Effect of Mechanical Stress on Spiropyran-Merocyanine Reaction Kinetics. in a Thermoplastic Polymer

Size: px
Start display at page:

Download "Effect of Mechanical Stress on Spiropyran-Merocyanine Reaction Kinetics. in a Thermoplastic Polymer"

Transcription

1 Supporting Information for: Effect of Mechanical Stress on Spiropyran-Merocyanine Reaction Kinetics in a Thermoplastic Polymer Tae Ann Kim,, Brett A. Beiermann,, Scott R. White,, Nancy R. Sottos *,, Department of Materials Science and Engineering, and Aerospace Engineering, University of Illinois at Urbana Champaign, Urbana, Illinois 61801, United States Beckman Institute of Advanced Science and Technology, University of Illinois at Urbana Champaign, Urbana, Illinois 61801, United States 1. General experimental details Synthesis of spiropyran-linked polyurethane mg of dihyrdoxy spiropyran (SP) and 36 mg of 1,4- diazabicyclo[2.2.2]octane (DABCO: 99%, Sigma-Aldrich) were dissolved in 30 ml of tetrahydrofuran (THF: anhydrous, 99.8%, Sigma-Aldrich) mg of 4,4 -methylenebis(phenylisocyanate) (MDI: 98%, Sigma-Aldrich) dissolved in 10 ml of THF was added to the solution and stirred at 60 o C for 1 h. The reaction mixture was filtered through a 0.45 µm syringe filter and added into a solution of 9.27 g of poly(ethylene glycol) (PEG, MW=200, Sigma-Aldrich) and 4.5 mg of DABCO in 4.5 ml of THF. Excess THF was removed under vacuum by slowly increasing temperature from RT to 70 o C to avoid bumping. After complete removal of the solvent, 7.23 ml of hexamethylenediisocyante (HDI, 98%, Al-

2 drich) was added into the mixture as a chain extender under N2, poured into a Delrin mold, and degassed. The mold was kept in an N2-purged oven at 70 oc for 2 days. The final dog-bone shaped tensile specimens (Figure S1) were detached from the mold and kept under ambient conditions for 24 h before testing. Characterization. The molecular weight and polydispersity of SP-PU were measured by gel permeation chromatography (GPC, Waters) with a refracted index detector (Waters 2414) at a flow rate of 1 ml/min. THF was used as an eluent, and the calibration of molecular weights was done by polystyrene standards. Figure S1. Pristine dog-bone shaped tensile specimens after removal from the mold (left). Observed color change due to keeping the specimens in the dark (right). 2

3 2. Fluorescence measurement Combined mechanical and optical testing setup. Fluorescence images of specimens were acquired during uniaxial tensile loading. Tensile force was applied to the samples using a horizontally oriented uniaxial load frame (IMAC Motion Control Corp.), with both actuators translating simultaneously in opposite directions so that the center of a tensile sample remained in the field of view. The pulling speed was set to 0.1 s -1 until the desired deformation ratio (stretch) was reached. Applied force was measured by 50-lb capacity load cell (Honeywell Sensotec). The corresponding true stress was calculated from in situ optical measurement of the dimensions of the deformed samples. 1 A 532-nm laser diode was used for the excitation light source, with power set to 2.5 mw using polarization optics. The light was circularly polarized prior to incidence on the sample. During the measurement, exposure was constant for all samples. Fluorescence images were recorded on a color camera (AVT Stingray F504c) and all measurement conditions were controlled by NI LabVIEW. Image analysis for fluorescence. Captured fluorescence images were analyzed by an image analysis program (ImageJ). Fluorescence intensity was calculated by the red channel intensity of the color image, averaged over pixels in the gauge section of the sample. To normalize fluorescence intensity, the background intensity was first subtracted from the obtained value. Then, each value was divided by the maximum intensity value. At least 3 samples were measured for the experiments and the rate constants were averaged. 3

4 Figure S2. Engineering stress (The load divided by the initial cross-sectional area of the specimen) and thickness-corrected fluorescence intensity as a function of deformation ratio. Figure S3. Applied deformation ratio (λ), corresponding load and raw fluorescence intensity as a function of time. t 0 is defined when the deformation ratio reaches a constant value. 4

5 Fluorescence changes under dark conditions or during green (532 nm) laser exposure. To investigate the deactivation rate of MC under dark conditions, we measured the fluorescence intensity of a fully activated specimen by UV light (black dashed line in Fig. S4). The normalized fluorescence intensity did not change significantly after more than 9 hours, indicating that the transition from MC to SP in the dark is insignificant over the time scale of our experiments. Also, we measured the activation behavior of a fully bleached specimen under green laser (532nm) exposure (red dashed line in Fig. S4). No noticeable fluorescence increase was observed, indicating the activation of SP is significantly suppressed by the exposure of green light. Figure S4. Fluorescence intensity changes of activated samples under dark conditions (black square) and fully bleached specimen exposed to a green (532 nm) laser (red circle). The fluorescence imaging was started at t=0s. 5

6 Residual fluorescence intensity decay of specimens held at fixed deformation ratios after exposure to green (532 nm) laser light. Due to the thickness change at different deformation ratios (stretch), the fluorescence intensity was normalized by the maximum value for each experiment. Also, the background fluorescence intensity was not subtracted to reveal the change in the magnitude of fluorescence intensity at different deformation ratios (stretch). Figure S5. Normalized fluorescence intensity changes for different deformation ratios during continuous exposure to green (532 nm) laser light. Here, t 0 defines the time when the deformation ratio (λ) reaches a constant value. 6

7 3. Stress relaxation of SP-PU Specimens were loaded under displacement control to a constant deformation ratio (stretch). The corresponding true stress was calculated from in situ optical measurement of the dimensions of the deformed samples. 1 The true stress relaxed over the first 25 min of the experiment and the relaxation response was fitted to a generalized Maxwell model (OriginPro (32-bit) b215). Three Maxwell elements (Table S1) were sufficient to fit the stress data with a coefficient of determination of Figure S6. Stress relaxation behavior of SP-PU under different deformation ratios (λ). Here, t 0 denotes the time when the λ reaches a desired value. 7

8 Table S1. Summary of the generalized Maxwell model parameters for SP-PU = σ n exp t σ t n τ n +σ 0 <Generalized Maxwell models> σ 0 σ 1 σ 2 τ 2 τ 3 τ 3 τ (MPa) (MPa) 1 (min) (MPa) (min) (MPa) (min) λ= λ= λ= λ= λ= λ= λ=

9 4. Calculation of rate constants and activation energies for both reactions SP k f MC (1) k r Rate constants. The total concentration of SP in a fully bleached state, [SP] 0, or total concentration of MC in a fully activated state, [MC] 0 is the sum of the current concentration of spiropyran, [SP(t)], and merocyanine, [MC(t)]. [ SP] 0 = [ MC] 0 = SP( t) + MC t (2) Under dark conditions, the reverse reaction is negligible and we only consider the forward reaction. For the forward reaction, the differential form of the rate law is, d MC t dt = k f SP( t) = k f SP ([ ] 0 MC( t) ) (3) After rearranging and integrating the equation from (0 to t, and 0 to [MC(t)]), we calculate the forward rate constant from, MC t = SP ( ) [ ] 0 1 exp k f t (4) During exposure to green (532 nm) laser light, the transition from SP to MC is insignificant. Hence, we assume the following form of the differential form of the rate law, d!" SP t # $ dt = k r MC( t)!" # $ = d SP ([ ] 0!" MC( t) # $ ) dt (5) After rearranging and integrating the equation from (0 to t, and [MC] 0 to [MC(t)]), we find the final formula of the reverse rate constant:!" MC( t) # $ = [ MC] 0 exp( k r t) (6) 9

10 Assuming that fluorescence intensity (I fl ) divided by the maximum fluorescence intensity (I fl,max ) is proportional to the relative concentration of MC, the concentration terms in Eqs. (2)-(6), are replaced by the fluorescence intensity.!" MC t # $ = MC t!" SP t # $0 MC!" # $ = I fl ( t) [ ] 0 = I fl ( t) [ ] 0!" MC t # $ MC ( ) (7) I fl,max = 1 exp k f t I fl,max = exp k r t (8) After normalizing the fluorescence intensity (PL) for each stress value, the data are fitted to Eqs. (7) and (8) using OriginPro (32-bit) b215. Figure S7. Representative change in normalized fluorescence intensity (SP to MC) under different average stress values (black square) and corresponding fit to Eq. (7) (red line). Here, t 0 corresponds to the time when the fluorescence imaging was started for the forward reaction kinetics. 10

11 Figure S8. Representative change in normalized fluorescence(mc to SP) under different stress values and corresponding fit to Eq. (8) (red line). Here, t 0 corresponds to the time when the fluorescence imaging was started for the reverse reaction kinetics. Activation energies. Both forward activation energy (ΔE a,f ) and reverse activation energy (ΔE a,r ) are assumed to be a linear combination of the inherent thermal activation energy, ΔE 0, the effect of the applied mechanical load, ΔE mech, and a photochemical term, ΔE λ,f : ΔE a, f = ΔE 0, f + ΔE λ, f + ΔE mech, f (9) ΔE a,r = ΔE 0,r + ΔE λ,r + ΔE mech,r (10) According to the Eyring-Polanyi equation, a reaction constant can be expressed as a function of activation energy: k f k T b h exp ΔE a, f = k T b k b T h exp ΔE 0, f + ΔE λ, f + ΔE mech, f (11) k b T 11

12 k r k bt h exp ΔE a,r = k bt k b T h exp ΔE 0,r + ΔE λ,r + ΔE mech,r (12) k b T The dependence of activation energy on an applied stress is assumed linear. By rearranging the equation and using the Taylor series approximation of exponential term, we arrive at Equation (5) in the main article. k f = k T b h exp ΔE 0, f + ΔE λ, f exp ΔE mech, f = k σ =0, f exp ΔE mech, f k σ =0, f 1 ΔE mech, f = k σ =0, f 1 σ v * f k b T k b T (13) k r = k bt h exp ΔE 0,r + ΔE λ,r exp ΔE mech,r = k σ =0,r exp ΔE mech,r k σ =0,r 1 ΔE mech,r = k σ =0, f 1 σ v * r (14) k b T All the measurements were done at room temperature. k σ=0,f and k σ=0,r were measured as s -1, s -1, respectively. Using these values, ΔE a,f and ΔE a,r were calculated at each stress level. Activation volumes were also derived from the obtained activation energy values and averaged. Reference (1) Beiermann, B. A.; Kramer, S. L. B.; May, P. A.; Moore, J. S.; White, S. R.; Sottos, N. R. Adv. Funct. Mater. 2014, 24 (11),

Force-Induced Redistribution of a Chemical Equilibrium

Force-Induced Redistribution of a Chemical Equilibrium Published on Web 10/26/2010 Force-Induced Redistribution of a Chemical Equilibrium Corissa K. Lee, Douglas A. Davis, Scott R. White, Jeffrey S. Moore, Nancy R. Sottos, and Paul V. Braun* Departments of

More information

Supporting Information

Supporting Information Supporting Information Thermoset Shape-Memory Polyurethane with Intrinsic Plasticity Enabled by Transcarbamoylation Ning Zheng, Zizheng Fang, Weike Zou, Qian Zhao,* and Tao Xie* anie_201602847_sm_miscellaneous_information.pdf

More information

Red Color CPL Emission of Chiral 1,2-DACH-based Polymers via. Chiral Transfer of the Conjugated Chain Backbone Structure

Red Color CPL Emission of Chiral 1,2-DACH-based Polymers via. Chiral Transfer of the Conjugated Chain Backbone Structure Electronic Supplementary Material (ESI) for Polymer Chemistry. This journal is The Royal Society of Chemistry 2015 Red Color CPL Emission of Chiral 1,2-DACH-based Polymers via Chiral Transfer of the Conjugated

More information

FLOW INDUCED MECHANOCHEMICAL ACTIVATION

FLOW INDUCED MECHANOCHEMICAL ACTIVATION FLOW INDUCED MECHANOCHEMICAL ACTIVATION H Magnus Andersson 1, Charles R Hickenboth 2, Stephanie L Potisek 2, Jeffrey S Moore 2, Nancy R Sottos 3 and Scott R White 4 1 Beckman Institute, 2 Department of

More information

Supporting Information

Supporting Information Supporting Information Role of Molecular Weight Distribution on Charge Transport in Semiconducting Polymers Scott Himmelberger, Koen Vandewal, Zhuping Fei, Martin Heeney, Alberto Salleo* Mobility Model

More information

Supporting Information

Supporting Information Supporting Information Dynamic Interaction between Methylammonium Lead Iodide and TiO 2 Nanocrystals Leads to Enhanced Photocatalytic H 2 Evolution from HI Splitting Xiaomei Wang,, Hong Wang,, Hefeng Zhang,,

More information

Optimizing Ion Transport in Polyether-based Electrolytes for Lithium Batteries

Optimizing Ion Transport in Polyether-based Electrolytes for Lithium Batteries Supporting Information Optimizing Ion Transport in Polyether-based Electrolytes for Lithium Batteries Qi Zheng, 1 Danielle M. Pesko, 1 Brett M. Savoie, Ksenia Timachova, Alexandra L. Hasan, Mackensie C.

More information

Supporting Information for:

Supporting Information for: Supporting Information for: High Efficiency Low-Power Upconverting Soft Materials Jae-Hyuk Kim, Fan Deng, Felix N. Castellano,*, and Jae-Hong Kim*, School of Civil and Environmental Engineering, Georgia

More information

Magnetic Iron Oxide Nanoparticles as Long Wavelength Photoinitiators for Free Radical Polymerization

Magnetic Iron Oxide Nanoparticles as Long Wavelength Photoinitiators for Free Radical Polymerization Electronic Supplementary Material (ESI) for Polymer Chemistry. This journal is The Royal Society of Chemistry 2015 SUPPORTING INFORMATION Magnetic Iron Oxide Nanoparticles as Long Wavelength Photoinitiators

More information

Supporting Information

Supporting Information Supporting Information Solid Polymer Electrolytes Based on Functionalized Tannic Acids from Natural Resources for All-Solid-State Lithium- Ion Batteries Jimin Shim, [a] Ki Yoon Bae, [b] Hee Joong Kim,

More information

Zwitterionic Polymerization: A Kinetic Strategy for the Controlled Synthesis of Cyclic Polylactide

Zwitterionic Polymerization: A Kinetic Strategy for the Controlled Synthesis of Cyclic Polylactide SUPPORTING INFORATION Zwitterionic Polymerization: A Kinetic Strategy for the Controlled Synthesis of Cyclic Polylactide Wonhee Jeong, Eun Ji Shin, Darcy A. Culin,, James L. Hedric, and Robert. Waymouth,*

More information

Chemically recyclable alternating copolymers with low polydispersity from

Chemically recyclable alternating copolymers with low polydispersity from Electronic Supplementary Information Chemically recyclable alternating copolymers with low polydispersity from conjugated/aromatic aldehydes with vinyl ethers: selective degradation to another monomer

More information

Polymer Inorganic Composites with Dynamic Covalent Mechanochromophore

Polymer Inorganic Composites with Dynamic Covalent Mechanochromophore Supporting Information Polymer Inorganic Composites with Dynamic Covalent Mechanochromophore Takahiro Kosuge,, Keiichi Imato, Raita Goseki,, and Hideyuki tsuka*,, Department of rganic and Polymeric Materials,

More information

Supporting informations for

Supporting informations for Electronic Supplementary Material (ESI) for ChemComm. This journal is The Royal Society of Chemistry 2017 Supporting informations for Isoprene chain shuttling polymerization between cis and trans regulating

More information

Supporting Information

Supporting Information Supporting Information Efficient Temperature Sensing Platform Based on Fluorescent Block Copolymer Functionalized Graphene Oxide Hyunseung Yang, Kwanyeol Paek, and Bumjoon J. Kim * : These authors contributed

More information

SUPPORTING INFORMATION

SUPPORTING INFORMATION SUPPORTING INFORMATION Polymerization-induced Self-Assembly of Homopolymer and Diblock copolymer: A Facile Approach for preparing Polymer Nano-objects with Higher Order Morphologies Jianbo Tan *a,b, Chundong

More information

Supporting information

Supporting information Supporting information Temperature and ph-dual Responsive AIE-Active Core Crosslinked Polyethylene Poly(methacrylic acid) Multimiktoarm Star Copolymers ` Zhen Zhang,*,, and Nikos Hadjichristidis*, School

More information

One-pot polymer brush synthesis via simultaneous isocyanate coupling chemistry and grafting from RAFT polymerization

One-pot polymer brush synthesis via simultaneous isocyanate coupling chemistry and grafting from RAFT polymerization Electronic Supplementary Material (ESI) for Polymer Chemistry. This journal is The Royal Society of Chemistry 2014 One-pot polymer brush synthesis via simultaneous isocyanate coupling chemistry and grafting

More information

Lecture 4 : Gel Permeation or Size Exclusion Chromatography

Lecture 4 : Gel Permeation or Size Exclusion Chromatography Lecture 4 : Gel Permeation or Size Exclusion Chromatography Polymer Fractionation Sedimentation Centrifugation Evaporation of the solvent Gel permeation chromatography Gel Permeation Chromatography (GPC)

More information

Scheme 1: Reaction scheme for the synthesis of p(an-co-mma) copolymer

Scheme 1: Reaction scheme for the synthesis of p(an-co-mma) copolymer Electronic Supplementary Material (ESI) for RSC Advances. This journal is The Royal Society of Chemistry 2016 Design and Development of Poly (acrylonitrile-co-methyl methacrylate) Copolymer to Improve

More information

Supporting Information

Supporting Information Electronic Supplementary Material (ESI) for Polymer Chemistry. This journal is The Royal Society of Chemistry 2017 Supporting Information Photochemical Regulation of a Redox-Active Olefin Polymerization

More information

Self-Healable Sensors Based Nanoparticles for Detecting Physiological Markers via Skin and Breath: Toward Disease Prevention via Wearable Devices

Self-Healable Sensors Based Nanoparticles for Detecting Physiological Markers via Skin and Breath: Toward Disease Prevention via Wearable Devices Supporting Information: Self-Healable Sensors Based Nanoparticles for Detecting Physiological Markers via Skin and Breath: Toward Disease Prevention via Wearable Devices Han Jin, 1,2 Tan-Phat Huynh 1 and

More information

Supporting Information

Supporting Information Supporting Information Activating Room Temperature Long Afterglow of Carbon Dots via Covalent Fixation Kai Jiang,, Yuhui Wang, Congzhong Cai, and Hengwei Lin*, Key Laboratory of Graphene Technologies and

More information

The ph-responsive behaviour of aqueous solutions of poly(acrylic acid) is dependent on molar mass

The ph-responsive behaviour of aqueous solutions of poly(acrylic acid) is dependent on molar mass Electronic Supplementary Material (ESI) for Soft Matter. This journal is The Royal Society of Chemistry 2016 The ph-responsive behaviour of aqueous solutions of poly(acrylic acid) is dependent on molar

More information

Self-assembled ph-responsive Polymeric Micelles for Highly. Efficient, Non-Cytotoxic Delivery of Doxorubicin Chemotherapy

Self-assembled ph-responsive Polymeric Micelles for Highly. Efficient, Non-Cytotoxic Delivery of Doxorubicin Chemotherapy Supporting Information Self-assembled ph-responsive Polymeric Micelles for Highly Efficient, on-cytotoxic Delivery of Doxorubicin Chemotherapy to Inhibit Macrophage Activation: In Vitro Investigation Zhi-Sheng

More information

SUPPLEMENTARY INFORMATION

SUPPLEMENTARY INFORMATION DOI: 10.1038/NCHEM.2633 Mechanically controlled radical polymerization initiated by ultrasound Hemakesh Mohapatra, Maya Kleiman, Aaron P. Esser-Kahn Contents 1. Materials and methods 2 2. Procedure for

More information

Supplementary Material (ESI) for Chemical Communications This journal is (c) The Royal Society of Chemistry 2008

Supplementary Material (ESI) for Chemical Communications This journal is (c) The Royal Society of Chemistry 2008 Supplementary Information for: Scrambling Reaction between Polymers Prepared by Step-growth and Chain-growth Polymerizations: Macromolecular Cross-metathesis between 1,4-Polybutadiene and Olefin-containing

More information

CHAPTER 10 DENSITY AND VISCOSITY AS REAL-TIME PROBES FOR THE PROGRESS OF HIGH-PRESSURE POLYMERIZATION:

CHAPTER 10 DENSITY AND VISCOSITY AS REAL-TIME PROBES FOR THE PROGRESS OF HIGH-PRESSURE POLYMERIZATION: CHAPTER 10 DENSITY AND VISCOSITY AS REAL-TIME PROBES FOR THE PROGRESS OF HIGH-PRESSURE POLYMERIZATION: POLYMERIZATION OF METHYL METHACRYLATE IN ACETONE Density and viscosity can be used as real-time probes

More information

Supporting Information

Supporting Information Electronic Supplementary Material (ESI) for Journal of Materials Chemistry B. This journal is The Royal Society of Chemistry 2017 Supporting Information Upper Critical Solution Temperature Thermo-Responsive

More information

Xiangxiong Chen, Mohd Yusuf Khan and Seok Kyun Noh* School of Chemical Engineering, Yeungnam University, Dae-dong, Gyeongsan,

Xiangxiong Chen, Mohd Yusuf Khan and Seok Kyun Noh* School of Chemical Engineering, Yeungnam University, Dae-dong, Gyeongsan, Electronic Supplementary Information For M Amount of Fe (III)-mediated ATR of MMA with hosphorus Containing Ligands in the Absence of Any Additives Xiangxiong Chen, Mohd Yusuf Khan and Seok Kyun Noh* School

More information

MECHANICAL AND OPTICAL CHARACTERIZATION OF FORCE INDUCED CHEMICAL REACTIONS IN SOLID STATE LINEAR POLYMERS

MECHANICAL AND OPTICAL CHARACTERIZATION OF FORCE INDUCED CHEMICAL REACTIONS IN SOLID STATE LINEAR POLYMERS MECHANICAL AND OPTICAL CHARACTERIZATION OF FORCE INDUCED CHEMICAL REACTIONS IN SOLID STATE LINEAR POLYMERS BY BRETT A. BEIERMANN DISSERTATION Submitted in partial fulfillment of the requirements for the

More information

Supporting Information

Supporting Information Supporting Information From Tree to Tape: Direct Synthesis of Pressure Sensitive Adhesives from Depolymerized Raw Lignocellulosic Biomass Shu Wang,,# Li Shuai,,% Basudeb Saha, Dionisios G. Vlachos,, and

More information

Supporting Information for. Near infrared-to-blue photon upconversion by exploiting direct. S-T absorption of a molecular sensitizer

Supporting Information for. Near infrared-to-blue photon upconversion by exploiting direct. S-T absorption of a molecular sensitizer Electronic Supplementary Material (ESI) for Journal of Materials Chemistry C. This journal is The Royal Society of Chemistry 2017 Supporting Information for Near infrared-to-blue photon upconversion by

More information

Quick guide to selecting columns and standards for Gel Permeation Chromatography and Size Exclusion Chromatography SELECTION GUIDE

Quick guide to selecting columns and standards for Gel Permeation Chromatography and Size Exclusion Chromatography SELECTION GUIDE Quick guide to selecting columns and standards for Gel Permeation Chromatography and Size Exclusion Chromatography SELECTION GUIDE Introduction Gel permeation chromatography (GPC) and size exclusion chromatography

More information

Supporting Information:

Supporting Information: Supporting Information: Sequential Actuation of Shape-Memory Polymers through Wavelength-Selective Photothermal Heating of Gold Nanospheres and Nanorods Sumeet R. Mishra and Joseph B. Tracy*, Department

More information

Supporting Information

Supporting Information Electronic Supplementary Material (ESI) for ChemComm. This journal is The Royal Society of Chemistry 2014 Supporting Information Synthesis of Poly(dihydroxystyrene-block-styrene) (PDHSt-b-PSt) by the RAFT

More information

Supporting Information

Supporting Information Supporting Information Controlled Radical Polymerization and Quantification of Solid State Electrical Conductivities of Macromolecules Bearing Pendant Stable Radical Groups Lizbeth Rostro, Aditya G. Baradwaj,

More information

A TTFV pyrene-based copolymer: synthesis, redox properties, and aggregation behaviour

A TTFV pyrene-based copolymer: synthesis, redox properties, and aggregation behaviour Electronic Supplementary Material (ESI) for RSC Advances. This journal is The Royal Society of Chemistry 2015 A TTFV pyrene-based copolymer: synthesis, redox properties, and aggregation behaviour Eyad

More information

Absorbance (a. u.) Wavelength (nm) Wavelength (nm) Intensity (a. u.) Wavelength (nm) Wavelength (nm)

Absorbance (a. u.) Wavelength (nm) Wavelength (nm) Intensity (a. u.) Wavelength (nm) Wavelength (nm) Intensity (a. u.) Absorbance (a. u.) a UV UV b Wavelength (nm) Wavelength (nm) UV UV Wavelength (nm) Wavelength (nm) Supplementary Figure 1. UV-Vis absorbance spectral changes of (a) SP-Gal (left, 10 μm),

More information

Amine-impregnated silica monolith with a hierarchical pore structure: enhancement of CO 2 capture capacity

Amine-impregnated silica monolith with a hierarchical pore structure: enhancement of CO 2 capture capacity 1 Electronic Supplementary Information (ESI) Amine-impregnated silica monolith with a hierarchical pore structure: enhancement of CO 2 capture capacity for Chao Chen, Seung-Tae Yang, Wha-Seung Ahn* and

More information

Supplementary Figures

Supplementary Figures Supplementary Figures Supplementary Figure 1. Photonic sensing via SRS method. Reflection spectra of a) a dried SiO 2 opal and b-d) the SiO 2 opal infiltrated with different organic solvents, whose refractive

More information

Well-defined Click-able Copolymers in One-Pot Synthesis

Well-defined Click-able Copolymers in One-Pot Synthesis Electronic Supplementary Material (ESI) for hemomm. This journal is The Royal Society of hemistry 2014 Well-defined lick-able opolymers in ne-pot Synthesis egar Ghasdian, Mark A. Ward and Theoni K. Georgiou*

More information

X-ray excitable luminescent polymer dots doped with iridium(iii)

X-ray excitable luminescent polymer dots doped with iridium(iii) Electronic Supporting Information for X-ray excitable luminescent polymer dots doped with iridium(iii) complex Yasuko Osakada,* a,b Guillem Pratx, c Lindsey Hanson, a Paige Elana Solomon, a Lei Xing* c

More information

Controlling microenvironments and modifying anion binding. selectivities using core functionalised hyperbranched polymers

Controlling microenvironments and modifying anion binding. selectivities using core functionalised hyperbranched polymers Electronic Supplementary Material (ESI) for ChemComm. This journal is The Royal Society of Chemistry 2016 Controlling microenvironments and modifying anion binding selectivities using core functionalised

More information

Quiz 5 Introduction to Polymers

Quiz 5 Introduction to Polymers 100506 Quiz 5 Introduction to Polymers 1) Polyurethane in the video shown in class is formed from two liquids that are mixed. After mixing the solution foams and expands fairly rapidly forming a solid

More information

A supramolecular approach for fabrication of photo- responsive block-controllable supramolecular polymers

A supramolecular approach for fabrication of photo- responsive block-controllable supramolecular polymers Electronic Supplementary Material (ESI) for Polymer Chemistry. This journal is The Royal Society of Chemistry 2014 Supporting Information A supramolecular approach for fabrication of photo- responsive

More information

Blending conjugated polymers without phase separation for fluorescent colour tuning of polymeric materials through FRET

Blending conjugated polymers without phase separation for fluorescent colour tuning of polymeric materials through FRET Electronic Supplementary Material (ESI) for ChemComm. This journal is The Royal Society of Chemistry 2014 Supplementary Information Blending conjugated polymers without phase separation for fluorescent

More information

Efficient Magnesium Catalysts for the Copolymerization of Epoxides and CO 2 ; Using Water to Synthesize Polycarbonate Polyols

Efficient Magnesium Catalysts for the Copolymerization of Epoxides and CO 2 ; Using Water to Synthesize Polycarbonate Polyols Supporting Information for Efficient Magnesium Catalysts for the Copolymerization of Epoxides and CO 2 ; Using Water to Synthesize Polycarbonate Polyols Michael R. Kember, Charlotte K. Williams* Department

More information

1 Electronic Supplementary Information (ESI) 2 Healable thermo-reversible functional polymer via RAFT

1 Electronic Supplementary Information (ESI) 2 Healable thermo-reversible functional polymer via RAFT Electronic Supplementary Material (ESI) for ChemComm. This journal is The Royal Society of Chemistry 2017 1 Electronic Supplementary Information (ESI) 2 Healable thermo-reversible functional polymer via

More information

Supporting Information. segments

Supporting Information. segments Supporting Information Synthesis, morphology and properties of segmented poly(ether amide)s with uniform oxalamide based hard segments Niels J. Sijbrandi a, Ad J. Kimenai b, Edwin P.C. Mes b, René Broos

More information

A novel smart polymer responsive to CO 2

A novel smart polymer responsive to CO 2 A novel smart polymer responsive to CO 2 Zanru Guo, a,b Yujun Feng,* a Yu Wang, a Jiyu Wang, a,b Yufeng Wu, a,b and Yongmin Zhang a,b a Chengdu Institute of Organic Chemistry, Chinese Academy of Sciences,

More information

One polymer for all: Benzotriazole Containing Donor-Acceptor Type Polymer as a Multi-Purpose Material

One polymer for all: Benzotriazole Containing Donor-Acceptor Type Polymer as a Multi-Purpose Material One polymer for all: Benzotriazole Containing Donor-Acceptor Type Polymer as a Multi-Purpose Material Abidin Balan a, Derya Baran a, Gorkem Gunbas a,b, Asuman Durmus a,b, Funda Ozyurt a and Levent Toppare

More information

Ring-Opening Polymerization of N-Carboxyanhydrides Initiated by a Hydroxyl Group

Ring-Opening Polymerization of N-Carboxyanhydrides Initiated by a Hydroxyl Group SUPPRTING INFRMATIN Ring-pening Polymerization of N-Carboxyanhydrides Initiated by a Hydroxyl Group Špela Gradišar, Ema Žagar, and David Pahovnik* National Institute of Chemistry, Department of Polymer

More information

1. Bulk polymerization of styrene at 60 C with four different initiator concentrations

1. Bulk polymerization of styrene at 60 C with four different initiator concentrations Learning targets: ideal kinetics of chain growth, I rule, viscometry, characteristics of polymers (number-, weight- and viscosity-average) Assignment of tasks: 1. Bulk polymerization of styrene at 6 C

More information

Gel Permeation Chromatography

Gel Permeation Chromatography Gel Permeation Chromatography Polymers and Coatings Laboratory California Polytechnic State University San Luis Obispo, CA Gel permeation chromatography (GPC) has become the most widely used technique

More information

Optimizing GPC Separations

Optimizing GPC Separations Optimizing GPC Separations Criteria for Solvent Selection True sample solubility (Polarity and Time dependant) Compatibility with columns Avoid non-size exclusion effects (eg adsorption by reverse phase

More information

Supporting Information. Copolymers of Tetrahydrofuran and Epoxidized Vegetable Oils: Application to Elastomeric Polyurethanes

Supporting Information. Copolymers of Tetrahydrofuran and Epoxidized Vegetable Oils: Application to Elastomeric Polyurethanes Supporting Information Copolymers of Tetrahydrofuran and Epoxidized Vegetable Oils: Application to Elastomeric Polyurethanes Andrew J Clark,* Seng Soi Hoong Department of Chemistry, University of Warwick,

More information

Polymerization Induced Self-Assembly: Tuning of Nano-Object Morphology by Use of CO 2

Polymerization Induced Self-Assembly: Tuning of Nano-Object Morphology by Use of CO 2 Electronic Supplementary Material (ESI) for Polymer Chemistry. This journal is The Royal Society of Chemistry 2015 SUPPORTING INFORMATION Polymerization Induced Self-Assembly: Tuning of Nano-Object Morphology

More information

Supporting Information

Supporting Information Electronic Supplementary Material (ESI) for Biomaterials Science. This journal is The Royal Society of Chemistry 2017 Supporting Information Degradable and Biocompatible Hydrogels Bearing Hindered Urea

More information

Aziridine in Polymers: A Strategy to Functionalize Polymers by Ring- Opening Reaction of Aziridine

Aziridine in Polymers: A Strategy to Functionalize Polymers by Ring- Opening Reaction of Aziridine Electronic Supplementary Material (ESI) for Polymer Chemistry. This journal is The Royal Society of Chemistry 2015 Electronic Supplementary Information (ESI) Aziridine in Polymers: A Strategy to Functionalize

More information

Supplementary Figure 2. Full power on times. Histogram showing on times of bursts with 100 pm 1, 100 pm 2 and 1 nm Et 3 N at full laser power.

Supplementary Figure 2. Full power on times. Histogram showing on times of bursts with 100 pm 1, 100 pm 2 and 1 nm Et 3 N at full laser power. S1 Supplementary Figures Supplementary Figure 1. Time-correlated still frame images. Expanded still frames images from TIRFM video of CuAAC of 1 and 2 and corresponding intensity trajectory of a single

More information

Supporting Information. T g [ºC] b) E at 23 ºC [MPa]

Supporting Information. T g [ºC] b) E at 23 ºC [MPa] Supporting Information α-amino Acid-Based Poly(Ester Urea)s as Multi-Shape Memory Pol-ymers for Biomedical Applications Gregory I. Peterson, Andrey V. Dobrynin, Matthew L. Becker* The University of Akron,

More information

Polymer analysis by GPC-SEC. Technical Note. Introduction

Polymer analysis by GPC-SEC. Technical Note. Introduction Polymer analysis by GPC-SEC Technical Note Introduction Gel Permeation Chromatography (GPC), also referred to as Size Exclusion Chromatography (SEC) is a mode of liquid chromatography in which the components

More information

High-Performance Semiconducting Polythiophenes for Organic Thin Film. Transistors by Beng S. Ong,* Yiliang Wu, Ping Liu and Sandra Gardner

High-Performance Semiconducting Polythiophenes for Organic Thin Film. Transistors by Beng S. Ong,* Yiliang Wu, Ping Liu and Sandra Gardner Supplementary Materials for: High-Performance Semiconducting Polythiophenes for Organic Thin Film Transistors by Beng S. Ong,* Yiliang Wu, Ping Liu and Sandra Gardner 1. Materials and Instruments. All

More information

SUPPORTING INFORMATION. Si wire growth. Si wires were grown from Si(111) substrate that had a low miscut angle

SUPPORTING INFORMATION. Si wire growth. Si wires were grown from Si(111) substrate that had a low miscut angle SUPPORTING INFORMATION The general fabrication process is illustrated in Figure 1. Si wire growth. Si wires were grown from Si(111) substrate that had a low miscut angle of 0.1. The Si was covered with

More information

Supporting Information for

Supporting Information for Electronic Supplementary Material (ESI) for New Journal of Chemistry. This journal is The Royal Society of Chemistry and the Centre National de la Recherche Scientifique 2017 Supporting Information for

More information

RAFT /MADIX polymerization of N-vinylcaprolactam in water-ethanol solvent mixtures

RAFT /MADIX polymerization of N-vinylcaprolactam in water-ethanol solvent mixtures Electronic Supplementary Material (ESI) for Polymer Chemistry. This journal is The Royal Society of Chemistry 2017 Supporting information for RAFT /MADIX polymerization of N-vinylcaprolactam in water-ethanol

More information

High Performance Liquid Chromatography

High Performance Liquid Chromatography Updated: 3 November 2014 Print version High Performance Liquid Chromatography David Reckhow CEE 772 #18 1 HPLC System David Reckhow CEE 772 #18 2 Instrument Basics PUMP INJECTION POINT DETECTOR COLUMN

More information

High Performance Liquid Chromatography

High Performance Liquid Chromatography Updated: 3 November 2014 Print version High Performance Liquid Chromatography David Reckhow CEE 772 #18 1 HPLC System David Reckhow CEE 772 #18 2 1 Instrument Basics PUMP INJECTION POINT DETECTOR COLUMN

More information

Supplementary Information

Supplementary Information Supplementary Information Facile preparation of superhydrophobic coating by spraying a fluorinated acrylic random copolymer micelle solution Hui Li, a,b Yunhui Zhao a and Xiaoyan Yuan* a a School of Materials

More information

GPC/SEC An essential tool for polymer analysis

GPC/SEC An essential tool for polymer analysis GPC/SEC An essential tool for polymer analysis Ben MacCreath, PhD Product Manager GPC/SEC Instrumentation 26 th March 2013 Introduction to Polymers Where are they found? Polyolefins Engineering Polymers

More information

Hyperbranched Poly(N-(2-Hydroxypropyl) Methacrylamide) via RAFT Self- Condensing Vinyl Polymerization

Hyperbranched Poly(N-(2-Hydroxypropyl) Methacrylamide) via RAFT Self- Condensing Vinyl Polymerization Electronic Supplementary Material (ESI) for Polymer Chemistry. This journal is The Royal Society of Chemistry 2016 Hyperbranched Poly(N-(2-Hydroxypropyl) Methacrylamide) via RAFT Self- Condensing Vinyl

More information

Temperature, ph, and Glucose Responsive Gels via Simple Mixing of Boroxole- and Glyco-Based Polymers

Temperature, ph, and Glucose Responsive Gels via Simple Mixing of Boroxole- and Glyco-Based Polymers Supporting Information Temperature, ph, and Glucose Responsive Gels via Simple Mixing of Boroxole- and Glyco-Based Polymers Yohei Kotsuchibashi a, Roman Vincent C. Agustin a, Jin-Yong Lu b, Dennis G. Hall

More information

Fluorescent nanoparticles from PEGylated polyfluorenes - Supporting Information

Fluorescent nanoparticles from PEGylated polyfluorenes - Supporting Information Fluorescent nanoparticles from PEGylated polyfluorenes - Supporting Information Jonathan M. Behrendt, Yun Wang, Helen Willcock, Laura Wall, Mark C. McCairn, Rachel K. O Reilly and Michael L. Turner Experimental

More information

1+2 on GHD (5 µl) Volume 1+2 (µl) 1 on GHD 1+2 on GHD

1+2 on GHD (5 µl) Volume 1+2 (µl) 1 on GHD 1+2 on GHD 1+2 on GHD (20 µl) 1+2 on GHD (15 µl) 1+2 on GHD (10 µl) 1+2 on GHD (5 µl) Volume 1+2 (µl) 1 on GHD 1+2 on GHD Supplementary Figure 1 UV-Vis measurements a. UV-Vis spectroscopy of drop-casted volume of

More information

Waters GPC User Guide and Tutorial for Using the GPC in the Reynolds Research Group 2 nd Edition: April 2012

Waters GPC User Guide and Tutorial for Using the GPC in the Reynolds Research Group 2 nd Edition: April 2012 Waters GPC User Guide and Tutorial for Using the GPC in the Reynolds Research Group 2 nd Edition: April 2012 Georgia Institute of Technology School of Chemistry & Biochemistry School of Materials Science

More information

Gel Permeation Chromatography Basics and Beyond eseminar March 13, Jean Lane Technical and Applications Support LSCA, Columns and Supplies

Gel Permeation Chromatography Basics and Beyond eseminar March 13, Jean Lane Technical and Applications Support LSCA, Columns and Supplies Gel Permeation Chromatography Basics and Beyond eseminar March 13, 2013 Jean Lane Technical and Applications Support LSCA, Columns and Supplies 1 Content Overview of GPC/SEC What is it? Why do we use it?

More information

Supporting Information

Supporting Information Supporting Information Azo Polymer Janus Particles and Their Photoinduced Symmetry-Breaking Deformation Xinran Zhou, Yi Du, Xiaogong Wang* Department of Chemical Engineering, Laboratory of Advanced Materials

More information

Table 1. Molar mass, polydispersity and degree of polymerization of the P3HTs. DP b

Table 1. Molar mass, polydispersity and degree of polymerization of the P3HTs. DP b Electronic Deckers et al.: Supporting Information S1: Polythiophene synthesis and calculation of the molar mass The P3HTs were prepared by a Ni(dppp) - mediated (dppp = 1,3-bisdiphenylphosphino propane)

More information

Turn-On Detection of Pesticides via Reversible Fluorescence Enhancement of Conjugated Polymer Nanoparticles and Thin Films

Turn-On Detection of Pesticides via Reversible Fluorescence Enhancement of Conjugated Polymer Nanoparticles and Thin Films Electronic Supplementary Material (ESI) for New Journal of Chemistry. This journal is The Royal Society of Chemistry and the Centre National de la Recherche Scientifique 2016 Electronic Supporting Information

More information

Molecular weight of polymers. Molecular weight of polymers. Molecular weight of polymers. Molecular weight of polymers. H i

Molecular weight of polymers. Molecular weight of polymers. Molecular weight of polymers. Molecular weight of polymers. H i Gel Permeation Chromatography (GPC) : Size Exclusion Chromatography GPC : 1. Chromatogram (V R vs H) H i Detector response Baseline N i M i 130 135 140 145 150 155 160 165 Elution volume (V R ) (counts)

More information

Block: Synthesis, Aggregation-Induced Emission, Two-Photon. Absorption, Light Refraction, and Explosive Detection

Block: Synthesis, Aggregation-Induced Emission, Two-Photon. Absorption, Light Refraction, and Explosive Detection Electronic Supplementary Information (ESI) Luminogenic Materials Constructed from Tetraphenylethene Building Block: Synthesis, Aggregation-Induced Emission, Two-Photon Absorption, Light Refraction, and

More information

Supporting Information

Supporting Information Supporting Information Hydrolyzable Polyureas earing Hindered Urea onds Hanze Ying and Jianjun heng* epartment of Materials Science and ngineering, University of Illinois at Urbana-hampaign, 1304 West

More information

Molecular Weight Distribution of Living Chains in Polystyrene Pre-pared by Atom Transfer Radical Polymerization

Molecular Weight Distribution of Living Chains in Polystyrene Pre-pared by Atom Transfer Radical Polymerization Molecular Weight Distribution of Living Chains in Polystyrene Pre-pared by Atom Transfer Radical Polymerization Joongsuk Oh, a Jiae Kuk, a Taeheon Lee, b Jihwa Ye, b Huyn-jong Paik, b* Hyo Won Lee, c*

More information

An Introductions to Advanced GPC Solutions

An Introductions to Advanced GPC Solutions An Introductions to Advanced GPC Solutions Alan Brookes Sales Manager GPC Instruments EMEAI 9 th April 2014 Agilent GPC/SEC Solutions 1 Introduction to Polymers Polymers are long chain molecules produced

More information

Supporting Information for: ATRP, azide substitution and click chemistry: three reactions using one catalyst in one pot

Supporting Information for: ATRP, azide substitution and click chemistry: three reactions using one catalyst in one pot Supporting Information for: ATRP, azide substitution and click chemistry: three reactions using one catalyst in one pot Albert J. de Graaf, Enrico Mastrobattista, Cornelus F. van Nostrum, Dirk T.S. Rijkers,

More information

Supporting Information

Supporting Information Supporting Information A Rational Design of Highly Controlled Suzuki-Miyaura Catalyst-Transfer Polycondensation for Precision Synthesis of Polythiophenes and their Block Copolymers: Marriage of Palladacycle

More information

Spin Capturing with Nitrones: Radical Coupling Reactions with Concurrent Introduction of Midchain Functionality

Spin Capturing with Nitrones: Radical Coupling Reactions with Concurrent Introduction of Midchain Functionality Supplementary Information: Spin Capturing with Nitrones: Radical Coupling Reactions with Concurrent Introduction of Midchain Functionality Edgar H. H. Wong, a,b Cyrille Boyer, b Martina H. Stenzel, b Christopher

More information

Novel Supercapacitor Materials Including OLED emitters

Novel Supercapacitor Materials Including OLED emitters Electronic Supplementary Material (ESI) for New Journal of Chemistry. This journal is The Royal Society of Chemistry and the Centre National de la Recherche Scientifique 2015 Supporting Information Novel

More information

Supporting Information for:

Supporting Information for: Supporting Information for: "Rheological Link Between Polymer Melts with a High Molecular Weight Tail and Enhanced Formation of Shish-Kebabs" Sara Lindeblad Wingstrand, Bo Shen, Julie A. Korneld, Kell

More information

Block copolymers containing organic semiconductor segments by RAFT polymerization

Block copolymers containing organic semiconductor segments by RAFT polymerization Block copolymers containing organic semiconductor segments by RAFT polymerization Ming Chen, Matthias Häussler, Graeme Moad, Ezio Rizzardo Supplementary Material Radical polymerizations in the presence

More information

Supporting Information for

Supporting Information for Supporting Information for AmPhos Pd-Catalyzed Suzuki-Miyaura Catalyst-Transfer Condensation Polymerization: Narrower Dispersity by Mixing the Catalyst and Base Prior to Polymerization Kentaro Kosaka,

More information

Gel Permeation Chromatography

Gel Permeation Chromatography Gel Permeation Chromatography Polymers and Coatings Laboratory California Polytechnic State University Gel permeation chromatography (GPC) has become the most widely used technique for determination of

More information

Electronic Supplementary Information : assembly of ph responsive branched copolymer-stabilised emulsion via electrostatic forces

Electronic Supplementary Information : assembly of ph responsive branched copolymer-stabilised emulsion via electrostatic forces Electronic Supplementary Material (ESI) for ChemComm. This journal is The Royal Society of Chemistry 01 Electronic Supplementary Information : Reversible assembly of ph responsive branched copolymer-stabilised

More information

Supporting Information

Supporting Information Supporting Information Precision Synthesis of Poly(-hexylpyrrole) and its Diblock Copolymer with Poly(p-phenylene) via Catalyst-Transfer Polycondensation Akihiro Yokoyama, Akira Kato, Ryo Miyakoshi, and

More information

Supporting Information

Supporting Information Electronic Supplementary Material (ESI) for Photochemical & Photobiological Sciences. This journal is The Royal Society of Chemistry and Owner Societies 2014 Supporting Information 1. General procedure

More information

Supplementary Figure S1 Definition of the wave vector components: Parallel and perpendicular wave vector of the exciton and of the emitted photons.

Supplementary Figure S1 Definition of the wave vector components: Parallel and perpendicular wave vector of the exciton and of the emitted photons. Supplementary Figure S1 Definition of the wave vector components: Parallel and perpendicular wave vector of the exciton and of the emitted photons. Supplementary Figure S2 The calculated temperature dependence

More information

GPC/SEC standards. Product guide

GPC/SEC standards. Product guide GPC/SEC standards Product guide Contents Polymer standards for GPC/SEC 3 Agilent EasiVial 5 Agilent EasiCal 8 Polystyrene 9 Polymethylmethacrylate 11 Polyethylene glycol/oxide 12 Other polymer standards

More information

Supplementary Information for : Plasticization-resistant Ni 2 (dobdc)/polyimide composite membranes for CO 2 removal from natural gas

Supplementary Information for : Plasticization-resistant Ni 2 (dobdc)/polyimide composite membranes for CO 2 removal from natural gas Electronic Supplementary Material (ESI) for Energy & Environmental Science. This journal is The Royal Society of Chemistry 2016 Supplementary Information for : Plasticization-resistant Ni 2 (dobdc)/polyimide

More information

Sem /2007. Fisika Polimer Ariadne L. Juwono

Sem /2007. Fisika Polimer Ariadne L. Juwono Chapter 8. Measurement of molecular weight and size 8.. End-group analysis 8.. Colligative property measurement 8.3. Osmometry 8.4. Gel-permeation chromatography 8.5. Ultracentrifugation 8.6. Light-scattering

More information