Botany: Part III Plant Nutri0on

Size: px
Start display at page:

Download "Botany: Part III Plant Nutri0on"

Transcription

1 Botany: Part III Plant Nutri0on

2 Figure Plant Nutri+on and Transport Water and minerals in the soil are absorbed by the roots. and minerals Transpira+on, the loss of water from leaves (mostly through stomata), creates a force within leaves that pulls xylem sap upward.

3 Transpira0on 3

4 GeDng Water Into The Xylem Of The Root 4

5 Genera+on of Transpira+onal Pull In addi+on to apoplas+c and symplas+c movement, there are newly discovered channels called aquaporins that allow only water to move across the membrane. Water movement through aquaporins is quicker since no lipids are involved. 5

6 Movement of Minerals Into The Root Plants need minerals to synthesize organic compounds such as amino acids, proteins and lipids. Plants obtain these minerals from the soil and are transported by various transport proteins. 6

7 Macro- and Micro- Nutrients Macronutrients are required by plants in rela+vely large amounts and compose much of the plant s structure. (C, N, O, P, S, H, K, Ca, Mg, Si, etc. ) Micronutrients are needed in very small quan++es. Typically func+on as cofactors. 7

8 Mycorrhizae: A Mutualis+c Rela+onship Roots Fungus

9 Figure CO 2 O 2 Gas exchange occurs through the stomata. CO 2 is required for photosynthesis and O 2 is released into the atmosphere. and minerals O 2 CO 2 Roots exchange gases with the air spaces in the soil, taking in O 2 and releasing CO 2.

10 Figure CO 2 O 2 Light Sugar Sugars are produced by photosynthesis in the leaves. and minerals O 2 CO 2 Phloem sap(green arrows) can flow both ways. Xylem sap(blue arrows) transport water and minerals upward from roots to shoots.

11 Water Is In The Root, So Now What? Root pressure is caused by ac+ve distribu+on of mineral nutrient ions into the root xylem. Without transpira+on to carry the ions up the stem, they accumulate in the root xylem and lower the water poten+al. At night in some plants, root pressure causes guza+on or exuda+on of drops of xylem sap from the +ps or edges of leaves as pictured here. 11

12 Water Is In The Root, So Now What? Water then diffuses from the soil into the root xylem due to osmosis. Root pressure is caused by this accumula+on of water in the xylem pushing on the rigid cells. Root pressure provides a force, which pushes water up the stem, but it is not enough to account for the movement of water to leaves at the top of the tallest trees. 12

13 Let s Apply Some TACT To The Situa+on! A more likely scenario involves the Cohesion- Tension Theory (also known as Tension- Adhesion- Cohesion- Transpira1on or TACT Theory) Tension: Water is a polar molecule.! When two water molecules approach one another they form an intermolecular azrac+on called a hydrogen bond.! This azrac+ve force, along with other intermolecular forces, is one of the principal factors responsible for the occurrence of surface tension in liquid water.! It also allows plants to draw water from the root through the xylem to the leaf. 13

14 Let s Apply Some TACT To The Situa+on! Adhesion occurs when water forms hydrogen bonds with xylem cell walls. Cohesion occurs when water molecules hydrogen bond with each other. 14

15 Let s Apply Some TACT To The Situa+on! Transpira0on: Water is constantly lost by transpira+on in the leaf. When one water molecule is lost another is pulled along by the processes of cohesion and adhesion. Transpira+on pull, u+lizing capillary ac+on and the inherent surface tension of water, is the primary mechanism of water movement in plants. 15

16 Genera+on of Transpira+on Pull 16

17 Ode To The Hydrogen Bond

18 Water Poten0al Water poten+al quan1fies the tendency of free (not bound to solutes) water to move from one area to another due to osmosis, gravity, mechanical pressure, or matrix effects such as surface tension. Water poten+al has proved especially useful in understanding water movement within plants, animals, and soil. Water poten+al is typically expressed in poten1al energy per unit volume and very o`en is represented by the Greek lezer psi, ψ. (pronounced as sigh )

19 Water Poten0al The addi%on of solutes to water lowers the water's poten%al (makes it more nega+ve), just as the increase in pressure increases its poten+al (makes it more posi+ve). Pure water is usually defined as having an osmo+c poten+al (ψ) of zero, and in this case, solute poten+al can never be posi+ve. Free water moves from regions of higher water poten0al to regions of lower water poten0al if there is no barrier to its flow.

20 Water Poten0al The word poten+al refers to water s poten1al energy which is water s capacity to perform work when it moves from a region of higher water poten0al to a region of lower water poten0al. The water poten+al equa+on is ψ = ψ S + ψ P where ψ is the water poten+al, ψ S is the solute poten+al (directly propor+onal to its molarity and some+mes called the osmo+c poten+al and the ψ S of pure water is zero) and ψ P is the pressure poten+al.

21 Water Poten0al ψ P is the physical pressure exerted on a solu+on. It can be either posi+ve or nega+ve rela+ve to the atmospheric pressure. Water in a nonliving hollow xylem cells is under a nega+ve poten+al (tension) of less than 2 MPa. BUT the water in a living cell is usually under posi+ve pressure due to the osmo+c uptake of water.

22 Solutes have a negative effect on ψ by binding water molecules. " Positive pressure has a positive effect on ψ by pushing water. Solutes and positive pressure have opposing effects on water movement. Negative pressure (tension) has a negative effect on ψ by pulling water. Pure water at equilibrium Pure water at equilibrium Pure water at equilibrium Pure water at equilibrium Adding solutes to the right arm makes ψ lower there, resulting in net movement of water to the right arm: Applying positive pressure to the right arm makes ψ higher there, resulting in net movement of water to the left arm: In this example, the effect of adding solutes is offset by positive pressure, resulting in no net movement of water: Applying negative pressure to the right arm makes ψ lower there, resulting in net movement of water to the right arm: Positive pressure Positive pressure Negative pressure Pure water Membrane Solutes Solutes

23 Solutes have a negative effect on ψ by binding water molecules. Positive pressure has a positive effect on ψ by pushing water. # Solutes and positive pressure have opposing effects on water movement. Negative pressure (tension) has a negative effect on ψ by pulling water. Pure water at equilibrium Pure water at equilibrium Pure water at equilibrium Pure water at equilibrium Adding solutes to the right arm makes ψ lower there, resulting in net movement of water to the right arm: Applying positive pressure to the right arm makes ψ higher there, resulting in net movement of water to the left arm: In this example, the effect of adding solutes is offset by positive pressure, resulting in no net movement of water: Applying negative pressure to the right arm makes ψ lower there, resulting in net movement of water to the right arm: Positive pressure Positive pressure Negative pressure Pure water Membrane Solutes Solutes

24 Solutes have a negative effect on ψ by binding water molecules. Positive pressure has a positive effect on ψ by pushing water. Solutes and positive pressure have opposing effects on water movement. $ Negative pressure (tension) has a negative effect on ψ by pulling water. Pure water at equilibrium Pure water at equilibrium Pure water at equilibrium Pure water at equilibrium Adding solutes to the right arm makes ψ lower there, resulting in net movement of water to the right arm: Applying positive pressure to the right arm makes ψ higher there, resulting in net movement of water to the left arm: In this example, the effect of adding solutes is offset by positive pressure, resulting in no net movement of water: Applying negative pressure to the right arm makes ψ lower there, resulting in net movement of water to the right arm: Positive pressure Positive pressure Negative pressure Pure water Membrane Solutes Solutes

25 Solutes have a negative effect on ψ by binding water molecules. Positive pressure has a positive effect on ψ by pushing water. Solutes and positive pressure have opposing effects on water movement. Negative pressure (tension) has a negative effect on ψ by pulling water. % Pure water at equilibrium Pure water at equilibrium Pure water at equilibrium Pure water at equilibrium Adding solutes to the right arm makes ψ lower there, resulting in net movement of water to the right arm: Applying positive pressure to the right arm makes ψ higher there, resulting in net movement of water to the left arm: In this example, the effect of adding solutes is offset by positive pressure, resulting in no net movement of water: Applying negative pressure to the right arm makes ψ lower there, resulting in net movement of water to the right arm: Positive pressure Positive pressure Negative pressure Pure water Membrane Solutes Solutes

26 Water Poten+al vs. Tonicity 26

27 Water Poten+al and Plant Vocabulary 27

28 Once More With Feeling! Ini+al condi+ons: cellular ψ greater than environmental ψ 0.4 M sucrose solution: ψ P = 0 ψ S = 0.9 Initial flaccid cell: ψ P = 0 ψ S = 0.7 ψ = 0.7 MPa Plasmolyzed cell at osmotic equilibrium with its surroundings ψ = 0.9 MPa ψ P = 0 ψ S = 0.9 ψ = 0.9 MPa

29 Last Time, I Promise! Ini+al condi+ons: cellular ψ less than environmental ψ Initial flaccid cell: ψ P = 0 ψ S = 0.7 ψ = 0.7 MPa Distilled water: ψ P = 0 ψ S = 0 ψ = 0 MPa Turgid cell at osmotic equilibrium with its surroundings ψ P = 0.7 ψ S = 0.7 ψ = 0 MPa

30 Wil0ng Turgor loss in plants causes wil+ng Which can be reversed when the plant is watered

31 Ascent of Xylem Sap 31

32 Stomata Regulate Transpira+on Rate When water moves into guard cells from neighboring cells by osmosis, they become more turgid. The structure of the guard cells wall causes them to bow outward in response to the incoming water. This bowing increases the size of the pore (stomata) between the guard cells allowing for an increase in gas exchange. 32

33 Homeostasis and Water Regula+on By contrast, when the guard cells lose water and become flaccid, they become less bowed, and the pore (stomata) closes. This limits gas exchange. 33

34 Role Of Potassium Ion In Stomatal Opening And Closing The transport of K + (potassium ions, symbolized here as red dots) across the plasma membrane and vacuolar membrane causes the turgor changes of guard cells. K + 34

35 Homeostasis and Water Balance Trees that experience a prolonged drought may compensate by losing part of their crown as a consequence of leaves dying and being shed. Resources may be reallocated so that more energy is expended for root growth in the search for addi+onal water. 35

36 Natural Selec+on and Arid Environments 36

37 Natural Selec+on and Arid Environments Plants that have adapted to arid environments have the following leaf adapta+ons: 1. Leaves that are thick and hard with few stomata placed only on the underside of the leaf 2. Leaves covered with trichomes (hairs) which reflect more light thus reducing the rate of transpira+on 3. Leaves with stomata located in surface pits which increases water tension and reduces the rate of transpira+on Leaves that are spine- like with stems that carry out

38 Natural Selec+on and Flooding Plants that experience prolonged flooding will have problems. Roots underwater cannot obtain the oxygen needed for cell respira+on and ATP synthesis. As a result, leaves may dry out causing the plant to die. Addi+onally, produc+on of hormones that promote root synthesis are suppressed. 38

39 Adapta+ons to Water Environments 39

40 Adapta+ons to Water Environments Plants that have adapted to wet environments have the following adapta+ons: 1. Forma+on of large len+cels (pores) on the stem. 2. Forma+on of adven++ous roots above the water that increase gas exchange. 3. Forma+on of stomata only on the surface of the leaf (water lilies). 4. Forma+on of a layer of air- filled channels called aerenchyma for gas exchange which moves gases between the plant above the water and the submerged +ssues. 40

41 Bulk Flow of Photosynthe+c Products Vessel (xylem) Sieve tube (phloem) 2 1 Source cell (leaf) Sucrose 1 Loading of sugar (green dots) into the sieve tube at the source reduces water potential inside the sieve-tube members. This causes the tube to take up water by osmosis. Transpiration stream Pressure flow 4 3 Sink cell (storage root) Sucrose 2 This uptake of water generates a positive pressure that forces the sap to flow along the tube. 3 The pressure is relieved by the unloading of sugar and the consequent loss of water from the tube at the sink. 4 In the case of leaf-to-root translocation, xylem recycles water from sink to source. 41

42 Nutri+onal Adapta+ons in Plants Epiphytes- grow on other plants, but do not harm their host Parasi0c Plants- absorb water, minerals, and sugars from their host Carnivorous Plants- photosynthe+c but supplement their mineral diet with insects and small animals; found in nitrogen poor soils 42

43 Halophytes 43

44 Adapta0ons of Plants: Saline Environments Soil salinity around the world is increasing. Many plants are killed by too much salt in the soil. Some plants are adapted to growing in saline condi+ons (halophytes) Have spongy leaves with water stored that dilutes salt in the roots Ac+vely transport the salt out of the roots or block the salt so that it cannot enter the roots Produce high concentra+ons of organic molecules in the roots to alter the water poten+al gradient of the roots 44

45 Created by: Jackie Snow AP Biology Teacher and Instruc+onal Facilitator, Belton ISD Belton, TX

Compartments and Transport. Three Major Pathways of Transport. Absorp+on of Water and Minerals by Root Cells. Bulk flow

Compartments and Transport. Three Major Pathways of Transport. Absorp+on of Water and Minerals by Root Cells. Bulk flow Plasmodesmata Channels connec+ng neighboring cells Cell membrane and cytosol are con+nuous from cell to cell Symplast Cytoplasmic con+nuum Apoplast Compartments and Transport Through plasmodesmata con+nuum

More information

AP Biology Chapter 36

AP Biology Chapter 36 Chapter 36 Chapter 36 Transport in Plants 2006-2007 Transport in plants - Overview H2O & minerals transport in xylem transpiration evaporation, adhesion & cohesion negative pressure Sugars transport in

More information

CHAPTER TRANSPORT

CHAPTER TRANSPORT CHAPTER 2 2.4 TRANSPORT Uptake of CO2 FOCUS: Uptake and transport of water and mineral salts Transport of organic substances Physical forces drive the transport of materials in plants over a range of distances

More information

NOTES: CH 36 - Transport in Plants

NOTES: CH 36 - Transport in Plants NOTES: CH 36 - Transport in Plants Recall that transport across the cell membrane of plant cells occurs by: -diffusion -facilitated diffusion -osmosis (diffusion of water) -active transport (done by transport

More information

Chapter 35 Regulation and Transport in Plants

Chapter 35 Regulation and Transport in Plants Chapter 35 Regulation and Remember what plants need Photosynthesis light reactions Calvin cycle light sun H 2 O ground CO 2 air What structures have plants evolved to supply these needs? Interdependent

More information

AP Biology. Transport in plants. Chapter 36. Transport in Plants. Transport in plants. Transport in plants. Transport in plants. Transport in plants

AP Biology. Transport in plants. Chapter 36. Transport in Plants. Transport in plants. Transport in plants. Transport in plants. Transport in plants Chapter 36. Transport in Plants evaporation, adhesion & cohesion negative pressure evaporation, adhesion & cohesion negative pressure transport in phloem bulk flow Calvin cycle in leaves loads sucrose

More information

Chapter 36: Transport in Vascular Plants - Pathways for Survival

Chapter 36: Transport in Vascular Plants - Pathways for Survival Chapter 36: Transport in Vascular Plants - Pathways for Survival For vascular plants, the evolutionary journey onto land involved differentiation into roots and shoots Vascular tissue transports nutrients

More information

Chapter 36~ Transport in Plants

Chapter 36~ Transport in Plants Chapter 36~ Transport in Plants Structural Features Used for Resource Acquistion Roots and stems to do transport of resources Diffusion, active transport, and bulk flow Work in vascular plants to transport

More information

Question 1: What are the factors affecting the rate of diffusion? Diffusion is the passive movement of substances from a region of higher concentration to a region of lower concentration. Diffusion of

More information

in angiosperms 10/29/08 Roots take up water via roots Large surface area is needed Roots branch and have root hairs Cortex structure also helps uptake

in angiosperms 10/29/08 Roots take up water via roots Large surface area is needed Roots branch and have root hairs Cortex structure also helps uptake in angiosperms A. Root System Roots take up water via roots Large surface area is needed Roots branch and have root hairs Cortex structure also helps uptake 1 B. Minerals Nitrogen (NO 3-,NH 4+ ) Potassium

More information

Transport in Plants Notes AP Biology Mrs. Laux 3 levels of transport occur in plants: 1. Uptake of water and solutes by individual cells -for

Transport in Plants Notes AP Biology Mrs. Laux 3 levels of transport occur in plants: 1. Uptake of water and solutes by individual cells -for 3 levels of transport occur in plants: 1. Uptake of water and solutes by individual cells -for photosynthesis and respiration -ex: absorption of H 2 O /minerals by root hairs 2. Short distance cell-to-cell

More information

Plant Transport and Nutrition

Plant Transport and Nutrition Plant Transport and Nutrition Chapter 36: Transport in Plants H 2 O & Minerals o Transport in xylem o Transpiration Evaporation, adhesion & cohesion Negative pressure. Sugars o Transport in phloem. o Bulk

More information

Organs and leaf structure

Organs and leaf structure Organs and leaf structure Different types of tissues are arranged together to form organs. Structure: 2 parts (Petiole and Leaf Blade) Thin flat blade, large surface area Leaves contain all 3 types of

More information

Chapter 36. Transport in Vascular Plants

Chapter 36. Transport in Vascular Plants Chapter 36 Transport in Vascular Plants Overview: Pathways for Survival For vascular plants The evolutionary journey onto land involved the differentiation of the plant body into roots and shoots Vascular

More information

Transport in Plants. Transport in plants. Transport across Membranes. Water potential 10/9/2016

Transport in Plants. Transport in plants. Transport across Membranes. Water potential 10/9/2016 Transport in Plants Transport in plants How is a plant able to move water and nutrients from roots to the rest of the plant body? Especially tall trees? Sequoia can be over 300 feet tall! Transport across

More information

Transport in Plants (Ch. 23.5)

Transport in Plants (Ch. 23.5) Transport in Plants (Ch. 23.5) Transport in plants H 2 O & minerals transport in xylem Transpiration Adhesion, cohesion & Evaporation Sugars transport in phloem bulk flow Gas exchange photosynthesis CO

More information

Ch. 36 Transport in Vascular Plants

Ch. 36 Transport in Vascular Plants Ch. 36 Transport in Vascular Plants Feb 4 1:32 PM 1 Essential Question: How does a tall tree get the water from its roots to the top of the tree? Feb 4 1:38 PM 2 Shoot architecture and Light Capture: Phyllotaxy

More information

Chapter C3: Multicellular Organisms Plants

Chapter C3: Multicellular Organisms Plants Chapter C3: Multicellular Organisms Plants Multicellular Organisms Multicellular organisms have specialized cells of many different types that allow them to grow to a larger size than single-celled organisms.

More information

Recap. Waxy layer which protects the plant & conserves water. Contains chloroplasts: Specialized for light absorption.

Recap. Waxy layer which protects the plant & conserves water. Contains chloroplasts: Specialized for light absorption. Recap Contains chloroplasts: Specialized for light absorption Waxy layer which protects the plant & conserves water mesophyll Layer contains air spaces: Specialized for gas exchange Vascular Tissue Exchange

More information

CBSE Quick Revision Notes (Class-11 Biology) CHAPTER-11 TRANSPORT IN PLANTS

CBSE Quick Revision Notes (Class-11 Biology) CHAPTER-11 TRANSPORT IN PLANTS CBSE Quick Revision Notes (Class-11 Biology) CHAPTER-11 TRANSPORT IN PLANTS Plant transport various substance like gases, minerals, water, hormones, photosynthetes and organic solutes to short distance

More information

OCR (A) Biology A-level

OCR (A) Biology A-level OCR (A) Biology A-level Topic 3.3: Transport in plants Notes Plants require a transport system to ensure that all the cells of a plant receive a sufficient amount of nutrients. This is achieved through

More information

Bio 102 Chapter 32 Transport in Plants

Bio 102 Chapter 32 Transport in Plants Bio 102 Chapter 32 Transport in Plants 2006-2007 Passive Water & Mineral Absorption Water absorption from soil OSMOSIS = transport of WATER across cell membrane WATER POTENTIAL determines direction of

More information

Transport, Storage and Gas Exchange in Flowering Plants

Transport, Storage and Gas Exchange in Flowering Plants Sixth Year Biology Transport, Storage and Gas Exchange in Flowering Plants Miss Rochford In this topic: Uptake and transport of: Water and minerals Carbon dioxide Gas exchange Transport of photosynthesis

More information

Resource acquisition and transport in vascular plants

Resource acquisition and transport in vascular plants Resource acquisition and transport in vascular plants Overview of what a plant does Chapter 36 CO 2 O 2 O 2 and and CO 2 CO 2 O 2 Sugar Light Shoots are optimized to capture light and reduce water loss

More information

Chapter 12 & 13 Transport, Soil and Mineral Nutrition

Chapter 12 & 13 Transport, Soil and Mineral Nutrition Chapter 12 & 13 Transport, Soil and Mineral Nutrition Topics Methods of transport Xylem transport Phloem transport Soils properties and nutrient absorption Macro and micro essential nutrient elements Too

More information

Introduction to Plant Transport

Introduction to Plant Transport Introduction to Plant Transport The algal ancestors of plants were completely immersed in water and dissolved minerals. The adaptation to land involved the differentiation of the plant body into roots,

More information

Water and Food Transportation

Water and Food Transportation Water and Food Transportation Sugars in a Plant Sugar Form Location in Plant Organ Function of Sugar form Glucose Leaf Energy (made in photosynthesis summer, used in cellular respiration for growth-spring)

More information

Introduction to Plant Transport

Introduction to Plant Transport Introduction to Plant Transport The algal ancestors of plants were completely immersed in water and dissolved minerals. The adaptation to land involved the differentiation of the plant body into roots,

More information

PLANT SCIENCE. 9.2 Transport in Angiospermophytes

PLANT SCIENCE. 9.2 Transport in Angiospermophytes PLANT SCIENCE 9.2 Transport in Angiospermophytes Support of terrestrial plants Support of terrestrial plants comes through: Thickened cellulose in cell walls Turgor pressure of cells Lignified xylem Xylem

More information

Transport of substances in plants

Transport of substances in plants Transport of substances in plants We have already looked at why many organisms need transport systems with special reference to surface area and volume. The larger the volume : surface area ratio, the

More information

Nutrition and Transport in Plants Chapter 26. Outline

Nutrition and Transport in Plants Chapter 26. Outline Nutrition and Transport in Plants Chapter 26 Outline Essential Inorganic Nutrients Soil Formation Soil Profiles Soil Erosion Mineral Uptake Transport Mechanisms Water Organic Nutrients 1 2 Plant Nutrition

More information

Movement across the Cell Membrane. AP Biology

Movement across the Cell Membrane. AP Biology Movement across the Cell Membrane The diffusion of solutes across a synthetic membrane Molecules of dye WATER Membrane (cross section) Net diffusion Net diffusion Equilibrium (a) Diffusion of one solute

More information

Plant Nutrition and Transport. Chapter 29

Plant Nutrition and Transport. Chapter 29 Plant Nutrition and Transport Chapter 29 Overview: Underground Plants The success of plants depends on their ability to gather and conserve resources from their environment. The transport of materials

More information

Resource Acquisition and Transport in Vascular Plants

Resource Acquisition and Transport in Vascular Plants Chapter 36 Resource Acquisition and Transport in Vascular Plants PowerPoint Lecture Presentations for Biology Eighth Edition Neil Campbell and Jane Reece Lectures by Chris Romero, updated by Erin Barley

More information

Transport in Vascular Plants

Transport in Vascular Plants Chapter 36 Transport in Vascular Plants PowerPoint Lectures for Biology, Seventh Edition Neil Campbell and Jane Reece Lectures by Chris Romero Vascular tissue Transports nutrients throughout a plant; such

More information

Bio Factsheet. Transport in Plants. Number 342

Bio Factsheet. Transport in Plants.   Number 342 Number 342 Transport in Plants This Factsheet: Explains why plants need a transport system Describes what plants transport Describes the tissues which carry out transport Outlines the position of the xylem

More information

Resource Acquisition and Transport in Vascular Plants

Resource Acquisition and Transport in Vascular Plants Chapter 36 Resource Acquisition and Transport in Vascular Plants PowerPoint Lecture Presentations for Biology Eighth Edition Neil Campbell and Jane Reece Lectures by Chris Romero, updated by Erin Barley

More information

Essen%al knowledge standards

Essen%al knowledge standards Essen%al knowledge standards 2.C.1: Organisms use feedback mechanisms to maintain their internal environments and respond to external environmental changes 2.C.2: Organisms respond to changes in their

More information

Chapter 21: Plant Structure & Function

Chapter 21: Plant Structure & Function Chapter 21: Plant Structure & Function Chapter 21: Plant Structure & Function All organisms must: Take in certain materials, e.g. O 2, food, drink Eliminate other materials, e.g. CO 2, waste products Chapter

More information

2014 Pearson Education, Inc. 1

2014 Pearson Education, Inc. 1 1 CO 2 O 2 Light Sugar O 2 and minerals CO 2 2 Buds 42 29 21 34 13 26 5 18 10 31 23 8 15 28 16 2 24 Shoot apical meristem 7 3 20 1 mm 32 11 19 12 6 4 1 25 17 14 9 40 27 22 3 Cell wall Apoplastic route

More information

AP Biology Transpiration and Stomata

AP Biology Transpiration and Stomata AP Biology Transpiration and Stomata Living things must exchange matter with the environment to survive, Example: Gas Exchange in Plants photosynthesis cellular respiration 1. During which hours does a

More information

Transport in Plant (IGCSE Biology Syllabus )

Transport in Plant (IGCSE Biology Syllabus ) Transport in Plant (IGCSE Biology Syllabus 2016-2018) Plants have transport systems to move food, water and minerals around. These systems use continuous tubes called xylem and phloem: - Xylem vessels

More information

Transport in Plants AP Biology

Transport in Plants AP Biology Transport in Plants 2006-2007 Water & mineral absorption Water absorption from soil osmosis aquaporins Mineral absorption active transport proton pumps active transport of H + aquaporin root hair proton

More information

Preview from Notesale.co.uk Page 20 of 34

Preview from Notesale.co.uk Page 20 of 34 Page 20 of 34 (i) The role of haemoglobin in transporting oxygen and carbon dioxide To include the reversible binding of oxygen molecules, carbonic anhydrase, haemoglobinic acid, HCO3- and the chloride

More information

The three principal organs of seed plants are roots, stems, and leaves.

The three principal organs of seed plants are roots, stems, and leaves. 23 1 Specialized Tissues in Plants Seed Plant Structure The three principal organs of seed plants are roots, stems, and leaves. 1 of 34 23 1 Specialized Tissues in Plants Seed Plant Structure Roots: absorb

More information

Chapter 30: Plant Nutrition & Transport

Chapter 30: Plant Nutrition & Transport Chapter 30: Plant Nutrition & Transport Carnivorous Plants Capture animals to supplement their nutrient intake Venus flytrap lures insects with sugary bait; closes on victim Cobra lily lures insects down

More information

Please sit next to a partner. you are an A or a B

Please sit next to a partner. you are an A or a B Please sit next to a partner you are an A or a B Plants Transport in Vascular Plants Transport Overview Vascular tissue transports nutrients throughout a plant Such transport may occur over long distances

More information

Water Relations in Viticulture BRIANNA HOGE AND JIM KAMAS

Water Relations in Viticulture BRIANNA HOGE AND JIM KAMAS Water Relations in Viticulture BRIANNA HOGE AND JIM KAMAS Overview Introduction Important Concepts for Understanding water Movement through Vines Osmosis Water Potential Cell Expansion and the Acid Growth

More information

CHAPTER 32 TRANSPORT IN PLANTS OUTLINE OBJECTIVES

CHAPTER 32 TRANSPORT IN PLANTS OUTLINE OBJECTIVES CHAPTER 32 TRANSPORT IN PLANTS OUTLINE I. The traffic of water and solutes occurs on cellular, organ, and whole-plant levels: an overview of transport in plants A. Transport at the Cellular Level B. Short

More information

Biology 2 Chapter 21 Review

Biology 2 Chapter 21 Review Biology 2 Chapter 21 Review Multiple Choice Identify the choice that best completes the statement or answers the question. 1. Which of the following is not a tissue system of vascular plants? a. vascular

More information

CASE STUDY WATER ABSORPTION AND TRANSPORT IN PLANTS

CASE STUDY WATER ABSORPTION AND TRANSPORT IN PLANTS CASE STUDY WATER ABSORPTION AND TRANSPORT IN PLANTS Presentation of the problem: We need a pump to uplift water to a tank. The requirement of a pump is to pull water against the gravity. Look at the human

More information

Movement of water and solutes in plants Chapter 4 and 30

Movement of water and solutes in plants Chapter 4 and 30 Movement of water and solutes in plants Chapter 4 and 30 Molecular Movement Diffusion Molecules or ions moving in the opposite direction = movement against a diffusion gradient. Rates of diffusion are

More information

Exchanging Materials in Plants

Exchanging Materials in Plants Exchanging Materials in Plants 1 of 23 Boardworks Ltd 2012 2 of 23 Boardworks Ltd 2012 3 of 23 Boardworks Ltd 2012 All living things need to exchange materials Plants need to obtain certain materials for

More information

Introduction to Plant Transport

Introduction to Plant Transport Introduction to Plant Transport The algal ancestors of plants were completely immersed in water and dissolved minerals. What would be the advantages to living on the land? What would be the problems? This

More information

Transport of Water and Solutes in Plants

Transport of Water and Solutes in Plants Transport of Water and Solutes in Plants Bởi: OpenStaxCollege The structure of plant roots, stems, and leaves facilitates the transport of water, nutrients, and photosynthates throughout the plant. The

More information

Chapter 29 Active Reading Guide Resource Acquisition, Nutrition, and Transport in Vascular Plants

Chapter 29 Active Reading Guide Resource Acquisition, Nutrition, and Transport in Vascular Plants Name: AP Biology Mr. Croft Chapter 29 Active Reading Guide Resource Acquisition, Nutrition, and Transport in Vascular Plants Section 1 1. Competition for light, water, and nutrients is intense among the

More information

Unit B: Cells and Systems

Unit B: Cells and Systems Unit B: Cells and Systems Topic 4: Fluid Movement in Cells The Cell Membrane A cell membrane allows some to enter or leave the cell, while stopping other substances. It is a selectively membrane. (A permeable

More information

2014 Pearson Education, Inc. 1. Light. Sugar O 2 H 2 O. and minerals CO Pearson Education, Inc.

2014 Pearson Education, Inc. 1. Light. Sugar O 2 H 2 O. and minerals CO Pearson Education, Inc. 1 CO 2 O 2 Light ugar O 2 and minerals CO 2 2 Buds 34 42 29 26 31 18 21 13 5 10 23 8 15 28 16 24 hoot apical meristem 2 7 3 20 32 11 19 12 6 4 1 25 17 14 9 40 27 22 1 mm 3 Cell wall Apoplastic route Cytosol

More information

35 Transport in Plants

35 Transport in Plants Transport in Plants 35 Transport in Plants 35.1 How Do Plants Take Up Water and Solutes? 35.2 How Are Water and Minerals Transported in the Xylem? 35.3 How Do Stomata Control the Loss of Water and the

More information

3. Describe the role played by protein pumps during active transport in plants.

3. Describe the role played by protein pumps during active transport in plants. CLASS XI BIOLOGY Transport in Plants 1. What are the factors affecting the rate of diffusion? Answer: Factors affecting the rate of diffusion: 1. Gradient of Concentration 2. Permeability of membrane 3.

More information

Biology 102 Environmental Biology Plants/Agriculture Unit Page 1 of 5

Biology 102 Environmental Biology Plants/Agriculture Unit Page 1 of 5 Biology 102 Environmental Biology Plants/Agriculture Unit Page 1 of 5 Based on Mader, Sylvia S. 1996. Biology - 5th Ed. WCB and Cox, G.W. 1997. Conservation Biology - 2nd ed. WCB and Levine, J.S. and K.R.

More information

BIOL 221 Concepts of Botany Water Relations, Osmosis and Transpiration:

BIOL 221 Concepts of Botany Water Relations, Osmosis and Transpiration: BIOL 221 Concepts of Botany Topic 12: Water Relations, Osmosis and Transpiration: A. Water Relations Water plays a critical role in plants. Water is the universal solvent that allows biochemical reactions

More information

Transportation in Plants

Transportation in Plants Transportation in Plants Bell Ringer - 5 Min Why do you need transportation in living organisms? Explain your answer with a suitable example. Water movement through plants How does water move through a

More information

Two major categories. BIOLOGY 189 Fundamentals of Life Sciences. Spring 2004 Plant Structure and Function. Plant Structure and Function

Two major categories. BIOLOGY 189 Fundamentals of Life Sciences. Spring 2004 Plant Structure and Function. Plant Structure and Function BIOLOGY 189 Fundamentals of Life Sciences Spring 2004 Plant Structure and Function 18 16 14 12 10 8 6 Examination #1 Class Average: 33/60 for 55% 4 Chapters 31-32 32 2 0 6 10 15 20 25 30 35 40 45 50 55

More information

Investigation 11 Transpiration

Investigation 11 Transpiration Introduction What factors, including environmental variables, affect the rate of transpiration in plants? Background Cells and organisms must exchange matter with the environment to grow, reproduce, and

More information

ABSORPTION OF WATER MODE OF WATER ABSORPTION ACTIVE AND PASSIVE ABSORPTION AND FACTORS AFFECTING ABSORPTION.

ABSORPTION OF WATER MODE OF WATER ABSORPTION ACTIVE AND PASSIVE ABSORPTION AND FACTORS AFFECTING ABSORPTION. ABSORPTION OF WATER MODE OF WATER ABSORPTION ACTIVE AND PASSIVE ABSORPTION AND FACTORS AFFECTING ABSORPTION. PRELUDE OF WATER POTENTIAL Most organisms are comprised of at least 70% or more water. Some

More information

of water unless it is moving via the symplast Water moves into the xylem for transport up the plant Water that does not cross the

of water unless it is moving via the symplast Water moves into the xylem for transport up the plant Water that does not cross the Uptake of water The through Casparian Strip blocks root epidermis by passage osmosis of water unless it is moving via the symplast Water moves into the xylem for transport up the plant Water that does

More information

Water Acquisition and Transport - Whole Plants. 3 possible pathways for water movement across the soil-plant-atmosphere continuum

Water Acquisition and Transport - Whole Plants. 3 possible pathways for water movement across the soil-plant-atmosphere continuum Water transport across the entire soil-plant-atmosphere continuum Water Acquisition and Transport - Whole Plants 3 possible pathways for water movement across the soil-plant-atmosphere continuum Apoplast

More information

Chapter 29. Table of Contents. Section 1 Plant Cells and Tissues. Section 2 Roots. Section 3 Stems. Section 4 Leaves. Plant Structure and Function

Chapter 29. Table of Contents. Section 1 Plant Cells and Tissues. Section 2 Roots. Section 3 Stems. Section 4 Leaves. Plant Structure and Function Plant Structure and Function Table of Contents Section 1 Plant Cells and Tissues Section 2 Roots Section 3 Stems Section 4 Leaves Section 1 Plant Cells and Tissues Objectives Describe the three basic types

More information

Chapter 32 Plant Nutrition and Transport

Chapter 32 Plant Nutrition and Transport Chapter 32 Plant Nutrition and Transport PowerPoint Lectures for Biology: Concepts & Connections, Sixth Edition Campbell, Reece, Taylor, Simon, and Dickey Copyright 2009 Pearson Education, Inc. Lecture

More information

B2 Quick Revision Questions. B2 for AQA GCSE examination 2018 onwards

B2 Quick Revision Questions. B2 for AQA GCSE examination 2018 onwards B2 Quick Revision Questions Question 1 Which raw materials are used in photosynthesis and what are the products of the reaction? Answer 1 Carbon dioxide Water Glucose Oxygen Question 2 What type of reaction

More information

Biology 1030 Winter 2009

Biology 1030 Winter 2009 Meeting Tissue Needs II Chapter 36 (738-755) Chapter 37 (756-770) Cellular Currency Plants harvest solar energy Photosynthesis Produces sugars Proteins, nucleic acids, lipids? H 2 O CO 2 Plants cells still

More information

Chapter 36 Transport in Vascular Plants Lecture Outline

Chapter 36 Transport in Vascular Plants Lecture Outline Overview: Pathways for Survival Chapter 36 Transport in Vascular Plants Lecture Outline The algal ancestors of plants obtained water, minerals and CO2 from the water in which they were completely immersed.

More information

BIOL 221 Concepts of Botany Spring Water Relations, Osmosis and Transpiration

BIOL 221 Concepts of Botany Spring Water Relations, Osmosis and Transpiration BIOL 221 Concepts of Botany Spring 2008 Topic 07: Water Relations, Osmosis and Transpiration A. Water Relations Water plays a critical role in plants. Water is the universal solvent that allows biochemical

More information

MULTIPLE CHOICE QUESTIONS

MULTIPLE CHOICE QUESTIONS 54 BIOLOGY, EXEMPLAR PROBLEMS CHAPTER 11 TRANSPORT IN PLANTS MULTIPLE CHOICE QUESTIONS 1. Which of the following statements does not apply to reverse osmosis? a. it is used for water purification. b. In

More information

Progetto cofinanziato dal programma LIFE+ Department of Agricultural Engineering and Agronomy - University of Naples Federico II

Progetto cofinanziato dal programma LIFE+ Department of Agricultural Engineering and Agronomy - University of Naples Federico II Water in Plants Progetto cofinanziato dal programma LIFE+ Stefania De Pascale Stefania De Pascale Department of Agricultural Engineering and Agronomy - University of Naples Federico II Why do plants need

More information

Earth Has a Rich Diversity of Plants. Plant Structure, Nutrition, and Transport. Angiosperms: Monocots and Dicots. Angiosperms: Dicots

Earth Has a Rich Diversity of Plants. Plant Structure, Nutrition, and Transport. Angiosperms: Monocots and Dicots. Angiosperms: Dicots Plant Structure, Nutrition, and Transport Earth Has a Rich Diversity of Plants There are over 280,000 different plant species organized into four major groups: bryophytes (mosses), seedless vascular plants,

More information

Absorption of Water by Plants

Absorption of Water by Plants Absorption of Water by Plants Absorption of water by cells and roots Availability of Water in the Soil Soil is the major source of water for plants. The plants absorb water through root hairs from the

More information

VOCABULARY LECTURE 5. NUTRIENT TRANSPORT: LONG- DISTANCE TRANSPORT 9/2/2015

VOCABULARY LECTURE 5. NUTRIENT TRANSPORT: LONG- DISTANCE TRANSPORT 9/2/2015 LECTURE 5. NUTRIENT TRANSPORT: LONG- DISTANCE TRANSPORT 1. Adherent 2. Sever 3. Immerse 4. Impregnate 5. Twig 6. result from 7. Pits 8. Taper 9. Allow 10. Stick together 11. driving force VOCABULARY 1

More information

Biology. Chapter 26. Plant Nutrition and Transport. Concepts and Applications 9e Starr Evers Starr. Cengage Learning 2015

Biology. Chapter 26. Plant Nutrition and Transport. Concepts and Applications 9e Starr Evers Starr. Cengage Learning 2015 Biology Concepts and Applications 9e Starr Evers Starr Chapter 26 Plant Nutrition and Transport 26.1 Where Do Plants Get the Nutrients They Require? A plant needs sixteen elements to survive and grow Macronutrients:

More information

Transpiration. Interesting Fact:

Transpiration. Interesting Fact: Transpiration Transpiration is a process that involves loss of water vapour through the stomata of plants. Transpiration is thought to be a 'necessary cost or evil' to allow the plant to absorb water from

More information

Stems and Transport in Vascular Plants. Herbaceous Stems. Herbaceous Dicot Stem 3/12/2012. Chapter 34. Basic Tissues in Herbaceous Stems.

Stems and Transport in Vascular Plants. Herbaceous Stems. Herbaceous Dicot Stem 3/12/2012. Chapter 34. Basic Tissues in Herbaceous Stems. Bud scale Terminal bud Stems and Transport in Plants One year's growth Terminal bud scale scars Axillary bud Leaf scar Node Internode Node Chapter 34 Lenticels Terminal bud scale scars Bundle scars A Woody

More information

IB Bio: Plant Biology. Topic 9

IB Bio: Plant Biology. Topic 9 IB Bio: Plant Biology Topic 9 9.1: Transport in xylem How and why does water move up a plant? How do plants conserve water? 9.2: Transport in phloem How and why and where does food move in a plant? 9.3:

More information

What factors, including environmental variables, affect the rate of transpiration in plants?

What factors, including environmental variables, affect the rate of transpiration in plants? Big Idea 4 Interactions investigation 11 TRANSPIRATION* What factors, including environmental variables, affect the rate of transpiration in plants? BACKGROUND Cells and organisms must exchange matter

More information

BRAINSTORM ACTIVITY What do we depend on plants for?

BRAINSTORM ACTIVITY What do we depend on plants for? SBI3U1 BRAINSTORM ACTIVITY What do we depend on plants for? STOP! THINK! PAIR! SHARE! With your partner, brainstorm 5 significant uses of plants. Write them down. Now share your ideas with the rest of

More information

13.2 The Vascular Plant Body (textbook p )

13.2 The Vascular Plant Body (textbook p ) 13.2 The Vascular Plant Body (textbook p544 550) Learning Goal: Label and explain the anatomy of the Vascular Plant and it's Tissue Types Plants are classified into two main groups: and. Vascular plants

More information

Stomata and water fluxes through plants

Stomata and water fluxes through plants Stomata and water fluxes through plants Bill Davies The Lancaster Environment Centre, UK Summary Stomata and responses to the environment Conductance, a function of frequency and aperture Measuring/estimating

More information

ARIF ULLAH ITHS

ARIF ULLAH ITHS SUMMARY Feature of xylem and phloem and their role. Distribution of xylem and phloem (vascular bundles) in stem and root of dicotyledonous plants. Transport of water from the root to the atmosphere through

More information

thebiotutor. AS Biology OCR. Unit F211: Cells, Exchange & Transport. Module 2.3 Transport in Plants. Answers.

thebiotutor. AS Biology OCR. Unit F211: Cells, Exchange & Transport. Module 2.3 Transport in Plants. Answers. thebiotutor AS Biology OCR Unit F211: Cells, Exchange & Transport Module 2.3 Transport in Plants Answers Andy Todd 2013 1 1. (i) transports water (up plant); ACCEPT alternative wording for transport e.g.

More information

[transport] in plants

[transport] in plants [transport] in plants learningobjectives Identify the main parts of the transport system in plants xylem and phloem. Explain the structural adaptation of the xylem (ie lumen, lignin and dead cells) Explain

More information

BIOL 1030 Introduction to Biology: Organismal Biology. Fall 2009 Sections B & D. Steve Thompson:

BIOL 1030 Introduction to Biology: Organismal Biology. Fall 2009 Sections B & D. Steve Thompson: BIOL 1030 Introduction to Biology: Organismal Biology. Fall 2009 Sections B & D Steve Thompson: stthompson@valdosta.edu http://www.bioinfo4u.net 1 How plants get the stuff they need Feed me... feed me...

More information

BioWash as an Adjuvant, Translocation Promoter, and Cationic Exchange Stimulator Overview of Processes within the Plant

BioWash as an Adjuvant, Translocation Promoter, and Cationic Exchange Stimulator Overview of Processes within the Plant BioWash as an Adjuvant, Translocation Promoter, and Cationic Exchange Stimulator Overview of Processes within the Plant Photosynthesis is the primary driver of the plant. Through a series of complex steps,

More information

Name AP Biology - Lab 06

Name AP Biology - Lab 06 LAB 06 Transpiration Objectives: To understand how water moves from roots to leaves in terms of the physical/chemical properties of water and the forces provided by differences in water potential. To test

More information

2018 Version. Photosynthesis Junior Science

2018 Version. Photosynthesis Junior Science 2018 Version Photosynthesis Junior Science 1 Plants fill the role of Producers in a community Plants are special because they have leaves and are able to produce their own food by the process of photosynthesis

More information

Plant Form & Function Chs 36 &37

Plant Form & Function Chs 36 &37 Plant Form & Function Chs 36 &37 Focus on Angiosperms Most (97%) angiosperms are in two clades: 05 March 2009 ECOL 182R UofA K. E. Bonine Video 35.2 1 Monocots: one cotyledon Eudicots: two cotyledons Otherclades

More information

C MPETENC EN I C ES LECT EC UR U E R

C MPETENC EN I C ES LECT EC UR U E R LECTURE 7: SUGAR TRANSPORT COMPETENCIES Students, after mastering the materials of Plant Physiology course, should be able to: 1. To explain the pathway of sugar transport in plants 2. To explain the mechanism

More information

Plant Structure and Function

Plant Structure and Function Plant Structure and Function A Meridian Biology AP Study Guide by John Ho and Tim Qi Plant Terms Growth: Growth Types Type Location Description Primary Primary Vertical growth (up-down), dominant direction

More information

Transpiration Lab. Introduction

Transpiration Lab. Introduction Transpiration Lab Name Introduction The amount of water needed daily by plants for the growth and maintenance of tissues is small in comparison to the amount that is lost through the process of transpiration

More information

Synoptic Biology: Water Potential

Synoptic Biology: Water Potential Number 225 Synoptic Biology: Water Potential This Factsheet reviews the very wide range of exam questions that test your understanding of water potential. Osmosis: the diffusion of water through a partially

More information

Photosynthesis. Water is one of the raw materials needed for photosynthesis When water is in short supply the rate of photosynthesis is limited

Photosynthesis. Water is one of the raw materials needed for photosynthesis When water is in short supply the rate of photosynthesis is limited Photosynthesis Water is one of the raw materials needed for photosynthesis When water is in short supply the rate of photosynthesis is limited Support Water is needed to ensure plant cells remain turgid

More information