Method 9012 is used to determine the concentration of inorganic cyanide in an aqueous waste or leachate.

More information

GRIGNARD REACTION Synthesis of Benzoic Acid

GRIGNARD REACTION Synthesis of Benzoic Acid 1 GRIGNARD REACTION Synthesis of Benzoic Acid In the 1920 s, the first survey of the acceleration of chemical transformations by ultrasound was published. Since then, many more applications of ultrasound

More information

Cadmium Reduction Method Method to 30.0 mg/l NO 3 N (HR) Powder Pillows or AccuVac Ampuls

Cadmium Reduction Method Method to 30.0 mg/l NO 3 N (HR) Powder Pillows or AccuVac Ampuls Nitrate DOC316.53.01066 Cadmium Reduction Method Method 8039 0.3 to 30.0 mg/l NO 3 N (HR) Powder Pillows or AccuVac Ampuls Scope and application: For water, wastewater and seawater. Test preparation Instrument-specific

More information

Sodium Chloride - Analytical Standard

Sodium Chloride - Analytical Standard Sodium Chloride - Analytical Standard Determination of Arsenic Former numbering: ECSS/CN 312-1982 & ESPA/CN-E-105-1994 1. SCOPE AND FIELD OF APPLICATION The present EuSalt Analytical Standard describes

More information

PART II: ANALYSIS OF IRON COORDINATION COMPOUND

PART II: ANALYSIS OF IRON COORDINATION COMPOUND PART II: ANALYSIS OF IRON COORDINATION COMPOUND In this experiment students will perform two independent analyses of the iron coordination compound synthesized in Part I. A redox titration with potassium

More information

Revision: 11 (MBAS) ALLOWAY METHOD OUTLINE. Standard Laboratory Method:

Revision: 11 (MBAS) ALLOWAY METHOD OUTLINE. Standard Laboratory Method: ALLOWAY METHOD OUTLINE Standard Laboratory Method: SM Parameter: Methylene Blue Method: Colorimetric Reporting Level: Reference: 0.05 mg/l Standard Methods for the Examination Of Water and Wastewater;

More information

DR/4000 PROCEDURE NITRATE. Using Powder Pillows

DR/4000 PROCEDURE NITRATE. Using Powder Pillows DR/4000 PROCEDURE Method 8171 Powder Pillows or AccuVac Ampuls Cadmium Reduction Method MR (0 to 5.0 mg/l NO 3 N) Scope and Application: For water, wastewater and seawater. The estimated detection limit

More information

NITROGEN, AMMONIA, High Range, Test N Tube

NITROGEN, AMMONIA, High Range, Test N Tube NITROGEN, AMMONIA, High Range, Test N Tube Method 10031 (0 to 50 mg/l NH 3 -N) For water, wastewater, and seawater Salicylate Method * 1. Enter the stored program number for nitrogen, ammonia, high range

More information

CHEMISTRY 130 General Chemistry I OXIDATION-REDUCTION CHEMISTRY

CHEMISTRY 130 General Chemistry I OXIDATION-REDUCTION CHEMISTRY CHEMISTRY 130 General Chemistry I OXIDATION-REDUCTION CHEMISTRY A solution of potassium permanganate is pink. [1] Color changes can often be used to monitor chemical reactions. DEPARTMENT OF CHEMISTRY

More information

Advanced Unit 6: Chemistry Laboratory Skills II

Advanced Unit 6: Chemistry Laboratory Skills II Write your name here Surname Other names Pearson Edexcel International Advanced Level Centre Number Chemistry Advanced Unit 6: Chemistry Laboratory Skills II Candidate Number Thursday 16 January 2014 Morning

More information

DPD Test N Tube Method *

DPD Test N Tube Method * CHLORINE, FREE (0 to 5.00 mg/l) DPD Test N Tube Method * Method 10102 For water, wastewater, and seawater 1. Enter the stored program number for Test N Tube free chlorine (Cl 2 ). Press: PRGM The display

More information

LACTIC ACID. The method is applicable to the determination of lactic acid and lactate salts (Note 2) in light or heavy steepwater.

LACTIC ACID. The method is applicable to the determination of lactic acid and lactate salts (Note 2) in light or heavy steepwater. LACTI.01-1 LACTIC ACID PRINCIPLE SCOPE Lactic acid in steepwater (Note 1) is oxidized to acetaldehyde following treatment with copper sulfate and calcium hydroxide to remove interfering substances. Acetaldehyde

More information

Cadmium Reduction Method Method to 10.0 mg/l NO 3 N (MR, spectrophotometers) 0.2 to 5.0 mg/l NO 3 N (MR, colorimeters)

Cadmium Reduction Method Method to 10.0 mg/l NO 3 N (MR, spectrophotometers) 0.2 to 5.0 mg/l NO 3 N (MR, colorimeters) Nitrate, MR DOC316.53.01069 Cadmium Reduction Method Method 8171 0.1 to 10.0 mg/l NO 3 N (MR, spectrophotometers) 0.2 to 5.0 mg/l NO 3 N (MR, colorimeters) Scope and application: For water, wastewater

More information

Phosphorus, Total. USEPA 1 PhosVer 3 with Acid Persulfate Digestion Method Method to 3.50 mg/l PO. Test preparation

Phosphorus, Total. USEPA 1 PhosVer 3 with Acid Persulfate Digestion Method Method to 3.50 mg/l PO. Test preparation Phosphorus, Total DOC316.53.01121 USEPA 1 PhosVer 3 with Acid Persulfate Digestion Method Method 8190 0.06 to 3.50 mg/l PO 3 4 (0.02 to 1.10 mg/l P) Test N Tube Vials Scope and application: For water,

More information

Approximate Volatile Acids by Titration

Approximate Volatile Acids by Titration SOP AMBL-101-A Page 1 of 5 Standard Operating Procedure AMBL-101-A Prepared: April 12, 2006 Revised: July 16, 2014 Prepared by: Terry E. Baxter Reviewed by: Approximate Volatile Acids by Titration METHOD

More information

Advanced Unit 7: Chemistry Practical Examination (SET A) Candidates must have: Scientific calculator Ruler

Advanced Unit 7: Chemistry Practical Examination (SET A) Candidates must have: Scientific calculator Ruler Write your name here Surname Other names Pearson Edexcel International Advanced Level Centre Number Candidate Number Chemistry Advanced Unit 7: Chemistry Practical Examination (SET A) Monday 8 May 2017

More information

Cadmium Reduction Method Method 8171 MR (0.1 to 10.0 mg/l NO 3

Cadmium Reduction Method Method 8171 MR (0.1 to 10.0 mg/l NO 3 , MR, 8171 DOC316.53.01069 Cadmium Reduction Method Method 8171 MR (0.1 to 10.0 mg/l NO 3 N) Powder Pillows or AccuVac Ampuls Scope and Application: For water, wastewater and seawater Test preparation

More information

Method for estimation of iodine in urine

Method for estimation of iodine in urine Method for estimation of iodine in urine Described herewith is the standard operating procedure for estimation of iodine in urine by colorimetric method after chloric acid digestion A) Principle: Urine

More information

DR/4000 PROCEDURE NITRATE. 2. The display will show:

DR/4000 PROCEDURE NITRATE. 2. The display will show: Method 8192 Powder Pillows DR/4000 PROCEDURE Cadmium Reduction Method LR (0 to 0.50 mg/l NO 3 N) Scope and Application: For water, wastewater and seawater. The estimated detection limit for program number

More information

CHEMISTRY 130 General Chemistry I OXIDATION-REDUCTION CHEMISTRY

CHEMISTRY 130 General Chemistry I OXIDATION-REDUCTION CHEMISTRY CHEMISTRY 130 General Chemistry I OXIDATION-REDUCTION CHEMISTRY A solution of potassium permanganate is pink. [1] Color changes can often be used to monitor chemical reactions. DEPARTMENT OF CHEMISTRY

More information

Cadmium Reduction Method Method to 0.50 mg/l NO 3 N (LR) Powder Pillows

Cadmium Reduction Method Method to 0.50 mg/l NO 3 N (LR) Powder Pillows Nitrate DOC316.53.01067 Cadmium Reduction Method Method 8192 0.01 to 0.50 mg/l NO 3 N (LR) Powder Pillows Scope and application: For water, wastewater and seawater. Test preparation Instrument-specific

More information

ALLOWAY METHOD OUTLINE

ALLOWAY METHOD OUTLINE ALLOWAY METHOD OUTLINE Standard Laboratory Method SM4500-Cl -G Parameter Residual Chlorine & Free Chlorine Method DPD Colorimetric Test Kit Date Issued Originator: Section Supervisor: QA Manager Date:

More information

DR/4000 PROCEDURE SELENIUM. 4. Measure 100 ml of sample into a second 500-mL erlenmeyer flask (label the flask sample ).

DR/4000 PROCEDURE SELENIUM. 4. Measure 100 ml of sample into a second 500-mL erlenmeyer flask (label the flask sample ). Method 8194 DR/4000 PROCEDURE Diaminobenzidine Method* (0 to 1.000 mg/l) Scope and Application: For water and wastewater; distillation is required for determining total selenium. See the Distillation procedure

More information

--> Buy True-PDF --> Auto-delivered in 0~10 minutes. GB Translated English of Chinese Standard: GB5009.

--> Buy True-PDF --> Auto-delivered in 0~10 minutes. GB Translated English of Chinese Standard: GB5009. Translated English of Chinese Standard: GB5009.17-2014 www.chinesestandard.net Sales@ChineseStandard.net NATIONAL STANDARD OF GB THE PEOPLE S REPUBLIC OF CHINA National Food Safety Standard-Determination

More information

Volumetric Analysis: Analysis of antacid tablets Analysis of Cl - concentrations in IV solutions

Volumetric Analysis: Analysis of antacid tablets Analysis of Cl - concentrations in IV solutions Volumetric Analysis: Analysis of antacid tablets Analysis of Cl - concentrations in IV solutions OBJECTIVE: The goals of this experiment are to learn titration concepts and techniques. SKILLS: Titration,

More information

Chem 2115 Experiment #7. Volumetric Analysis & Consumer Chemistry Standardization of an unknown solution and the analysis of antacid tablets

Chem 2115 Experiment #7. Volumetric Analysis & Consumer Chemistry Standardization of an unknown solution and the analysis of antacid tablets Chem 2115 Experiment #7 Volumetric Analysis & Consumer Chemistry Standardization of an unknown solution and the analysis of antacid tablets OBJECTIVE: The goals of this experiment are to learn titration

More information

Cadmium Reduction Method (Using Powder Pillows or AccuVac Ampuls)

Cadmium Reduction Method (Using Powder Pillows or AccuVac Ampuls) Method 8171 NITRATE, Mid Range (0 to 5.0 mg/l NO 3- -N) For water, wastewater and seawater* Cadmium Reduction Method (Using Powder Pillows or AccuVac Ampuls) Using Powder Pillows 1. Enter the stored program

More information

Method to 0.50 mg/l NH 3 N Powder Pillows

Method to 0.50 mg/l NH 3 N Powder Pillows , 8155 Salicylate Method 1 Scope and Application: For water, wastewater and seawater 1 Adapted from Clin. Chim. Acta., 14, 403 (1966) DOC316.53.01077 Method 8155 0.01 to 0.50 mg/l NH 3 N Powder Pillows

More information

Chlorine, Free and Total, High Range

Chlorine, Free and Total, High Range Chlorine, Free and Total, High Range DOC316.53.01490 USEPA DPD Method 1 Method 10069 (free) 10070 (total) 0.1 to 10.0 mg/l Cl 2 (HR) Powder Pillows Scope and application: For testing higher levels of free

More information

METHOD 7196A CHROMIUM, HEXAVALENT (COLORIMETRIC)

METHOD 7196A CHROMIUM, HEXAVALENT (COLORIMETRIC) METHOD 7196A CHROMIUM, HEXAVALENT (COLORIMETRIC) 1.0 SCOPE AND APPLICATION 1.1 Method 7196 is used to determine the concentration of dissolved hexavalent chromium [Cr(VI)] in EP/TCLP characteristic extracts

More information

Suggested answers to in-text activities and unit-end exercises. Topic 16 Unit 55

Suggested answers to in-text activities and unit-end exercises. Topic 16 Unit 55 Suggested answers to in-text activities and unit-end exercises In-text activities Discussion (page 117) Some possible ways for minimizing possible sources of error in the experiment: Add a slight excess

More information

DR/4000 PROCEDURE. IRON, Total

DR/4000 PROCEDURE. IRON, Total Method 8365 Powder Pillows DR/4000 PROCEDURE FerroMo Method* (0 to 1.800 mg/l) Scope and Application: For cooling water containing molybdate-based treatment; digestion is required for determining total

More information

GETTING THE END POINT TO APPROXIMATE. Two hours

GETTING THE END POINT TO APPROXIMATE. Two hours Chem 1312 Handout Experiment ONE Laboratory Time Required Special Equipment and Supplies Objective Safety First Aid GETTING THE END POINT TO APPROXIMATE THE EQUIVALENCE POINT Two hours Balance Potassium

More information

Safety Note: Safety glasses and laboratory coats are required when performing this experiment

Safety Note: Safety glasses and laboratory coats are required when performing this experiment The Determination of Hypochlorite in Bleach Reading assignment: Burdge, Chemistry 4 th edition, section 4.6. We will study an example of a redox titration in order to determine the concentration of sodium

More information

Method to 0.50 mg/l NH 3 N Powder Pillows

Method to 0.50 mg/l NH 3 N Powder Pillows , 8155 Salicylate Method 1 Scope and Application: For water, wastewater and seawater 1 Adapted from Clin. Chim. Acta., 14, 403 (1966) DOC316.53.01077 Method 8155 0.01 to 0.50 mg/l NH 3 N Powder Pillows

More information

NITRITE, Low Range (0 to mg/l NO 2- -N)

NITRITE, Low Range (0 to mg/l NO 2- -N) NITRITE, Low Range (0 to 0.350 mg/l NO 2- -N) Method 8507 For water, wastewater, seawater Diazotization Method * (Powder Pillows or AccuVac Ampuls); USEPA approved for reporting wastewater and drinking

More information

EXPERIMENT 8 Determining K sp

EXPERIMENT 8 Determining K sp EXPERIMENT 8 Determining K sp Introduction The solubility product constant, or K sp of a compound is an equilibrium constant that describes the degree to which a solid dissolves in water. The K sp is calculated

More information

Environmental Engineering Laboratory

Environmental Engineering Laboratory COURSE NO. Environmental Engineering Laboratory Course Introduction Experiment No.1 Experiment No.2 Experiment No.3 Experiment No.4 Experiment No.5 Experiment No.6 Experiment No.7 Experiment No.8 Experiment

More information

1,5-Diphenylcarbohydrazide Method* Powder Pillows or AccuVac Ampuls (0 to mg/l Cr 6+ )

1,5-Diphenylcarbohydrazide Method* Powder Pillows or AccuVac Ampuls (0 to mg/l Cr 6+ ) DR/4000 PROCEDURE Method 8023 1,5-Diphenylcarbohydrazide Method* Powder Pillows or AccuVac Ampuls (0 to 0.700 mg/l Cr 6+ ) Scope and Application: For water and wastewater;usepa accepted for reporting for

More information

Soil Quality Monitoring in Estuarine Ecosystem. Sachin N Hegde Center for Ecological Science Indian Institute of Science

Soil Quality Monitoring in Estuarine Ecosystem. Sachin N Hegde Center for Ecological Science Indian Institute of Science Soil Quality Monitoring in Estuarine Ecosystem Sachin N Hegde Center for Ecological Science Indian Institute of Science SOIL Soil is a thin layer of earth s crust which serves as a natural medium for the

More information

EXPERIMENT 6 Empirical Formula of a Compound

EXPERIMENT 6 Empirical Formula of a Compound EXPERIMENT 6 Empirical Formula of a Compound INTRODUCTION Chemical formulas indicate the composition of compounds. A formula that gives only the simplest ratio of the relative number of atoms in a compound

More information

Learn to do quantitative titration reactions. Observe the mole ratios of several simple chemical reactions.

Learn to do quantitative titration reactions. Observe the mole ratios of several simple chemical reactions. CHAPTER 6 Stoichiometry of Reactions in Solution Objectives The objectives of this laboratory are to: Learn to do quantitative titration reactions. Observe the mole ratios of several simple chemical reactions.

More information

Some data and solubility information for Sodium Chlorate

Some data and solubility information for Sodium Chlorate Some data and solubility information for Sodium Chlorate Technical Data And Physical Properties General: The chemical formula of sodium chlorate is NaClO 3 CAS No.7775-09-9. Molecular weight is 106.44.

More information

Oxidation of Alcohols: Oxidation of Borneol to Camphor

Oxidation of Alcohols: Oxidation of Borneol to Camphor Experiment 13 Oxidation of Alcohols: Oxidation of Borneol to Camphor Reading: Handbook for Organic Chemistry Lab, sections on Extraction (Chapter 8), Drying Organic Solutions (Chapter 11), and Solvent

More information

Chem 2115 Experiment #7. Volumetric Analysis & Consumer Chemistry Standardization of an unknown solution, analysis of vinegar & antacid tablets

Chem 2115 Experiment #7. Volumetric Analysis & Consumer Chemistry Standardization of an unknown solution, analysis of vinegar & antacid tablets Chem 2115 Experiment #7 Volumetric Analysis & Consumer Chemistry Standardization of an unknown solution, analysis of vinegar & antacid tablets OBJECTIVE: The goals of this experiment are to learn titration

More information

CHLORINE, TOTAL (0 to 4.00 mg/l)

CHLORINE, TOTAL (0 to 4.00 mg/l) CHLORINE, TOTAL (0 to 4.00 mg/l) DOC316.53.01261 For water, wastewater, and seawater Method 10250 DPD Method Powder Pillows USEPA accepted for reporting water and wastewater analyses * Note: This product

More information

EXPERIMENT C3: SOLUBILITY PRODUCT & COMMON ION EFFECT. Learning Outcomes. Introduction. Upon completion of this lab, the student will be able to:

EXPERIMENT C3: SOLUBILITY PRODUCT & COMMON ION EFFECT. Learning Outcomes. Introduction. Upon completion of this lab, the student will be able to: 1 EXPERIMENT C3: SOLUBILITY PRODUCT & COMMON ION EFFECT Learning Outcomes Upon completion of this lab, the student will be able to: 1) Measure the solubility product constant for a sparingly soluble salt.

More information

METHOD 9210 POTENTIOMETRIC DETERMINATION OF NITRATE IN AQUEOUS SAMPLES WITH ION-SELECTIVE ELECTRODE

METHOD 9210 POTENTIOMETRIC DETERMINATION OF NITRATE IN AQUEOUS SAMPLES WITH ION-SELECTIVE ELECTRODE METHOD 9210 POTENTIOMETRIC DETERMINATION OF NITRATE IN AQUEOUS SAMPLES WITH ION-SELECTIVE ELECTRODE 1.0 SCOPE AND APPLICATION 1.1 This method can be used for measuring total solubilized nitrate in drinking

More information

Persulfate Digestion Method Method to 25.0 mg/l N (LR) Test N Tube Vials

Persulfate Digestion Method Method to 25.0 mg/l N (LR) Test N Tube Vials Nitrogen, Total DOC316.53.01086 Persulfate Digestion Method Method 10071 0.5 to 25.0 mg/l N (LR) Test N Tube Vials Scope and application: For water and wastewater. Test preparation Instrument-specific

More information

Persulfate Digestion Method Method to 150 mg/l N (HR) Test N Tube Vials

Persulfate Digestion Method Method to 150 mg/l N (HR) Test N Tube Vials Nitrogen, Total DOC316.53.01085 Persulfate Digestion Method Method 10072 2 to 150 mg/l N (HR) Test N Tube Vials Scope and application: For water and wastewater. Test preparation Instrument-specific information

More information

Part II. Cu(OH)2(s) CuO(s)

Part II. Cu(OH)2(s) CuO(s) The Copper Cycle Introduction In this experiment, you will carry out a series of reactions starting with copper metal. This will give you practice handling chemical reagents and making observations. It

More information

EXPERIMENT NINE Part I - The Standardization of Thiosulfate Solutions

EXPERIMENT NINE Part I - The Standardization of Thiosulfate Solutions EXPERIMENT NINE Part I - The Standardization of Thiosulfate Solutions In general, thiosulfate solutions are standardized by indirect methods, Primary-standard oxidizing agents such as KIO 3, As 2 O 3,

More information

METHOD 9012B TOTAL AND AMENABLE CYANIDE (AUTOMATED COLORIMETRIC, WITH OFF-LINE DISTILLATION)

METHOD 9012B TOTAL AND AMENABLE CYANIDE (AUTOMATED COLORIMETRIC, WITH OFF-LINE DISTILLATION) METHOD 9012B TOTAL AND AMENABLE CYANIDE (AUTOMATED COLORIMETRIC, WITH OFF-LINE DISTILLATION) 1.0 SCOPE AND APPLICATION 1.1 This method is used to determine the concentration of inorganic cyanide (CAS Registry

More information

Z/zs. tnitiats: wu\ Z-z* I A. sop-c-102. Determination of Chemical Oxygen Demand. Revision 6. Approval: Effective date: 3. Renewat date: 7lt:,:

Z/zs. tnitiats: wu\ Z-z* I A. sop-c-102. Determination of Chemical Oxygen Demand. Revision 6. Approval: Effective date: 3. Renewat date: 7lt:,: sop-c-102 Determination of Chemical Oxygen Demand Revision 6 Approval: Laborato ry Manager/LQAO/RS O Date Z/zs Date Z-z* I A Renewat date: 7lt:,: Effective date: 3, tnitiats: wu\ Texas lnstitute for Applied

More information

Enzyme Catalysis. Objectives

Enzyme Catalysis. Objectives Name/Group # Student Guide Date AP Biology Laboratory 2 Enzyme Catalysis Observe the action of an enzyme Objectives Determine the rate of an enzyme-catalyzed reaction Study the characteristics of an enzyme-mediated

More information

Chemistry 283g- Experiment 4

Chemistry 283g- Experiment 4 EXPEIMENT 4: Alkenes: Preparations and eactions elevant sections in the text: Fox & Whitesell, 3 rd Ed. Elimination eactions of Alcohols: pg. 426-428, 431-432 Electrophilic Addition to Alkenes: pg. 484-488,

More information

EXPERIMENT 8 A SIMPLE TITRATION

EXPERIMENT 8 A SIMPLE TITRATION EXPERIMENT 8 A SIMPLE TITRATION Structure 8.1 Introduction Objectives 8.2 Titration Types of Indicators Types of Titrations Standard Solution 8.3 Titrimetric Experiment: Determination of the strength of

More information

Colorimetric Method Method to 0.70 mg/l Ag Powder Pillows

Colorimetric Method Method to 0.70 mg/l Ag Powder Pillows Silver DOC316.53.01134 Colorimetric Method Method 8120 0.02 to 0.70 mg/l Ag Powder Pillows Scope and application: For water and wastewater. Test preparation Instrument-specific information Table 1 shows

More information

Solubility Product Constant (K sp ) and the Common-Ion Effect for Calcium Iodate, a Salt of Limited Solubility

Solubility Product Constant (K sp ) and the Common-Ion Effect for Calcium Iodate, a Salt of Limited Solubility Solubility Product Constant (K sp ) and the Common-Ion Effect for Calcium Iodate, a Salt of Limited Solubility Purpose Determine the solubility product constant (K sp ) for a sparingly soluble salt. Study

More information

Experiment 7: The Synthesis of Artificial Hyacinth Odor (1-bromo-2-phenylethene), Part I

Experiment 7: The Synthesis of Artificial Hyacinth Odor (1-bromo-2-phenylethene), Part I Experiment 7: The Synthesis of Artificial Hyacinth Odor (1-bromo-2-phenylethene), Part I This two-step synthesis involves the following conversion: trans-cinnamic acid 2,3- dibromocinnamic acid 1-bromo-2-phenylethene

More information

Chlorine, Free and Total, High Range

Chlorine, Free and Total, High Range Chlorine, Free and Total, High Range DOC316.53.01449 USEPA DPD Method 1 Method DPD 0.1 to 8.0 mg/l Cl 2 Powder Pillows Scope and application: For testing residual chlorine and chloramines in water, wastewater,

More information

FerroZine Method 1 Method to 100 µg/l Fe (10-cm cell) Reagent Solution. Instrument Adapter Sample cell DR 6000 LZV

FerroZine Method 1 Method to 100 µg/l Fe (10-cm cell) Reagent Solution. Instrument Adapter Sample cell DR 6000 LZV Iron, Total DOC316.53.01338 FerroZine Method 1 Method 10264 1 to 100 µg/l Fe (10-cm cell) Reagent Solution Scope and application: For ultrapure water. 1 Adapted from Stookey, L.L., Anal. Chem., 42(7),

More information

DR/4000 PROCEDURE CYANIDE. 1. Press the soft key under HACH PROGRAM. Select the stored program for cyanide by pressing 1750 with the numeric keys.

DR/4000 PROCEDURE CYANIDE. 1. Press the soft key under HACH PROGRAM. Select the stored program for cyanide by pressing 1750 with the numeric keys. DR/4000 PROCEDURE Method 8027 Pyridine-Pyrazalone Method* Powder Pillows (0 to 0.240 mg/l CN ) Scope and Application: For water, wastewater and seawater. The estimated detection limit for program number

More information

Experiment 2: Analysis of Commercial Bleach Solutions

Experiment 2: Analysis of Commercial Bleach Solutions Experiment 2: Analysis of Commercial Bleach Solutions I. Introduction The ability of household bleach to remove stains is related to the amount of oxidizing agent in it. The oxidizing agent in bleach is

More information

METHOD #: Approved for NPDES (Technical Revision 1980) Cyanide, Total (Titrimetric; Spectrophotometric)

METHOD #: Approved for NPDES (Technical Revision 1980) Cyanide, Total (Titrimetric; Spectrophotometric) METHOD #: 335.2 Approved for NPDES (Technical Revision 1980) TITLE: ANALYTE: INSTRUMENTATION: Cyanide, Total (Titrimetric; Spectrophotometric) CN Cyanide Spectrophotometer STORET No. 00720 1.0 Scope and

More information

Working with Hazardous Chemicals

Working with Hazardous Chemicals A Publication of Reliable Methods for the Preparation of Organic Compounds Working with Hazardous Chemicals The procedures in Organic Syntheses are intended for use only by persons with proper training

More information

Scope and application: For wastewater, seawater, drinking water, surface water and process water.

Scope and application: For wastewater, seawater, drinking water, surface water and process water. Cyanide DOC316.53.01495 USEPA 1 Pyridine Barbituric Acid Method 2 Method 10265 0.01 to 0.60 mg/l CN TNTplus 862 Scope and application: For wastewater, seawater, drinking water, surface water and process

More information

Alpha-, beta- and gamma-cellulose in pulp. 1. Scope

Alpha-, beta- and gamma-cellulose in pulp. 1. Scope T 203 om-93 TENTATIVE STANDARD 1931 OFFICIAL STANDARD 1932 REVISED 1974 OFFICIAL TEST METHOD 1983 REVISED 1988 CORRECTION 1992 REVISED 1993 1993 TAPPI The information and data contained in this document

More information

Determination of Reducing Sugar Content: Clinitest, Benedict s Solution and the Rebelein Titration

Determination of Reducing Sugar Content: Clinitest, Benedict s Solution and the Rebelein Titration Determination of Reducing Sugar Content: Clinitest, Benedict s Solution and the Rebelein Titration Chemical Concepts and Techniques: The most important sugars present in wine and fruit juice are the hexoses

More information

INORGANIC CHEMISTRY (LAB MANUAL)

INORGANIC CHEMISTRY (LAB MANUAL) REDOX TITRATIONS Titrations involving oxidizing and reducing agents are termed as oxidationreduction or redox titrations. The phenomenon of oxidation and reduction plays an important role in our day-to-day

More information

EXPT. 8 IODOMETRIC DETERMINATION OF AVAILABLE CHLORINE IN A SAMPLE OF BLEACHING POWDER

EXPT. 8 IODOMETRIC DETERMINATION OF AVAILABLE CHLORINE IN A SAMPLE OF BLEACHING POWDER EXPT. 8 IODOMETRIC DETERMINATION OF AVAILABLE CHLORINE IN A SAMPLE OF BLEACHING POWDER Structure 8.1 Introduction Objectives 8. Principle 8.3 Requirements 8.4 Solutions Provided 8.5 Procedure 8.6 Observations

More information

Chemistry Determination of Mixed Acids

Chemistry Determination of Mixed Acids Chemistry 3200 Acid-base titration is one of the most common operations in analytical chemistry. A solution containing an unknown amount of ionizable hydrogen can be titrated with a solution of standard

More information

Sample Preparation LCW 909. Total Kjeldahl Nitrogen, TKN NB: NEW! LCW 909 GB

Sample Preparation LCW 909. Total Kjeldahl Nitrogen, TKN NB: NEW! LCW 909 GB Principle Organically bound nitrogen is digested by hot fuming sulphuric acid in the presence of catalysts and converted to ammonium, which, after steam distillation, can be determined as so-called Total

More information

Aspirin Lab By Maya Parks Partner: Ben Seufert 6/5/15, 6/8/15

Aspirin Lab By Maya Parks Partner: Ben Seufert 6/5/15, 6/8/15 Aspirin Lab By Maya Parks Partner: Ben Seufert 6/5/15, 6/8/15 Abstract: This lab was performed to synthesize acetyl salicylic acid or aspirin from a carboxylic acid and an alcohol. We had learned in class

More information

Nitrogen, Ammonia. Test Preparation. Powder Pillows Method Method 8155 Salicylate Method 1 Powder Pillows

Nitrogen, Ammonia. Test Preparation. Powder Pillows Method Method 8155 Salicylate Method 1 Powder Pillows FILL LINE Method 8155 Salicylate Method 1 Powder Pillows Scope and Application: For water, wastewater, and seawater 1 Adapted from Clin. Chim. Acta., 14, 403 (1966) (0.01 to 0.50 mg/l NH 3 N) Test Preparation

More information

EXPERIMENT: LIMITING REAGENT. NOTE: Students should have moles of reactants in DATASHEET converted into masses in grams prior to the lab period.

EXPERIMENT: LIMITING REAGENT. NOTE: Students should have moles of reactants in DATASHEET converted into masses in grams prior to the lab period. Revised 12/2015 EXPERIMENT: LIMITING REAGENT Chem 1104 Lab NOTE: Students should have moles of reactants in DATASHEET converted into masses in grams prior to the lab period. INTRODUCTION Limiting reactant

More information

International Advanced Level Chemistry Advanced Subsidiary Unit 3: Chemistry Laboratory Skills I

International Advanced Level Chemistry Advanced Subsidiary Unit 3: Chemistry Laboratory Skills I Write your name here Surname Other names Pearson Edexcel International Advanced Level Centre Number Chemistry Advanced Subsidiary Unit 3: Chemistry Laboratory Skills I Candidate Number Wednesday 7 May

More information

The Synthesis and Analysis of Ammine Complexes of Copper and Silver Sulfate: An Undergraduate Laboratory Project

The Synthesis and Analysis of Ammine Complexes of Copper and Silver Sulfate: An Undergraduate Laboratory Project The Synthesis and Analysis of Ammine Complexes of Copper and Silver Sulfate: An Undergraduate Laboratory Project Steven S. Clareen, Shireen R. Marshall, Kristin E. Price, Margaret B. Royall, Claude H.

More information

Tex-620-J, Determining Chloride and Sulfate Contents in Soil

Tex-620-J, Determining Chloride and Sulfate Contents in Soil Contents in Soil Contents: Section 1 Overview...2 Section 2 Sample Preparation...3 Section 3 Ion Chromatography Method...5 Section 4 Wet Chemical Method...9 Section 5 Archived Versions...15 Texas Department

More information

Experiment 20-Acid-Base Titration: Standardization of KOH and Determination of the Molarity and/or Percent Composition of an Acid Solution

Experiment 20-Acid-Base Titration: Standardization of KOH and Determination of the Molarity and/or Percent Composition of an Acid Solution Experiment 20-Acid-Base Titration: Standardization of KOH and Determination of the Molarity and/or Percent Composition of an Acid Solution In this experiment, you will determine the molarity and percent

More information

Sulfide DOC Methylene Blue Method 1 (0 0.70, and mg/l) Method Test procedure

Sulfide DOC Methylene Blue Method 1 (0 0.70, and mg/l) Method Test procedure Methylene Blue Method 1 (0 0.70, 0 7.00 and 0 70.00 mg/l) DOC316.53.01320 Method 10254 Scope and Application: For oil and gas field waters. 1 Adapted from Standard Methods for the Examination of Water

More information

Sodium Chloride - Analytical Standard

Sodium Chloride - Analytical Standard Sodium Chloride - Analytical Standard Determination of Total Mercury Former numbering: ECSS/CN 312-1982 & ESPA/CN-E-106-1994 1. SCOPE AND FIELD OF APPLICATION The present EuSalt Analytical Standard describes

More information

INORGANIC CHEMISTRY (LAB MANUAL)

INORGANIC CHEMISTRY (LAB MANUAL) REDOX TITRATIONS Titrations involving oxidizing and reducing agents are termed as oxidationreduction or redox titrations. The phenomenon of oxidation and reduction plays an important role in our day-to-day

More information

IODINE CLOCK REACTION KINETICS

IODINE CLOCK REACTION KINETICS Name: Section Chemistry 104 Laboratory University of Massachusetts Boston IODINE CLOCK REACTION KINETICS PRELAB ASSIGNMENT Calculate the initial concentration of H 2 O 2 that exists immediately after mixing

More information

Chlorine, Free and Total, Low Range

Chlorine, Free and Total, Low Range Chlorine, Free and Total, Low Range DOC316.53.01450 USEPA DPD Method 1 Method 8021 (free) 8167 (total) 0.02 to 2.00 mg/l Cl 2 (LR) Powder Pillows or AccuVac Ampuls Scope and application: For testing residual

More information

not to be republished NCERT YOU are already aware that a substance is analysed to establish its qualitative TITRIMETRIC ANALYSIS UNIT-6

not to be republished NCERT YOU are already aware that a substance is analysed to establish its qualitative TITRIMETRIC ANALYSIS UNIT-6 UNIT-6 TITRIMETRIC ANALYSIS YOU are already aware that a substance is analysed to establish its qualitative and quantitative chemical composition. Thus, chemical analysis can be categorised as qualitative

More information

DR/4000 PROCEDURE MERCURY. Phase 1: Sample Digestion must be done in a fume hood! Toxic gases may be produced.

DR/4000 PROCEDURE MERCURY. Phase 1: Sample Digestion must be done in a fume hood! Toxic gases may be produced. Method 10065 DR/4000 PROCEDURE Scope and Application: For water, wastewater and seawater. * Adapted from Analytical Chemistry, 25 (9) 1363 (1953) Cold Vapor Mercury Preconcentration Method* (0.1 to 2.5

More information