Improved Performance Induced by in-situ Ligand. Exchange Reactions of Copper Bipyridyl Redox. Couples in Dye-Sensitized Solar Cells

Size: px
Start display at page:

Download "Improved Performance Induced by in-situ Ligand. Exchange Reactions of Copper Bipyridyl Redox. Couples in Dye-Sensitized Solar Cells"

Transcription

1 Electronic Supplementary Material (ESI) for Chemical Communications. This journal is The Royal Society of Chemistry 2018 Improved Performance Induced by in-situ Ligand Exchange Reactions of Copper Bipyridyl Redox Couples in Dye-Sensitized Solar Cells Yujue Wang and Thomas W. Hamann* Department of Chemistry, Michigan State University, 574 S Shaw Lane, East Lansing, USA, Experimental Synthesis of copper complexes Copper(II/I) bis(6,6-dimethyl-2,2-bipyridine) triflate ([Cu(dmbpy)2] + /[Cu(dmbpy)2] 2+ ) complexes were made using previous published method. 1 Tetrakisacetonitrile copper(i) triflate/copper(ii) triflate and 6,6 -dimethyl-2,2 -bipyridine (dmbpy) were mixed in a 1 to 2.1 ratio in acetonitrile/dichloromethane mixture. Red/green powders crashed out upon the addition of diethyl ether. Further purification was achieved by recrystallization of the red/green powders from acetonitrile or dichloromethane with diethyl ether. Copper(II) tetra(4-tert-butylpyridine) triflate ([Cu(TBP)4] 2+ ) was prepared by mixing copper(ii) triflate and 4-tert-butylpyridine in a 1 to 4.1 ratio (or higher) in acetonitrile. Purple powder crashed out upon the addition of diethyl ether to the solution. Further purification was achieved by recrystallization from acetonitrile with diethyl ether. 1

2 b) Figure S1. Crystal structure of a) [Cu(dmbpy)2] + and b) [Cu(dmbpy)2] 2+, with triflate as counter ion. 2

3 c) Figure S2. Proton NMR of a) free dmbpy ligand, b) [Cu(dmbpy)2] + and c) [Cu(dmbpy)2] 2+ in AcN-d3, with DCM as an internal standard. 3

4 Electrochemistry Cyclic voltammetry (CV) measurements were performed with an Autolab PGSTAT128N under an inert atmosphere. A Pt disk or a glassy carbon disk was used as working electrode. A high surface area Pt mesh was used as counter electrode. A home-made Ag/AgNO3 reference electrode was used for all the three-electrode measurements. Ferrocene was also used as an internal standard to calibrate the potential of the reference electrode. 0.1 M tetrabutylammonium hexafluorophosphate (TBAPF6) was used as supporting electrolyte. a) b) Figure S3. CV s of 4mM a) [Cu(dmbpy)2] + and b) [Cu(dmbpy)2] 2+ in acetonitrile with different scan rates. Colors from light to dark represent scan rate from to 0.5 V/s. A peak current versus square root of scan rate (ip vs. v 1/2 ) is plotted in the insert. The linear behavior and the ratio between the cathodic and anodic peak current indicates the good electrochemical reversibility of the redox couple. Glassy carbon disk was used as working electrode and the same reversibility was observed also on Pt disk electrode. 4

5 Figure S4. CV of 4 mm [Cu(dmbpy)2] 2+ with the addition of aliquots of TBP on glassy carbon working electrode. From top to bottom, the equivalents of TBP to the copper complex were 0, 3, 13 and 25. The scan rate was 0.1 V/s. The absorption spectra of all copper complexes were measured with Lambda 35 (PerkinElmer) spectrometer. Solutions were prepared in the glovebox under an inert atmosphere with dry solvent. Screw-cap quartz cuvette with 1 cm path length was used for the solution measurement. A solution of 4 mm [Cu(dmbpy)2] 2+ was made in dry acetonitrile under an inert atmosphere. Aliquots of TBP, from 0 to 40 eq. were added. UV-Vis spectra were measured for each sample using a screw-cap cuvette. 5

6 Titration of the [Cu(TBP)4] 2+ solution with aliquots of dmbpy does not show a complete transformation to [Cu(dmbpy)2] 2+, as indicated by the absorption spectra, with up to 6.5 equivalents. As shown in figure S5, a product with a higher extinction coefficient (180 M -1 cm -1 ) was observed. This green colored complex was not isolated, but it shows absorption peaks at 707 nm and 950 nm which matches the black curve in figure 2b in the main text. Therefore, we believe this complex is one of the intermediate species formed during the titration of [Cu(dmbpy)2] 2+ with TBP. This result shows that the ligand substitution reactions of the Cu(II) complexes are reversible and can be described generally by the equilibrium: Figure S5. Titration of [Cu(TBP)4] 2+ with aliquots of dmbpy in acetonitrile. The base concentration of [Cu(TBP)4] 2+ was 8 mm, with 0, 0.53, 1.1, 1.5, 2.0, 2.4, 3.0, 4.0, 5.3, 6.5 equivalents dmbpy (bottom to top) introduced to the solution. The end-point spectrum showed the same feature as the intermediate complex s spectrum, the black curve in figure 2b in the main text. 6

7 CV s of a solution containing 4 mm [Cu(TBP)4] 2+ in acetonitrile with 0.1 M LiOTf as a supporting electrolyte showed no well-defined redox peaks, shown below in figure S6 a). The UVvis spectrum of this solution is also shown in figure S6 b). Upon the addition of 8 mm dmbpy (corresponding to 2 equivalents), a distorted redox wave appeared which is comparable to wave shown in figure 1 of the main text and figure S5 above where 4 mm [Cu(dmbpy)2] 2+ was titrated with TBP. The absorption spectrum shown in figure S6 d) also changed to resemble the intermediate complex [Cu(dmbpy)(TBP)x] proposed. Bulk electrolysis was performed by applying a potential sufficiently negative to reduce Cu(II) species to Cu(I). After 1.7 C charge was passed, the anodic current increased in the CV shown in figure S6 e) consistent with formation of [Cu(dmbpy)2] +. The corresponding absorption spectrum from both the extinction coefficient and the absorption peak wavelength confirmed the near complete formation of ~4 mm [Cu(dmbpy)2] +. These results show that the ligand exchange is reversible and that the [Cu(dmbpy)2] + complex is strongly favored over a [Cu(TBP)x] + complex which we attribute to the chelate effect. 7

8 a) b) c) d) e) f) Figure S6. Plots of CV s (left) and absorption spectra (right) for solutions containing: a, b) 4 mm [Cu(TBP)4] 2+ in acetonitrile containing 0.1 M LiOTf. (blue lines); c, d) 4 mm [Cu(TBP)4] 2+ in acetonitrile containing 0.1 M LiOTf with 8 mm dmbpy (green lines); e, f) 4 mm [Cu(TBP)4] 2+ in acetonitrile with 8 mm dmbpy after bulk electrolysis at V vs. Fc +/0 which resulted in passing 1.7 C of charge cathodically (red lines). Absorption spectrum of 10-fold diluted spectrum is shown in yellow line of plot f). Working electrode was platinum disk and the scan rate was 0.1 V/s. 8

9 [Cu(dmbpy)2] 2+ solutions were made in AcN-d3 and aliquots of TBP were added: from 0 to 28 eq. Proton NMR was measured using a J-Young NMR tube under an inert atmosphere with Agilent DDR2 500 MHz NMR spectrometer at room temperature. a) b) c) Figure S7. Proton NMR of [Cu(dmbpy)2]2 + with a) 0 eq. of TBP, b) 5 eq. TBP, c) 25 eq. TBP. In all samples, DCM was added as an internal standard. 9

10 Cell assembly Photoelectrodes were prepared on 12 Ω/cm 2 FTO-coated glass (Hartford Glass) cleaned by sonicating in soap water solution, deionized water, isopropanol, and acetone, and then heated to 450 C for 30 min. Blocking layers of TiO2 were deposited on the precleaned FTO-coated glass using 500 ALD cycles of titanium isopropoxide (TIPS, Aldrich) and water as precursors with a Savannah 200 instrument (Cambridge Nanotech, Inc.). TiO2 was grown at 225 C using reactant exposure times of 0.3 s and s for TIPS and H2O respectively, and nitrogen purge times of 5 s between exposures. The thickness of the TiO2 blocking layer was determined to be 10 nm by ellipsometry performed on Si samples coated concurrently in the ALD reactor. A transparent TiO2 nanoparticle layer (electrode area 0.36 cm 2 ) was prepared by doctor blading a paste of TiO2 nanoparticles (Ti-Nanoxide HT/SP, Solaronix) on the FTO. The resulting electrodes were annealed at 325 C for 5 min, 375 C for 5 min, 450 C for 5 min, and 500 C for 15 min in air. The nanoporous TiO2 film thickness, d, was measured using a Dektak3 Surface Profiler to be ~8 μm. TiCl4 post-treatment was done by immersing the electrodes in 40 mm TiCl4 solution at 80 C for 30 min, followed by annealing at 500 C for 30 min. The anodes were immersed in dye solution (0.2 mm solution of 3-{6-{4-[bis(2',4'- dibutyloxybiphenyl-4-yl)amino-]phenyl}-4,4-dihexyl-cyclopenta-[2,1-b:3,4-b']dithiophene-2- yl}-2-cyanoacrylic acid, D35cpdt, in 1:1 acetonitrile and tert-butyl alcohol). 2 mm chenodeoxylicacid were added during dye soaking. After hours, they were rinsed with acetonitrile. A ~25 μm thick Surlyn film (Solaronix) was sandwiched between the dyed anode and the platinized FTO electrode. Pressure was applied at 150 C to seal the cells. The electrolyte was filled by capillary force through the two pre-drilled holes on the platinum counter electrode and sealed with micro glass and Surlyn film. 10

11 The electrolyte used in DSSCs were prepared by the addition of 0.2 M [Cu(dmbpy)2]OTf, 0.02 M [Cu(dmbpy)2](OTf)2, 0.1 M LiOTf and different concentrations (0.1, 0.2, 0.3, 0.4, 0.5 M) of TBP, in acetonitrile. Solution potentials are shown below. Table S1. Solution potentials of the electrolyte with different concentrations of TBP. The solution potential was measured on both Pt and glassy carbon electrodes, versus Ag/AgNO3 (0.01M in AcN) reference electrode. Concentration of TBP / M Esol / V vs. Ag/AgNO

12 Device characterization Photoelectrochemical measurements were performed with Autolab PGSTAT128N interfaced with a Xe Arc Lamp. An AM 1.5 solar filter was used to simulate sunlight at 100 mw/cm 2. A 400 nm long-pass filter was used to prevent direct excitation of the TiO2 in all light measurements. A Horiba Jobin Yvon MicroHR was used for monochromatic light for IPCE measurements. The scan rate of both J-V measurements under illumination and in dark condition was 0.01 V/s. Figure S8. The dark current density of sandwich cells with electrolytes containing different concentrations of TBP. From right to left: 0, 0.1, 0.2, 0.3, 0.4, 0.5 M. 12

13 Electrochemical Impedance Spectroscopy All EIS measurements were performed in the dark with Autolab PGSTAT128N interfaced FRA2 module and controlled by NOVA software. The impedance spectra were recorded at applied voltages from -0.4 to -1.2 V, stepped in 25 mv increments, with a 10 mv alternating potential superimposed on the direct bias. Each impedance measurement consisted of frequency sweeps from 0.05 to 10 5 Hz in equally spaced logarithmic steps. Figure S9. Equivalent circuit used to fit the EIS data measured for sandwich cells under dark condition. RS is the series resistance. RT is the charge transport resistance inside TiO2 nanoporous structure. RCT is the charge transfer resistance between TiO2 and liquid electrolyte interface. Cμ is the chemical capacitance of TiO2. RPT and CPT are the resistance and capacitance on the counter electrode/electrolyte interface. 2 Figure S10. Chemical capacitance measured by EIS of DSSCs applying [Co(bpy)3] 3+/2+ electrolyte. Red: 0.2 M [Co(bpy)3] 2+ and 0.02 M [Co(bpy)3] 3+, 0.1 M LiOTf. Black: 0.2 M [Co(bpy)3] 2+ and 0.02 M [Co(bpy)3] 3+, 0.1 M LiOTf and 0.5 M TBP. 13

14 References 1. Williams, R. M.; Cola, L. De; Hartl, F.; Lagref, J.-J.; Planeix, J.-M.; Cian, A. De; Hosseini, M. W., Coord. Chem. Rev., 2002, 230, Bisquert, J., Phys. Chem. Chem. Phys., 2000, 2,

Nickel Phosphide-embedded Graphene as Counter Electrode for. Dye-sensitized Solar Cells **

Nickel Phosphide-embedded Graphene as Counter Electrode for. Dye-sensitized Solar Cells ** Nickel Phosphide-embedded Graphene as Counter Electrode for Dye-sensitized Solar Cells ** Y. Y. Dou, G. R. Li, J. Song, and X. P. Gao =.78 D 1359 G 163 a =.87 D 138 G 159 b =1.3 D 1351 G 1597 c 1 15 1

More information

Electronic Supplementary Information

Electronic Supplementary Information Electronic Supplementary Material (ESI) for Physical Chemistry Chemical Physics. This journal is the Owner Societies 2017 Electronic Supplementary Information Effect of Fluorine Position and Content on

More information

maximal photofluorescence decay time of 6 hours (purchased from Shenzhen HuiDuoSheng

maximal photofluorescence decay time of 6 hours (purchased from Shenzhen HuiDuoSheng Electronic Supplementary Material (ESI) for ChemComm. This journal is The Royal Society of Chemistry 2017 Experimental section Preparation of m-tio 2 /LPP photoanodes. TiO 2 colloid was synthesized according

More information

Hole Selective NiO Contact for Efficient Perovskite Solar Cells with Carbon Electrode

Hole Selective NiO Contact for Efficient Perovskite Solar Cells with Carbon Electrode Supporting information For Nano Letters Hole Selective NiO Contact for Efficient Perovskite Solar Cells with Carbon Electrode Xiaobao Xu,,, Zonghao Liu,, Zhixiang Zuo, Meng Zhang, Zhixin Zhao, Yan Shen,

More information

Single Catalyst Electrocatalytic Reduction of CO 2 in Water to H 2 :CO Syngas Mixtures with Water Oxidation to O 2

Single Catalyst Electrocatalytic Reduction of CO 2 in Water to H 2 :CO Syngas Mixtures with Water Oxidation to O 2 Electronic Supplementary Material (ESI) for Energy & Environmental Science. This journal is The Royal Society of Chemistry 2014 Supporting Information Single Catalyst Electrocatalytic Reduction of CO 2

More information

Photocathode for Water Electrolysis Applications

Photocathode for Water Electrolysis Applications Supporting Information Efficient and Stable Pt/TiO 2 /CdS/Cu 2 BaSn(S,Se) 4 Photocathode for Water Electrolysis Applications Yihao Zhou 1#, Donghyeop Shin 1,2,4#, Edgard Ngaboyamahina 3#, Qiwei Han 1,2,

More information

Supporting Information

Supporting Information Supporting Information Elucidation of CuWO4 Surface States During Photoelectrochemical Water Oxidation Yuan Gao and Thomas W. Hamann* Michigan State University, Department of Chemistry 578 S Shaw Lane

More information

Supporting Information

Supporting Information Supporting Information Wiley-VCH 2013 69451 Weinheim, Germany 3D Honeycomb-Like Structured Graphene and Its High Efficiency as a Counter-Electrode Catalyst for Dye-Sensitized Solar Cells** Hui Wang, Kai

More information

Supporting Information Fluorine Substituted Organic Dyes For Efficient Dye Sensitized Solar Cells

Supporting Information Fluorine Substituted Organic Dyes For Efficient Dye Sensitized Solar Cells Supporting Information Fluorine Substituted Organic Dyes For Efficient Dye Sensitized Solar Cells Angela Scrascia, a Luisa De Marco, b Savio Laricchia, b Rosaria Anna Picca, c Claudia Carlucci, a,d Eduardo

More information

Boron-doped graphene as high-efficiency counter electrode for dye-sensitized solar cells

Boron-doped graphene as high-efficiency counter electrode for dye-sensitized solar cells Electronic Supplementary Information Boron-doped graphene as high-efficiency counter electrode for dye-sensitized solar cells Haiqiu Fang #, Chang Yu #, Tingli Ma, and Jieshan Qiu* Carbon Research Laboratory,

More information

Supplementary Information. Hui-Seon Kim, Soo-Byung Ko, In-Hyuk Jang and Nam-Gyu Park*

Supplementary Information. Hui-Seon Kim, Soo-Byung Ko, In-Hyuk Jang and Nam-Gyu Park* Supplementary Information Improvement of Mass Transport of [Co(bpy) 3 ] II/III Redox Couple by Controlling Nanostructure of TiO 2 Film in Dye-Sensitized Solar Cell Hui-Seon Kim, Soo-Byung Ko, In-Hyuk Jang

More information

Supporting information

Supporting information Electronic Supplementary Material (ESI) for ChemComm. This journal is The Royal Society of Chemistry 2014 Supporting information Synthesis, Characterization and Photoelectrochemical properties of HAP Gang

More information

Interdisciplinary Graduate School, Nanyang Technological University, Singapore , Singapore.

Interdisciplinary Graduate School, Nanyang Technological University, Singapore , Singapore. Electronic Supplementary Material (ESI) for Nanoscale. This journalelectronic is TheSupplementary Royal Society Information of Chemistry (ESI) for 2014 Nanoscale. Triple-layer nanostructured WO 3 photoanodes

More information

Supplementary Figures

Supplementary Figures Supplementary Figures Supplementary Figure 1. AFM profiles of the charge transport and perovskite layers. AFM Image showing the thickness (y axis) of the layer with respect to the horizontal position of

More information

Área de Química Física, Universidad Pablo de Olavide, E-41013, Sevilla, Spain.

Área de Química Física, Universidad Pablo de Olavide, E-41013, Sevilla, Spain. Continuity Equation for the Simulation of the Current-Voltage Curve and the Time-Dependent Properties in Dye-Sensitized Solar Cells Supporting Information Juan A. Anta a, Jesús Idígoras a, Elena Guillén

More information

Electronic Supplementary Information

Electronic Supplementary Information Electronic Supplementary Information High Electrocatalytic Activity of Self-standing Hollow NiCo 2 S 4 Single Crystalline Nanorod Arrays towards Sulfide Redox Shuttles in Quantum Dot-sensitized Solar Cells

More information

Supplementary Information. Carolyn Richmonds, Megan Witzke, Brandon Bartling, Seung Whan Lee, Jesse Wainright,

Supplementary Information. Carolyn Richmonds, Megan Witzke, Brandon Bartling, Seung Whan Lee, Jesse Wainright, Supplementary Information Electron transfer reactions at the plasma-liquid interface Carolyn Richmonds, Megan Witzke, Brandon Bartling, Seung Whan Lee, Jesse Wainright, Chung-Chiun Liu, and R. Mohan Sankaran*,

More information

Proton-Coupled Electron Transfer Kinetics for the Hydrogen Evolution Reaction of Hangman Porphyrins

Proton-Coupled Electron Transfer Kinetics for the Hydrogen Evolution Reaction of Hangman Porphyrins Electronic Supplementary Information Proton-Coupled Electron Transfer Kinetics for the Hydrogen Evolution Reaction of Hangman Porphyrins Manolis M. Roubelakis, D. Kwabena Bediako, Dilek K. Dogutan and

More information

Enhances Photoelectrochemical Water Oxidation

Enhances Photoelectrochemical Water Oxidation -Supporting Information- Exposure of WO 3 Photoanodes to Ultraviolet Light Enhances Photoelectrochemical Water Oxidation Tengfei Li, Jingfu He, Bruno Peña, Curtis P. Berlinguette* Departments of Chemistry

More information

Anhydrous Proton Conductivities of Squaric Acid Derivatives

Anhydrous Proton Conductivities of Squaric Acid Derivatives Supporting Information for: Anhydrous Proton Conductivities of Squaric Acid Derivatives Dipankar Basak, Craig Versek, Daniel T. Toscano, Scott Christensen, Mark T. Tuominen, and Dhandapani Venkataraman

More information

Supporting Information for A potential-controlled switch on/off mechanism for selective excitation in mixed electrochemiluminescent systems

Supporting Information for A potential-controlled switch on/off mechanism for selective excitation in mixed electrochemiluminescent systems Supporting Information for A potential-controlled switch on/off mechanism for selective excitation in mixed electrochemiluminescent systems Egan H. Doeven, Elizabeth M. Zammit, Gregory J. Barbante, Paul

More information

Copper Bipyridyl Redox Mediators for Dye-Sensitized Solar Cells with High

Copper Bipyridyl Redox Mediators for Dye-Sensitized Solar Cells with High SUPPORTING INFORMATION Copper Bipyridyl Redox Mediators for Dye-Sensitized Solar Cells with High Photovoltage Yasemin Saygili, Magnus Söderberg, Norman Pellet, Fabrizio Giordano, Yiming Cao, Ana Belen

More information

Single-walled carbon nanotubes as nano-electrode and nanoreactor to control the pathways of a redox reaction

Single-walled carbon nanotubes as nano-electrode and nanoreactor to control the pathways of a redox reaction Electronic Supplementary Material (ESI) for ChemComm. This journal is The Royal Society of Chemistry 014 Supporting information Single-walled carbon nanotubes as nano-electrode and nanoreactor to control

More information

This material is based upon work supported by the National Science Foundation under Grant Number DUE

This material is based upon work supported by the National Science Foundation under Grant Number DUE This material is based upon work supported by the National Science Foundation under Grant Number DUE-1140469. Any opinions, findings, and conclusions or recommendations expressed in this material are those

More information

Supporting Information:

Supporting Information: Supporting Information: Enhancing Visible Light Photo-Oxidation of Water with TiO 2 Nanowire Arrays via Co-treatment with H 2 and NH 3 : Synergistic Effects between Ti 3+ and N. Son Hoang, Sean P. Berglund,

More information

A versatile electronic hole in one-electron oxidized Ni II bissalicylidene

A versatile electronic hole in one-electron oxidized Ni II bissalicylidene Electronic Supplementary Information for manuscript: A versatile electronic hole in one-electron oxidized Ni II bissalicylidene phenylenediamine complexes Olaf Rotthaus, Olivier Jarjayes,* Carlos Perez

More information

Supplementary Information

Supplementary Information Electronic Supplementary Material (ESI) for Dalton Transactions. This journal is The Royal Society of Chemistry 2017 Supplementary Information The electrochemical discrimination of pinene enantiomers by

More information

Shanghai Institute of Ceramics, Chinese Academy of Sciences, Dingxi, 1295, Changning,

Shanghai Institute of Ceramics, Chinese Academy of Sciences, Dingxi, 1295, Changning, Supporting Information for Achieving High Current Density of Perovskite Solar Cells by Modulating the Dominated Facets of Room Temperature DC Magnetron Sputtered TiO 2 Electron Extraction Layer Aibin Huang,

More information

Supporting Information

Supporting Information Supporting Information Solid-state Conversion of Processable 3,4-Ethylenedioxythiophene (EDOT) Containing Poly(arylsilane) Precursors to π-conjugated Conducting Polymers Jayesh G. Bokria, Arvind Kumar,

More information

Supporting Information

Supporting Information Electronic Supplementary Material (ESI) for Nanoscale. This journal is The Royal Society of Chemistry 2014 Engineering Cu 2 O/NiO/Cu 2 MoS 4 Hybrid Photocathode for H 2 Generation in Water Chen Yang, a,b

More information

All-Inorganic Perovskite Solar Cells

All-Inorganic Perovskite Solar Cells Supporting Information for: All-Inorganic Perovskite Solar Cells Jia Liang, Caixing Wang, Yanrong Wang, Zhaoran Xu, Zhipeng Lu, Yue Ma, Hongfei Zhu, Yi Hu, Chengcan Xiao, Xu Yi, Guoyin Zhu, Hongling Lv,

More information

Electronic Supplementary Information: Synthesis and Characterization of Photoelectrochemical and Photovoltaic Cu2BaSnS4 Thin Films and Solar Cells

Electronic Supplementary Information: Synthesis and Characterization of Photoelectrochemical and Photovoltaic Cu2BaSnS4 Thin Films and Solar Cells Electronic Supplementary Material (ESI) for Journal of Materials Chemistry C. This journal is The Royal Society of Chemistry 2017 Electronic Supplementary Information: Synthesis and Characterization of

More information

Supplementary Materials

Supplementary Materials Atomic layer-deposited tunnel oxide stabilizes silicon photoanodes for water oxidation Yi Wei Chen 1, Jonathan D. Prange 2, Simon Dühnen 2, Yohan Park 1, Marika Gunji 1, Christopher E. D. Chidsey 2, and

More information

PT/NI COUNTER-ELECTRODES WITH IMPROVED STABILITY FOR DYE SENSITIZED SOLAR CELLS

PT/NI COUNTER-ELECTRODES WITH IMPROVED STABILITY FOR DYE SENSITIZED SOLAR CELLS PT/NI COUNTER-ELECTRODES WITH IMPROVED STABILITY FOR DYE SENSITIZED SOLAR CELLS G. Syrrokostas, G. Leftheriotis and P. Yianoulis Energy and Environment Lab, Physics Department, University of Patras, Rion,

More information

Hydroxyethyl and Ester Co-functionalized Imidazolium Iodide for Highly Efficient Solid-State Dye-Sensitized Solar Cells

Hydroxyethyl and Ester Co-functionalized Imidazolium Iodide for Highly Efficient Solid-State Dye-Sensitized Solar Cells Electronic Supplementary Information (ESI) for Hydroxyethyl and Ester Co-functionalized Imidazolium Iodide for Highly Efficient Solid-State Dye-Sensitized Solar Cells Juan Li, Hong wang, Gang Zhou and

More information

SnSe 2 quantum dot sensitized solar cells prepared employing molecular metal chalcogenide as precursors

SnSe 2 quantum dot sensitized solar cells prepared employing molecular metal chalcogenide as precursors Electronic SnSe 2 quantum dot sensitized solar cells prepared employing molecular metal chalcogenide as precursors Xuechao Yu, Jun Zhu,* Yaohong Zhang, Jian Weng, Linhua Hu and Songyuan Dai* Key Laboratory

More information

Supporting Information Reagents. Physical methods. Synthesis of ligands and nickel complexes.

Supporting Information Reagents. Physical methods. Synthesis of ligands and nickel complexes. Supporting Information for Catalytic Water Oxidation by A Bio-inspired Nickel Complex with Redox Active Ligand Dong Wang* and Charlie O. Bruner Department of Chemistry and Biochemistry and Center for Biomolecular

More information

Photoelectrochemical CO 2 reduction using a Ru(II)-Re(I) multinuclear metal complex on a p-type semiconducting NiO electrode

Photoelectrochemical CO 2 reduction using a Ru(II)-Re(I) multinuclear metal complex on a p-type semiconducting NiO electrode Electronic Supplementary Material (ESI) for ChemComm. This journal is The Royal Society of Chemistry 2015 Photoelectrochemical CO 2 reduction using a Ru(II)-Re(I) multinuclear metal complex on a p-type

More information

Supplementary Figure 1 XRD pattern of a defective TiO 2 thin film deposited on an FTO/glass substrate, along with an XRD pattern of bare FTO/glass

Supplementary Figure 1 XRD pattern of a defective TiO 2 thin film deposited on an FTO/glass substrate, along with an XRD pattern of bare FTO/glass Supplementary Figure 1 XRD pattern of a defective TiO 2 thin film deposited on an FTO/glass substrate, along with an XRD pattern of bare FTO/glass and a reference pattern of anatase TiO 2 (JSPDS No.: 21-1272).

More information

Carbon powder modification. Preparation of NS1, NS2, NS3 and NS4.

Carbon powder modification. Preparation of NS1, NS2, NS3 and NS4. SUPPORTING INFORMATION EXPERIMENTAL SECTION Reagents. Carbon powder (Norit-S50) was purchased from Norit, 4-aminobenzene sulfonic acid (99%), lithium perchlorate (99%, potassium ferricyanide (99%) and

More information

Supplementary Figure 1. Mass spectrum (top) and 1 H NMR spectrum (bottom, in CDCl 3 ) of [ppy 2 IrNH] + PF 6 -.

Supplementary Figure 1. Mass spectrum (top) and 1 H NMR spectrum (bottom, in CDCl 3 ) of [ppy 2 IrNH] + PF 6 -. Supplementary Figure 1. Mass spectrum (top) and 1 H NMR spectrum (bottom, in CDCl 3 ) of [ppy 2 IrNH] + PF 6 -. 1 Supplementary Figure 2. Mass spectrum (top) and 1 H NMR spectrum (bottom, in CDCl 3 ) of

More information

Hysteresis-free low-temperature-processed planar perovskite solar cells with 19.1% efficiency

Hysteresis-free low-temperature-processed planar perovskite solar cells with 19.1% efficiency Electronic Supplementary Material (ESI) for Energy & Environmental Science. This journal is The Royal Society of Chemistry 2016 Supplementary Information Hysteresis-free low-temperature-processed planar

More information

Supplementary Information

Supplementary Information Electronic Supplementary Material (ESI) for Journal of Materials Chemistry A. This journal is The Royal Society of Chemistry 2017 Supplementary Information Enhanced Charge Collection with Passivation of

More information

Supporting Information for: Proton Reduction using a Hydrogenase-Modified Nanoporous Black Silicon Photoelectrode

Supporting Information for: Proton Reduction using a Hydrogenase-Modified Nanoporous Black Silicon Photoelectrode Supporting Information for: Proton Reduction using a Hydrogenase-Modified Nanoporous Black Silicon Photoelectrode Yixin Zhao,, Nicholas C. Anderson, Michael W. Ratzloff, David W. Mulder, Kai Zhu, John

More information

Bulk graphdiyne powder applied for highly efficient lithium storage

Bulk graphdiyne powder applied for highly efficient lithium storage Electronic Supplementary Material (ESI) for ChemComm. This journal is The Royal Society of Chemistry 2014 Bulk graphdiyne powder applied for highly efficient lithium storage Shengliang Zhang, ab Huibiao

More information

Supporting Information

Supporting Information Electronic Supplementary Material (ESI) for Journal of Materials Chemistry A. This journal is The Royal Society of Chemistry 2015 Supporting Information 1. Synthesis of perovskite materials CH 3 NH 3 I

More information

Electronic Supplementary Information

Electronic Supplementary Information Electronic Supplementary Material (ESI) for Chemical Communications. This journal is The Royal Society of Chemistry 2015 Electronic Supplementary Information Phosphorus-Doped CoS 2 Nanosheet Arrays as

More information

ELECTRONIC SUPPLEMENTARY INFORMATION. Synthesis and Dye Sensitized Solar Cell Applications of Bodipy Derivatives with Bisdimethylfluorenyl

ELECTRONIC SUPPLEMENTARY INFORMATION. Synthesis and Dye Sensitized Solar Cell Applications of Bodipy Derivatives with Bisdimethylfluorenyl Electronic Supplementary Material (ESI) for New Journal of Chemistry. This journal is The Royal Society of Chemistry and the Centre National de la Recherche Scientifique 2015 ELECTRONIC SUPPLEMENTARY INFORMATION

More information

Cho Fai Jonathan Lau, Xiaofan Deng, Qingshan Ma, Jianghui Zheng, Jae S. Yun, Martin A.

Cho Fai Jonathan Lau, Xiaofan Deng, Qingshan Ma, Jianghui Zheng, Jae S. Yun, Martin A. Supporting Information CsPbIBr 2 Perovskite Solar Cell by Spray Assisted Deposition Cho Fai Jonathan Lau, Xiaofan Deng, Qingshan Ma, Jianghui Zheng, Jae S. Yun, Martin A. Green, Shujuan Huang, Anita W.

More information

Novel Supercapacitor Materials Including OLED emitters

Novel Supercapacitor Materials Including OLED emitters Electronic Supplementary Material (ESI) for New Journal of Chemistry. This journal is The Royal Society of Chemistry and the Centre National de la Recherche Scientifique 2015 Supporting Information Novel

More information

Nitroxide polymer networks formed by Michael addition: on site-cured electrode-active organic coating

Nitroxide polymer networks formed by Michael addition: on site-cured electrode-active organic coating Supporting information for: Nitroxide polymer networks formed by Michael addition: on site-cured electrode-active organic coating Takeshi Ibe, a Rainer B. Frings, b Artur Lachowicz, b Soichi Kyo, a and

More information

GRAPHENE EFFECT ON EFFICIENCY OF TiO 2 -BASED DYE SENSITIZED SOLAR CELLS (DSSC)

GRAPHENE EFFECT ON EFFICIENCY OF TiO 2 -BASED DYE SENSITIZED SOLAR CELLS (DSSC) Communications in Physics, Vol. 26, No. 1 (2016), pp. 43-49 DOI:10.15625/0868-3166/26/1/7961 GRAPHENE EFFECT ON EFFICIENCY OF TiO 2 -BASED DYE SENSITIZED SOLAR CELLS (DSSC) NGUYEN THAI HA, PHAM DUY LONG,

More information

Supporting Information. High Wettable and Metallic NiFe-Phosphate/Phosphide Catalyst Synthesized by

Supporting Information. High Wettable and Metallic NiFe-Phosphate/Phosphide Catalyst Synthesized by Electronic Supplementary Material (ESI) for Journal of Materials Chemistry A. This journal is The Royal Society of Chemistry 2018 Supporting Information High Wettable and Metallic NiFe-Phosphate/Phosphide

More information

Supplementary Information. Solvent-Dependent Conductance Decay Constants in Single Cluster. Junctions

Supplementary Information. Solvent-Dependent Conductance Decay Constants in Single Cluster. Junctions Electronic Supplementary Material (ESI) for Chemical Science. This journal is The Royal Society of Chemistry 2016 Supplementary Information Solvent-Dependent Conductance Decay Constants in Single Cluster

More information

N-doped Carbon-Coated Cobalt Nanorod Arrays Supported on a Titanium. Mesh as Highly Active Electrocatalysts for Hydrogen Evolution Reaction

N-doped Carbon-Coated Cobalt Nanorod Arrays Supported on a Titanium. Mesh as Highly Active Electrocatalysts for Hydrogen Evolution Reaction Electronic Supplementary Material (ESI) for Journal of Materials Chemistry A. This journal is The Royal Society of Chemistry 2014 Electronic Supplementary Information N-doped Carbon-Coated Cobalt Nanorod

More information

Lithium-ion Batteries Based on Vertically-Aligned Carbon Nanotubes and Ionic Liquid

Lithium-ion Batteries Based on Vertically-Aligned Carbon Nanotubes and Ionic Liquid Electronic Supplementary Information Lithium-ion Batteries Based on Vertically-Aligned Carbon Nanotubes and Ionic Liquid Electrolytes Wen Lu, * Adam Goering, Liangti Qu, and Liming Dai * 1. Synthesis of

More information

An Ideal Electrode Material, 3D Surface-Microporous Graphene for Supercapacitors with Ultrahigh Areal Capacitance

An Ideal Electrode Material, 3D Surface-Microporous Graphene for Supercapacitors with Ultrahigh Areal Capacitance Supporting Information An Ideal Electrode Material, 3D Surface-Microporous Graphene for Supercapacitors with Ultrahigh Areal Capacitance Liang Chang, 1 Dario J. Stacchiola 2 and Yun Hang Hu 1, * 1. Department

More information

Perovskite solar cells on metal substrate with high efficiency

Perovskite solar cells on metal substrate with high efficiency Electronic Supplementary Material (ESI) for Journal of Materials Chemistry A. This journal is The Royal Society of Chemistry 2015 Electronic Supporting Information (ESI) for Perovskite solar cells on metal

More information

SUPORTING INFORMATION The Cathodic Voltammetric Behavior of Pillar[5]quinone in Nonaqueous Media. Symmetry Effects on the Electron Uptake Sequence.

SUPORTING INFORMATION The Cathodic Voltammetric Behavior of Pillar[5]quinone in Nonaqueous Media. Symmetry Effects on the Electron Uptake Sequence. SUPORTING INFORMATION The Cathodic Voltammetric Behavior of Pillar[5]quinone in Nonaqueous Media. Symmetry Effects on the Electron Uptake Sequence. Beijun Cheng and Angel E. Kaifer* Department of Chemistry

More information

Nanomaterials and Chemistry Key Laboratory, Wenzhou University, Wenzhou, (P. R. China).

Nanomaterials and Chemistry Key Laboratory, Wenzhou University, Wenzhou, (P. R. China). Electronic Supplementary Material (ESI) for Nanoscale Synergistically enhanced activity of graphene quantum dot/multi-walled carbon nanotube composites as metal-free catalysts for oxygen reduction reaction

More information

Electronic Supplementary Information (ESI)

Electronic Supplementary Information (ESI) Electronic Supplementary Material (ESI) for Journal of Materials Chemistry A. This journal is The Royal Society of Chemistry 2018 Electronic Supplementary Information (ESI) Sifting α,ω-di(thiophen-2-yl)alkanes

More information

Stability of Organic Materials. Anders Hagfeldt Dept. of Physical Chemistry Ångström Solar Center Uppsala University

Stability of Organic Materials. Anders Hagfeldt Dept. of Physical Chemistry Ångström Solar Center Uppsala University Stability of Organic Materials Anders Hagfeldt Dept. of Physical Chemistry Ångström Solar Center Uppsala University Anders.Hagfeldt@fki.uu.se Specific features of DSC Charge separation and transport are

More information

Nitrogen-doped Activated Carbon for High Energy Hybridtype Supercapacitor

Nitrogen-doped Activated Carbon for High Energy Hybridtype Supercapacitor Electronic Supplementary Material (ESI) for Energy & Environmental Science. This journal is The Royal Society of Chemistry 2015 SUPPORTING INFORMATION Nitrogen-doped Activated Carbon for High Energy Hybridtype

More information

PERFORMANCE OF NANO STRUCTURED DYE-SENSITIZED SOLAR CELL UTILIZING NATURAL SENSITIZER OPERATED WITH PLATINUM AND CARBON COATED COUNTER ELECTRODES

PERFORMANCE OF NANO STRUCTURED DYE-SENSITIZED SOLAR CELL UTILIZING NATURAL SENSITIZER OPERATED WITH PLATINUM AND CARBON COATED COUNTER ELECTRODES Digest Journal of Nanomaterials and Biostructures Vol. 4, No. 4, December 2009, p. 723-727 PERFORMANCE OF NANO STRUCTURED DYE-SENSITIZED SOLAR CELL UTILIZING NATURAL SENSITIZER OPERATED WITH PLATINUM AND

More information

A new concept of charging supercapacitors based on a photovoltaic effect

A new concept of charging supercapacitors based on a photovoltaic effect Electronic Supplementary Material (ESI) for ChemComm. This journal is The Royal Society of Chemistry 2016 Electronic supporting information (ESI) A new concept of charging supercapacitors based on a photovoltaic

More information

Supporting Information. Benzophenone-based small molecular cathode interlayers with various polar groups for efficient polymer solar cells

Supporting Information. Benzophenone-based small molecular cathode interlayers with various polar groups for efficient polymer solar cells Electronic Supplementary Material (ESI) for Journal of Materials Chemistry A. This journal is The Royal Society of Chemistry 2017 Supporting Information Benzophenone-based small molecular cathode interlayers

More information

One polymer for all: Benzotriazole Containing Donor-Acceptor Type Polymer as a Multi-Purpose Material

One polymer for all: Benzotriazole Containing Donor-Acceptor Type Polymer as a Multi-Purpose Material One polymer for all: Benzotriazole Containing Donor-Acceptor Type Polymer as a Multi-Purpose Material Abidin Balan a, Derya Baran a, Gorkem Gunbas a,b, Asuman Durmus a,b, Funda Ozyurt a and Levent Toppare

More information

Nickel Phosphine Catalysts with Pendant Amines. for the Electrocatalytic Oxidation of Alcohols

Nickel Phosphine Catalysts with Pendant Amines. for the Electrocatalytic Oxidation of Alcohols Electronic Supplementary Material (ESI) for ChemComm. This journal is The Royal Society of Chemistry 2015 Nickel Phosphine Catalysts with Pendant Amines for the Electrocatalytic Oxidation of Alcohols Charles

More information

Supporting Information

Supporting Information Supporting Information Molecular Engineering of Triphenylamine-Based Non-fullerene Electron Transport Materials for Efficient Rigid and Flexible Perovskite Solar Cells Cheng Chen, a # Hongping Li, a #

More information

Pyridine-functionalized Fullerene Additive Enabling Coordination. Bulk Heterojunction Solar Cells

Pyridine-functionalized Fullerene Additive Enabling Coordination. Bulk Heterojunction Solar Cells Electronic Supplementary Material (ESI) for Journal of Materials Chemistry A. This journal is The Royal Society of Chemistry 2019 Electronic Supplemental Information for Pyridine-functionalized Fullerene

More information

Efficient Grain Boundary Suture by Low-cost Tetra-ammonium Zinc Phthalocyanine for Stable Perovskite Solar Cells with Expanded Photo-response

Efficient Grain Boundary Suture by Low-cost Tetra-ammonium Zinc Phthalocyanine for Stable Perovskite Solar Cells with Expanded Photo-response Supporting information for Efficient Grain Boundary Suture by Low-cost Tetra-ammonium Zinc Phthalocyanine for Stable Perovskite Solar Cells with Expanded Photo-response Jing Cao 1,*,, Congping Li 1,, Xudong

More information

A One-Step Low Temperature Processing Route for Organolead Halide Perovskite Solar Cells

A One-Step Low Temperature Processing Route for Organolead Halide Perovskite Solar Cells Electronic Supplementary Information A One-Step Low Temperature Processing Route for Organolead Halide Perovskite Solar Cells Matthew J. Carnie, a Cecile Charbonneau, a Matthew L. Davies, b Joel Troughton,

More information

Supporting Information. Room temperature aqueous Sb 2 S 3 synthesis for inorganic-organic sensitized solar cells with efficiencies of up to 5.

Supporting Information. Room temperature aqueous Sb 2 S 3 synthesis for inorganic-organic sensitized solar cells with efficiencies of up to 5. Electronic Supplementary Material (ESI) for ChemComm. This journal is The Royal Society of Chemistry 2015 Supporting Information Room temperature aqueous Sb 2 S 3 synthesis for inorganic-organic sensitized

More information

Supporting Information. Synthesis of Metallic Magnesium Nanoparticles by Sonoelectrochemistry. Iris Haas and Aharon Gedanken*

Supporting Information. Synthesis of Metallic Magnesium Nanoparticles by Sonoelectrochemistry. Iris Haas and Aharon Gedanken* Supporting Information Synthesis of Metallic Magnesium Nanoparticles by Sonoelectrochemistry Iris Haas and Aharon Gedanken* Experimental Materials and chemical preparation The Gringard reagents, ethyl-mgcl

More information

Solution reduction synthesis of amine terminated carbon quantum dots

Solution reduction synthesis of amine terminated carbon quantum dots Electronic Supplementary Material (ESI) for RSC Advances. This journal is The Royal Society of Chemistry 2014 Solution reduction synthesis of amine terminated carbon quantum dots Keith Linehan and Hugh

More information

Highly efficient hydrogen evolution of platinum via tuning the interfacial dissolved-gas concentration

Highly efficient hydrogen evolution of platinum via tuning the interfacial dissolved-gas concentration Electronic Supplementary Material (ESI) for Chemical Communications. This journal is The Royal Society of Chemistry 2018 Supporting Information for Highly efficient hydrogen evolution of platinum via tuning

More information

Fig. S1 The Structure of RuCE(Left) and RuCA (Right)

Fig. S1 The Structure of RuCE(Left) and RuCA (Right) Supporting information Fabrication of CZTS and CZTSSe photocathode CZTS photocathode was fabricated by sulfurization of a stacked film containing Cu, Zn and Sn. The stacked film was fabricated on Mo coated

More information

Supporting information

Supporting information Supporting information Improvement of Transparent Conducting Performance on Oxygen- Activated Fluorine-Doped Tin Oxide Electrodes Formed by Horizontal Ultrasonic Spray Pyrolysis Deposition Bon-Ryul Koo,

More information

Supplementary Information

Supplementary Information Supplementary Information Supplementary Figures Supplementary Figure S1. Change in open circuit potential ( OCP) of 1% W-doped BiVO 4 photoanode upon illumination with different light intensities. Above

More information

Dual redox catalysts for oxygen reduction and evolution reactions: towards a redox flow Li-O 2 battery

Dual redox catalysts for oxygen reduction and evolution reactions: towards a redox flow Li-O 2 battery Electronic Supplementary Material (ESI) for Chemical Communications. This journal is The Royal Society of Chemistry 2015 Supporting Information Dual redox catalysts for oxygen reduction and evolution reactions:

More information

VI. EIS STUDIES LEAD NANOPOWDER

VI. EIS STUDIES LEAD NANOPOWDER VI. EIS STUDIES LEAD NANOPOWDER 74 26. EIS Studies of Pb nanospheres Impedance (valid for both DC and AC), a complex resistance occurs when current flows through a circuit (composed of various resistors,

More information

Effect of Platinum loaded Multi Walled Carbon Nanotube Counter Electrode on Dye Sensitized Solar Cell

Effect of Platinum loaded Multi Walled Carbon Nanotube Counter Electrode on Dye Sensitized Solar Cell Effect of Platinum loaded Multi Walled Carbon Nanotube Counter Electrode on Dye Sensitized Solar Cell Hemant Adhale 1 and Amar Pandhare 2 1,2 Department of Mechanical Engineering, Smt. Kashibai Navale

More information

Light cured networks containing metal organic frameworks as efficient and durable polymer electrolytes for dye-sensitized solar cells

Light cured networks containing metal organic frameworks as efficient and durable polymer electrolytes for dye-sensitized solar cells Light cured networks containing metal organic frameworks as efficient and durable polymer electrolytes for dye-sensitized solar cells Federico Bella 1,2 *, Roberta Bongiovanni 1, R. Senthil Kumar 3, M.

More information

Mesoporous SnO 2 Single Crystals as an Effective Electron Collector for Perovskite Solar Cells

Mesoporous SnO 2 Single Crystals as an Effective Electron Collector for Perovskite Solar Cells Electronic Supplementary Material (ESI) for Physical Chemistry Chemical Physics. This journal is the Owner Societies 2015 Mesoporous SnO 2 Single Crystals as an Effective Electron Collector for Perovskite

More information

Hierarchical vertically-oriented graphene as a catalytic. counter electrode in dye-sensitized solar cells

Hierarchical vertically-oriented graphene as a catalytic. counter electrode in dye-sensitized solar cells Hierarchical vertically-oriented graphene as a catalytic counter electrode in dye-sensitized solar cells Kehan Yu 1, Zhenhai Wen 1, Haihui Pu 1, Ganhua Lu 1, Zheng Bo 2, Haejune Kim 1, Yuanyuan Qian 1,

More information

Supporting Information The Roles of Alkyl Halide Additives in Enhancing Perovskite Solar Cell Performance

Supporting Information The Roles of Alkyl Halide Additives in Enhancing Perovskite Solar Cell Performance Electronic Supplementary Material (ESI) for Journal of Materials Chemistry A. This journal is The Royal Society of Chemistry 2014 Supporting Information The Roles of Alkyl Halide Additives in Enhancing

More information

Supporting Information

Supporting Information Supporting Information Facet-Selective Deposition of FeO x on α-moo 3 Nanobelts for Lithium Storage Yao Yao, 1 Nuo Xu, 2 Doudou Guan, 1 Jiantao Li, 1 Zechao Zhuang, 1 Liang Zhou,*,1 Changwei Shi 1, Xue

More information

Organo-metal halide perovskite-based solar cells with CuSCN as inorganic hole selective contact

Organo-metal halide perovskite-based solar cells with CuSCN as inorganic hole selective contact Electronic Supplementary Material (ESI) for Journal of Materials Chemistry A. This journal is The Royal Society of Chemistry 214 Organo-metal halide perovskite-based solar cells with CuSCN as inorganic

More information

Cobalt-Porphyrin /Dansyl Piperazine Complex Coated Filter. Paper for Turn on Fluorescence Sensing of Ammonia Gas

Cobalt-Porphyrin /Dansyl Piperazine Complex Coated Filter. Paper for Turn on Fluorescence Sensing of Ammonia Gas Electronic Supplementary Material (ESI) for RSC Advances. This journal is The Royal Society of Chemistry 215 Electronic Supplementary Information Cobalt-Porphyrin /Dansyl Piperazine Complex Coated Filter

More information

1+2 on GHD (5 µl) Volume 1+2 (µl) 1 on GHD 1+2 on GHD

1+2 on GHD (5 µl) Volume 1+2 (µl) 1 on GHD 1+2 on GHD 1+2 on GHD (20 µl) 1+2 on GHD (15 µl) 1+2 on GHD (10 µl) 1+2 on GHD (5 µl) Volume 1+2 (µl) 1 on GHD 1+2 on GHD Supplementary Figure 1 UV-Vis measurements a. UV-Vis spectroscopy of drop-casted volume of

More information

SUPPORTING INFORMATION

SUPPORTING INFORMATION SUPPORTIG IFORMATIO [1,2,4]Triazolo[1,5-a]pyridine-based Host Materials for Green Phosphorescent and Delayed-Fluorescence OLEDs with Low Efficiency Roll-off Wenxuan Song, a Yi Chen, a Qihao Xu, a Haichuan

More information

Heterogeneous electron transfer at Au/SAM junctions in a room-temperature ionic liquid under pressure

Heterogeneous electron transfer at Au/SAM junctions in a room-temperature ionic liquid under pressure Supporting Information Heterogeneous electron transfer at Au/SAM junctions in a room-temperature ionic liquid under pressure Tina D. Dolidze, Dimitri E. Khoshtariya,* Peter Illner and Rudi van Eldik* a)

More information

Electronic Supplementary Information (ESI)

Electronic Supplementary Information (ESI) Electronic Supplementary Material (ESI) for Chemical Science. This journal is The Royal Society of Chemistry 2016 Electronic Supplementary Information (ESI) Indolo[3,2-b]indole-based Crystalline Hole Transporting

More information

e - Galvanic Cell 1. Voltage Sources 1.1 Polymer Electrolyte Membrane (PEM) Fuel Cell

e - Galvanic Cell 1. Voltage Sources 1.1 Polymer Electrolyte Membrane (PEM) Fuel Cell Galvanic cells convert different forms of energy (chemical fuel, sunlight, mechanical pressure, etc.) into electrical energy and heat. In this lecture, we are interested in some examples of galvanic cells.

More information

Defect mitigation of Solution-Processed 2D WSe 2 Nano-flakes for Solar-to- Hydrogen Conversion

Defect mitigation of Solution-Processed 2D WSe 2 Nano-flakes for Solar-to- Hydrogen Conversion Supporting information for: Defect mitigation of Solution-Processed 2D WSe 2 Nano-flakes for Solar-to- Hydrogen Conversion Xiaoyun Yu, Néstor Guijarro, Melissa Johnson, and Kevin Sivula* Laboratory for

More information

Supporting information

Supporting information Electronic Supplementary Material (ESI) for Journal of Materials Chemistry A. This journal is The Royal Society of Chemistry 2015 Supporting information The Assembly of Vanadium (IV)-Substituted Keggin-type

More information

Supporting Information

Supporting Information Electronic Supplementary Material (ESI) for Journal of Materials Chemistry A. This journal is The Royal Society of Chemistry 2015 Supporting Information Engineering of Hole-selective Contact for Low Temperature-Processed

More information

Supporting Information

Supporting Information Supporting Information Enhanced Thermal Stability in Perovskite Solar Cells by Assembling 2D/3D Stacking Structures Yun Lin 1, Yang Bai 1, Yanjun Fang 1, Zhaolai Chen 1, Shuang Yang 1, Xiaopeng Zheng 1,

More information

Performance of nano structured dye-sensitized solar cell utilizing natural sensitizer operated with platinum and carbon coated counter electrodes

Performance of nano structured dye-sensitized solar cell utilizing natural sensitizer operated with platinum and carbon coated counter electrodes International Journal of ChemTech Research CODEN( USA): IJCRGG ISSN : 0974-4290 Vol.2, No.1, pp 615-619, Jan-Mar 2010 Performance of nano structured dye-sensitized solar cell utilizing natural sensitizer

More information

High performance carbon based printed perovskite solar cells with humidity assisted thermal treatment

High performance carbon based printed perovskite solar cells with humidity assisted thermal treatment Electronic Supplementary Material (ESI) for Journal of Materials Chemistry A. This journal is The Royal Society of Chemistry 2017 Electronic Supplementary Information High performance carbon based printed

More information