Content. Introduction. Interaction of Radiation with Matter. Definitions Detectors for Ionizing Particles

Size: px
Start display at page:

Download "Content. Introduction. Interaction of Radiation with Matter. Definitions Detectors for Ionizing Particles"

Transcription

1 Introduction Overview of detector systems Sources of radiation Radioactive decay Cosmic Radiation Accelerators Content Interaction of Radiation with Matter General principles Charged particles heavy charged particles electrons Neutral particles Photons Neutrons Neutrinos Definitions Detectors for Ionizing Particles Principles of ionizing detectors Gas detectors Principles Detector concepts

2 Content Semiconductor detectors Semiconductor basics Sensor concepts Different detector materials Readout electronics Scintillation detectors Calorimeters General characteristics Organic materials Inorganic materials Light output response Velocity Determination in Dielectric Media Cerenkov detectors Cerenkov radiation Cerenkov detectors Transition Radiation detectors Phenomenology of Transition Radiation Detection of Transition Radiation Complex Detector Systems Particle Identification with Combined Detector Information Tracking

3 Lecture 9 Scintillating Detectors and Calorimeters

4 Scintillation photodetector Energy deposition by ionizing particle production of scintillation light (luminescense) Scintillators are multi purpose detectors: calorimetry time of flight measurement tracking detector (fibers) trigger counter veto counter Two material types: Inorganic and organic scintillators

5 Organic materials sp 2 -hybridisation: 2p x and 2p y mix with s-orbital -orbital p z remains unchanged π-orbital

6 Pi electron energy levels Organic scintillators: Monocrystals or liquids or plastic solutions Monocrystals: naphtalene, anthracene, p-terphenyl. Liquid and plastic scintillators They consist normally of a solvent + secondary (and tertiary) fluors as wavelength shifters. Fluorescence sec peak ~ 320 nm ~10-11 sec non-radiative transition ~ 10-6 sec (Förster transf.) Phosphorescence 10-4 sec Fast energy transfer via non-radiative dipole-dipole interactions (Förster transfer). shift emission to longer wavelengths longer absorption length and efficient read-out device

7 Wavelength shifting no self-absorption also used for light re-direction

8 Organic scintillators Practical organic scintillators uses a solvent + large concentration of primary fluor + smaller concentration of secondary fluor +... The emitted wavelength is always longer or equal to the incident wavelength. The difference is absorbed as heat in the atomic lattice of the material.

9 Organic scintillators have low Z (H,C) Low density (< 2 g/cm 3 ) Low g detection efficiency (practically only Compton effect). But high neutron detection efficiency via (n,p) reactions.

10 Inorganic Crystalline Scintillators The most common inorganic scintillator is sodium iodide activated with a trace amount of thallium [NaI(Tl)]. Energy bands in impurity activated crystal often 2 time constants: fast recombination (ns - µs) from activation center delayed recombination due to trapping (100 ms)

11 BaF 2 fast and slow signals 200ns/square 2ns/square

12 Inorganic Crystalline Scintillators Strong dependence of the light output and the decay time with temperature. * * Bismuth germinate Bi 4 Ge 3 O 12 is the crystalline form of an inorganic oxide with cubic eulytine** structure, colourless, transparent, and insoluble in water. ** From the Greek eulitos = "easily liquefiable", in allusion to its low melting point.

13 Inorganic scintillators PbWO 4 ingot and final polished CMS ECAL scintillator crystal from Bogoroditsk Techno-Chemical Plant (Russia).

14 Liquified Noble Gases: LAr, LXe, LKr Also here one finds 2 time constants: from a few ns to 1 ms. from C. D'Ambrosio, Academic Training, 2005

15 Common materials Density (g/cm 3 ) λ emiss (nm) #photon /MeV (ns) NaI(Tl) hygrosc. CsI(Tl) hygrosc. BGO BaF / / / 630 CeF rad. hard plastic = good = bad easy handling

16 Light collection

17 Light collection

18 light transport by total internal reflection typ. 25 mm Optical fibers core polystyrene n=1.59 cladding (PMMA) n=1.49 n 1 typically <1 mm n 2 n arcsin d % n in one direction d 4 5.3% and absorption length: l>10 m for visible light multi-clad fibres for improved aperture core polystyrene n=1.59 cladding (PMMA) n= mm fluorinated outer cladding n= mm

19 Optical fibers for tracking Scintillating plastic fibers Capillary fibers, filled with liquid scintillator Planar geometries (end cap) Circular geometries (barrel) (R.C. Ruchti, Annu. Rev. Nucl. Sci. 1996, 46,281) High geometrical flexibility Fine granularity Low mass Fast response (ns) (if fast read out) first level trigger a) axial b) circumferential c) helical

20 Scintillating fiber tracking (H. Leutz, NIM A 364 (1995) 422) Charged particle passing through a stack of scintillating fibers (diam. 1mm) Hexagonal fibers with double cladding. Only central fiber illuminated. Low cross talk!

21 Photon Detectors Purpose: Convert light into detectable (electronic) signal Principle: Use photoelectric effect to convert photons (g) to photoelectrons (pe) Standard requirements: High sensitivity, usually expressed as: quantum efficiency: QE(%) radiant sensitivity S(mA/W): Low intrinsic noise Low gain fluctuations High active area N pe N g QE(%) 124 S( ma/ W ) l( nm)

22 Photon detectors Photon detectors Main types of photon detectors: gas-based vacuum-based solid-state hybrid Photoemission threshold W ph of various materials TEA TMAE,CsI Ultra Violet (UV) Visible Bialkali Infra Red (IR) Multialkali GaAs E [ev] l [nm]

23 The photoelectric effect 3-step process: absorbed g s impart energy to electrons (e) in the material; energized e s diffuse through the material, losing part of their energy; e s reaching the surface with sufficient excess energy escape from it; ideal photo-cathode (PC) must absorb all g s and emit all created e s Semi-transparent PC Opaque PC Optical window g e - Vacuum e - g Substrate

24 Energy-band model in semi-conductor PC Standard model NEA material e - Photoemission threshold W ph Negative electron affinity E A g energy E g h Band gap E G (Photonis) Electron affinity E A E g h W ph E G E A Wph E G

25 QE s of typical photo-cathodes Photon energy E g (ev) GaAsP GaAs Ag-O-Cs CsTe (solar blind) Bialkali Multialkali (Hamamatsu) Bialkali: SbKCs, SbRbCs Multialkali: SbNa 2 KCs (alkali metals have low work function)

26 Transmission of optical windows

27 Scintillator-Photomultiplier system (in-)organic material scintillation light light guide transmission scint. to tube photomultiplier signal amplification

28 Photomultiplier tubes (PMTs) Basic principle: Photo-emission from photocathode Secondary emission (SE) from N Dynodes: dynode gain g 3 50 (function of incoming electron energy E) total gain M: Example: 10 dynodes with g = 4 M = M N i 1 g i

29 Secondary Electron Emission Approximately the same as the Photo Electric Effect. On electron impact, energy is transferred directly to the electrons in the secondary electron emission material allowing a number of secondary electrons to escape. Since the conducting electrons in metals hinder this escape, insulators and semiconductors are used. Materials in common use are: Ag/Mg, Cu/Be and Cs/Sb. Use has also been made of negative affinity materials as dynodes, in particular GaP.

30 SE coefficient d Counts Counts SE coefficient d Gain fluctuation of PMT s Mainly determined by the fluctuations of the number m(d) of secondary e s emitted from the dynodes; GaP(Cs) NEA dynodes E A <0 Poisson distribution: P ( m) d m d e m! d Standard deviation: d 1 m d d d fluctuations dominated by 1 st dynode gain; CuBe dynodes E A >0 (Photonis) E energy 1 pe 2 pe 1 pe 3 pe (H. Houtermanns, NIM 112 (1973) 121) (Photonis) Noise (Photonis) Pulse height E energy Pulse height

31 Dynode configurations of PMT s Traditional Position-sensitive Mesh Metall-channel (fine-machining techniques) PMT s are in general very sensitive to magnetic fields, even to earth field (30-60 µt). Magnetic shielding required.

32 The Micro Channel Plate (MCP) (Hamamatsu) Continuous dynode chain Pb-glass Pore : 2 mm Pitch: 3 mm Kind of 2D PMT: + high gain up to ; + fast signal (transit time spread ~50 ps); + less sensitive to B-field (0.1 T); - limited lifetime (0.5 C/cm 2 ); - limited rate capability (ma/cm 2 ); (Burle Industries)

33 Hybrid Photo Detector Photo Multiplier Tube - dynodes and anode + Silicon Sensor = HPD n + p + n photocathode Hybrid Photo Diode focusing electrodes electron V [Kinetic energy of the impinging electron] [work to overcome the surface] Electron-hole pairs = [Silicon ionization energy] ~ electron-hole pairs Good energy resolution silicon sensor

34 But Electronic noise, typically of the order of 500 e Back scattering of electrons from Si surface: 20% of the electrons deposit only a fraction o <1 of their initial energy in the Si sensor. continuous background (low energy side) Hybrid Photo Detector 3 parameters: - - <n pe > - Si Si 0.18 back scattering probability at E 20 kv C. D Ambrosio et al. NIM A 338 (1994) p. 396.

35 Solid-state photon detectors Photodiodes: P(I)N type p layer very thin (< 1 µm), as visible light is rapidly absorbed by silicon High QE(80% at 700 nm) No gain: cannot be used for single photon detection Avalanche phtodiode: High reverse bias voltage: typ V due to doping profile, high internal field and avalanche multiplication High gain: typ

36 Light absorption in Silicon

37 Special photo diodes APD SPAD Avalanche PhotoDiode Bias: slightly below breakdown Linear-mode: it s an amplifier Gain: limited < 1000 Single-Photon Avalanche Diode Bias: well above breakdown Geiger-mode trigger device Gain huge Passive quenching by serial resistor at output (simple but slow ~ 200 ns) Active quenching via additional CMOS circuitry faster

38 APD/SPAD quantum efficiency

39 Triggering device Scintillation is fast perfect for triggering on particle beam e.g. finger counters, veto panels, etc. often used in test beams

40

41 Calorimeters

42 Calorimeter Types Homogeneous calorimeters: detector = absorber good energy resolution limited spatial resolution (particularly in longitudinal direction) only used for electromagnetic calorimetry Sampling calorimeters: detectors and absorber separated only part of the energy is sampled. limited energy resolution good spatial resolution used both for electromagnetic and hadron calorimetry

43 Homogeneous calorimeters Two main types: Scintillators (crystals) Scintillator Density [g/cm 3 ] Cherenkov radiators X 0 [cm] Light Yield g/mev (rel. yield) 1 [ns] l 1 [nm] Rad. Dam. [Gy] Comments NaI (Tl) hydroscopic, fragile CsI (Tl) (0.49) Slightly hygroscopic CSI pure Slightly (0.04) hygroscopic BaF (0.13) BGO PbW light yield =f(t) Material Scintillator crystals or glass blocks (Cherenkov radiation). photons. Readout via photomultiplier, -diode/triode Density [g/cm 3 ] X 0 [cm] n Light yield [p.e./gev] (rel. p.e.) SF-5 Lead glass SF Lead glass PbF l cut [nm] Rad. Dam. [Gy] Comments 10 3 Not available in quantity

44 Example ECAL - homogeneous OPAL Barrel + end-cap: lead glass + pre-sampler Principle of pre-sampler or preshower detector blocks (10 x 10 x 37 cm 3, 24.6 X 0 ), PM (barrel) or PT (end-cap) readout. ( E) E 0.06 E Spatial resolution (intrinsic) 11 mm at 6 GeV Sample first part of shower with high granularity. Useful for g/ 0, e/g, e/ discrimination. Usually gas or, more recently, Si detectors

45 Sampling calorimeters Sampling calorimeters = absorber + detector MWPC, streamer tubes warm liquids (TMP = tetramethylpentane, TMS=tetramethylsilane cryogenic noble gases: mainly LAr scintillators, scintillating fibres, silicon detectors Shashlik readout

46 Energy resolution of a calorimeter T E E 0 Ntotal C T det E E 0 X 0 C F( ) T ( E) ( T E T det E E ) cut C det 1 1 total number of track segments total track length T det detectable track length (above energy E cut ) E 0 holds also for hadron calrimeters More general: ( E) E a E b c E Also spatial and angular resolution scale like 1/ E stochastic term (see above) constant term inhomogenities bad cell inter-calibration non-linearities Quality factor! noise term electronic noise radioactivity pile up

47 Sampling calorimeters Sampling fluctuations N T d det F( ) E E c X d 0 detectors absorbers ( E) E N N 1 F( ) Ec E d X 0 Pathlength fluct. + Landau fluct. wide spread angular distribution of (low energy) e In thin gas detector layers the deposited energy shows typical Landau tails d

48 Hadronic cascades A hadron calorimeter shows in general different efficiencies for the detection of the hadronic and electromagnetic components h and e : R E E h h h The fraction of the energy deposited hadronically depends on the energy response of calorimeter to hadron shower becomes nonlinear e e

49 Hadronic cascades How to achieve compensation? increase h : use Uranium absorber amplify neutron and soft photon component by fission + use of hydrogeneous detector high neutron detection efficiency decrease e : combine high Z absorber with low Z detectors. Suppressed low energy photon detection ( Z 5 ) offline compensation: requires detailed fine segmented shower data event by event correction.

50 Example ECAL - sampling ATLAS electromagnetic Calorimeter Accordion geometry absorbers immersed in Liquid Argon Liquid Argon (90K) + lead-steal absorbers (1-2 mm) + multilayer copper-polyimide readout boards Ionization chamber. 1 GeV E-deposit 5 x10 6 e - Accordion geometry minimizes dead zones. Liquid Ar is intrinsically radiation hard. Readout board allows fine segmentation (azimuth, pseudorapidity and longitudinal) acc. to physics needs Test beam results:

51 Example HCAL sampling CMS Hadron calorimter Cu absorber + scintillators 2 x 18 wedges (barrel) + 2 x 18 wedges (endcap) 1500 T absorber Scintillators fill slots and are read out via fibres by HPDs Test beam resolution for single hadrons E E 65% 5% E

Inorganic scintillators. Geometries and readout

Inorganic scintillators. Geometries and readout Topics of this lecture K K Inorganic scintillators Organic scintillators K Geometries and readout K Fiber tracking K Photo detectors Particle Detectors Christian Joram III/1 Scintillation Scintillation

More information

Lecture 16 Light transmission and optical detectors

Lecture 16 Light transmission and optical detectors Lecture 6 Light transmission and optical detectors Charged particle traversing through a material can generate signal in form of light via electromagnetic interactions with orbital electrons of the atoms

More information

Seminar talks. Overall description of CLAS12 (Jefferson Lab) MAPS. Talks on Feb. 6 th, (Contact JR) (Contact TS)

Seminar talks. Overall description of CLAS12 (Jefferson Lab) MAPS. Talks on Feb. 6 th, (Contact JR) (Contact TS) Seminar talks Overall description of CLAS12 (Jefferson Lab) (Contact JR) MAPS (Contact TS) Talks on Feb. 6 th, 2015 Review old ionization detectors: Emulsion, Cloud chambers, Ionization chambers, Spark

More information

Particle Detectors A brief introduction with emphasis on high energy physics applications

Particle Detectors A brief introduction with emphasis on high energy physics applications Particle Detectors A brief introduction with emphasis on high energy physics applications TRIUMF Summer Institute 2006 July 10-21 2006 Lecture I measurement of ionization and position Lecture II scintillation

More information

General Information. Individual Study Projects. Muon Lifetime Experiment. Today s Agenda. Wednesday: We have a few more slots to fill

General Information. Individual Study Projects. Muon Lifetime Experiment. Today s Agenda. Wednesday: We have a few more slots to fill General Information Individual Study Projects We have a few more slots to fill Muon Lifetime Experiment We can use the experiment until April 18 Monday, April 8 we will go over the setup and take a look

More information

Chapter 4 Scintillation Detectors

Chapter 4 Scintillation Detectors Med Phys 4RA3, 4RB3/6R03 Radioisotopes and Radiation Methodology 4-1 4.1. Basic principle of the scintillator Chapter 4 Scintillation Detectors Scintillator Light sensor Ionizing radiation Light (visible,

More information

Scintillation Detectors Particle Detection via Luminescence. Kolanoski, Wermes

Scintillation Detectors Particle Detection via Luminescence. Kolanoski, Wermes Scintillation Detectors Particle Detection via Luminescence Kolanoski, Wermes Scintillators General Characteristics Principle: de/dx converted into visible light Detection via photosensor [e.g. photomultiplier,

More information

Calorimetry I Electromagnetic Calorimeters

Calorimetry I Electromagnetic Calorimeters Calorimetry I Electromagnetic Calorimeters Introduction Calorimeter: Detector for energy measurement via total absorption of particles... Also: most calorimeters are position sensitive to measure energy

More information

PHYS 3446 Lecture #12

PHYS 3446 Lecture #12 PHYS 3446 Lecture #12 Wednesday, Oct. 18, 2006 Dr. 1. Particle Detection Ionization Detectors MWPC Scintillation Counters Time of Flight 1 Announcements Next LPCC Workshop Preparation work Each group to

More information

Scintillators General Characteristics

Scintillators General Characteristics Scintillators General Characteristics Principle: de/dx converted into visible light Detection via photosensor [e.g. photomultiplier, human eye ] Main Features: Sensitivity to energy Fast time response

More information

Scintillation Detectors Particle Detection via Luminescence

Scintillation Detectors Particle Detection via Luminescence Scintillation Detectors Particle Detection via Luminescence Scintillators General Characteristics Principle: de/dx converted into visible light Detection via photosensor [e.g. photomultiplier, human eye...]

More information

Scintillation Detectors

Scintillation Detectors Scintillation Detectors J.L. Tain Jose.Luis.Tain@ific.uv.es http://ific.uv.es/gamma/ Instituto de Física Corpuscular C.S.I.C - Univ. Valencia Scintillation detector: SCINTILLATION MATERIAL LIGHT-GUIDE

More information

SCINTILLATION DETECTORS AND PM TUBES

SCINTILLATION DETECTORS AND PM TUBES SCINTILLATION DETECTORS AND PM TUBES General Characteristics Introduction Luminescence Light emission without heat generation Scintillation Luminescence by radiation Scintillation detector Radiation detector

More information

Scintillators Definitions - 1!

Scintillators Definitions - 1! Scintillators! Scintillators Definitions - 1! Luminescence: Emission of photons (visible light, UV, X ray) after absorption of energy. Energy depostion in the material by! Light Photoluminescence! Heat

More information

Platinum resistance. also wirewound versions. eg

Platinum resistance. also wirewound versions. eg Platinum resistance Platinum resistance Very stable and reproducible, wide T range (~ -200 C to 1000 C) T coefficient ~ +0.4%/ C Bulky and expensive for some applications (~ 2-3) need wires (R) or local

More information

Experimental Particle Physics

Experimental Particle Physics Experimental Particle Physics Particle Interactions and Detectors Lecture 2 2nd May 2014 Fergus Wilson, RAL 1/31 How do we detect particles? Particle Types Charged (e - /K - /π - ) Photons (γ) Electromagnetic

More information

Part III. Interaction of Photons with Matter. Photon Absorption Length λ. Intensity Attenuation. Three effects are important: Scintillators

Part III. Interaction of Photons with Matter. Photon Absorption Length λ. Intensity Attenuation. Three effects are important: Scintillators Part III Interaction of Photons with Matter Scintillators Photodetectors Cherenkov detectors Transition radiation detectors Calorimeters - shower development - electromagnetic calorimeters - hadronic calorimeters

More information

Energy Loss of Electrons. Detectors for Particle Physics Part III. Intensity Attenuation. Interaction of Photons with Matter

Energy Loss of Electrons. Detectors for Particle Physics Part III. Intensity Attenuation. Interaction of Photons with Matter Detectors for Particle Physics Part III Interaction of electrons, photons and hadrons with matter Scintillators Photodetectors Cherenov Counters Transition radiation nergy Loss of lectrons In addition

More information

Particle Energy Loss in Matter

Particle Energy Loss in Matter Particle Energy Loss in Matter Charged particles loose energy when passing through material via atomic excitation and ionization These are protons, pions, muons, The energy loss can be described for moderately

More information

Experimental Particle Physics

Experimental Particle Physics Experimental Particle Physics Particle Interactions and Detectors Lecture 2 17th February 2010 Fergus Wilson, RAL 1/31 How do we detect particles? Particle Types Charged (e - /K - /π - ) Photons (γ) Electromagnetic

More information

EEE4106Z Radiation Interactions & Detection

EEE4106Z Radiation Interactions & Detection EEE4106Z Radiation Interactions & Detection 2. Radiation Detection Dr. Steve Peterson 5.14 RW James Department of Physics University of Cape Town steve.peterson@uct.ac.za May 06, 2015 EEE4106Z :: Radiation

More information

Radionuclide Imaging MII Detection of Nuclear Emission

Radionuclide Imaging MII Detection of Nuclear Emission Radionuclide Imaging MII 3073 Detection of Nuclear Emission Nuclear radiation detectors Detectors that are commonly used in nuclear medicine: 1. Gas-filled detectors 2. Scintillation detectors 3. Semiconductor

More information

Electronic bubble chamber

Electronic bubble chamber Topics of this lecture Inorganic scintillators Organic scintillators Geometries and readout Photo detectors Fiber tracking Nuclear emulsions Electronic bubble chamber III/1 Scintillation Scintillation

More information

Particle Energy Loss in Matter

Particle Energy Loss in Matter Particle Energy Loss in Matter Charged particles, except electrons, loose energy when passing through material via atomic excitation and ionization These are protons, pions, muons, The energy loss can

More information

Experimental Particle Physics

Experimental Particle Physics Experimental Particle Physics Particle Interactions and Detectors 20th February 2007 Fergus Wilson, RAL 1 How do we detect Particles? Particle Types Charged (e - /K - /π - ) Photons (γ) Electromagnetic

More information

PHOTODETECTORS AND SILICON PHOTO MULTIPLIER

PHOTODETECTORS AND SILICON PHOTO MULTIPLIER ESE seminar Photodetectors - Sipm, P. Jarron - F. Powolny 1 PHOTODETECTORS AND SILICON PHOTO MULTIPLIER ESE seminar Pierre Jarron, Francois Powolny OUTLINE 2 Brief history and overview of photodetectors

More information

Last Lecture 1) Silicon tracking detectors 2) Reconstructing track momenta

Last Lecture 1) Silicon tracking detectors 2) Reconstructing track momenta Last Lecture 1) Silicon tracking detectors 2) Reconstructing track momenta Today s Lecture: 1) Electromagnetic and hadronic showers 2) Calorimeter design Absorber Incident particle Detector Reconstructing

More information

Energetic particles and their detection in situ (particle detectors) Part II. George Gloeckler

Energetic particles and their detection in situ (particle detectors) Part II. George Gloeckler Energetic particles and their detection in situ (particle detectors) Part II George Gloeckler University of Michigan, Ann Arbor, MI University of Maryland, College Park, MD Simple particle detectors Gas-filled

More information

Scintillation Detectors

Scintillation Detectors Radiation Measurement Systems Scintillation Detectors Ho Kyung Kim Pusan National University Scintillation detector = scintillator + light sensor Scintillators Inorganic alkali halide crystals Best light

More information

Calorimetry in. in Nuclear and Particle Physics Experiments

Calorimetry in. in Nuclear and Particle Physics Experiments 1 Calorimetry in in Nuclear and Particle Physics Experiments QuickTime and a TIFF (Uncompressed) decompressor are needed to see this picture. Outline 2 Electromagnetic showers Hadronic showers Electromagnetic

More information

Radiation Detectors. How do we detect ionizing radiation? What are these effects? Types of Ionizing Radiation Detectors

Radiation Detectors. How do we detect ionizing radiation? What are these effects? Types of Ionizing Radiation Detectors Radiation Detectors 1 How do we detect ionizing radiation? Indirectly, by its effects as it traverses matter? What are these effects? Ionization and excitation of the atoms and molecules Heat 2 Types of

More information

Energy Loss of Electrons. Detectors for Particle Physics Part III. Intensity Attenuation. Interaction of Photons with Matter

Energy Loss of Electrons. Detectors for Particle Physics Part III. Intensity Attenuation. Interaction of Photons with Matter Detectors for Particle Physics Part III Interaction of electrons, photons and hadrons with matter Scintillators Photodetectors Cherenov Counters Transition radiation nergy Loss of lectrons In addition

More information

Interaction of particles in matter

Interaction of particles in matter Interaction of particles in matter Particle lifetime : N(t) = e -t/ Particles we detect ( > 10-10 s, c > 0.03m) Charged particles e ± (stable m=0.511 MeV) μ ± (c = 659m m=0.102 GeV) ± (c = 7.8m m=0.139

More information

Calorimeter for detection of the high-energy photons

Calorimeter for detection of the high-energy photons Calorimeter for detection of the high-energy photons 26.06.2012 1 1. Introduction 2 1. Introduction 2. Theory of Electromagnetic Showers 3. Types of Calorimeters 4. Function Principle of Liquid Noble Gas

More information

Upgrade of the CMS Forward Calorimetry

Upgrade of the CMS Forward Calorimetry Upgrade of the CMS Forward Calorimetry Riccardo Paramatti Cern & INFN Roma IPMLHC2013 Tehran 9 th October Credits to Francesca Cavallari and Pawel de Barbaro Outline Radiation damage at HL-LHC ECAL and

More information

Gamma and X-Ray Detection

Gamma and X-Ray Detection Gamma and X-Ray Detection DETECTOR OVERVIEW The kinds of detectors commonly used can be categorized as: a. Gas-filled Detectors b. Scintillation Detectors c. Semiconductor Detectors The choice of a particular

More information

DETECTORS. I. Charged Particle Detectors

DETECTORS. I. Charged Particle Detectors DETECTORS I. Charged Particle Detectors A. Scintillators B. Gas Detectors 1. Ionization Chambers 2. Proportional Counters 3. Avalanche detectors 4. Geiger-Muller counters 5. Spark detectors C. Solid State

More information

05 - Scintillation detectors

05 - Scintillation detectors 05 - Scintillation detectors Jaroslav Adam Czech Technical University in Prague Version 2 Jaroslav Adam (CTU, Prague) DPD_05, Scintillation detectors Version 2 1 / 39 Scintillation detector principles

More information

Contents. Charged Particles. Coulomb Interactions Elastic Scattering. Coulomb Interactions - Inelastic Scattering. Bremsstrahlung

Contents. Charged Particles. Coulomb Interactions Elastic Scattering. Coulomb Interactions - Inelastic Scattering. Bremsstrahlung Contents Marcel MiGLiERiNi Nuclear Medicine, Radiology and Their Metrological Aspects. Radiation in Medicine. Dosimetry 4. Diagnostics & Therapy 5. Accelerators in Medicine 6. Therapy Planning 7. Nuclear

More information

EE 5344 Introduction to MEMS CHAPTER 5 Radiation Sensors

EE 5344 Introduction to MEMS CHAPTER 5 Radiation Sensors EE 5344 Introduction to MEMS CHAPTER 5 Radiation Sensors 5. Radiation Microsensors Radiation µ-sensors convert incident radiant signals into standard electrical out put signals. Radiant Signals Classification

More information

Particle Detectors Tools of High Energy and Nuclear Physics Detection of Individual Elementary Particles

Particle Detectors Tools of High Energy and Nuclear Physics Detection of Individual Elementary Particles Particle Detectors Tools of High Energy and Nuclear Physics Detection of Individual Elementary Particles Howard Fenker Jefferson Lab May 31, 2006 Outline of Talk Interactions of Particles with Matter Atomic

More information

hν' Φ e - Gamma spectroscopy - Prelab questions 1. What characteristics distinguish x-rays from gamma rays? Is either more intrinsically dangerous?

hν' Φ e - Gamma spectroscopy - Prelab questions 1. What characteristics distinguish x-rays from gamma rays? Is either more intrinsically dangerous? Gamma spectroscopy - Prelab questions 1. What characteristics distinguish x-rays from gamma rays? Is either more intrinsically dangerous? 2. Briefly discuss dead time in a detector. What factors are important

More information

Dual readout with tiles for calorimetry.

Dual readout with tiles for calorimetry. Dual readout with tiles for calorimetry. F.Lacava on behalf of the RD52 / DREAM Collaboration Cagliari Cosenza Iowa State Pavia Pisa Roma 1 Texas Tech. 13th Topical Seminar on Innovative Particle and Radiation

More information

Detector technology. Aim of this talk. Principle of a radiation detector. Interactions of gamma photons (gas) Gas-filled detectors: examples

Detector technology. Aim of this talk. Principle of a radiation detector. Interactions of gamma photons (gas) Gas-filled detectors: examples Aim of this tal Detector technology WMIC Educational Program Nuclear Imaging World Molecular Imaging Congress, Dublin, Ireland, Sep 5-8, 202 You can now the name of a bird in all the languages of the world,

More information

Chapter 6: Basic radiation detectors

Chapter 6: Basic radiation detectors Chapter 6: Basic radiation detectors Set of 60 slides based on the chapter authored by C.W.E. VAN EIJK Faculty of Applied Sciences, Delft University of Technology, Delft, Netherlands of the publication

More information

Photons: Interactions

Photons: Interactions Photons: Interactions Photons appear in detector systems as primary photons, created in Bremsstrahlung and de-excitations Photons are also used for medical applications, both imaging and radiation treatment.

More information

Radiation Detector 2016/17 (SPA6309)

Radiation Detector 2016/17 (SPA6309) Radiation Detector 2016/17 (SPA6309) Semiconductor detectors (Leo, Chapter 10) 2017 Teppei Katori Semiconductor detectors are used in many situations, mostly for some kind of high precision measurement.

More information

Scintillators. Detectors for Particle Physics Thomas Bergauer Institute of High Energy Physics, Vienna, Austria

Scintillators. Detectors for Particle Physics Thomas Bergauer Institute of High Energy Physics, Vienna, Austria Scintillators Detectors for Particle Physics Thomas Bergauer Institute of High Energy Physics, Vienna, Austria 5 Scintillators Content 5.1 General Introduction 5.2 Inorganic Scintillators 5.2.1 Inorganic

More information

Single Photon detectors

Single Photon detectors Single Photon detectors Outline Motivation for single photon detection Semiconductor; general knowledge and important background Photon detectors: internal and external photoeffect Properties of semiconductor

More information

Chemical Engineering 412

Chemical Engineering 412 Chemical Engineering 412 Introductory Nuclear Engineering Lecture 26 Radiation Detection & Measurement II Spiritual Thought 2 I would not hold the position in the Church I hold today had I not followed

More information

Introduction to Radiation Monitoring

Introduction to Radiation Monitoring Introduction to Radiation Monitoring Iain Darby Honorary Research Fellow, University of Glasgow iain.darby@glasgow.ac.uk https://at.linkedin.com/in/idarby https://www.facebook.com/iain.darby.662 Outline

More information

Inorganic Scintillators

Inorganic Scintillators Inorganic Scintillators Inorganic scintillators are inorganic materials (usually crystals) that emit light in response to ionizing radiation NaI is the protypical example Scintillation mechanism is different

More information

Radiation Detection and Measurement

Radiation Detection and Measurement Radiation Detection and Measurement June 2008 Tom Lewellen Tkldog@u.washington.edu Types of radiation relevant to Nuclear Medicine Particle Symbol Mass (MeV/c 2 ) Charge Electron e-,! - 0.511-1 Positron

More information

Radiation Dose, Biology & Risk

Radiation Dose, Biology & Risk ENGG 167 MEDICAL IMAGING Lecture 2: Sept. 27 Radiation Dosimetry & Risk References: The Essential Physics of Medical Imaging, Bushberg et al, 2 nd ed. Radiation Detection and Measurement, Knoll, 2 nd Ed.

More information

A gas-filled calorimeter for high intensity beam environments

A gas-filled calorimeter for high intensity beam environments Available online at www.sciencedirect.com Physics Procedia 37 (212 ) 364 371 TIPP 211 - Technology and Instrumentation in Particle Physics 211 A gas-filled calorimeter for high intensity beam environments

More information

Radiation (Particle) Detection and Measurement

Radiation (Particle) Detection and Measurement Radiation (Particle) Detection and Measurement Radiation detection implies that the radiation interacts (e.g. leaves at least part of its energy) in the material. A specific material is chosen, because

More information

Scintillation Detectors

Scintillation Detectors Scintillation Detectors Introduction Components Scintillator Light Guides Photomultiplier Tubes Formalism/Electronics Timing Resolution Elton Smith JLab 2006 Detector/Computer Summer Lecture Series Experiment

More information

Factors Affecting Detector Performance Goals and Alternative Photo-detectors

Factors Affecting Detector Performance Goals and Alternative Photo-detectors XENON Experiment - SAGENAP Factors Affecting Detector Performance Goals and Alternative Photo-detectors Department of Physics Brown University Source at http://gaitskell.brown.edu Gaitskell Review WIMP

More information

Lecture # 3. Muhammad Irfan Asghar National Centre for Physics. First School on LHC physics

Lecture # 3. Muhammad Irfan Asghar National Centre for Physics. First School on LHC physics Lecture # 3 Muhammad Irfan Asghar National Centre for Physics Introduction Gaseous detectors Greater mobility of electrons Obvious medium Charged particles detection Particle information easily transformed

More information

ATLAS Hadronic Calorimeters 101

ATLAS Hadronic Calorimeters 101 ATLAS Hadronic Calorimeters 101 Hadronic showers ATLAS Hadronic Calorimeters Tile Calorimeter Hadronic Endcap Calorimeter Forward Calorimeter Noise and Dead Material First ATLAS Physics Meeting of the

More information

Quality Assurance. Purity control. Polycrystalline Ingots

Quality Assurance. Purity control. Polycrystalline Ingots Quality Assurance Purity control Polycrystalline Ingots 1 Gamma Spectrometry Nuclide Identification Detection of Impurity Traces 1.1 Nuclides Notation: Atomic Mass Atomic Number Element Neutron Atomic

More information

Scintillation detectors

Scintillation detectors 25 de dx Scintillation detectors excitation L25.pdf P627 YK 3/14/2012 detectable photons also by UV, or molecular collisions, chem. reactions, bubbles. etc. Detector building requirements (sometimes controversial):

More information

Time-of-Flight PET using Cherenkov Photons Produced in PbF 2

Time-of-Flight PET using Cherenkov Photons Produced in PbF 2 Photons Produced in PbF 2 R. Dolenec a, S. Korpar b,a, P. Križan c,a, R. Pestotnik a, A. Stanovnik d,a a, Ljubljana, Slovenia b Faculty of Chemistry and Chemical Engineering, University of Maribor, Slovenia

More information

Hadronic Calorimetry

Hadronic Calorimetry Hadronic Calorimetry Urs Langenegger (Paul Scherrer Institute) Fall 2015 ALEPH Hadronic showers Compensation Neutron detection Hadronic showers simulations 50 GeV proton into segmented iron (simulation)

More information

Detectors in Nuclear and High Energy Physics. RHIG summer student meeting June 2014

Detectors in Nuclear and High Energy Physics. RHIG summer student meeting June 2014 Detectors in Nuclear and High Energy Physics RHIG summer student meeting June 2014 Physics or Knowledge of Nature Experimental Data Analysis Theory ( application) Experimental Data Initial Conditions /

More information

Week 6: Ch. 8 Scintillation Counters

Week 6: Ch. 8 Scintillation Counters Week 6: Ch. 8 cintillation Counters Proportional Counters Principles of cintillation Counters -- organic materials --- light production -- inorganic materials --- light production -- light output, collection

More information

Nuclear Physics Laboratory. Gamma spectroscopy with scintillation detectors. M. Makek Faculty of Science Department of Physics

Nuclear Physics Laboratory. Gamma spectroscopy with scintillation detectors. M. Makek Faculty of Science Department of Physics Nuclear Physics Laboratory Gamma spectroscopy with scintillation detectors M. Makek Faculty of Science Department of Physics Zagreb, 2015 1 1 Introduction The goal of this excercise is to familiarize with

More information

Radioactivity. Lecture 6 Detectors and Instrumentation

Radioactivity. Lecture 6 Detectors and Instrumentation Radioactivity Lecture 6 Detectors and Instrumentation The human organs Neither humans nor animals have an organ for detecting radiation from radioactive decay! We can not hear it, smell it, feel it or

More information

PoS(TIPP2014)033. Upgrade of MEG Liquid Xenon Calorimeter. Ryu SAWADA. ICEPP, the University of Tokyo

PoS(TIPP2014)033. Upgrade of MEG Liquid Xenon Calorimeter. Ryu SAWADA. ICEPP, the University of Tokyo ICEPP, the University of Tokyo E-mail: sawada@icepp.s.u-tokyo.ac.jp The MEG experiment yielded the most stringent upper limit on the branching ratio of the flavorviolating muon decay µ + e + γ. A major

More information

Chemistry Instrumental Analysis Lecture 19 Chapter 12. Chem 4631

Chemistry Instrumental Analysis Lecture 19 Chapter 12. Chem 4631 Chemistry 4631 Instrumental Analysis Lecture 19 Chapter 12 There are three major techniques used for elemental analysis: Optical spectrometry Mass spectrometry X-ray spectrometry X-ray Techniques include:

More information

Scintillation Detectors

Scintillation Detectors Scintillation Detectors Introduction Components Scintillator Light Guides Photomultiplier Tubes Formalism/Electronics Timing Resolution Elton Smith JLab 2009 Detecto Summer Lecture Series Experiment basics

More information

Particle Detectors. History of Instrumentation History of Particle Physics. The Real World of Particles. Interaction of Particles with Matter

Particle Detectors. History of Instrumentation History of Particle Physics. The Real World of Particles. Interaction of Particles with Matter Particle Detectors History of Instrumentation History of Particle Physics The Real World of Particles Interaction of Particles with Matter Tracking with Gas and Solid State Detectors Calorimetry, Particle

More information

IEEE TRANSACTIONS ON NUCLEAR SCIENCE, VOL. 55, NO. 4, AUGUST /$ IEEE

IEEE TRANSACTIONS ON NUCLEAR SCIENCE, VOL. 55, NO. 4, AUGUST /$ IEEE IEEE TRANSACTIONS ON NUCLEAR SCIENCE, VOL. 55, NO. 4, AUGUST 2008 2425 Optical and Scintillation Properties of Inorganic Scintillators in High Energy Physics Rihua Mao, Member, IEEE, Liyuan Zhang, Member,

More information

Photon Instrumentation. First Mexican Particle Accelerator School Guanajuato Oct 6, 2011

Photon Instrumentation. First Mexican Particle Accelerator School Guanajuato Oct 6, 2011 Photon Instrumentation First Mexican Particle Accelerator School Guanajuato Oct 6, 2011 Outline The Electromagnetic Spectrum Photon Detection Interaction of Photons with Matter Photoelectric Effect Compton

More information

III. Energy Deposition in the Detector and Spectrum Formation

III. Energy Deposition in the Detector and Spectrum Formation 1 III. Energy Deposition in the Detector and Spectrum Formation a) charged particles Bethe-Bloch formula de 4πq 4 z2 e 2m v = NZ ( ) dx m v ln ln 1 0 2 β β I 0 2 2 2 z, v: atomic number and velocity of

More information

Hadronic Calorimetry

Hadronic Calorimetry Hadronic Calorimetry Urs Langenegger (Paul Scherrer Institute) Fall 2014 ALEPH hadronic showers compensation detector effects neutron detection Hadronic showers simulations 50 GeV proton into segmented

More information

The LHC Experiments. TASI Lecture 2 John Conway

The LHC Experiments. TASI Lecture 2 John Conway The LHC Experiments TASI 2006 - Lecture 2 John Conway Outline A. Interactions of Particles With Matter B. Tracking Detectors C. Calorimetry D. CMS and ATLAS Design E. The Mystery of Triggering F. Physics

More information

Unit 2. Instrumentation. Experts Teaching from Practical Experience

Unit 2. Instrumentation. Experts Teaching from Practical Experience Unit 2 Instrumentation Experts Teaching from Practical Experience Gas-Filled Detectors Gas-filled detectors measure the charge released when radiation interacts with the gas Three types: Ion Chambers,

More information

Introduction to scintillators

Introduction to scintillators Introduction to scintillators M. Kobayashi (KEK) 17 November, 2003 1. Luminescence, fluorescence, scintillation, phosphorescence, etc. 2. Scintillation mechanism 3. Scintillation efficiency 4. Main characteristics

More information

7 Particle Identification. Detectors for Particle Physics Manfred Krammer Institute of High Energy Physics, Vienna, Austria

7 Particle Identification. Detectors for Particle Physics Manfred Krammer Institute of High Energy Physics, Vienna, Austria 7 Particle Identification Detectors for Particle Physics Manfred Krammer Institute of High Energy Physics, Vienna, Austria 7.0 Content 7.1 Methods for Particle Identification 7.2 Mass of Charged Particles

More information

Lectures Overview. Particle Detectors Detectors

Lectures Overview. Particle Detectors Detectors Lectures 12 Particle Detectors Dec 2006, Lecture 12 Nuclear Physics Lectures, Dr. Armin Reichold 1 11.1 Detectors For photons only 11.0 Overview Photomultiplier and APD For charged particles and photons

More information

Tests of the BURLE 64-anode MCP PMT as the detector of Cherenkov photons

Tests of the BURLE 64-anode MCP PMT as the detector of Cherenkov photons Tests of the BURLE 64-anode MCP PMT as the detector of Cherenkov photons Peter Križan University of Ljubljana and J. Stefan Institute Contents Motivation and requirements BURLE MCP-PMT Beam test results

More information

Diffractometer. Geometry Optics Detectors

Diffractometer. Geometry Optics Detectors Diffractometer Geometry Optics Detectors Diffractometers Debye Scherrer Camera V.K. Pecharsky and P.Y. Zavalij Fundamentals of Powder Diffraction and Structural Characterization of Materials. Diffractometers

More information

Nuclear Physics and Astrophysics

Nuclear Physics and Astrophysics Nuclear Physics and Astrophysics PHY-30 Dr. E. Rizvi Lecture 4 - Detectors Binding Energy Nuclear mass MN less than sum of nucleon masses Shows nucleus is a bound (lower energy) state for this configuration

More information

Radioactivity and Ionizing Radiation

Radioactivity and Ionizing Radiation Radioactivity and Ionizing Radiation QuarkNet summer workshop June 24-28, 2013 1 Recent History Most natural phenomena can be explained by a small number of simple rules. You can determine what these rules

More information

Case study: The Lead Tungstate Calorimeter for CMS

Case study: The Lead Tungstate Calorimeter for CMS Case study: The Lead Tungstate Calorimeter for CMS (With acknowledgements to CMS colleagues, particularly R M Brown at RAL but all errors and omissions are the responsibility of Peter Hobson at Brunel!)

More information

Scintillation Detector

Scintillation Detector Scintillation Detector Introduction The detection of ionizing radiation by the scintillation light produced in certain materials is one of the oldest techniques on record. In Geiger and Marsden s famous

More information

PHY492: Nuclear & Particle Physics. Lecture 25. Particle Detectors

PHY492: Nuclear & Particle Physics. Lecture 25. Particle Detectors PHY492: Nuclear & Particle Physics Lecture 25 Particle Detectors http://pdg.lbl.gov/2006/reviews/contents_sports.html S(T ) = dt dx nz = ρa 0 Units for energy loss Minimum ionization in thin solids Z/A

More information

Queen s University PHYS 352

Queen s University PHYS 352 Page 1 of 5 Queen s University Faculty of Applied Science; Faculty of Arts and Science Department of Physics, Engineering Physics and Astronomy PHYS 352 Measurement, Instrumentation and Experiment Design

More information

Highlights from the 9 th Pisa Meeting on Advanced Detectors Calorimetry Session

Highlights from the 9 th Pisa Meeting on Advanced Detectors Calorimetry Session Highlights from the 9 th Pisa Meeting on Advanced Detectors Calorimetry Session Riccardo Paramatti University of Rome La Sapienza and INFN Rome Detector Seminar CERN 18/07/2003 9 th Pisa Meeting 2 9 th

More information

Cherenkov Detector. Cosmic Rays Cherenkov Detector. Lodovico Lappetito. CherenkovDetector_ENG - 28/04/2016 Pag. 1

Cherenkov Detector. Cosmic Rays Cherenkov Detector. Lodovico Lappetito. CherenkovDetector_ENG - 28/04/2016 Pag. 1 Cherenkov Detector Cosmic Rays Cherenkov Detector Lodovico Lappetito CherenkovDetector_ENG - 28/04/2016 Pag. 1 Table of Contents Introduction on Cherenkov Effect... 4 Super - Kamiokande... 6 Construction

More information

Lectures Overview Detectors (for photons only, PMT) Particle Detectors Detectors For photons only. End of Lecture 11)

Lectures Overview Detectors (for photons only, PMT) Particle Detectors Detectors For photons only. End of Lecture 11) Lectures 11 Particle Detectors 1 For photons only 11.0 Overview Photomultiplier and APD For charged particles and photons Scintillators Gas-counters Semi-conductors (GeLi, Si) 11.2 Example analysis of

More information

Thin Calorimetry for Cosmic-Ray Studies Outside the Earth s Atmosphere. 1 Introduction

Thin Calorimetry for Cosmic-Ray Studies Outside the Earth s Atmosphere. 1 Introduction Thin Calorimetry for Cosmic-Ray Studies Outside the Earth s Atmosphere Richard WIGMANS Department of Physics, Texas Tech University, Lubbock TX 79409-1051, USA (wigmans@ttu.edu) Abstract Cosmic ray experiments

More information

08 - Miscellaneous and historical detectors

08 - Miscellaneous and historical detectors 08 - Miscellaneous and historical detectors Jaroslav Adam Czech Technical University in Prague Version 2 Jaroslav Adam (CTU, Prague) DPD_08, Miscellaneous and historical detectors Version 2 1 / 25 Streamer

More information

Dual-Readout Calorimetry with a Mo-Doped PbWO4 Electromagnetic Section

Dual-Readout Calorimetry with a Mo-Doped PbWO4 Electromagnetic Section Silvia Franchino, Università and INFN Pavia On behalf of the DREAM collaboration Cagliari- Cosenza - Iowa State - Pavia- Pisa - Roma1 - Texas Tech Dual-Readout Calorimetry with a Mo-Doped PbWO4 Electromagnetic

More information

Calorimetry in particle physics experiments

Calorimetry in particle physics experiments Calorimetry in particle physics experiments Unit N. 9 The NA48 ECAL example (LKR) Roberta Arcidiacono R. Arcidiacono Calorimetry 1 Lecture overview The requirements Detector layout & construction Readout

More information

Study of novel gaseous photomultipliers for UV and visible light

Study of novel gaseous photomultipliers for UV and visible light Study of novel gaseous photomultipliers for UV and visible light Thesis for the degree of Ph. D. in physics presented to the Scientific Council of the Weizmann Institute of Science, Rehovot, Israel by

More information

Performance of the MCP-PMT for the Belle II TOP counter

Performance of the MCP-PMT for the Belle II TOP counter Performance of the MCP-PMT for the Belle II TOP counter a, S. Hirose b, T. Iijima ab, K. Inami b, Y. Kato a, Y. Maeda a, R. Mizuno b, Y. Sato a and K. Suzuki b a Kobayashi-Maskawa Institute, Nagoya University

More information

New Results from the DREAM project

New Results from the DREAM project New Results from the DREAM project Evelin Meoni IFAE Barcelona (UAB) On behalf of the DREAM Collaboration 12th Topical Seminar on Innovative Particle and Radiation Detectors (IPRD10) 7-10 June 2010 Siena,

More information

REVIEW OF CRYSTAL CALORIMETERS

REVIEW OF CRYSTAL CALORIMETERS REVIEW OF CRYSTAL CALORIMETERS V.B.Golubev, Budker Institute of Nuclear Physics, Novosibirsk, Russia Crystal Ball Detector The first large-scale crystal calorimeter in high energy physics was the NaI(Tl)

More information