CRYSTALLIZATION AND PRECIPITATION ENGINEERING

Size: px
Start display at page:

Download "CRYSTALLIZATION AND PRECIPITATION ENGINEERING"

Transcription

1 CRYSTALLIZATION AND PRECIPITATION ENGINEERING Alan Jones, Rudi Zauner and Stelios Rigopoulos Department of Chemical Engineering University College London, UK Acknowledgements to: Mohsen Al-Rashed, Andreas Schreiner and Terry Kougoulos; EPSRC, EU and GSK

2 Outline of talk! Introduction to crystals and crystallization! The ideal well-mixed crystallizer! Prediction of Crystal Size Distribution! Mixing effects in real crystallizers! Precipitation processes! Crystallization processes! Scale up! Scale out! Conclusions

3 Crystallization Processes! Crystallization is a core technology of many sectors in the chemical process and allied industries! Involves a variety of business sectors, e.g. Agrochemicals, catalysts, dyes/pigments, electronics, food/confectionery, health products, nano-materials, nuclear fuel, personal products & pharmaceuticals! Processes can involve complex process chemistry together with non-ideal reactor hydrodynamics Hence can be difficult to understand and scale-up from laboratory to production scale operation! Crystallization also forms part of a wider process system

4 Crystallization Process Systems Water Feed Clean air Recycle Liquor to recycle Liquor to recycle Slurry Liquor to recycle Hot air Convey Screen Mill oversize PRODUCT CRYSTALS Mix, convey, etc. Jones, A.G. Crystallization Process Systems, Butterworth-Heinemann, 2002

5 CRYSTAL CHARACTERISTICS Crystals appear in many:! sizes,! shapes and! forms, Which affect both:! performance during processing, and! quality in application

6 Phase Equilibria Understanding phase equilibria is crucial to crystallizer operation! Undersaturated - crystals will dissolve! Metastable - crystals will grow! Labile - solution will nucleate spontaneously Solubility-supersolubility diagram

7 Supersaturation! Thermodynamically, solute in excess of solubility Supersaturation = µ RT where µ = chemical potential!for practical use c = c c * or S = c / c * where c = concentration of solution c* = saturation concentration Supersaturation, c, is sometimes called the concentration driving force

8 Crystallization Kinetics! Nucleation rate - rate of formation of new crystals dn dt = B = k n c b nuclei/s m 3 where b = 'order of nucleation B = nucleation rate rate of increase of crystal number! Crystal growth rate of increase of crystal dimension dl g = G = k m/s g c dt where g = 'order of growth G = growth rate rate rate of increase in crystal size Corresponding expressions exist for crystal agglomeration and breakage. Thus particle formation processes all depend upon supersaturation

9 The Well-mixed Crystallizer IN OUT Precipitation reactions! Reactants flow into vessel and form a reaction zone! Particles form from reacting species via crystallisation! Process kinetics can be dominated by mixing process! Can get undesired product forms, e.g. solvates from solvent drown out Note: For batch operation: Outflow of product is zero Hydrodynamic ratio (W/D) varies as function of fill during reaction Reactant mixing & hence precipitation kinetics require optimisation

10 Designing for Crystal Size Distribution (CSD)! Key goal: Characterise inter-relationship between reactor residence time process kinetics product CSD! Understand relationship as function of reactor scale size! Design reactors and process operating conditions to yield desired CSD Kinetics Residence Time CSD The Crystallization Triangle

11 Mass balance Conservation Equations! concentration (inlet - outlet) Mass Yield! Only gives crystal yield not how mass distributed in crystal size the CSD! Need crystal number balance population balance Population balance! Accounts for number of crystals formed & their size! Hence CSD & mean particle size can be predicted! Incorporates terms for crystal nucleation, growth, agglomeration & breakage

12 Population Balance Model (PBM)! PBM (Randolph & Larson 1962) provides population of crystals as described by number density function n(l,t) L - crystal size and t -time Represents probability to have crystals with size L at moment t! Numerical solution of PBE produces Crystal Size Distribution (CSD)! G - growth rate n ( ng ) + + t L n n τ! B & D - Birth & Death functions for agglomeration & breakage! B 0 - nucleation rate! τ - residence time (for continuous crystallisation)! Indices a, d & 0 relate to agglomeration, breakage & nucleation o = A partial integro-differential equation solved by numerical methods eg finite element. For non well-mixed systems need to include velocity derivatives in addition to crystal growth rate. B a D a + B d D d + B 0

13 Problems with Reactive Precipitation! Spatial variation in reactant concentration & crystallizer performance thus sensitive to mixing conditions processing scale size! For fast supersaturation rises and large vessel sizes this gives variability in particle formation rates! Scale-dependant fluid mechanics also effect process kinetics through its impact on secondary nucleation! Mixing effects tends to be particularly pronounced for fast precipitation systems (Danckwerts, 1958) Danckwerts, P. V., The effect of incomplete mixing on homogeneous reactions. Chemical Engineering Science., 8,

14 Computational Fluid Dynamics Why use CFD?! To investigate localised mixing effects and fluid hydrodynamics 1. Local velocities 2. Local energy dissipation (ε loc ) 3. Solid volume fraction * 4. Heat transfer and temperature profile *! For the development of crystallizer compartmental modelling framework! To facilitate modelling, scale-up and design * Kougoulos et al., Scale-Up of Organic Crystallization Processes. In AIChE National Meeting, Recent Developments. In Crystallization and Evaporation. San Francisco, CA, USA, November 2003, (New York: AIChE), Paper 310B

15 Agitated Vessel Mixing! Real agitated vessels are not wellmixed except at small volumes and/or high power inputs, which may cause particle disruption! Uniformity of mixing decreases as vessel size increases!numerical solution of the Navier-Stokes Equations

16 Some CFD and Precipitation Studies! Seckler et al Precipitation of calcium phosphate in a 2-D CFD jet mixer! Van Leeuwen et al Zonal CFD model of BaSO 4 precipitation! Wei and Garside 1997 Precipitation of BaSO 4 in stirred tanks! Al-Rashed & Jones 1999 CFD modelling of gas-liquid precipitation! Bezzo et al Integration of CFD and process simulation! Baldyga and Orciuch, 2001 PDF CFD methods! Zauner and Jones 2002 CFD-Segregated Feed Model! Rigopoulos & Jones 2003 CFD-Reaction engineering model

17 Mixing Effects in Gas-liquid Precipitation 1.4E-8 Crystal Mean Size / (m) 1.2E-8 1.0E-8 8.0E-9 6.0E-9 4.0E-9 CFD Penetration Film 2.0E-9 0.0E Ti m e / (s) CFD + PBM simulations in qualitative agreement with experiment but v. slow compartmentalisation Al-Rashed, M.H. and A.G. Jones. "CFD modelling of gas-liquid reactive precipitation". Chem Engng Sci., 54 (1999),

18 Precipitated Calcium Carbonate Crystals Note presence of agglomerates and fines attrition?

19 Mixing Effects: Segregated Feed Model! Villermaux s (1989) Segregated Feed Model (SFM) based on physically meaningful mixing parameters involving diffusive micro-mixing time convective meso-mixing time! SFM particularly suitable for modelling mixing effects, as it combines advantages of both compartmental model physical model

20 Segregated Feed Model (SFM) reaction plume f 1 Q f1 Q f2 u 1,2 reaction plume f 2 u 1,3 u 2,3 SFM divides reactor into three zones: two feed zones f 1 and f 2 bulk b Feed zones exchange mass with each other & with bulk bulk b Process depicted by flow rates u 1,2, u 1,3 and u 2,3 respectively Q b According to time constants characteristic for micro-mixing & meso-mixing

21 Characteristic Mixing Times Meso-mixing bulk blending Micro-mixing molecular diffusion Based on time constants (Baldega et al 1995) t micro ν = 17.3 ε loc 1/ 2 t meso = A ε ε avg loc N Q d s Time constants t micro & t meso can be regarded as inverse coefficients for mass transfer by diffusion & convention, respectively Energy dissipation rate (ε) predictable from CFD

22 Precipitation Process: Scale-up Methodology Hydrodynamic model (CFD) Mixing model (Segregated Feed Model SFM) Large-scale reactor Laboratory-scale experiments Population balance! Carry out laboratory scale measurements (kinetics etc)! Model hydrodynamics via computational fluid dynamics (CFD)! Use population balance model for particle properties (number/csd)! Link two models via segmented feed model (SFM)! Predict precipitation performance as function of scale size

23 Process Scale-up: Semi-batch Precipitation! Note small particle sizes at low energy inputs! Results from local zones with high levels of supersaturation & nucleation L 43 [µm] E Specific power input ε [W/kg] 1 l reactor, exp. 5 l reactor, exp. 25 l reactor, exp. 1 l reactor, model 5 l reactor, model 25 l reactor, model!in contrast at high values of energy input breakage acts as size-reducing process!this leads to smaller particles Calcium Oxalate Precipitation: Particle Size vs Power Input Zauner, Rudolf and Alan G. Jones. "Scale-up of continuous and semi-batch precipitation processes." Ind Engng Chem Res, 39, (2000)

24 Precipitation in Bubble Columns! The formation of a solid product via a gas-liquid reaction! Common applications: inorganic salts (e.g. CaCO 3, CaSO 4 ), fine chemicals! Apart from yield, the Particle Size Distribution (PSD) of the product is very important

25 Conventional Approaches to Bubble Column Modelling and Scale-up! Experimental approach - use of empirical correlations Limited validity of correlations, often lead to contradictory conclusions! Hydrodynamic approach - entirely based on CFD Not yet possible to couple with the non-linear dynamics of fast reactions and crystallisation mechanisms that occur at the gas-liquid interface

26 A Trade-off: Hybrid CFD - Dynamic Reaction Engineering Model C Hydrodynamic scale (mesoscopic) x Interfacial scale (microscopic) Bulk scale (macroscopic)

27 Model Assumptions! Isothermal operation! Only primary processes of particle formation (i.e. no secondary processes that involve particle-particle interactions such as agglomeration)! Dilute suspension, i.e. negligible influence of solids presence on hydrodynamics! Homogeneous bubbly flow, i.e. no bubble coalescence

28 CFD Modelling of Gas-liquid Flow in a Bubble Column! Captures the gross hydrodynamic effects that determine the overall long-timeaverage gas hold-up and liquid circulation! Eulerian-Eulerian twodimensional dynamic model considered adequate for that purpose gas hold-up in riser, % riser, model riser, experiment downcomer, model downcomer, experiment gas flowrate, m 3 /s (x10-4 )! Use of CFX flow solver CFD and experimental gas hold-up Rigopoulos, Stelios and Alan G. Jones. "A hybrid CFD - reaction engineering framework for multiphase reactor modelling: Basic concept and application to bubble column reactors". Chem. Eng. Sci., 58, (2003),

29 Case Study: CaCO3 Precipitation via CO2 Absorption in Ca(OH)2 Solution mol fraction Equilibrium concentrations ph CO3 HCO3 CO2 CO 2 (g) CO 2(aq) CO 2(aq) + OH - HCO - 3 HCO 3- + OH - CO 3= + H 2 O Ca ++ + CO 3= CaCO 3(s) absorption sub-reaction i sub-reaction ii crystal formation

30 Time Course of Concentration Profiles ph concentration (mol/m 3 ) CO2 CO3 HCO time (min) time (min)

31 Evolution of Supersaturation concentration (gmol/m 3 ) CO3= gmol/m3 Ca++ gmol/m3 Supersaturation time (min)

32 Evolution of Nucleation Rate log nucleation rate (nuclei/sec) 1E+15 1E+13 1E+11 1E+09 1E time (min)

33 Experimental Results and Model Predictions E E-06 ph Agglomerate 1.0E E E E-07 Particle size (m) 7 2.0E time (min) 0.0E+00 ph (model) Size (model) ph (exper.) Size (exper.) Reasonable agreement up to the onset of agglomeration

34 SEM Micrographs of Calcium Carbonate Crystal Agglomerates:

35 Effect of Crystal Agglomeration 21 litres Ca(OH) 2 = 3 mol/m 3 ; : m 3 /s CO 2 : N 2

36 Current Work!Compartmental model of batch cooling crystallization at high solids content

37 Batch Cooling Crystallization Pre-processing! CFX-Promixus! Multiple Frames of Reference Simulations! Multi-Fluid Model (MFM)! Modified Drag coefficient (Brucato, 1998)! Monodisperse particle sizes! Standard k-ε turbulence model! Heat transfer (estimated liquid side heat transfer coefficient)

38 Computational Fluid Dynamics at High(er) Solids Content CFD clips of [1] velocity profile development and [2] particle concentration [1] Shows flow dampening [2] Shows solids segregation Illustration based on 5L batch cooling crystallizer operating at 300 rpm 200 µm 5 v/v% (7 % w/w)

39 Compartmental Model Flow (Rushton turbine) [1] [2] [1] Shows overall flow pattern on different horizontal planes [2] Overall flow pattern on vertical scale 45 o angle to baffles

40 Compartmental Model Heat (Rushton turbine) 1. Heat transfer coefficient Nu = hd = C Re a Pr b µ k 2. Simulate linear cooling profile (353K to 293K at -1 o C min -1 ) 3. Cooling zones evident 4. Cooling profile influences temperature gradients c Cooling Zone Uniform Bulk Temperature Cooling Zone Temperature profile after 360s simulation

41 Compartmental Model Slurry (Rushton turbine) Q 6, Q 8,9 Q 9,1 Q 9,2 8 9 Q 1,2 Q 2,3 Q 5,1 Q 5,2 Q 5,6 5 Q 7,8 7 Q 3,9 Q 3,7 Q 4,2 Q 3,4 Q 4,5 4 Network of Zones Green: Bulk Zone Orange: Cooling Zone Blue: Impeller Zone Red: High Solids Content Zone Based on CFD modelling at different crystallizer scales using a Rushton impeller

42 Process Modelling! gproms (Process Systems Enterprise Limited) 1. Dynamic Simulations 2. Compartmental facility available 3. Batch crystallization process can be simulated 4. Optimisation can be carried out 5. Population balance with crystallization kinetics! New technology 1. CFD (Fluent) and gproms interface 2. Simultaneous CFD simulation & modelling in gproms

43 Simulations! Initial boundary conditions 1. Seed distribution 2. Supersaturation 3. Temperature! Define time steps for batch process Theoretical CSD Prediction Experimental CSD! Define parameters, variables & algebraic expressions! Population, mass and energy balances are ODEs Mass distribution (% w/w) Crystal Size, (µm)

44 A better way..? Scale out, rather than up

45 Segmented Flow Tubular Reactor (SFTR). After Lemaître et al. Reagents are mixed and formed into well-mixed mini crystallizer droplets within a segmenting fluid, which are subsequently separated Donnet, M., P. Bowen, N.Jongen, J. Lemaître, H. Hofmann, A. Schreiner, A.G. Jones, R. Schenk, C. Hofmann and S. De Carlo. Successful scale-up from millilitre batch optimisation to a small scale continuous production using the Segmented Flow Tubular Reactor. Example of calcium carbonate precipitation. In Industrial Crystallization, September 2002, Sorrento, Italy. Chemical Engineering Transactions, 3, (2002),

46 Interdigital Micro Mixer. (After Schenck et al. ) Schenk, R., M. Donnet, V. Hessel, H. Hofmann, N. Jongen and H.Löwe, Suitability of various types of micromixers for the forced precipitation of calcium carbonate, In 5th International Conference on Microreaction Technology (IMRET 5), Strasbourg, France May 2001.

47 Predicted Mean Particle Sizes of Calcium Carbonate mean size d 1,0 [µm] m (seeds) = 0 mg / L m (seeds) = 0.1 mg / L m (seeds) = 7.5 mg / L m (seeds) = 10 mg / L initial concentration [mol/l] Schreiner, A. and A. G. Jones. Precipitation in the Segmented Flow Tubular Reactor (SFTR). In Industrial Crystallization, September 2002, Sorrento, Italy. Chemical Engineering Transactions, 3, (2002),

48 Crystals From the SFTR a). Vaterite b). Y-Ba oxalate. (Courtesy

49 Conclusions! New computational techniques for the analysis and design of systems for the manufacture of particulate crystals have become available! The more complex precipitation processes whereby crystallization follows fast chemical reactions have also been analysed more deeply! This progress has been aided by the growing power of the population balance and kinetic models, CFD and mixing theory, respectively! Further progress may reasonably be expected in the development of computer models, software and hardware! Alternative techniques are under development to avoid mixing problems and obtain efficient processes and high quality products

Hybrid CFD-Multizonal Modelling of Polymorphs and Agglomeration Phenomena in Crystallisation Processes

Hybrid CFD-Multizonal Modelling of Polymorphs and Agglomeration Phenomena in Crystallisation Processes Hybrid CFD-Multizonal Modelling of Polymorphs and Agglomeration Phenomena in Crystallisation Processes Sean K. Bermingham 1, Stefania Trivellato 1,2, Maddalena Vernier 1,2, Fabrizio Bezzo 2,* 1 Process

More information

STUDY OF AGGREGATION IN BARIUM SULPHATE PRECIPITATION

STUDY OF AGGREGATION IN BARIUM SULPHATE PRECIPITATION 15 th International Symposium on Industrial Crystallization Sorrento, Italy, 15-18 September 2002 paper 171 STUDY OF AGGREGATION IN BARIUM SULPHATE PRECIPITATION D. L. Marchisio 1, A. A. Barresi, M. Garbero,

More information

GROWTH RATE OF HYDROXYAPATITE CRYSTALS OBTAINED BY PRECIPITATION

GROWTH RATE OF HYDROXYAPATITE CRYSTALS OBTAINED BY PRECIPITATION STUDIA UNIVERSITATIS BABEŞ-BOLYAI, CHEMIA, XLV,, TOM I, 1 Dedicated to the memory of Prof. dr. Ioan Silaghi-Dumitrescu marking 6 years from his birth GROWTH RATE OF HYDROXYAPATITE CRYSTALS OBTAINED BY

More information

Modeling Industrial Crystallizers

Modeling Industrial Crystallizers Modeling Industrial Crystallizers Kumar Dhanasekharan, Ph.D. Fluent Inc., 10 Cavendish Court, Lebanon, NH 03766 Phone: (603) 643-2600 x323; Email: kd@fluent.com One of the main challenges in industrial

More information

BASIC DESIGN EQUATIONS FOR MULTIPHASE REACTORS

BASIC DESIGN EQUATIONS FOR MULTIPHASE REACTORS BASIC DESIGN EQUATIONS FOR MULTIPHASE REACTORS Starting Reference 1. P. A. Ramachandran and R. V. Chaudhari, Three-Phase Catalytic Reactors, Gordon and Breach Publishers, New York, (1983). 2. Nigam, K.D.P.

More information

COMPARTMENTAL MODELLING OF AN INDUSTRIAL BUBBLE COLUMN

COMPARTMENTAL MODELLING OF AN INDUSTRIAL BUBBLE COLUMN COMPARTMENTAL MODELLING OF AN INDUSTRIAL BUBBLE COLUMN Christophe Wylock 1, Aurélie Larcy 1, Thierry Cartage 2, Benoît Haut 1 1 Transfers, Interfaces and Processes (TIPs) Chemical Engineering Unit, Université

More information

Study on residence time distribution of CSTR using CFD

Study on residence time distribution of CSTR using CFD Indian Journal of Chemical Technology Vol. 3, March 16, pp. 114-1 Study on residence time distribution of CSTR using CFD Akhilesh Khapre*, Divya Rajavathsavai & Basudeb Munshi Department of Chemical Engineering,

More information

EXPERIMENTAL INVESTIGATION AND CFD MODELING OF MICROMIXING OF A SINGLE-FEED SEMI-BATCH PRECIPITATION PROCESS IN A LIQUID-LIQUID STIRRED REACTOR

EXPERIMENTAL INVESTIGATION AND CFD MODELING OF MICROMIXING OF A SINGLE-FEED SEMI-BATCH PRECIPITATION PROCESS IN A LIQUID-LIQUID STIRRED REACTOR 14 th European onference on Mixing Warszawa, 10-13 September 2012 EXPERIMENTAL INVESTIGATION AND FD MODELING OF MIROMIXING OF A SINGLE-FEED SEMI-BATH PREIPITATION PROESS IN A LIQUID-LIQUID STIRRED REATOR

More information

School of Chemical Technology Degree Programme of Chemical Technology

School of Chemical Technology Degree Programme of Chemical Technology School of Chemical Technology Degree Programme of Chemical Technology Paolo Ponzo MASS TRANSFER IN THREE-PHASE REACTIVE CRYSTALLIZATION Final project (30 cr) for the degree of Master of Science in Chemical

More information

CFD SIMULATION OF SOLID-LIQUID STIRRED TANKS

CFD SIMULATION OF SOLID-LIQUID STIRRED TANKS CFD SIMULATION OF SOLID-LIQUID STIRRED TANKS Divyamaan Wadnerkar 1, Ranjeet P. Utikar 1, Moses O. Tade 1, Vishnu K. Pareek 1 Department of Chemical Engineering, Curtin University Perth, WA 6102 r.utikar@curtin.edu.au

More information

Flow Generated by Fractal Impeller in Stirred Tank: CFD Simulations

Flow Generated by Fractal Impeller in Stirred Tank: CFD Simulations Flow Generated by Fractal Impeller in Stirred Tank: CFD Simulations Gunwant M. Mule and Amol A. Kulkarni* Chem. Eng. & Proc. Dev. Division, CSIR-National Chemical Laboratory, Pune 411008, INDIA *Corresponding

More information

INVESTIGATIONS OF MASS TRANSFER AND MICROMIXING EFFECTS IN TWO-PHASE LIQUID-LIQUID SYSTEMS WITH CHEMICAL REACTION

INVESTIGATIONS OF MASS TRANSFER AND MICROMIXING EFFECTS IN TWO-PHASE LIQUID-LIQUID SYSTEMS WITH CHEMICAL REACTION 14 th European Conference on Mixing Warszawa, 10-13 September 20 INVESTIGATIONS OF MASS TRANSFER AND MICROMIXING EFFECTS IN TWO-PHASE LIQUID-LIQUID SYSTEMS WITH CHEMICAL REACTION M. Jasińska a, J. Bałdyga

More information

On the Influence of Mixing and Scaling-Up in Semi-Batch Reaction Crystallization. Marika Torbacke

On the Influence of Mixing and Scaling-Up in Semi-Batch Reaction Crystallization. Marika Torbacke On the Influence of Mixing and Scaling-Up in Semi-Batch Reaction Crystallization Marika Torbacke Department of Chemical Engineering and Technology Royal Institute of Technology Stockholm, Sweden 2001 On

More information

1. Starting of a project and entering of basic initial data.

1. Starting of a project and entering of basic initial data. PROGRAM VISIMIX TURBULENT SV. Example 1. Contents. 1. Starting of a project and entering of basic initial data. 1.1. Opening a Project. 1.2. Entering dimensions of the tank. 1.3. Entering baffles. 1.4.

More information

PHEN 612 SPRING 2008 WEEK 12 LAURENT SIMON

PHEN 612 SPRING 2008 WEEK 12 LAURENT SIMON PHEN 612 SPRING 28 WEEK 12 LAURENT SIMON Mixing in Reactors Agitation, Mixing of Fluids and Power requirements Agitation and mixing are two of the most common operations in the processing industries Agitation:

More information

Lecture (9) Reactor Sizing. Figure (1). Information needed to predict what a reactor can do.

Lecture (9) Reactor Sizing. Figure (1). Information needed to predict what a reactor can do. Lecture (9) Reactor Sizing 1.Introduction Chemical kinetics is the study of chemical reaction rates and reaction mechanisms. The study of chemical reaction engineering (CRE) combines the study of chemical

More information

ENGG 199 Reacting Flows Spring Lecture 4 Gas-Liquid Mixing Reactor Selection Agitator Design

ENGG 199 Reacting Flows Spring Lecture 4 Gas-Liquid Mixing Reactor Selection Agitator Design ENGG 199 Reacting Flows Spring 2006 Lecture 4 Gas-Liquid Mixing Reactor Selection gitator Design Copyright 2000,.W. Etchells, R.K.Grenville & R.D. LaRoche ll rights reserved. Background Roughly 25 % of

More information

Floc Strength Scale-Up: A Practical Approach

Floc Strength Scale-Up: A Practical Approach Floc Strength Scale-Up: A Practical Approach Dr Mick Dawson Mr Brian Perkins Process Director mdawson@bhrgroup.co.uk 25 th October 2011 BHR Group 2011 BHR Group is a trading name of VirtualPiE Limited

More information

Reactive Crystallization of Calcium Oxalate: Population Balance Modeling

Reactive Crystallization of Calcium Oxalate: Population Balance Modeling K. Rewatkar et al., Reactive Crystallization of Calcium Oxalate, Chem. Biochem. Eng. Q., 2 (1 11 18 (2018 11 Reactive Crystallization of Calcium Oxalate: Population Balance Modeling K. Rewatkar, D. Z.

More information

Integrated Knowledge Based System for Process Synthesis

Integrated Knowledge Based System for Process Synthesis 17 th European Symposium on Computer Aided Process Engineering ESCAPE17 V. Plesu and P.S. Agachi (Editors) 2007 Elsevier B.V. All rights reserved. 1 Integrated Knowledge Based System for Process Synthesis

More information

MASS TRANSFER EFFICIENCY IN SX MIXERS

MASS TRANSFER EFFICIENCY IN SX MIXERS MASS TRANSFER EFFICIENCY IN SX MIXERS By R. Sheinman, Y. Kootov, L. Braginsy, J. Riordan, M. Vancas Turbulent Technologies Ltd. Israel Tenova Bateman Advanced Technologies Ltd. Israel, Australia ABSTRACT

More information

Data requirements for reactor selection. Professor John H Atherton

Data requirements for reactor selection. Professor John H Atherton Data requirements for reactor selection Professor John H Atherton What is my best option for manufacturing scale? Microreactor Mesoscale tubular reactor Tubular reactor OBR (oscillatory baffled flow reactor)

More information

CFD ANALYSIS OF TURBULENCE EFFECT ON REACTION IN STIRRED TANK REACTORS

CFD ANALYSIS OF TURBULENCE EFFECT ON REACTION IN STIRRED TANK REACTORS CFD ANALYSIS OF TURBULENCE EFFECT ON REACTION IN STIRRED TANK REACTORS Udaya Bhaskar Reddy R*, Gopalakrishnan S, Ramasamy E Department of Chemical Engineering, Coimbatore Institute of Technology, Coimbatore-

More information

Evaporative batch crystallisation model validation and linearisation for Model Predictive Control

Evaporative batch crystallisation model validation and linearisation for Model Predictive Control Evaporative batch crystallisation model validation and linearisation for Model Predictive Control Peter Tijl DCT 25.35 Traineeship report Coach: Supervisor: Professor: dr. ir. S.K. Bermingham prof. dr.

More information

1. Introductory Material

1. Introductory Material CHEE 321: Chemical Reaction Engineering 1. Introductory Material 1b. The General Mole Balance Equation (GMBE) and Ideal Reactors (Fogler Chapter 1) Recap: Module 1a System with Rxn: use mole balances Input

More information

precipitation in a Confined Impinging Jets Reactor by means of

precipitation in a Confined Impinging Jets Reactor by means of Modeling of nanoparticles precipitation in a Confined Impinging Jets Reactor by means of Computational Fluid Dynamics E. Gavi, D.L. Marchisio, A.A. Barresi Politecnico di Torino, Department of Material

More information

Assessing Mixing Sensitivities for Scale-up. Matthew Jörgensen Atlanta, 10/20/2014

Assessing Mixing Sensitivities for Scale-up. Matthew Jörgensen Atlanta, 10/20/2014 Assessing Mixing Sensitivities for Scale-up Matthew Jörgensen Atlanta, 10/20/2014 Nalas: Solutions that Scale! Engineering Services Broad range of services & capabilities supporting chemical process development

More information

AGITATION AND AERATION

AGITATION AND AERATION AGITATION AND AERATION Although in many aerobic cultures, gas sparging provides the method for both mixing and aeration - it is important that these two aspects of fermenter design be considered separately.

More information

Applications of Computational Fluid Dynamics in the Process Industries. Ahmad Haidari & Peter Spicka Fluent Inc.

Applications of Computational Fluid Dynamics in the Process Industries. Ahmad Haidari & Peter Spicka Fluent Inc. Applications of Computational Fluid Dynamics in the Process Industries Ahmad Haidari & Peter Spicka Fluent Inc. 1 Outline Overview of CFD s growth in the process Industry Overview of modeling multiphase

More information

Structure of the chemical industry

Structure of the chemical industry CEE-Lectures on Industrial Chemistry Lecture 1. Crystallization as an example of an industrial process (ex. of Ind. Inorg. Chemistry) Fundamentals (solubility (thermodynamics), kinetics, principle) Process

More information

Population Balance Modeling

Population Balance Modeling Population Balance Modeling JMBC-Particle Technology 2015 Pieter Vonk Advanced Chemical Engineering Solutions March 6 th, 2015 Overview Introduction & Industrial challenges Granulation processes Crystallization

More information

Water Pollution Control: Physical Methods. AWPPCE RPI Fall 2013

Water Pollution Control: Physical Methods. AWPPCE RPI Fall 2013 Water Pollution Control: Physical Methods AWPPCE RPI Fall 2013 Water Pollution Control Processes Water and Waste Water Treatment are usually carried out in specially designed vessels (reactors) under controlled

More information

Wet FGD Chemistry and Performance Factors

Wet FGD Chemistry and Performance Factors Wet FGD Chemistry and Performance Factors Gordon Maller URS Corporation Presented at: 2008 Power Gen Conference December 1, 2008 Presentation Outline FGD Chemistry Overview Effect of Key Process Variables

More information

Modelling and Simulation of a Batch Poly(Vinyl Chloride) Reactor

Modelling and Simulation of a Batch Poly(Vinyl Chloride) Reactor 769 A publication of CHEMICAL ENGINEERING TRANSACTIONS VOL. 32, 23 Chief Editors: Sauro Pierucci, Jiří J. Klemeš Copyright 23, AIDIC Servizi S.r.l., ISBN 978-88-968-23-; ISSN 974-979 The Italian Association

More information

Nirma University Institute of Technology Chemical Engineering Department, Handouts -RRP- CRE-II. Handouts

Nirma University Institute of Technology Chemical Engineering Department, Handouts -RRP- CRE-II. Handouts Handouts Handout 1: Practical reactor performance deviates from that of ideal reactor s : Packed bed reactor Channeling CSTR & Batch Dead Zones, Bypass PFR deviation from plug flow dispersion Deviation

More information

Calculation of Power, Shear and Gas-liquid mass transfer in reactors for fermentation.

Calculation of Power, Shear and Gas-liquid mass transfer in reactors for fermentation. VISIMIX TURBULENT. GAS-LIQUID MIXING. FERMENTATION. Calculation of Power, Shear and Gas-liquid mass transfer in reactors for fermentation. 1. Subject of calculations and initial data. This example demonstrates

More information

Overview of Reacting Flow

Overview of Reacting Flow Overview of Reacting Flow Outline Various Applications Overview of available reacting flow models Latest additions Example Cases Summary Reacting Flows Applications in STAR-CCM+ Chemical Process Industry

More information

PREFACE. Julian C. Smith Peter Harriott. xvii

PREFACE. Julian C. Smith Peter Harriott. xvii PREFACE This sixth edition of the text on the unit operations of chemical engineering has been extensively revised and updated, with much new material and considerable condensation of some sections. Its

More information

Application of the CFD method for modelling of floating particles suspension

Application of the CFD method for modelling of floating particles suspension Application of the CFD method for modelling of floating particles suspension Joanna Karcz, Lukasz Kacperski, Marcelina Bitenc Szczecin University of Technology, Dept. of Chem. Eng. al. Piastow 42, PL-7-65

More information

Direct Production of Crystalline Boric Acid through Heterogeneous Reaction of Solid Borax with Propionic Acid: Operation and Simulation

Direct Production of Crystalline Boric Acid through Heterogeneous Reaction of Solid Borax with Propionic Acid: Operation and Simulation Korean J. Chem. Eng., 2(5), 956-962 (2004) Direct Production of Crystalline Boric Acid through Heterogeneous Reaction of Solid Borax with Propionic Acid: Operation and Simulation Bahman ZareNezhad Chemical

More information

Kostas Saranteas (speaker) Gregory Botsaris

Kostas Saranteas (speaker) Gregory Botsaris Micromixing and Mesomixing Effects on Nucleation, Agglomeration and De-agglomeration Kinetics in a Dye Precipitation Kostas Saranteas (speaker) Sepracor Inc. Gregory otsaris Tufts University Presented

More information

CFD SIMULATIONS OF SINGLE AND TWO-PHASE MIXING PROESSES IN STIRRED TANK REACTORS

CFD SIMULATIONS OF SINGLE AND TWO-PHASE MIXING PROESSES IN STIRRED TANK REACTORS CFD SIMULATIONS OF SINGLE AND TWO-PHASE MIXING PROESSES IN STIRRED TANK REACTORS Hristo Vesselinov Hristov, Stephan Boden, Günther Hessel, Holger Kryk, Horst-Michael Prasser, and Wilfried Schmitt. Introduction

More information

CFD in COMSOL Multiphysics

CFD in COMSOL Multiphysics CFD in COMSOL Multiphysics Mats Nigam Copyright 2016 COMSOL. Any of the images, text, and equations here may be copied and modified for your own internal use. All trademarks are the property of their respective

More information

Precipitation. Size! Shape! Size distribution! Agglomeration!

Precipitation. Size! Shape! Size distribution! Agglomeration! Precipitation Size! Shape! Size distribution! Agglomeration! Precipitation Four major questions: 1. Why do molecules/ions precipitate? 2. What determines the size? 3. What determines the size distribution?

More information

COMPARISON OF ANALYTICAL SOLUTIONS FOR CMSMPR CRYSTALLIZER WITH QMOM POPULATION BALANCE MODELING IN FLUENT

COMPARISON OF ANALYTICAL SOLUTIONS FOR CMSMPR CRYSTALLIZER WITH QMOM POPULATION BALANCE MODELING IN FLUENT CHINA PARTICUOLOGY Vol. 3, No. 4, 13-18, 5 COMPARISON OF ANALYTICAL SOLUTIONS FOR CMSMPR CRYSTALLIZER WITH QMOM POPULATION BALANCE MODELING IN FLUENT Bin Wan 1, Terry A. Ring 1, *, Kumar M. Dhanasekharan

More information

Integrated PBM-DEM Model Of A Continuous Granulation Process

Integrated PBM-DEM Model Of A Continuous Granulation Process Integrated PBM-DEM Model Of A Continuous Granulation Process Rohit Ramachandran March 8, 2016 Department of Chemical and Biochemical Engineering Rutgers University Rutgers, The State University of New

More information

10 TH EUROPEAN WASTE WATER CONFERENCE DEVELOPMENT OF FLOCCULATION MODELS FOR IMPROVING WATER TREATMENT

10 TH EUROPEAN WASTE WATER CONFERENCE DEVELOPMENT OF FLOCCULATION MODELS FOR IMPROVING WATER TREATMENT 10 TH EUROPEAN WASTE WATER CONFERENCE DEVELOPMENT OF FLOCCULATION MODELS FOR IMPROVING WATER TREATMENT Egarr, D. A. 1 *, Horton, L. 1, Rice, H. 2, Hunter, T. 2 1 MMI Engineering, Suite 7 Corum 2, Corum

More information

INTRODUCTION TO MULTIPHASE FLOW. Mekanika Fluida II -Haryo Tomo-

INTRODUCTION TO MULTIPHASE FLOW. Mekanika Fluida II -Haryo Tomo- 1 INTRODUCTION TO MULTIPHASE FLOW Mekanika Fluida II -Haryo Tomo- 2 Definitions Multiphase flow is simultaneous flow of Matters with different phases( i.e. gas, liquid or solid). Matters with different

More information

Resolution of the ethanolamine salt of (±)mandelic acid by using the AS3PC method: Principle, application and results

Resolution of the ethanolamine salt of (±)mandelic acid by using the AS3PC method: Principle, application and results J. Phys. IV France 122 (2004) 157-162 EDP Sciences, Les Ulis DOI: 10.1051/jp4:2004122024 Resolution of the ethanolamine salt of (±)mandelic acid by using the AS3PC method: Principle, application and results

More information

CFD Analysis of Forced Convection Flow and Heat Transfer in Semi-Circular Cross-Sectioned Micro-Channel

CFD Analysis of Forced Convection Flow and Heat Transfer in Semi-Circular Cross-Sectioned Micro-Channel CFD Analysis of Forced Convection Flow and Heat Transfer in Semi-Circular Cross-Sectioned Micro-Channel *1 Hüseyin Kaya, 2 Kamil Arslan 1 Bartın University, Mechanical Engineering Department, Bartın, Turkey

More information

APPLICATION OF MODELS WITH DIFFERENT COMPLEXITY FOR A STIRRED TANK REACTOR

APPLICATION OF MODELS WITH DIFFERENT COMPLEXITY FOR A STIRRED TANK REACTOR HUNGARIAN JOURNAL OF INDUSTRIAL CHEMISTRY VESZPRÉM Vol. 39(3) pp. 335-339 (011) APPLICATION OF MODELS WITH DIFFERENT COMPLEXITY FOR A STIRRED TANK REACTOR A. EGEDY, T. VARGA, T. CHOVÁN University of Pannonia,

More information

Kinetic Modeling of Batch Slurry Reactions

Kinetic Modeling of Batch Slurry Reactions Kinetic Modeling of Batch Slurry Reactions Paul J. Gemperline 1, Mary Ellen McNalley 2, Ron Hoffman 2, Chun Hsieh 1, David Joiner 1, Julien Billeter 1 (1), (2) DuPont Crop Protection June 27, 2012 XIII

More information

MULTIPHASE FLOW MODELLING

MULTIPHASE FLOW MODELLING MULTIPHASE FLOW MODELLING 1 Introduction 2 Outline Multiphase Flow Modeling Discrete phase model Eulerian model Mixture model Volume-of-fluid model Reacting Flow Modeling Eddy dissipation model Non-premixed,

More information

Chapter 17: Solubility Equilibria

Chapter 17: Solubility Equilibria Previous Chapter Table of Contents Next Chapter Chapter 17: Solubility Equilibria Sections 17.1-17.2: Solubility Equilibria and the K sp Table In this chapter, we consider the equilibrium associated with

More information

THE FUTURE OF THE CHEMISTRY: CONTINUOUS FLOW REACTIONS BASEL 2016

THE FUTURE OF THE CHEMISTRY: CONTINUOUS FLOW REACTIONS BASEL 2016 THE FUTURE OF THE CHEMISTRY: CONTINUOUS FLOW REACTIONS BASEL 2016 CHEMICAL PLANT CONTINUOUS FLOW REACTOR The continuous flow reactor is a safe system, running chemical reactions in reduced volume with

More information

Deep Desulfurization of Diesel using a Single-Phase Micro-reactor

Deep Desulfurization of Diesel using a Single-Phase Micro-reactor Excerpt from the Proceedings of the COMSOL Conference 2009 Boston Deep Desulfurization of Diesel using a Single-Phase Micro-reactor Jake Jones, 1 Alex Yokochi, 1 and Goran Jovanovic *1 1 School of Chemical,

More information

Right. First Time in Fine-Chemical Process Scale-up. Lum(Bert)us A. Hulshof. Avoiding scale-up problems: the key to rapid success

Right. First Time in Fine-Chemical Process Scale-up. Lum(Bert)us A. Hulshof. Avoiding scale-up problems: the key to rapid success Right First Time in Fine-Chemical Process Scale-up Avoiding scale-up problems: the key to rapid success Lum(Bert)us A. Hulshof Eindhoven University of Technology Eindhoven, The Netherlands V Preface About

More information

Chemical Reactions and Chemical Reactors

Chemical Reactions and Chemical Reactors Chemical Reactions and Chemical Reactors George W. Roberts North Carolina State University Department of Chemical and Biomolecular Engineering WILEY John Wiley & Sons, Inc. x Contents 1. Reactions and

More information

Gravimetric Methods of Analysis

Gravimetric Methods of Analysis Gravimetric Methods of Analysis Chapter 8 Gravimetric Analysis Skoog Book Page 179-198 Do Problems: 1,2,4,9,10,11,14,16,21,27,30,33 Chapter 9 Electrolyte Effects Activities effective concentration and

More information

Worksheet 1.1. Chapter 1: Quantitative chemistry glossary

Worksheet 1.1. Chapter 1: Quantitative chemistry glossary Worksheet 1.1 Chapter 1: Quantitative chemistry glossary Amount The number of moles of a substance present in a sample. Aqueous solution A solution with water as the solvent. Atmosphere The unit atmosphere

More information

Potential Use of Ultrasound in Mixing. Mazen Bachir, UMIST, Manchester, UK. Abstract

Potential Use of Ultrasound in Mixing. Mazen Bachir, UMIST, Manchester, UK. Abstract Potential Use of Ultrasound in Mixing Mazen Bachir, UMIST, Manchester, UK. Abstract Ultrasound is a novel technology, which is attaining widespread use in various scientific and medical fields. In the

More information

Lecture 8. Mole balance: calculations of microreactors, membrane reactors and unsteady state in tank reactors

Lecture 8. Mole balance: calculations of microreactors, membrane reactors and unsteady state in tank reactors Lecture 8 Mole balance: calculations of microreactors, membrane reactors and unsteady state in tank reactors Mole alance in terms of oncentration and Molar low Rates Working in terms of number of moles

More information

Prediction of Minimum Fluidisation Velocity Using a CFD-PBM Coupled Model in an Industrial Gas Phase Polymerisation Reactor

Prediction of Minimum Fluidisation Velocity Using a CFD-PBM Coupled Model in an Industrial Gas Phase Polymerisation Reactor Journal of Engineering Science, Vol. 10, 95 105, 2014 Prediction of Minimum Fluidisation Velocity Using a CFD-PBM Coupled Model in an Industrial Gas Phase Polymerisation Reactor Vahid Akbari and Mohd.

More information

Theories for Mass Transfer Coefficients

Theories for Mass Transfer Coefficients Mass Transfer Theories for Mass Transfer Coefficients Lecture 9, 5..7, r. K. Wegner 9. Basic Theories for Mass Transfer Coefficients Aim: To find a theory behind the empirical mass-transfer correlations

More information

CHEMICAL REACTORS - PROBLEMS OF NON IDEAL REACTORS 61-78

CHEMICAL REACTORS - PROBLEMS OF NON IDEAL REACTORS 61-78 011-01 ourse HEMIL RETORS - PROBLEMS OF NON IDEL RETORS 61-78 61.- ccording to several experiments carried out in a continuous stirred tank reactor we suspect that the behavior of the reactor is not ideal.

More information

Heat Transfer Modeling using ANSYS FLUENT

Heat Transfer Modeling using ANSYS FLUENT Lecture 1 - Introduction 14.5 Release Heat Transfer Modeling using ANSYS FLUENT 2013 ANSYS, Inc. March 28, 2013 1 Release 14.5 Outline Modes of Heat Transfer Basic Heat Transfer Phenomena Conduction Convection

More information

CHEMICAL ENGINEERING

CHEMICAL ENGINEERING CHEMICAL ENGINEERING Subject Code: CH Course Structure Sections/Units Section A Unit 1 Unit 2 Unit 3 Unit 4 Unit 5 Unit 6 Section B Section C Section D Section E Section F Section G Section H Section I

More information

On the Comparison between Presumed and Full PDF Methods for Turbulent Precipitation

On the Comparison between Presumed and Full PDF Methods for Turbulent Precipitation Chemical and Biological Engineering Publications Chemical and Biological Engineering 2001 On the Comparison between Presumed and Full PDF Methods for Turbulent Precipitation Daniele L. Marchisio Politecnico

More information

VisiMix Conference. October 20-22, Victor A. Atiemo-Obeng, PhD, FAIChE. Retiree from The Dow Chemical Company

VisiMix Conference. October 20-22, Victor A. Atiemo-Obeng, PhD, FAIChE. Retiree from The Dow Chemical Company Mixing Science and Practice A Reflective View VisiMix Conference October 20-22, 2014 Victor A. Atiemo-Obeng, PhD, FAIChE Retiree from The Dow Chemical Company A look back Summer of 1970 Crystallization

More information

STABILITY CONDITIONS AND OBSERVER DESIGN FOR A CONTINUOUS CRYSTALLIZER

STABILITY CONDITIONS AND OBSERVER DESIGN FOR A CONTINUOUS CRYSTALLIZER STABILITY CONDITIONS AND OBSERVER DESIGN FOR A CONTINUOUS CRYSTALLIZER Juan Du and B. Erik Ydstie* Carnegie Mellon University Pittsburgh, PA 15213 Abstract The population balance equation is used to describe

More information

Chapter 12 Gravimetric Methods of Analysis

Chapter 12 Gravimetric Methods of Analysis Chapter 12 Gravimetric Methods of Analysis gravi metric (weighing - measure) Gravimetric Analysis A given analyte is isolated from the sample and weighed in some pure form. One of the most accurate and

More information

by Wensheng Zhang, Fuping Hao, Yoko Pranolo, Chu Yong Cheng, and Dave Robinson Presented by Wensheng Zhang 8 July 2011

by Wensheng Zhang, Fuping Hao, Yoko Pranolo, Chu Yong Cheng, and Dave Robinson Presented by Wensheng Zhang 8 July 2011 A study of copper extraction kinetics with LIX 984N using a Lewis cell by Wensheng Zhang, Fuping Hao, Yoko Pranolo, Chu Yong Cheng, and Dave Robinson Presented by Wensheng Zhang 8 July 2011 Content of

More information

Heat Transfer with Phase Change

Heat Transfer with Phase Change CM3110 Transport I Part II: Heat Transfer Heat Transfer with Phase Change Evaporators and Condensers Professor Faith Morrison Department of Chemical Engineering Michigan Technological University 1 Heat

More information

Formation of valine microcrystals through rapid antisolvent precipitation

Formation of valine microcrystals through rapid antisolvent precipitation Formation of valine microcrystals through rapid antisolvent precipitation Miroslav Variny a, Sandra Alvarez de Miguel b, Barry D. Moore c, Jan Sefcik b a Department of Chemical and Biochemical Engineering,

More information

ASSESSMENT OF THE MINIMUM POWER REQUIREMENTS FOR COMPLETE SUSPENSION IN TOP-COVERED UNBAFFLED STIRRED TANKS

ASSESSMENT OF THE MINIMUM POWER REQUIREMENTS FOR COMPLETE SUSPENSION IN TOP-COVERED UNBAFFLED STIRRED TANKS 4 th European Conference on Mixing Warszawa, 0-3 September 202 ASSESSMENT OF THE MINIMUM POWER REQUIREMENTS FOR COMPLETE SUSPENSION IN TOP-COVERED UNBAFFLED STIRRED TANKS Alessandro Tamburini a, Andrea

More information

mixing of fluids MIXING AND AGITATION OF FLUIDS

mixing of fluids MIXING AND AGITATION OF FLUIDS Levenspiel [2] considered when two fluids are mixed together, the molecular behavior of the dispersed fluid falls between two extremes. If molecules are completely free to move about, the dispersed fluid

More information

Modeling of dispersed phase by Lagrangian approach in Fluent

Modeling of dispersed phase by Lagrangian approach in Fluent Lappeenranta University of Technology From the SelectedWorks of Kari Myöhänen 2008 Modeling of dispersed phase by Lagrangian approach in Fluent Kari Myöhänen Available at: https://works.bepress.com/kari_myohanen/5/

More information

Investigation of adiabatic batch reactor

Investigation of adiabatic batch reactor Investigation of adiabatic batch reactor Introduction The theory of chemical reactors is summarized in instructions to Investigation of chemical reactors. If a reactor operates adiabatically then no heat

More information

Chemical Reaction Engineering - Part 16 - more reactors Richard K. Herz,

Chemical Reaction Engineering - Part 16 - more reactors Richard K. Herz, Chemical Reaction Engineering - Part 16 - more reactors Richard K. Herz, rherz@ucsd.edu, www.reactorlab.net More reactors So far we have learned about the three basic types of reactors: Batch, PFR, CSTR.

More information

Chemistry 20 Final Review Solutions Checklist Knowledge Key Terms Solutions

Chemistry 20 Final Review Solutions Checklist Knowledge Key Terms Solutions Chemistry 20 Final Review Solutions Checklist Have you mastered the concepts, applications, and skills associated with the following items? Check them off when you are confident in your understanding.

More information

Numerical modelling of direct contact condensation of steam in BWR pressure suppression pool system

Numerical modelling of direct contact condensation of steam in BWR pressure suppression pool system Numerical modelling of direct contact condensation of steam in BWR pressure suppression pool system Gitesh Patel, Vesa Tanskanen, Juhani Hyvärinen LUT School of Energy Systems/Nuclear Engineering, Lappeenranta

More information

Engineering Theory of Leaching

Engineering Theory of Leaching Engineering Theory of Leaching An approach to non-ideal reactors and scale- up of pressure leaching systems Presented by Lynton Gormely, P.Eng., Ph.D. The Problem given lab scale batch results, predict

More information

Generation and absorption of CO2 gas

Generation and absorption of CO2 gas Generation and absorption of CO2 gas CO2 is generated by dissolving carbonates in in hydrochloric acid according to the following equation: CaCO3(s) + 2 HCl(l) = CaCl2(aq) + CO2(g) + H2O(l) One convenient

More information

Chapter 16. Solubility Equilibria 10/14/2010. Solubility Equilibria. Solubility Product (Constant), K sp. Solubility and the Solubility Product

Chapter 16. Solubility Equilibria 10/14/2010. Solubility Equilibria. Solubility Product (Constant), K sp. Solubility and the Solubility Product Solubility Equilibria These are associated with ionic solids dissolving in water to form aqueous solutions Chapter 16 Solubility Equilibria It is assumed that when an ionic compound dissolves in water,

More information

Minimum fluidization velocity, bubble behaviour and pressure drop in fluidized beds with a range of particle sizes

Minimum fluidization velocity, bubble behaviour and pressure drop in fluidized beds with a range of particle sizes Computational Methods in Multiphase Flow V 227 Minimum fluidization velocity, bubble behaviour and pressure drop in fluidized beds with a range of particle sizes B. M. Halvorsen 1,2 & B. Arvoh 1 1 Institute

More information

Physical Chemistry of Polymers (4)

Physical Chemistry of Polymers (4) Physical Chemistry of Polymers (4) Dr. Z. Maghsoud CONCENTRATED SOLUTIONS, PHASE SEPARATION BEHAVIOR, AND DIFFUSION A wide range of modern research as well as a variety of engineering applications exist

More information

Milling of Crystals in an Inline Silverson L4R Rotor-Stator Mixer

Milling of Crystals in an Inline Silverson L4R Rotor-Stator Mixer UM - HSMRP Milling of Crystals in an Inline Silverson L4R Rotor-Stator Mixer Kanan Ghaderzadeh and Richard V. Calabrese* Dept. of Chemical & Biomolecular Engineering University of Maryland College Park,

More information

Crystallization of L-Phenylalanine anhydrate for product recovery during fermentation

Crystallization of L-Phenylalanine anhydrate for product recovery during fermentation Crystallization of L-Phenylalanine anhydrate for product recovery during fermentation M.C.Cuellar, D.Sanchez Garcia, A.J.J. Straathof, J.J. Heijnen and L.A.M. van der Wielen Delft University of Technology,

More information

TABLE OF CONTENT. Chapter 4 Multiple Reaction Systems 61 Parallel Reactions 61 Quantitative Treatment of Product Distribution 63 Series Reactions 65

TABLE OF CONTENT. Chapter 4 Multiple Reaction Systems 61 Parallel Reactions 61 Quantitative Treatment of Product Distribution 63 Series Reactions 65 TABLE OF CONTENT Chapter 1 Introduction 1 Chemical Reaction 2 Classification of Chemical Reaction 2 Chemical Equation 4 Rate of Chemical Reaction 5 Kinetic Models For Non Elementary Reaction 6 Molecularity

More information

Predicting Mineral Transformations in Wet Supercritical CO 2 : The Critical Role of Water

Predicting Mineral Transformations in Wet Supercritical CO 2 : The Critical Role of Water Predicting Mineral Transformations in Wet Supercritical CO 2 : The Critical Role of Water Andrew R. Felmy Eugene S. Ilton Andre Anderko Kevin M. Rosso Ja Hun Kwak Jian Zhi Hu 1 Outline Background Importance

More information

THINK FLUID DYNAMIX Mixing, Homogenization & Blend Time. THINK Fluid Dynamix

THINK FLUID DYNAMIX Mixing, Homogenization & Blend Time. THINK Fluid Dynamix THINK FLUID DYNAMIX Mixing, Homogenization & Blend Time Provided by: THINK Fluid Dynamix Am Pestalozziring 21 D-91058 Erlangen (Germany) Tel. +49 (0)9131 69098-00 http://www.think-fd.com CFD ENGINEERING

More information

EVALUATION OF THE EFFECT OF PITCHED BLADE TURBINE ON MIXING IN AN ELECTROCHEMICAL REACTOR WITH ROTATING RING ELECTRODES.

EVALUATION OF THE EFFECT OF PITCHED BLADE TURBINE ON MIXING IN AN ELECTROCHEMICAL REACTOR WITH ROTATING RING ELECTRODES. EVALUATION OF THE EFFECT OF PITCHED BLADE TURBINE ON MIXING IN AN ELECTROCHEMICAL REACTOR WITH ROTATING RING ELECTRODES. Sergio A. Martinez, Universidad Autónoma Metropolitana, México D.F. Mex., Jorge

More information

L-17 Coagulation and Flocculation Part-I. Environmental Engineering-I

L-17 Coagulation and Flocculation Part-I. Environmental Engineering-I L-17 Coagulation and Flocculation Part-I Environmental Engineering-I Content Part-I Coagulation, Types of Coagulant, Part-II dosing, rapid mixing, Flocculation-design parameters. Purpose The primary purpose

More information

Multiphase Flows. Mohammed Azhar Phil Stopford

Multiphase Flows. Mohammed Azhar Phil Stopford Multiphase Flows Mohammed Azhar Phil Stopford 1 Outline VOF Model VOF Coupled Solver Free surface flow applications Eulerian Model DQMOM Boiling Model enhancements Multi-fluid flow applications Coupled

More information

Solutions. LiCl (s) + H2O (l) LiCl (aq) 3/12/2013. Definitions. Aqueous Solution. Solutions. How Does a Solution Form? Solute Solvent solution

Solutions. LiCl (s) + H2O (l) LiCl (aq) 3/12/2013. Definitions. Aqueous Solution. Solutions. How Does a Solution Form? Solute Solvent solution Solutions Definitions A solution is a homogeneous mixture A solute is dissolved in a solvent. solute is the substance being dissolved solvent is the liquid in which the solute is dissolved an aqueous solution

More information

Engineering. Green Chemical. S. Suresh and S. Sundaramoorthy. and Chemical Processes. An Introduction to Catalysis, Kinetics, CRC Press

Engineering. Green Chemical. S. Suresh and S. Sundaramoorthy. and Chemical Processes. An Introduction to Catalysis, Kinetics, CRC Press I i Green Chemical Engineering An Introduction to Catalysis, Kinetics, and Chemical Processes S. Suresh and S. Sundaramoorthy CRC Press Taylor & Francis Group Boca Raton London New York CRC Press is an

More information

A Novel Software Tool for Crystallization Process Development

A Novel Software Tool for Crystallization Process Development A Novel Software Tool for Crystallization Process Development Christianto Wibowo *, Ketan D. Samant, Joseph W. Schroer, and Lionel O Young ClearWaterBay Technology, Inc. 20311 Valley Blvd. Suite C, Walnut,

More information

Preparation of Silver Iodide Nanoparticles Using a Spinning Disk Reactor in a Continuous Mode

Preparation of Silver Iodide Nanoparticles Using a Spinning Disk Reactor in a Continuous Mode Preparation of Silver Iodide Nanoparticles Using a Spinning Disk Reactor in a Continuous Mode Chin-Chan Li a, Yao Hsuan Wang a, and Clifford Y. Tai a * a Department, National Taiwan University, Taipei,

More information

Chapter 2: Equilibrium Thermodynamics and Kinetics

Chapter 2: Equilibrium Thermodynamics and Kinetics Chapter 2: Equilibrium Thermodynamics and Kinetics Equilibrium Thermodynamics: predicts the concentrations (or more precisely, activities) of various species and phases if a reaction reaches equilibrium.

More information

A generalized approach to model oxygen transfer in bioreactors using population balances and computational fluid dynamics

A generalized approach to model oxygen transfer in bioreactors using population balances and computational fluid dynamics Chemical Engineering Science 60 (2005) 213 218 www.elsevier.com/locate/ces A generalized approach to model oxygen transfer in bioreactors using population balances and computational fluid dynamics Kumar

More information